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ABSTRACT

Since the arousal of the “glia” concept, 150 years ago, the knowledge on the features of 

glial cells, especially astrocytes, has been dramatically evolving. These star-shaped cells that 

lack axons not only participate in brain metabolism, supporting neuronal activity, but also 

can modulate the neurotransmission by modulating synapses. From taking part in the 

“tripartite synapse” to the astrocytic excitability - based on intracellular Ca2+ increases - and 

gliotransmission, astrocytes have been given the relevance that raises the idea that such glial 

modulation at cellular level should have greater implications in higher brain functions. 

However, these remarkable astrocytic features, as well as its influence in modulation of 

behaviour outputs, are still under-explored. In the attempt to contribute to the progress of 

our knowledge on these cells purpose in the brain, we decided to investigate the astrocytic 

component of the neuron-astrocyte interactions in complex cognitive processes that rely on 

the prefrontal cortex, analysing the behavioural performance of two animal models of 

astrocytic pathology. For that purpose, we implemented a rat model of pharmacological 

astrocytic ablation in the medial prefrontal cortex, through bilateral intracranial injections of 

the gliotoxin L-α-aminoadipate, and the transgenic dnSNARE mouse model, that displays 

conditional blockade of gliotransmitters vesicular release in astrocytes.

From the behaviour assessment of the rats subjected to the bilateral intracranial injections 

of L-α-aminoadipate we could conclude that the astrocytic ablation in the medial prefrontal 

cortex affects the attentional set-shifting, the working memory and the reversal learning. 

Microscope analysis of brain sections of the gliotoxin-injected animals revealed that astrocyte 

depleted regions were confined to the prelimbic and cingulate cortex, where the neuronal 

population was not affected. The genetic mouse model of conditional blockade of vesicular 

release in astrocytes was characterised in a more extensive way. We show here that these 

animals do not display anxious phenotype or have locomotor difficulties. Most importantly 

dnSNARE animals have shown impaired spatial reference memory (hippocampus-

dependent) and improved working memory, but normal reversal learning (prefrontal cortex-

dependent functions). Both astrocytes and gliotransmission seem to be crucial for cognitive 

computation and may represent a new window of understanding of brain function that 

urges to be clarified in terms of cellular pathways and biochemical mechanisms.

The successful implementation of  both animal models of differential astrocytic pathology, 

at the ICVS will allow further studies in our lab. Despite our interesting results additional 

studies are required to help the elucidation of the mechanisms involved, such as using 

electrophysiological and neurochemical techniques to understand how brain dynamic is   

altered, either in healthy or in pathological states.
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RESUMO

Desde há 150 anos, quando surgiu o conceito de “glia”, que o conhecimento das funções 

das células da glia, especialmente dos astrócitos, tem vindo a evoluir drasticamente. Estas 

células em forma de estrela e sem axónios, não só participam no metabolismo de cérebro 

como também contribuem para uma boa actividade neuronal, modelando até a actividade 

sináptica e o fluxo de neurotransmissores. Por fazerem parte da “sinapse tripartida”, 

exibirem uma forma de excitabilidade - baseada em elevações de Ca2+ intracelulares - e 

realizarem gliotransmissão, os astrócitos têm recebido a relevância que levanta a questão de 

que tais células poderão ter maiores implicações nas funções cerebrais. Contudo, estas 

características notáveis bem como a sua influência na modulação do comportamento não 

estão ainda clarificadas. Por isso, na tentativa de contribuir para o progresso do nosso 

conhecimento acerca da função destas células no cérebro, decidimos investigar a componente 

astrocítica nas interacções neurónio-astrócito no contexto das funções cognitivas complexas 

dependentes do córtex pré-frontal, analisando a performance comportamental de dois 

modelos animais de patologia astrocítica: um modelo de rato na qual provocámos a ablação 

de astrócitos no córtex pré-frontal medial, através de injecções bilaterais intracranianas da 

gliotoxina L-α-aminoadipato; e um modelo genético em ratinho, dnSNARE, que exibe um 

bloqueio condicional da libertação vesicular de gliotransmissores nos astrócitos.

Da análise comportamental do modelo de rato, concluímos que a ablação de astrócitos no 

córtex pré-frontal medial afecta o attentional set-shifting, a memória de trabalho e a 

aprendizagem reversa. A análise microscópica de secções de cérebro dos ratos injectados com 

a gliotoxina revelou que as regiões de ablação astrocítica estavam confinadas ao córtex pré-

límbico e córtex cingulado, onde a população neuronal não estava afectada. Uma 

caracterização mais extensiva do modelo de ratinhos dnSNARE revelou que estes animais 

não exibem fenótipo ansioso nem défices de locomoção, mas demostram défices na memória 

de referência espacial (dependente do hipocampo), memória de trabalho melhorada e 

aprendizagem reversa normal (funções dependentes do córtex pré-frontal). Tanto os 

astrócitos como apenas a gliotransmissão aparentam ser cruciais para a computação 

cognitiva e representam uma nova janela de conhecimento que urge ser clarificada em 

termos de vias celulares e mecanismos bioquímicos.

Apesar dos resultados interessantes já obtidos com a implementação já bem sucedida 

destes modelos animais no ICVS, são necessários estudos mais aprofundados para ajudar na 

elucidação dos mecanismos envolvidos. Acreditamos que o recurso a técnicas de 

electrofisiologia e neuroquímica permitirá uma melhor compreensão de como o cérebro está 

alterado, quer em condição de saúde ou doença.
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1. INTRODUCTION

1.1. Astrocytes in the brain

1.1.1. Arousal and evolution of the astrocytic concept

More than 150 years have passed since Rudolf Virchow shared his primordial ideas on the 

brain connective tissue, the “nervenkitt” or nerve-cement which he named “neuroglia” [1]. 

By neuroglia, that he would not believe to contain cellular elements, Rudolf Virchow referred 

to the supportive tissue “which lies between the proper nervous parts, hold them together 

and gives the whole its form in a greater or less degree” [2]. Camillo Golgi did not linger to 

establish the cellular nature of neuroglia [3, 4] and incredibly, this division between nerve 

elements and supportive tissue still persists to a large degree in the convictions of many 

neuroscientists [5]. Later in 1893, Michael von Lenhossek proposed the term “astrocyte”, 

further categorised in fibrous or protoplasmatic, located in white and grey matter, 

respectively [6, 7]. These studies were followed by Santiago Ramón y Cajal who further 

characterised astrocytes in brain tissue and anticipated that these cells should interact closely 

with neurons [8]. In addition to astrocytes oligodendrocytes and microglia, the other non-

neural cells, were also included into the neuroglia concept by Pio del Rio-Hortega [9-11].

The concept of neuroglia (also termed glia) is now more than 150 years-old. However, our 

knowledge on the diversity and features of glial cells, especially astrocytes, has been 

dramatically changing. Despite many years of research that led to the arousal of new 

concepts attributing new roles to glial cells in brain function, their whole range of actions in 

the nervous system is still far from understood [5]. The first attributed role to glial cells, 

presented by the filing concept [2, 12]  had a simple connotation because neuroglia was given 

a passive role as an element that fills “space not occupied by neurons”. Concerning the 

Virchow’s idea that the neuroglia holds nervous elements “together and gives the whole its 

form”, it was already proven that the architecture of the grey matter is defined by the 

astrocytes: protoplasmatic astrocytes occupy a certain territory and canton grey matter 

covering all neuronal elements within that domain [13, 14]. Moreover, astrocytes have been 

considered a homogenous cell population with a distinctive star-shaped morphology due to 

the numerous processes that extend to neurons and blood vessels, and that contain 

intermediate filaments (glial fibrils) [15].

 Despite the fact that astrocytes lack axons and are not capable of generating actions 

potentials, several crucial functions have been attributed to these glial cells, including the 

1



maintenance of the neuronal activity through extracellular homeostasis of potassium (K+) 

and hydrogen (H+) ions [16], maturation, survival during development and nutrient supply 

for neurons, release of growth factors, neurotransmitters uptake from the synaptic cleft, 

among others. Even though these functions are well-accepted, neuroscientists still believed 

that there was  much more to be clarified [15].

1.1.2. Astroglia in brain metabolism

Golgi suggested that the purpose of astrocytes was to provide an environment suitable for 

neuronal function. The complex ultrastructure of astrocytes, makes them capable of being 

actively involved in neurotransmitter homeostasis [14, 17-20]. As a matter of fact, it is already 

recognised that astrocytes take up glutamate from the synaptic cleft and metabolise it into 

glutamine, via glutamine synthetase [21, 22], that is then given back to neurons for de novo 

synthesis of glutamate.

 Besides buffering glutamate, astrocytes are also able to bridge the nutrient passage from 

blood to neurons - fig. 1.1. In fact, astrocytes present specialised processes, named endfeet, 

that project to the brain vasculature ensheathing 

the blood vessel walls [23, 24]. This astrocytic 

endfeet location at the capillaries combined with 

the abundant expression of the glucose 

transporter GLUT1 [25], create the perfect 

conditions for astrocytes to access glucose supply 

from blood. However, the flow of energetic 

substrates is not that straight forward. Another 

two substrates, glycogen and lactate are involved 

in the astrocytic regulation of neuronal metabolic 

activity. The synthesis of glycogen may occur as 

a n a l t e r n a t i v e o f g l u c o s e - 6 - p h o s p h a t e 

metabolisation, as a part of the glycogen-shunt 

[26, 27]. Apparently, there is an interdependence 

of glycogen-shunt activity and glycolysis that 

plays an important role in the supply of energy 

for the maintenance of glutamatergic activity [26, 

28]. As reviewed by Brown and Ransom [29], upon increasing brain activation, when the 

immediate supply of neuronal glucose is depleted, glycogen metabolism can provide a rapid 

energy source that rate-limited the step of glucose phosphorylation via hexokinase. Equally 

Figure 1.1. Astrocytes endfeet connecting 
brain capillaries to neurons to bridge the 
nutrient passage from blood [23].
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important is the lactate as an oxidative substrate for energy metabolism, once it is generated 

in astrocytes during glutamate-glutamine cycle as consequence glutamate amidation [30, 31]. 

