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Resume : To improve the efficency of arganic solar cells is necessary, for instance, o
increase the open-circuit voltage or increase sun-light abserption by covering
ocomplementary regions of the solar spectrum. This can be achieved by using & donor-
acceptor system composad of baa polymers. The versatility of these materials has the
advantage of enabling the control of morpholagy at nanoscale, and thus the design of
an adequate interface o improve the device efficiency, using for instance na noim grint
lithography. However, proper contral of the molecular erganization of bath polymers at
palyrmer-polymer interface is difficult and strongly depends on the experimental
conditions used. Polymer chains can present different conformations relative to the
interface, creating different conjugated strand arrangements whose disorder degres
can affect energy and charge transfer. Thus, understanding this effed is of utmaost
importance bo improve the efficdency of exdtonic solar cells. In this work we present a
Monte Carle model that uses a proper description of polymer-polymer interface
manomorpholy and considers the main physical processes that mediate excitons and
charges dynamics. Our results show that the amaount of charge extracted from the
interface is sensible ta polymer strand orientation and to the presence of the diffusive
layer formed by the mikbure of both palymers.
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To improve the efficiency of organic solar cells is necessary, for instance, to increase the open-circuit voltage or increase sun-light
absorption by covering complementary regions of the solar spectrum. This can be achieved by using a donor-acceptor system composed of
two polymers. The versatility of these materials has the advantage of enabling the control of morphology at nanoscale, and thus the design
of an adequate interface to improve the device efficiency, using for instance nanoimprint lithography. However, proper control of the
molecular organization of both polymers at polymer-polymer interface is difficult and strongly depends on the experimental conditions used.
Thus, understanding this effect is of utmost importance to improve the efficiency of excitonic solar cells
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PHOTO code (based on a Monte Carlo method) was used to simulate exciton migration in bilayer polymer networks with different
morphologies and diffusive interfaces width. A detaild description of the model can be found in Correia, HMG , et. al., Comput. Mater.
Sci. 75 (2013) 18-23.

.

~

B

RESULTS AND CONCLUSION

*The presence of a diffusive interface leads to an increase on exciton quenching when

. 80- & Exciton Dissociation
compared to the sharp interface. o] ~O Charge Recombination __e—"
—d *— Charge Extraction i o
* The Increase of the diffusive layer thickness increases exciton quenching due to an 40- OQ.@
' ' ' : % 20-
Interpenetration of strands of both polymers, creating a mesh of donor-acceptor sites S Ler
. : : . © 1.5 N
where excitons can easily dissociate. i, L * x )
Sl I
*The increase of exciton dissociation is followed by an increase of charge recombination, .y
and the difference between these two leads to a small yield of charge generation at the 0.0- —
polymer-polymer with a maximum for a diffusive layer width of 8 nm. Diffusive Layer Width (nm)

o For all diffusive layer thicknesses, the large majority of the
Diffusive Pristine Layers Diffusive Layer Pristine/Diffusive Interfaces eXCitonS Created Wlthln the difoSive Iayer and Wlthln the

Layer EXxc. Dec. Diss.  Rec. EXxc. Dec. Diss. Rec. EXxc. Dec. Diss. Rec.

pristine/diffusive interface dissociate.

Thickness
e Part of the excitons dissociated in diffusive regions are
0 9436 87.37 0.03 6.47 0.00 0.00 0.00 0.00 5.64 0.01 12.37 4.96
4 79.31 69.16 0.00 5.22 10.20 0.00 1440 1452 1049 0.03 16.18 9.74 Created on the nelghbour reg|0n3.
6 7130 6166 000 518 1931 000 2174 2245 939 005 1637 920 ¢ Almost all excitons dissociated within the diffusive layer
8 6389 5437 003 528 2734 001 3027 3060 877 000 1515 813  recombine.
2 0 B8Rl AL R0 WSS add s R 23T T8 e The charge generation at the interface is much higher than
16 40.08 33.73 0.00 3.54 52.80 0.06 55.38 5522 /.12 0.00 10.71 6.11
the charge collected at the electrodes due to the large
20 32.74 2745 0.00 2.92 61.64 0.26 62.88 62.85 5.62 0.21 9.09 5.11 _ _ _ - o
amount of recombination taking place within the pristine
layers near those interfaces.
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