Because of these findings, a model coupling neuronal activation and glucose utilisation was 

proposed: the astrocyte-neuron lactate shuffle hypothesis [31]. Although research on brain 

metabolic pathways has been controversial, it is important to recognise that upon different 

conditions neurons may rely on glucose, glycogen or lactate to support brain function, as 

these energetic pathways are not mutually exclusive [15].

1.1.3. Modulation of the synaptic transmission: the tripartite synapse

The emerging of astrocyte-neuron interaction biology has been changing our perspective 

on the physiology of the nervous system. In fact, the classically accepted paradigm that brain 

function results exclusively from the neuronal activity is being challenged by recent findings, 

which rather strongly suggest that brain function arises from the concerted activity and 

crosstalk between neurons and astrocytes. In that context, the concept of “tripartite synapse” 

was proposed to conceptualise the occurrence of bidirectional communication between 

neurons and astrocytes [32]: neurotransmitters released from the presynaptic terminals of 

neurons can activate not only receptors on postsynaptic elements, but also on neighbouring 

astrocytes which in turn signal back to 

neurons modula t ing the synapt i c 

transmission  [33, 34] - fig 1.2. More 

precisely, the cellular mechanisms that 

underlie the tripartite synapse concept are: 

(1) Neurotransmitters, such as glutamate, 

released from the presynaptic terminals of 

neurons can activate receptors on 

neighbouring astrocytes through the 

partial bounding to the metabotropic 

glutamate receptors (mGluR); (2) this 

activation leads to the production of 

inositol (1, 4, 5)-triphosphate (IP3) and 

release on calcium ions (Ca2+) from the 

endoplasmatic reticulum to the cytoplasm 

of astrocytes; (3) these increases in 

intracellular Ca2+ concentration- a form of 

astrocytic excitability- are transmitted to 

F i g u r e 1 . 2 .  T h e t r i p a r t i t e s y n a p s e . 

Neurotransmitters (Nt) released in the synaptic 
cleft activate surrounding astrocytes that respond 
with Ca2+ elevations , leading to the modulation of 
the synaptic activity through the release of 
gliotransmitters (Gt).  Adapted from Perea et al 
[34]. 
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neighbour astrocytes as intercellular calcium waves, through gap junctions between 

astrocytes, and ATP, as diffusible messenger of Ca2+ to non-contiguous astrocytes [35, 36]; (4) 

the astrocytic excitability results in the release of gliotransmitters, including glutamate and 

ATP to the extracellular space; (5) the gliotransmitter release feeds back onto pre- and 

postsynaptic terminals culminating in the modulation of the synaptic activity. [37-41]. This 

model of tripartite synapse emphasises the fact that astrocytes are able to sense neuronal 

activity, considering that intra- and intercellular waves of Ca2+ are generated by neuronal 

signals [40, 42].

1.1.4. Integration of neuron-glia circuits: from gap junctions to gliotransmission

Gap junctions are key components on this remarkable feature of astrocytic excitability, 

and are thought to play a crucial role in the integration of neuronal-glial circuits. Indeed, 

most gap junctions in the brain occur in glial cells, and in particular in astrocytes, with a very 

high coupling strength. That astroglial coupling intensity confers a functional astrocytic 

syncytium, that not only forms a metabolic network that can provide energy supply to active 

neurons, but also implies high coordination in astroglial responses so synaptic events [41] - 

fig 1.3.

Intercellular Ca2+ waves are a form of astrocyte signalling that not only occurs in response 

to neuronal activity, but may also appear spontaneously. Even so, they are believed to 

Figure 1.3.  Modulation pathways of the synaptic transmission mediated by gap junctions. Either 
between astrocytes (1) or processes of the same cell (2), gap junctions facilitate the passage of ions, 
second messengers and nutrients. Synaptic activity (3) causes the production of IP3 (4,  grey) and the 
release of Ca2+ (4, green) and the astrocytic excitability is transmitted through gap junctions to the 
neighbor astrocytes as calcium wave. Gliotransmission occurs as  soon as the calcium wave is spread 
to the closest astrocyte in contact with a synapse, and culminates in the modulation of the synaptic 
activity (5). Adapted from Parpura et al [41].
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provide a modulation pathway between domains of separate neurons [41]. That is because a 

single astrocyte can contact over one hundred thousand synapses, yet in a way that 

individual astrocytes occupy distinct and non-overlapping domains in the brain [13, 43]. 

Here arises the evidence that astrocytes respond to neuronal domains defined by them and 

not to individual neurons.

The bidirectional communication between neurons and astrocytes frequently involves 

modulation of synaptic transmission (by tripartite synapse) and plasticity (through dynamic 

GFAP expression upon different physiological conditions, such as synaptic receptor 

activation [44], and secondary messengers, like Ca2+ [45]) [32, 37, 46, 47]. The process by 

which astrocytes communicate with surrounding cells by the release of transmitters is called 

gliotransmission [48]. Those heterocellular signalling events in astrocytes often imply 

regulated exocytosis [49, 50], a process that requires vesicles containing a chemical 

transmitter or a blend of them. The secretion of gliotransmitters to the extracellular space 

occurs by the fusion of the vesicular and plasma membranes, upon a membrane merger. 

Once exocyted, gliotransmitters can exert paracrine function, on adjacent cells, or autocrine 

function, on the cell which secreted them [51]. Moreover, gliotransmitters have been reported 

to act pre- and/or postsynaptically, modulating the synaptic transmission in a transient or 

long-lasting manner [41]. What determines the regulation of exocytosis is the increase of 

cytosolic [Ca2+] that, in the case of astrocytes appears to be slower than in neurons [51]. 

Exocytotic vesicles released from astrocytes were described to contain diverse chemical 

transmitters, such as glutamate, D-serine, ATP, adenosine, GABA, tumor necrosis factor α 

(TNFα), prostaglandins, proteins and peptides that can influence neuronal and synaptic 

physiology [52], blood flow, the permeability of the blood brain barrier and also provide 

metabolic support [5, 15, 34]. Glutamate is synthesised de  novo in astrocytes as a by-product 

of Krebs cycle [21, 53]; D-serine is generated through the stereoisomeric conversion from L-

serine by racemase, an enzyme found in astrocytes [54-56] ; ATP production results from 

aerobic respiration and, as stated above, can mediate intercellular signalling through 

purinergic receptors; but it is more frequent the hydrolysis of ATP by membrane-bound ecto-

nucleotidases to adenosine-diphosphate so that adenosine can act on diverse plasma 

membrane receptors [57]. 

The synaptic transmission causes also the activation of strategically positioned ion flux 

pathways in astroglial perisynaptic processes. Upon activation through the release of ATP 

and/or glutamate, the ionotropic (P2X) and metabotropic receptors (α-amino-3-hydroxy-5-

methyl-4-isoxazolepropionic acid, AMPA, and N-Methyl-D-aspartic acid, NMDA, receptors), 

glutamate transporters and sodium/calcium exchanger (NCX) [58-62] act in a concerted 

manner resulting in the modulation of the synaptic transmission and plasticity by affecting 

the time kinetics of glutamate removal from the synaptic cleft [41]. 
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The sources of Ca2+ necessary for gliotransmission in astrocytes are diverse and complex. 

As a matter of fact there are multiple molecular entities acting to provide Ca2+ to drive Ca2+ -

dependent regulated exocytosis. Calcium ions can be delivered from: (1) the ER lumen to the 

cytosol through IP3- and ryanodine-sensitive receptors that serve as channels [63]; (2)   

through plasmallemal channels, across the astrocytic plasma membrane - in a process named   

store-operated Ca2+ entry (SOCE) [64, 65]-, ligand- and voltage-gated Ca2+ channels (VGCC) 

[66], and NCXs [67, 68] at the plasma membrane that mediate Ca2+ entry from the 

extracellular space to the cytosol, when ER Ca2+ is depleted; (3) mitochondrial matrix, as free 

Ca2+ exits through the mitochondrial NCX and transient openings of the mitochondrial 

permeability transition pore to the cytosol [69]. 

Recent findings demonstrated that gliotransmission can be modulated downstream to    

Ca2+ waves generation, most likely at the secretory machinery level, as observed in the case 

of  glutamatergic output from astrocytes [70]. In fact, astrocytes express exocytotic secretory 

machinery proteins, specially the N-ethylmaleimide-sensitive factor attachment protein 

receptor (SNARE) complex, composed of: synaptobrevin 2- also called vesicle-associated 

membrane protein 2 (VAMP 2)- and its homologue cellubrevin - also called vesicle-associated 

membrane protein 3 (VAMP 3); syntaxins 1, 2 and 4; and synaptossome-associated protein of 

23kDa  (SNAP-23) [71, 72] - fig. 1.4.

Altogether, these astrocytic features allow direct or indirect interference with neural 

communication. Many reports (see section 1.1.3) have shown that astrocytes are able to 

modulate synaptic function, leading to and interference of the information processing at the 

network level, and consecutively in the network-output generation. Therefore it is highly 

predictable that astrocytes play a role in construction of behaviour outputs of a specific brain 

region. This aspect is relevant both in health and pathological states.
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complexity of Ca2+ sources using an example of exocytotic
glutamate release, since it has been studied in most details.
Hence, the majority of cytosolic Ca2+ necessary for astrocytic
glutamate release originates from the ER store as determined
using a blocker of ER-specific Ca2+-ATPases (Araque et al.
1998; Bezzi et al. 1998; Innocenti et al. 2000; Hua et al.
2004; Montana et al. 2004); based on further pharmacolog-
ical evidence both inositol 1,4,5-trisphosphate (InsP3)- and
ryanodine-sensitive receptors serve as channels for delivery
of Ca2+ from the ER lumen to the cytosol (Hua et al. 2004)
(Fig. 4). It should be noted, however, that the functionality of
ryanodine receptors in astrocytes in situ is still debated (Beck
et al. 2004).

The Ca2+ entry across the astrocytic plasma membrane
into to the cytosol eventually represents the source of this ion
for (re)filling of the ER Ca2+ store. This can occur via store-
operated Ca2+ entry. Plasmallemal channels mediating this
event become activated when ER Ca2+ is depleted (Takem-

ura and Putney 1989; Golovina 2005). In particular, the
canonical transient receptor potential 1 protein containing
channels contribute to Ca2+-dependent glutamate release
from astrocytes (Malarkey et al. 2008) (Fig. 4).

In addition to store-operated Ca2+ entry, Ca2+ entry from
the ECS to the cytosol can be mediated by plasma membrane
voltage- and ligand-gated Ca2+ channels. Astrocytes in acute
slices from ventrobasal thalamus showed intrinsic cytosolic
Ca2+ oscillations, which lead to glutamate release (Parri et al.
2001); these oscillations dually draw Ca2+ from the ER store
and the ECS by the Ca2+ entry via voltage-gated Ca2+

channels. Whether the activation of astrocytic ionotropic
transmitter receptors, which leads to cytosolic Ca2+ influx
(reviewed in Lalo et al. 2011a), plays a role in exocytotic
gliotransmission remains to be determined. Another pathway
for Ca2+ entry across the plasma membrane into the
astrocytic cytosol is offered by NCXs operating in the
reverse mode (Kirischuk et al. 1997; Rojas et al. 2008).
Resulting cytosolic Ca2+ increases can cause exocytotic
glutamate release from astrocytes (Paluzzi et al. 2007; Reyes
and Parpura 2009; Reyes et al. 2012).

Mitochondria represent a source/sink of intracellular Ca2+

which can modulate the magnitude of glutamatergic exocy-
tosis in astrocytes (Reyes and Parpura 2008; Reyes et al.
2011). At elevated cytosolic Ca2+ levels, these organelles
take up Ca2+ into the matrix via Ca2+ uniporter. As the
cytosolic Ca2+ declines, free Ca2+ exits the matrix through
the mitochondrial Na+/Ca2+ exchanger as well as via
transient openings of the mitochondrial permeability transi-
tion pore. Indeed, the resulting buffering of cytosolic Ca2+

levels, caused by activity of these mitochondrial proteins,
reflects in modulation of the magnitude of exocytotic
glutamate release from astrocytes (Reyes and Parpura
2008). The contribution of cytosolic proteins that can buffer
Ca2+ and buffering capacities of the nucleus in such
modulation remains elusive at the moment.

Taken together, a concerted effort of various molecular
entities located at the plasma membrane, the ER and
mitochondria regulate cytosolic Ca2+ levels which in turn
drive Ca2+-dependent regulated exocytosis. Interestingly,
there could be additional levels of modulation of this process.
It has been demonstrated that cytosolic glutamate concen-
trations as well as the availably of vesicular glutamate
transporter (VGLUT) 3, that mediates packing of this
gliotransmitter into vesicles (see below), can affect the
magnitude of exocytotic release (Ni and Parpura 2009).
Furthermore, there has been demonstration of the immuno-
phillin-mediated enhancement of the glutamatergic output
from astrocytes, which had been attributed to a downstream
of Ca2+ modulation, likely at the level of secretory machinery
(Reyes et al. 2011).

Indeed, astrocytes express proteins of the exocytotic
secretory machinery, in particular the soluble N-ethyl
maleimide-sensitive fusion protein attachment protein

Fig. 4 Ca2+- dependent vesicular release of gliotransmitters from

astrocytes. The sources of Ca2+ for cytosolic Ca2+ increase are: the

endoplasmic reticulum (ER) and the extracellular space (ECS).

Cytosolic Ca2+ accumulation could be caused by the entry of Ca2+

from the ER store that possess inositol 1,4,5 trisphospate and ry-

anodine receptors. Store specific Ca2+-ATPase fills these stores with

Ca2+. Ultimately, this (re)filling requires Ca2+ entry from the ECS

through store-operated Ca2+ entry. Additional Ca2+ entry from the ECS

to the cytosol can be mediated by plasma membrane voltage -gated

Ca2+ channels and Na+/Ca2+ exchangers, the latter operating in the

reverse mode. Mitochondria represent a source/sink of cytosolic Ca2+.

Mitochondrial Ca2+ uptake from the cytosol to its matrix is mediated by

the Ca2+ uniporter. Free Ca2+ exits the mitochondrial matrix through

the Na+/Ca2+ exchanger and also by brief openings of the mitochon-

drial permeability transition pore. Increase in cytosolic Ca2+ is suffi-

cient and necessary to cause vesicular fusions and release of

gliotransmitters (GT). This process requires the activity of the ternary

SNARE complex consisting of synaptobrevin 2 and/or cellubrevin lo-

cated at vesicular membrane, and the binary cis complex pre-formed

at the plasma membrane and composed of syntaxin (shown in an

open form) and synaptosome-associated protein of 23 kDa. Astrocytic

vesicles are filled by various vesicular GT transporters, which for this

action utilize the proton gradient generated by the vacuolar type H+-

ATPase. Drawing is not to scale.
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Figure 1.4. Calcium-dependent vesicular release of gliotransmitters from astrocytes: sources of Ca2+ 
and the formation of the SNARE complex necessary for gliotransmission in astrocytes [41]. 



1.2. Astrocytes in brain disorders

Astrocytic structure and protein expression were already shown to be altered in the 

context of brain disorders like depression, Parkinson's disease, Alzheimer’s disease, epilepsy 

and schizophrenia [73-86]. What remains to understand is if astrocytic dysfunction 

constitutes the cause, providing detrimental signals that contribute to the disorder, or the 

consequence, performing a supportive function in the attempt to reverse and prevent the 

disorder. Hence it is important to investigate the contribution of astrocytes to network 

function in order to understand their role in pathophysiological states. Since 

gliotransmission is now known as a modulatory factor of synaptic communication (see 

section 1.1.3) it may be considered an important mechanism underlying pathological 

processes.

Assuming the tripartite nature of central nervous system synapses [32] it is possible that 

the astrocytic dysfunction, compromising the neuronal activity support and/or 

gliotransmission, disturbs synaptic transmission and plasticity or neuronal excitability. These 

events at the cellular level are translated into distortion of brain physiology that lead to 

behavioural abnormalities [38]. Rat models of depression exhibit deceasing levels of GFAP 

expression and 13C-acetate metabolism reflecting glial metabolism [75, 77]; also in rat, glial 

loss in the prefrontal cortex (PFC) is sufficient to induce depressive-like behaviour [76]. In the 

context of epilepsy, GFAP immunoreactivity evidenced astrocytic hypertrophy (reactive 

astrocytosis) and proliferation [78]: in mesial temporal lobe epilepsy, GFAP 

immunoreactivity is increased in a way that might be correlated with seizure frequency [79]. 

Moreover, astrocytic Ca2+ oscillations were observed to increase in frequency in isolated 

brain slice models that exhibit epileptiform activity [80]. However, while enhanced excitatory 

gliotransmission, for example in terms of Ca2+ oscillations and glutamate release, can 

contribute to epileptiform activity and seizures, reduced gliotransmission and D-serine 

release can contribute to schizophrenia. Also contrasting is the decreased GFAP expression in 

tissue isolated from schizophrenic patients [81-83]. In Alzheimer’s disease, increased levels 

of amyloid-β (Aβ) peptides and their subsequent deposition in Aβ  plaques lead to the 

activation of the surrounding microglia and astrocytes that release diverse pro- and anti-

inflammatory mediators resulting in the chronicle parenchymal inflammation in the brain 

[84, 85]. In Parkinson’s disease, and other neurological disorders, occurs an abnormal 

neuronal aggregation of α-synuclein, that is directly transmitted from neurons to astrocytes, 

causing inflammatory responses [86]
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1.3. Astrocytic function in vivo: behaviour and cognition

The discovery that astrocytes respond to neuronal transmitters through Ca2+ elevations 

[87, 88] have boosted the studies on astrocytic function attempting to understand more about 

the implications of these glial cells in brain activity and its output. Initially, the research tools 

limited the scientific progress on this subject, but successive studies have been giving input 

for a new insight into the role of glial in the brain function.

Functional and metabolic studies with toxins targeting selectively astrocytes have 

provided simple approaches to study the effects of astroglial dysfunction. Intracerebral 

injections of the gliotoxin L-α-aminoadipate, caused the disruption of the astrocytic network 

when injected intracerebrally in Long Evans Hooded and Sprague Dawley rats, since it 

irreparably damaged the astrocytes in the vicinity of injections [89]. Using this model of glial 

loss, Banasr and colleagues were able to induce depressive–like behaviour in rats [77].

Additionally, a recent study proved that astrocytes modulate the accumulation of sleep 

pressure and its cognitive consequences. These conclusions were achieved using the 

dnSNARE transgenic mice model that conditionally prevents astrocyte-dependent action on 

pre-synaptic A1 receptors through the conditional blockade of vesicular release. Because 

adenosine is involved in homeostatic drive of sleep following prolonged wakefulness, sleep 

pressure was significantly reduced when dnSNARE transgene was expressed in astrocytes 

[47]. Another study based in the same animal model  followed with the evidence that 

astrocytic-derived ATP acting on A1 receptors via adenosine contributes to the effects of 

sleep deprivation on hippocampal plasticity and hippocampus-dependent memory [90].

Although these studies unveil a putative role of astrocytes in the regulation or modulation 

of behaviour outputs much more in this field should be cleared. By implementing different 

animal models of astrocytic dysfunction we expect to assess the implications of astrocytic 

function in the generation or modulation of cognitive function.

1.4. The prefrontal cortex

In this project we focused in the cognitive function and we focused in the prefrontal 

cortex because (1) it is a region with major relevance for cognitive processes (see section 

1.4.1), (2) it is a large region in the brain, and therefore relatively easy to target for injections 

of pharmacological tools (aminoadipate rat model, see section 3.1.1)
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1.4.1. Cognitive functions of the the prefrontal cortex: learning and memory

The prefrontal cortex (PFC), which is among the most studied regions of the brain, is 

intimately related to the computation of complex cognitive functions. Indeed, various 

cognitive and executive processes have been associated to the PFC, such as working memory, 

decision making, planning and behavioural flexibility, attentional set-shifting and inhibitory 

response control [91, 92]. The PFC has been shown to be implicated in the organisation of 

delayed responses and consequently in working memory function - a memory system 

composed of distinct, but overlapping cognitive processes used for the active maintenance 

and elaboration of task-relevant information, as it involves temporary storage and 

manipulation of information [93]. Functional neuroimaging in brain-damaged humans and 

healthy volunteers have confirmed the role of the PFC in working memory processes [94].  

Neuropsychological and connectional evidences indicate the homology of the medial 

prefrontal cortex (mPFC) in rats and the dorsolateral prefrontal cortex (dlPFC) in primates. 

[95-98] - fig. 1.5. As the dlPFC in primates, the mPFC in rats is involved in other executive 

functions, besides working memory: temporal organisation of behaviour [99] and attentional 

control in strategy switches [98, 100, 101]. In fact, lesions in the rat mPFC - prelimbic (PrL), 

infralimbic (IL), and with partial damage to the cingulate cortex areas 1 and 2 (Cg1 and Cg2) 

- impair selectively the extradimensional set-shifting [98]. Moreover, the rat mPFC was 

proposed to be important in the representation of an abstract and more hierarchically-

organised memory useful in the decision making, complementing the hippocampus in 

spatial navigation [102]. It is not surprising, since the IL and PrL regions of the PFC, 

constituting the ventral portion of the rat mPFC, are linked to the hippocampus by an axonal 

pathway originated in the subiculum and ventral CA1 [103].

Figure 1.5.  Highlights of the PFC and mPFC, in human brain evidencing the homology of mPFC 

and dlPFC brain regions in rat and human, respectively [92]. A - lateral view of human brain; and B, 
left - sagittal view of rat brain; B, right coronal section at Bregma 3.0. dlPFC mPFCPFC

A

B
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2. AIM OF WORK

The rationale of this project is based in the common accepted idea that specific brain 

regions compute specific tasks and are responsible for specific behavioural outputs. In this 

scope, we believe that affecting the astrocytic function in a brain region, mimicking what 

happens in pathological states [75-85], and measuring the behaviour output of that region we 

would be able to dissect the astrocytic component of  that behaviour output. 

Despite the many years of research carried out so far in the astroglial function in the brain, 

most of theses studies were focused on metabolic and physiologic features and little was 

done in what concerns to behaviour implications, namely in cognitive function, involving 

learning and memory, in the context of altered astrocytic function.

The aim of this work is to implement two animal models whose astrocytes are affected in 

two different manners to allow in vivo study of astrocytic function and its implication in 

behaviour outputs. Hence, (1) to mimic pathologies based on the glial loss we implemented a 

rat model on which astrocytes were ablated through the gliotoxin L-α-aminoadipate; and (2) 

to disclose the role of the exocytotic release of gliotransmitters in cognitive processes, we 

implemented the recently reported genetic mouse model, dnSNARE.

In this project we focused in the cognitive function linked to the prefrontal cortex because 

(1) it is a region with major relevance for cognitive processes (see section 1.4), (2) it is a large 

region in the brain, and thus relatively easy to target for injections of pharmacological tools 

(aminoadipate rat model). By lesioning astrocytes in the mPFC and blocking the 

gliotransmitter release by astrocyte we expect to observe a compromise in learning and 

memory functions mostly dependent on the PFC and therefore dissect the astrocytic 

component in the computation of these tasks. 
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3.  MATERIALS AND METHODS

3.1. Animals and Treatments

Experiments were conducted in accordance with local regulations (European Union 

Directive 86/609/EEC) and National Institutes of Health guidelines on animal care and 

experimentation.

3.1.1. Aminoadipate rat model of astrocytic depletion

Male Wistar-Han rats (Charles River Laboratories, Barcelona, Spain) , ten-weeks-old, were 

housed in groups of two, under standard laboratory conditions (room temperature 22ºC; 

food and water ad libitum; 12h dark/light cycle, lights on at 8:00 AM). One group was 

subjected to pharmacological ablation of astrocytes in the mPFC through a single bilateral 

intracerebral microinjection of the selective astrocytic toxin L-α-aminoadipate (L-α-AA; see 

section 3.1.1.B) - treatment group (AA). As control animals (CON) for the aminoadipate 

pharmacological model, other set of rats received a single bilateral intracerebral 

microinjection of artificial cerebrospinal fluid (aCSF), the vehicle of the aminoadipate 

solution, in the same region, using the same procedure. 

3.1.1.A. Surgical procedure for the establishment of the pharmacological rat model

For the establishment of the aminoadipate pharmacological model, rats were subjected to 

a surgical procedure for the implantation of bilateral cannula guides in the prelimbic region 

of the prefrontal cortex. Animals were deeply anaesthetised with a intraperitoneal (i.p.) mix 

of ketamine (75 mg/kg - Imalgene 1000, Merial) and medetomidine (0,5 mg/kg - Dorbene 

Vet, Pfizer) and bilateral brain cannulas (26 GA, Plastics One) were stereotaxically implanted 

in the prelimbic region of the prefrontal cortex. The coordinates used were: 3.0 mm posterior 

to bregma, ± 0.6 mm lateral to the midline, and 2.5 mm ventral to the skull surface, based on 

the Paxinos and Watson rat brain atlas [104]. This position represents a spot 1 mm above the 

target position, which will be achieved by the internal cannulas, used to inject the solution of 

interest. The fixation of the bilateral cannula guides in the skull was achieved by the 

placement of two screws in anterior and posterior positions to relative to the cannula, and by 

the application of an acrylic resin (Pattern Resin LS, GC) covering both screws and the basal 

portion of the cannula guide pedestal. At the end of the surgical procedure the anaesthesia 
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was reverted with atipamezol, i.p. (2 mg/kg - Antisedan, Pfizer) and animals were housed 

individually to avoid damage of the implant. Animals were allowed to recover from this 

surgical procedure for at least 7 days.

3.1.1.B. Drug preparation and administration

A 124 mM L-α-aminoadipate drug solution was prepared through the solubilisation in 

aCSF as previously described [89], by simply dissolve L-α-aminoadipate (A7275, Sigma-

Aldrich) in aCSF and adjusting the pH to 7.4 in order to help to dissolve the aminoadipate. 

Concerning the drug infusion protocol, rats were first anaesthetised with mix of propofol 

(70 mg/kg - Vetofol, Esteve) and medetomidine (0,2 mg/kg - Dorbene Vet, Pfizer) 

administered intraperitoneally. Such anaesthesia protocol based on Alves et al, 2010 provides 

suitable level of sedation ideal for restraint and non-painful drug infusion [105]. Five 

microliters of AA (620 μmol), or aCSF were administered using 25 μl Hamilton syringes, 

connected to a double internal cannula (that projects 1 mm from the cannula guide)  through 

a polyethylene tubbing, at the constant rate of 0.5 μl/min controlled by an micro-pump 

(53100V, Stoeling). The double internal cannula was slowly withdrawn 5 minutes after 

infusion completion to avoid the displacement of the injected fluid by capillarity. Once this 

procedure was complete, anaesthesia was reverted with atipamezol (1 mg/kg - Antisedan, 

Pfizer) and animals returned to their home-cages. 

As the selective gliotoxin L-α-aminoadipate exerts effect 4 hours following injection [89] 

and the astrocyte ablation effect persists up to 7 days, this drug was infused in the rats brains 

on the day before the behaviour tests. In this way, rats preformed the behaviour tests within 

the window of time of L-α-aminoadipate effect.

3.1.2. Transgenic dominant-negative SNARE mice (dnSNARE) genetic model

For the purpose of this project we obtained the dnSNARE transgenic mice strain from 

Prof. Philip Haydon (Tufts University, Boston) that kindly supplied the founders, and 

implemented the colony at the IVCS. In this strain the SNARE domain of the synaptobrevin 

II (dnSNARE) expression is conditionally suppressed in astrocytes, by means of a “tet-Off” 

expression system. The dnSNARE mice strain was generated by Pascual and colleagues 

[106], by expressing the cytosolic portion of the SNARE domain of synaptobrevin II (amino 

acids 1 to 96) selectively in GFAP-positive astrocytes, which blocks the exocytotic release of 
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gliotransmitters, a process dependent on the formation of SNARE complexes [107]. For that 

purpose, they developed two separate mice lines GFAP.tTA and tetO.dnSNARE that when 

crossed yield dnSNARE mice. The GFAP.tTA mice line contains the astrocyte-specific glial 

fibrillary acidic protein (GFAP) promotor that drives the expression of the tetracycline-

controlled transactivator protein (tTA), while the tetO.dnSNARE mice line contains a SNARE 

domain regulated by a tet operator promotor (tetO) and the reporter gene enhanced green 

fluorescent protein (EGFP) - fig. 3.1.

3.1.2.A. Colony implementation: strain lines and matings

To implement this transgenic mice strain in the ICVS, the two mice lines GFAP.tTA and 

tetO.dnSNARE, were first maintained heterozygous under C57/Blk6 genetic background. 

Mice originated by the backcrosses of those two separate lines were crossed (GFAP.tTA x 

tetO.dnSNARE) to produce dnSNARE mice for experimentation. The double negative and 

single positive offspring were kept as controls. In the GFAP-positive astrocytes of these 

animals the expression of transgenes SNARE, LacZ and EGFP is suppressed by the 

tetracycline doxycycline (Dox). To prevent potential developmental effects of the transgene 

expression, mice were bred and raised until weaning, at three weeks of age, under the action 

of Dox (Sigma, 25 μg/ml in drinking water). Once animals were weaned, Dox administration 

was maintained until 3 weeks prior to the behavioural studies. Transgene-expressing and 

wild type mice were visually indistinguishable [106]. The double negative, single and double 

positive offspring were tested in behaviour paradigms described below (see sections 3.2.2).

Figure 3.1. Schematic representation of GFAP promotor driving the expression of the target gene 

dnSNARE and reporter gene EGFP in astrocytes. Tetracycline doxycycline (Dox) suppresses the 
expression of transgenes by preventing the binding of tTA to tetO. Adapted from  Florian et. al, 2011 
and Halassa et. al, 2009 [40, 90]
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3.1.2.B. Colony management and genotyping

In the context of colony management, the genotyping of the offspring generated by the 

mattings was accomplished by means of polymerase chain reaction (PCR) of DNA extracted 

from mice tails (about 3 mm of the tip). First, the tails were digested in 380 μl of cell lysis 

buffer (0,5 mM Tris, pH 8.0; 10 mM EDTA; 0,5 % SDS)  with 10 μl of proteinase K (15 mg/ml), 

overnight and in a heating block at 55ºC. In the next morning, samples were centrifuged 

during 10 minutes at 13000 rpm and the supernatant was collected. The DNA precipitation 

was achieved b the addiction of 300 μl of isopropanol to the collected supernatant, followed 

by soft shaking of the sample tubes. After additional 10 minutes centrifugation at 13000 rpm, 

the supernatant was discarded, while the pellet was rapidly washed with 100 μl of ethanol 

70%. The tubes containing the DNA sample were then left air drying at the bench for 90 

minutes, after which DNA hydration was attained by the addiction of 50 to 100 μl of elution 

buffer (10 mM Tris, pH 8.0; 1 mM EDTA) and a short vortex. 

The genotyping itself was then carried out by the multiplex PCR technique, on which the 

two pairs of primers, for tTA (tTA forward: 5’- ACT CAG CGC TGT GGG GCA TT - 3’; tTA 

reverse: 5‘ - GGC TGT ACG CGG ACC CAC TT - 3’) and tet.O (tet.O forward: 5’- TGG ATA 

AAG CTC ATT AAT TGT CA - 3’; tet.O reverse: 5‘ - GCG GAT CCA GAC ATG ATA AGA - 3’) 

sequences, were used in the same PCR mixture. The PCRs were performed in a MyCycle 

thermal cycler (Bio-Rad); the composition of the PCR mix and conditions used are 

summarised in the table 3.1. Amplified PCR products were separated on a 1% agarose gel 

prepared in Tris-Acetate-EDTA (TAE) running buffer, stained with ethidium bromide and 

compared to the DNA size marker GeneRuler™ 1kb Plus DNA Ladder, 75-20,000bp 

(#SM1331, Fermentas). Electrophoresis run for 40 minutes at 120V and gel images were 

captured with a transilluminator (Alpha Innotech Corporation, Bio-Rad).
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Table 3.1. PCR conditions used for the amplification of tTA and tet.O sequences.Table 3.1. PCR conditions used for the amplification of tTA and tet.O sequences.Table 3.1. PCR conditions used for the amplification of tTA and tet.O sequences.Table 3.1. PCR conditions used for the amplification of tTA and tet.O sequences.Table 3.1. PCR conditions used for the amplification of tTA and tet.O sequences.

Reaction mix (20 μl) componentsReaction mix (20 μl) componentsReaction mix (20 μl) componentsReaction mix (20 μl) componentsReaction mix (20 μl) components

Taq buffer, with KCl (part of #EP0402, Fermentas)Taq buffer, with KCl (part of #EP0402, Fermentas) 1x1x1x

MgCl2 (part of #EP0402, Fermentas)MgCl2 (part of #EP0402, Fermentas) 1.5 mM1.5 mM1.5 mM

dNTP mix (#R0192, Fermentas)dNTP mix (#R0192, Fermentas) 0.2 μM0.2 μM0.2 μM

Primer tTA forwardPrimer tTA forward 0.5 μM0.5 μM0.5 μM

Primer tTA reversePrimer tTA reverse 0.5 μM0.5 μM0.5 μM

Primer tet.O forwardPrimer tet.O forward 0.5 μM0.5 μM0.5 μM

Primer tet.O reversePrimer tet.O reverse 0.5 μM0.5 μM0.5 μM

Taq DNA Polymerase (#EP0402, Fermentas)Taq DNA Polymerase (#EP0402, Fermentas) 0.5 U0.5 U0.5 U

DMSODMSO 2%2%2%

Template DNATemplate DNA 100 ng100 ng100 ng

Amplification programAmplification programAmplification programAmplification programAmplification program

Step Temperature (ºC) Duration (sec)Duration (sec)Duration (sec)

Initial denaturation 94 180

30X

Denaturation 94 45

30XAnnealing 61.2 60 30X

Extension 72 60

30X

Final extension 72 600

30X

3.2. Behaviour Tests

3.2.1. Aminoadipate rat model of astrocytic depletion

The behavioural consequences of astrocyte depletion in the medial prefrontal cortex, 

induced by intracranial injection of L-aminoadipate (see section 3.1.1) were assessed by the 

attentional set-shifting task and by water maze-based tests. These tests were used to measure 

the cognitive performance of animals with astrocytic depletion and the respective controls, 

and are described in detail below.

3.2.1.A. Attentional set-shifting task

To assess the non spatial working memory, the attentional set-shifting and the reversal 

learning of rats subjected to the intracranial bilateral injections of AA we used the attentional 
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set-shifting task (ASST). The protocol of this cognitive test was adapted from the ASST 

paradigm originally described by Birrell and Brown [98]. The task was conducted in a 

custom made black Pexiglass apparatus (60 cm L x 40 cm W x 20 cm H). One third of the 

apparatus was separated by the rest of the area by a removable divider, creating a holding 

area. On the opposite side, two adjacent plastic pots filled with sawdust, separated by a 

vertical divider, were used as digging bowls and their rims were scented with different oil 

essences, producing a lasting odour - fig. 3.2.

 

In each trial the pot associated with the correct answer contained a small food reward 

(Nestle Cheerio ring cut in two parts) buried underneath the digging media, as rats could be 

trained to dig in small bowls filled with sawdust to retrieve food reward [108]. The reward 

was predicted either by an odour in the bowl or by a different texture before reaching the 

bowl. Because this test involves a food reward to correct answers, all animals were food 

restricted (1 h of access to food per day) during the prior 6 days. During this food restriction 

period, 6 Nestle Cheerios were given to the rats per home cage. The task was conducted in a 

room with dim light, controlled by a rheostat. Animals were brought to the test room 15 

minutes before its start, to acclimatise them to those room conditions. 

On the two days before the test animals were acclimatised to the apparatus, with food 

rewards in both digging bowls, for 1 hour each day. On the day 1 of the task animals have to 

discriminate from one stimulus, while on the day 2 of the task the animals are presented with 

2 different dimensions of stimuli, odours or textures and have to learn which stimulus leads 

Figure 3.2. Representation of the ASST 

apparatus. The combinations of stimuli are 
located in one third of the apparatus area 
divided in two sections, where the stimuli 
combinations are presented at each trial. 
The opposite third of apparatus separated 
by a removable divider constitutes a 
holding area where the rat rests between 
trials.

removable divider

digging bowl with 
odour scented rim

stimuli section divider

texture

left right

inter-trial 
holding area
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to the reward. On the day 1 of the task, after 5 minutes of habituation to the apparatus, 

animals were first trained in two stages of simple discrimination (SD): odours (lemon vs. 

vanilla)- SDO- and textures (sandpaper vs. blue plastic)- SDT. The second day of the task 

consisted of compound discrimination of odours- CDO- (papaya vs. eucalyptus and 

cardboard vs. brown plastic), reversal compound discrimination- Rev1; extradimensional 

shift- EDST- (mango vs. lotus and velvet vs. plastic grass); and reversal extradimensional 

shift- Rev2. In the reversal stages, the previous positive stimulus, i.e. associated with the 

reward, became negative - table 3.2. The stages were only completed when the animals 

reached 6 correct consecutive trials- when it is considered that the animal learned to associate 

the positive stimulus to the reward [98]- apart from the first 2 trials, when animals are 

allowed to freely explore the both digging bowls. Stimuli were presented in a random 

sequence of 10 trials (equal to all animals), repeated if necessary - tables 3.3, 3.4 and 3.5. As in 

task day 1, animals were allowed to habituate to the apparatus during 5 minutes.

Once task was completed animals returned to their home cages, remaining at that same 

room until sacrifice.

Table 3.2. Order of discrimination stages, relevant and irrelevant dimensions, and stimuli 
combinations of ASST presented to the animals. Reward associated stimuli are bold and 
minus sign indicates absence of stimulus.

Table 3.2. Order of discrimination stages, relevant and irrelevant dimensions, and stimuli 
combinations of ASST presented to the animals. Reward associated stimuli are bold and 
minus sign indicates absence of stimulus.

Table 3.2. Order of discrimination stages, relevant and irrelevant dimensions, and stimuli 
combinations of ASST presented to the animals. Reward associated stimuli are bold and 
minus sign indicates absence of stimulus.

Table 3.2. Order of discrimination stages, relevant and irrelevant dimensions, and stimuli 
combinations of ASST presented to the animals. Reward associated stimuli are bold and 
minus sign indicates absence of stimulus.

Table 3.2. Order of discrimination stages, relevant and irrelevant dimensions, and stimuli 
combinations of ASST presented to the animals. Reward associated stimuli are bold and 
minus sign indicates absence of stimulus.

Discrimination Stages
DimensionsDimensions Stimuli combinationsStimuli combinations

Discrimination Stages
Relevant Irrelevant Positive Negative

Odor Simple Discrimination(SDO) Odor - Lemon Vanilla

Texture Simple Discrimination (SDT) Texture - Sandpaper Blue Plastic

Compound Discrimination (CD) Odor Texture Papaya /Eucalyptus Cardboard/Brown Plastic

Reversal Compound Discrimination (Rev1) Odor Texture Papaya /Eucalyptus Cardboard/Brown Plastic

Extradimensional Shift (EDST) Texture Odor Velvet/Plastic Grass Mango/Lotus

Reversal Extradimensional Shift (Rev3) Texture Odor Plastic Grass/Velvet Mango/Lotus

19



Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Table 3.3. Stimuli combinations and sequence of presentation along 10 trials of the simple 
discrimination, stages on test day one: simple discrimination of odors (SDO) and simple 
discrimination of textures (SDT). Reward associated stimuli are bold and minus sign indicates 
absence of stimulus; the shading highlights the position of the stimulus in the test apparatus.

Stage SDOSDOSDOSDO SDTSDTSDTSDT

RightRight LeftLeft RightRight LeftLeft

Trial Odor Texture Odor Texture Odor Texture Odor Texture

1 Lemon - Vanilla - - Sandpaper - Blue Plastic

2 Vanilla - Lemon - - Sandpaper - Blue Plastic

3 Lemon - Vanilla - - Blue Plastic - Sandpaper

4 Vanilla - Lemon - - Blue Plastic - Sandpaper

5 Lemon - Vanilla - - Sandpaper - Blue Plastic

6 Vanilla - Lemon - - Blue Plastic - Sandpaper

7 Vanilla - Lemon - - Blue Plastic - Sandpaper

8 Vanilla - Lemon - - Sandpaper - Blue Plastic

9 Lemon - Vanilla - - Sandpaper - Blue Plastic

10 Lemon - Vanilla - - Blue Plastic - Sandpaper

Reward: LemonReward: LemonReward: LemonReward: LemonReward: Lemon Reward: SandpaperReward: SandpaperReward: SandpaperReward: Sandpaper

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Table 3.4. Stimuli combinations and sequence of presentation along 10 trials of the test first 
compound discrimination and its reversal stages:  compound discrimination of odors (CDO) and 
reversal stage one (Rev1). Reward associated stimuli are bold; the shading highlights the position 
of the stimulus in the test apparatus.

Stage CDOCDOCDOCDO Rev1Rev1Rev1Rev1

RightRight LeftLeft RightRight LeftLeft

Trial Odor Texture Odor Texture Odor Texture Odor Texture

1 Papaya Brown Plastic Eucalyptus Cardboard Papaya Cardboard Eucalyptus Brown Plastic

2 Eucalyptus Brown Plastic Papaya Cardboard Papaya Cardboard Eucalyptus Brown Plastic

3 Eucalyptus Cardboard Papaya Brown Plastic Papaya Cardboard Eucalyptus Brown Plastic

4 Eucalyptus Cardboard Papaya Brown Plastic Eucalyptus Cardboard Papaya Brown Plastic

5 Papaya Cardboard Eucalyptus Brown Plastic Eucalyptus Brown Plastic Papaya Cardboard

6 Papaya Brown Plastic Eucalyptus Cardboard Papaya Brown Plastic Eucalyptus Cardboard

7 Eucalyptus Brown Plastic Papaya Cardboard Eucalyptus Brown Plastic Papaya Cardboard

8 Eucalyptus Cardboard Papaya Brown Plastic Eucalyptus Cardboard Papaya Brown Plastic

9 Papaya Cardboard Eucalyptus Brown Plastic Papaya Brown Plastic Eucalyptus Cardboard

10 Papaya Cardboard Eucalyptus Brown Plastic Eucalyptus Brown Plastic Papaya Cardboard

Reward: PapayaReward: PapayaReward: PapayaReward: PapayaReward: Papaya Reward: EucalyptusReward: EucalyptusReward: EucalyptusReward: Eucalyptus
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Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Table 3.5.  Stimuli combinations and sequence of presentation along 10 trials of the test second 
compound discrimination and its reversal stages:  extradimensional shift- discrimination of 
textures- (EDST) and reversal stage two (Rev2). Reward associated stimuli are bold; the shading 
highlights the position of the stimulus in the test apparatus.

Stage EDSTEDSTEDSTEDST Rev2Rev2Rev2Rev2

RightRight LeftLeft RightRight LeftLeft

Trial Odor Texture Odor Texture Odor Texture Odor Texture

1 Lotus Velvet Mango Plastic Grass Lotus Velvet Mango Plastic Grass

2 Mango Plastic Grass Lotus Velvet Mango Velvet Lotus Plastic Grass

3 Mango Velvet Lotus Plastic Grass Lotus Velvet Mango Plastic Grass

4 Mango Velvet Lotus Plastic Grass Lotus Plastic Grass Mango Velvet

5 Lotus Plastic Grass Mango Velvet Lotus Velvet Mango Plastic Grass

6 Lotus Plastic Grass Mango Velvet Mango Velvet Lotus Plastic Grass

7 Mango Plastic Grass Lotus Velvet Mango Plastic Grass Lotus Velvet

8 Mango Plastic Grass Lotus Velvet Mango Plastic Grass Lotus Velvet

9 Lotus Velvet Mango Plastic Grass Mango Velvet Lotus Plastic Grass

10 Lotus Velvet Mango Plastic Grass Lotus Plastic Grass Mango Velvet

Reward: VelvetReward: VelvetReward: VelvetReward: VelvetReward: Velvet Reward: Plastic GrassReward: Plastic GrassReward: Plastic GrassReward: Plastic Grass

3.2.1.B. Water maze tests

The tests were conduced in a circular black pool (170 cm diameter) filled with water at 

22ºC to a depth of 34 cm in a room with extrinsic clues (triangle, square, cross and horizontal 

stripes) and rheostat controlled dim light. Imaginary lines were dividing the tank in four 

quadrants, one of which containing a submerged cylindrical plexiglass platform (12 cm, 32 

cm high) covered with black plastic to remain un undistinguishable from the pool - fig. 3.3 . 

Rats behavioural data was collected by a video camera fixed in the ceiling and connected to a 

video-tracking system (Viewpoint, Champagne au mont d’or, France). The water maze tests 

consisted of a six days protocol and involved four distinct tasks. In general, the tasks are 

composed by four trials with the maximum duration of 2 minutes. At the beginning of each 

trial rats were placed in the water facing the maze wall and oriented to one of the four 

extrinsic clues, i. e., in one of the four imaginary quadrants (Q1, Q2, Q3 and Q4). The trial 

was only complete when the animal escaped to the platform or in case the animal did not 

reach the platform two minutes after the beginning of the trial. In that case, animals were 

gently guided to the platform. After twenty seconds on the platform, rats were then taken 

out of the maze to start a new trial. At the end of each trial the distance swam and escape 

latency were registered. In the cases when rats did not find the platform, the registered 

escape latency was 2 minutes (120 seconds) .
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Working memory task (WMT): The first of the paradigms used was the working memory 

task, a variant of the spatial reference memory test [109] to assess this PFC function. The 

purpose of this task is to assess  the ability of rats to learn the location of the hidden platform 

and to retain this information online during the four consecutive trials. Usually, the working 

memory task consists of four days. At each day the platform location is the same in all four 

trials, but varies from day to day using a different quadrant per day [99]. Considering that 

the aminoadipate model of astrocytic dysfunction has a window of time of only seven days 

to perform behaviour tests we decided to remove one of the days from this task just to be 

sure that animals were performing the tests with the aminoadipate effect-window. We chose 

to remove the day on which the first trial of the task is started in the same quadrant of the 

platform. Average escape latencies and distance swam in each trial along the three days of 

this task were considered as working memory test results, since faster animals display better 

working memory performance.

Spatial reference memory task (RMT): following the working memory task (days 1-3) 

animals performed the reference memory task, which is hippocampus-dependent [109], until 

day 5 (the first day of working memory task was also considered as the first day of reference 

memory task and the last day of working memory task was also considered as the second 

day of the reference memory task). On this task, the platform was kept in the same quadrant 

as test in day 3 so that we could assess the ability of the animals to learn the position of the 

platform along the days. The escape latencies and distance swam output of this test were 

analysed as means from the four trials of each day and interpreted as reference memory 

performances. Animals with shorter latencies or distance swam display better reference 

memory. 

Reversal learning task (RLT): On day 6, the animals performed the reversal learning task,  

which is prefrontal cortex-dependent [110], on which the platform is placed in the opposite 

quadrant of the previous location learnt in the reference memory task. The reversal learning 

of the rats was evaluated through the analysis of the distance swam and time spent in each 

Figure 3.3.  Representation of the water maze tests apparatus, 
prepared for rats with the extrinsic clues (triangle, square, cross 
and horizontal stripes) and the platform (P).  Four imaginary 
quadrants (Q1, Q2, Q3 and Q4) divided the pool.
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quadrant as a mean of the four trials. An extra trial, probe trial, in which the platform is 

removed from the tank, was performed to confirm that the reversal learning was correctly 

executed [109]. During the 2 minutes of this probe trial the distance swam and time spent in 

each quadrant were measured. A good performance in the reversal learning consisted of 

higher percentage of time or distance swam in the new quadrant, when compared to the old 

quadrant.

The timeline followed in this cognitive test with the rat model of astrocytic ablation is 

depicted in table 3.6.

Table 3.6. Timeline followed in the water maze tests used for rat models of astrocytic ablation.Table 3.6. Timeline followed in the water maze tests used for rat models of astrocytic ablation.Table 3.6. Timeline followed in the water maze tests used for rat models of astrocytic ablation.Table 3.6. Timeline followed in the water maze tests used for rat models of astrocytic ablation.Table 3.6. Timeline followed in the water maze tests used for rat models of astrocytic ablation.Table 3.6. Timeline followed in the water maze tests used for rat models of astrocytic ablation.Table 3.6. Timeline followed in the water maze tests used for rat models of astrocytic ablation.

Task WMT 1 / 
RMT 1

WMT 2 WMT 3 / 
RMT 2

RMT 3 RMT 4 RLT + Probe 

Day 1 2 3 4 5 6

3.2.2. dnSNARE mice model of impaired vesicular release in astrocytes

The dnSNARE mice were recently created [106] and the behaviour phenotype of this mice 

strain is still poorly tested [40] (see chapter 5). Therefore we performed primarily the open 

field test and the elevated plus maze to assess if these animals possess any lack of 

exploratory motivation, locomotion difficulties or anxiety that would mislead us in tests that 

measure cognition. Then the animals were tested in water maze-based paradigms and in the 

continuous spontaneous alternation test to assess cognitive function. Details on the specific 

tests are given below.

3.2.2.A. Elevated Plus Maze (EPM)

The paradigm of this test was established by Hanldy and Mithani [111] basing in the 

observations that elevated open alleys evoke greater avoidance responses than closed alleys 

in rat [112] and was already validated also for the use in mice [113]. dnSNARE mice anxious 

phenotype was assessed in a “plus“ shaped maze (ENV-560, Med Associates, Inc.) consisting 

in two opposite open arms (50.8 cm L x 10.2 cm W x 40.6 cm H) and other opposite closed 

arms (50.8 cm L x 10.2 cm W x 40.6 cm H), elevated 72.4 cm above the floor. During the 5 

days prior to the test, mice were handled once a day for 1 minute each. Mice exploratory 

activity in the EPM was individually recorded during 5 minutes and the time spent in open 
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arms, hub (arms junction area) and the number of entrances and explorations in each section 

were analysed through a system of infrared photo-beams using a video tracking interface 

(SOF-842, Med Associates, Inc.). The test was performed under bright white light. The maze 

was carefully cleaned, between each animal, with 10% ethanol to avoid traces to be left from 

one animal to another. The collected data was used to calculate the ratio of time spent in 

open arms over time in closed arms and the percentage of open arms entries, being time 

presented as percentage over total duration of the trial. 

3.2.2.B. Open field test (OF)

In order to assess the spontaneous locomotor activity, exploratory behaviour and 

anxiogenic-like behaviour (thigmotaxis) [114-116] in dnSNARE mice, the OF test was used. 

Mice were handled for 1 minute each day during 5 consecutive days before the test. The test 

was conducted in a Plexiglass box enclosing a white arena (43.2 cm L x 43.2 cm W x 30.5 cm 

H) with a centre zone delimited with an imaginary perimeter set at 10 cm from the sides of 

the arena (ENV-515-16, Med Associates, Inc.). Total distance moved (length of the path), 

movement speed, number of rearings and time spent in the centre zone were analysed 

through the 16 infrared photo-beams using Activity Monitor video tracking system 

(SOR-811, Med Associates, Inc.). At the beginning of the test session, mice were placed 

individually into the middle of the OF arena and let explore during 5 minutes. Between each 

animal, the arena was carefully cleaned with 10% ethanol to avoid traces to be left from one 

animal to another.

3.2.2.C. Water maze tests

The water maze tests were conducted in a circular white pool (170 cm diameter) filled 

with water at 22ºC to a depth of 32 cm in the same room as rats water maze  tests with the 

extrinsic clues (triangle, square, cross and horizontal stripes) and rheostat controlled dim 

light, similarly to the one used to test the rat animal model. Imaginary lines were dividing 

the tank in four quadrants, one of which containing a cylindrical plexiglass platform (8 cm, 

30 cm high) - fig 3.4. Mice behaviour data was collected with a video camera fixed in the 

ceiling and connected to a video-tracking system (Viewpoint, Champagne au mont d’or, 

France). The water maze tests consisted in a five days protocol that involved two distinct 

tasks: reference memory task and reversal task. Similarly to the protocol used for rats water 

maze tests, in general tasks are composed by four trials with the maximum duration of 2 

minutes. At the beginning of each trial mice were placed in the water facing the maze wall 
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and oriented to one of the four extrinsic clues, in one of the four imaginary quadrants (Q1, 

Q2, Q3 and Q4). The trial was complete when the animal escaped to the platform or when 

the escape did not occur within 2 minutes. In that case, mice were gently guided to the 

platform. After twenty seconds on the platform, mice were taken out of the maze to start a 

new trial. At the end of each trial the distance swam and escape latency was registered. In 

the cases when mice did not find the platform, the registered escape latency was 2 minutes 

(120 seconds).

Spatial reference memory task (RMT): mice were tested for its spatial reference memory 

with the hippocampus-dependent reference memory task [109], until day 4. On this task, the 

platform was kept in the same quadrant so that we could assess the ability of mice to learn 

the position of the platform along the four days. The escape latencies and distance swam 

output of this test were analysed as means from the four trials at each day and interpreted as 

reference memory test. Animals with shorter latencies or distance swam display better 

reference memory. 

Reversal learning task (RLT): The PFC function was assessed by the reversal learning 

task on which the platform is placed in the opposite quadrant of the previous location [110], 

similarly to the procedure for rats. The reversal learning of the mice was evaluated through 

the analysis of the distance swam and time spent in each quadrant as a mean of the 

remaining three trials, with a duration of 2 minutes each. A good performance in the reversal 

learning consisted of more percentage of time or distance swam in the new quadrant, when 

compared to the old quadrant.

The timeline followed in this cognitive test  for the mice model of astrocytic dysfunction is 

specified in table 3.7.

Figure 3.4.  Representation of the water maze tests apparatus, 

prepared for mice, with the extrinsic clues (triangle, square, 
cross and horizontal stripes) and the platform (P). Four 
imaginary quadrants (Q1, Q2, Q3 and Q4) divided the pool.
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Table 3.7. Timeline followed in the water maze tests used for the mice models of astrocytic 

dysfunction.

Table 3.7. Timeline followed in the water maze tests used for the mice models of astrocytic 

dysfunction.

Table 3.7. Timeline followed in the water maze tests used for the mice models of astrocytic 

dysfunction.

Table 3.7. Timeline followed in the water maze tests used for the mice models of astrocytic 

dysfunction.

Table 3.7. Timeline followed in the water maze tests used for the mice models of astrocytic 

dysfunction.

Table 3.7. Timeline followed in the water maze tests used for the mice models of astrocytic 

dysfunction.

Task RMTRMTRMTRMT RLT

Day 1 2 3 4 5

3.2.2.D. Continuous spontaneous alternation test

This test, conduced in Y-maze, was used to assess spatial working memory function in 

transgenic dnSNARE mice. The Y-maze apparatus consisted of three costume made white 

Pexiglass closed arms (35 cm L x 5 cm W x 8 cm H), elevated x 120 cm above the floor, based 

on published protocols previously adapted for mice [117, 118]. Each arm is identical, so that 

intra-maze cues were not provided to mice, while they were allowed to see distal spatial 

landmarks (triangle, horizontal stripes and cross). The test was performed by placing each 

mouse in the centre (c) of the three arms of the apparatus and letting the animal to explore 

the maze freely during 5 minutes - fig3.5. A video camera was used to record the movements 

of the animal in the maze. This test is based on innate curiosity  of rodents to explore novel 

areas, which is relies in their working memory. This test presents no negative or positive 

reinforcements, therefore not stressful for the animals. The number and sequence of arm 

entrances was recorded manually. The total of number of arm entrances was used as a 

measure of motivation to explore the maze and locomotor activity. The assessment of  mice 

spatial working memory was given by the percentage of alternations (alternation score, %) 

was calculated, basing on the principle that one alternation was counted when animals 

visited the three different arms consecutively and immediate reentries were discounted (for 

example, 1-3-2; 2-1-3). The assessment of mice spatial working memory was given by the 

percentage of alternations (alternation score, %), being one complete alternation  each time  

the animal visited the three different arms consecutively (immediate reentries were 

discounted). The alternation score was calculated by the number of alternations divided by 

the total possible alternations (number of arms entered minus 2) and multiplied by 100 [117].

Figure 3.5. Representation of the Y maze apparatus. The 3 arms are 
randomly numbered from 1 to 3; c - centre of the Y-maze. 

c
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3.3. Histological procedures

3.3.1. Euthanasia and tissue preparation

One hour after  ASST or water maze tests completion rats were deeply anaesthetised with 

an overdose of ketamine and medetomidine mix, and readily perfused transcardially with 

ice cold paraformaldehyde 4% in PBS (0.1 M, pH 7.4) solution. Brains were then removed 

and placed in the same fixative for 48 hours and then in 30% sucrose in PBS solution (for 

impregnation) until sinking, at 4ºC under agitation. Once sinked, brains were frozen by 

immersion in liquid nitrogen in Neg-50 frozen section medium (Thermo Scientific) and 

stored at -80ºC until sectioning. The tissue obtained represented the lesion of aminoadipate 

at day 3 and day 7 post-injection, whether the animals had performed the ASST or water 

maze-based tests, respectively. 

3.3.2. Immunofluorescent staining of astrocytes and neurons

In order to analyse the histological implications and extension of the lesion caused not 

only by the injection of AA, but also by the mechanical trauma of the bilateral cannula guides 

implantation, we performed the immunofluorescent detection of astrocytes and neurons in 

20 μm thick coronal sections of the PFC cut in a cryostat (Leica CM1900). The 

immunofluorescent procedures were only applied to representative brain sections, selected 

by signs of cannula entry at the brain surface.

For the immunofluorescent detection of neurons an astrocytes,  the procedure started with 

an antigen retrieval step, with citrate buffer (10 mM) during 20 minutes at 100W microwave 

potency. Once cooled, slices were submitted to two rinses of 3 minutes in PBS, followed by 

the overnight incubation with the primary antibodies rabbit polyclonal anti-rat GFAP (1:200, 

DakoCytomation) and mouse polyclonal anti-rat NeuN (1:100, Milipore) in PBS with 0,5% 

Triton X-100 and 10 % fetal bovine serum (FBS). After three rinses of 3 minutes in PBS, 

sections were then incubated with the secondary antibodies Alexa Fluor® 594 goat anti-

rabbit and Alexa Fluor® 488 goat anti-mouse (1:1000, Molecular Probes®) in PBS with 0,5% 

Triton-X, during 90 minutes. Once slices were rinsed again, the cellular nucleic acids were 

indiscriminately labelled through 10 minutes incubation with Dapi antibody (1:1000, 

Invitrogen). A final series of 3 minutes rinses in PBS, slides were mounted with coverslips in 

Immu-mount (Thermo Scientific Shandon) mounting media.
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3.3.3. Microscopic analysis

3.3.3.A. Identification of lesion sites

The result of the immunofluorescent labelling of astrocytes and neurons in brain sections 

from the animals injected with AA and respective controls was analysed by means of an 

epifluorescence microscope (BX61, Olympus) coupled with a digital camera system (DP70, 

Olympus). The lesion sites were identified through the GFAP immunofluorescence detection 

and using the Cell^P imaging software (Olympus) to capture pictures. The lesion site was 

easily detected in the brains of animals injected with L-Aminoadipate (L-α-AA) by an halo in 

the tissue without GFAP staining in the medial prefrontal cortex - fig. 4.2A. In the brain 

sections from control animals, the site of cannula guide placement was confirmed by the 

physical signs of cannula entry in the brain surface  - fig. 4.2 A a1. The site of injection was 

calculated 1 mm below those marks, as the double internal cannulas projected 1 mm from 

the cannula guides.

Maps of injection site that indicated the lesion localisation were created - fig 4.1. The 

animals where the lesion was located outside the medial prefrontal cortex (mPFC) were 

excluded from the analysis.

3.3.3.B. Stereological analysis of the affected region

To further characterise the lesion caused by the L-α-AA injection in the mPFC, we 

analysed specifically the Cg1, PrL and IL sub-regions, namely by counting the GFAP- and 

NeuN-positive cells to generally estimate the affection of astrocytes and neurons, 

respectively. In order to count the cells, 5 μm spaced z-scan images from the representative 

brain sections selected previously (see section 3.3.3.A) were obtained using a confocal 

microscope (Olympus FV1000, Japan) under a 20X objective. Laser excitation wavelengths  

were set at 405 nm for Dapi, 488 for NeuN and 559 for GFAP secondary antibodies; the 

pinhole was adjusted to 80.0 μm. Each of the mPFC subregions were outlined according to 

the rat brain atlas of Paxinos and Watson [104]. GFAP-positive astrocytes and NeuN-positive 

neurons were counted using ImageJ (http://rsbweb.nih.gov/ij/) with the “Cell counter” 

plugin in the confocal z-stacks projections, obtained in the Simple Confocal Viewer software 

v1.0.1. Because the astrocytic morphology may be confusing due to complex processes tree 

that may overlap with vicinal astrocytes, and fluorescent artefacts may lead to false positives, 

only co-localisations with DAPI were considered for counting in both cell types. In order to 

avoid small fluctuations of fluorescent staining quality from slice to slice, the number of cells 
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counted in the Cg1 and PrL was normalised to the number of cells counted in the IL, a 

vicinal region spared from the surgical procedure and gliotoxin lesion, resulting in a ratio 

that allows comparison between different animals.

3.3.4. Statistical Analysis

Data are expressed through the study as means ± SEM. Statistical analysis was performed 

using the GraphPad Prism 5 software (GraphPad Software, Inc.) for Mac OS X. For the 

analysis of one variable between two groups of animals, Student’s t-test (comparing distance 

travelled, velocity and number of rearings in the OF; the alternation score and the total 

number of arm entrances in the continuous spontaneous alternation between wt and 

dnSNARE mice), or Mann-Whitney’s test (comparing the indexes of learning and reversal of 

CON and AA animals in the ASST) were used. Two-way ANOVA analysis and Bonferroni 

post-hoc tests were applied to compare the GFAP/IL or NeuN/IL cells ration in lesioned and 

non-lesioned sites of brain areas from animals that performed ASST and water maze tests; to 

compare the performance of AA and CON animals along the stages of ASST; to study the 

effect of gender and genotype in distance travelled, velocity and number of rearings in the 

OF and the alternation score and the total number of arm entrances in the continuous 

spontaneous alternation between wt and dnSNARE mice. For the more complexes analysis 

such as studying the group effect in the water maze performance of rats along the trials 

(WMT) and rats and mice along the days (RMT), as well as to study the effect of the 

genotype alone or the genotype and gender in the EPM performance (time spent on, entries 

and explorations on open and closed arms) and time spent by mice in the center of the OF  

arena, two-way repeated measures ANOVA and Bonferroni post-hoc tests were used. At last, 

for studying the performance of rats and mice in the reversal learning and probe tasks of the 

water maze tests, we used multivariate ANOVA (MANOVA) and Bonferroni post-hoc tests. 

The appropriate statistical test is denoted for each experiment in the Results section (see 

chapter 4). The statistical significance of the comparisons for each statistical test was set with 

a confidence interval of 95% (α=0.05).
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4.  RESULTS

4.1. Aminoadipate pharmacological rat model

4.1.1.  Selection of animals and lesion features 

Following the microscopy analysis of the brain sections from animals injected with  L-α-

AA or aCSF, we performed the selection of the animals whose site of injection was within the 

mPFC- fig. 4.1. From the set of animals that performed the ASST, 7 CON and 6 AA animals 

animals were considered for the analysis of the behaviour output, while 6 CON animals and 

8 AA animals were considered for the analysis of the behaviour output from the the animals 

that performed water maze tests. In these animals, the centre of the lesion was localised 

between the medial and dorsal portions of the PrL and Cg1 sub-regions of the medial PFC.

Figure 4.1.  Representation of the sites of brain injections, 4.20 mm to 2.76 mm from Bregma. A - Set 
of animals that performed ASST; B- Set of animals that performed water maze tests, according to the 

Paxinos and Watson rat brain  atlas figures [104].   ●  CON;   ●  AA.

A B

Bregma

4.20 mm

3.72 mm

3.24 mm

3.00 mm

2.76 mm
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The microscopy analysis of the rats brain tissue preparations revealed that the bilateral 

injection of L-α-AA induced astrocyte depletion in the whole range of injection, forming an 

halo within the GFAP staining. Despite of the complete absence of astrocytes, neurons were 

still detectable within the lesioned area - fig 4.2. The ratio of the GFAP positive cells number 

of cells in lesion sites over the the number of cells in non-lesioned sites, at the IL and ventral 

portion of the PrL, illustrates the complete absence of astrocytes in gliotoxin injected subjects. 

(lesion sites, ASST: CON, n=5 and AA, n=5; water maze tests: CON, n=5 and AA, n=5; non-

lesion sites,  ASST: CON, n=5 and AA, n=4; water maze tests: CON, n=5 and AA, n=6). Two 

way ANOVA test pointed out significant differences between the ratio of GFAP positive cells 

in CON and AA subjects, either in animals that performed ASST, at 3 days post-injection, or 

water maze tests, at 7 days post injection (ASST, CON: 1. ± 0.0, AA, 0.0 ± 0.0, t=12.5, p<0.001 - 

fig 4.2 b1; water maze tests, CON: 1.2 ± 0.1, AA, 0.0 ± 0.0, t=6.7, p<0.001 - fig 4.2 c1). 

Regarding the non lesioned regions the of GFAP positive cells ratios did not differ between 

CON and AA animals of the ASST and water maze tests sets (ASST, CON: 1.5 ± 0.1, AA, 1.4 ± 

0.0, t=0.7, p>0.05 - fig. 4.2 b2; water maze tests, CON: 1.4 ± 0.1, AA, 1.4 ± 0.1, t=0.2, p>0.05 - 

fig 4.2 c2). Opposite to what happened with the GFAP immunoreactivity, NeuN stained cells 

were not affected by the L-α-AA injections, as the two-way ANOVA have not evidenced any 

differences between groups in lesioned sites either in ASST or water maze tests set of animals 

(ASST, CON: 1.0 ± 0.1, AA, 1.1 ± 0.1, t=0.4, p>0.05 - fig 4.2 b1; water maze tests, CON: 1.1 ± 

0.1, AA, 0.9 ± 0.2, t=1.2, p>0.05 -  fig 4.2 c1) And as expected, the same was true in non 

lesioned sites (ASST, CON: 1.2 ± 0.4, AA, 1.5 ± 0.1, t=0.3, p>0.05 -fig 4.2 b2; water maze tests, 

CON: 1.6 ± 0.2, AA, 1.4 ± 0.1, t=1.2, p>0.05 - fig 4.2 c2).

4.1.2. Behaviour performance

In order to assess the translation of astrocyte depletion in the behaviour output of the 

prefrontal cortex, animals injected with the gliotoxin L-α-AA and their respective controls 

were tested through the ASST and the water maze based tests.

4.1.2.A. Attentional set-shifting task

The ASST allowed assessing the PFC-dependent functions such as attention, dimensional 

set-shifting and reversal learning [98]. A two-way analysis of variance (two-way ANOVA) of 

the number of trials to criterion (TC) - number of trials needed by each group of animals 

(CON, n=7; AA, n= 6) until acquisition of the rule in each stage - showed that animals with 
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astrocyte depletion in the mPFC (AA) have more difficulty to learn to discriminate stimuli in 

the dimension of textures (SDT: CON 11.7 ± 2.5 TC and AA 31.8 ± 9.3 TC, t= 2.7, p<0.05) and 

to perform reversal learning (Rev1: CON 13.4 ± 2.1 TC and AA 33.5 ± 7.6 TC, t=3.0, p<0.05; 

Rev2: CON 13.3 ± 2.7 TC and AA 41.0 ± 9.9 TC, t=3.8, p<0.01), when compared to controls 

(CON) - fig. 4.3. No differences between groups were observed in the remaining stages (SDO: 

CON 14.6 ± 3.3 TC and AA 20.5 ± 7.5 TC, t=1.1, p>0.05; CDO: CON 15.3 ± 3.3 trials and AA: 

13.3 ± 2.2 TC, t=0.2, p>0.05; EDST: CON 16.4 ± 3.9 TC and AA 11.3 ± 2.0 TC, t=0.70, p>0.05). 

Figure 4.2. Effects of the gliotoxin L-α-AA.  A - intracranial L-α-AA injections cause astrocytic 
ablation denoted by an halo of no GFAP immunoreactivity; a1- brain section from CON animal; white 
arrow denotes the physical damage caused by the cannula placement; a2 -  brain section from AA 
animal evidencing astrocytic ablation in Cg and PrL, detailed in a3; a4 - confocal imaging evidencing 
no astrocytes within the lesioned area, while neurons were not affected . B and C- Ratio of the number 
of cells within lesion sites (Cg1 and ventral portion of PrL) - b1 and c1- over the number of cells in 
non-lesion region (IL) compared to a non-lesioned region - b2 and c2- in animals that performed ASST, 
B and in animals that performed water maze tests, C. *** p<0.001.

A a1 a2 a3 a4

B b1 b2

c1 c2C
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The index of learning, mean TC from the learning stages (fig. 4.4 A) shows that both groups 

of animals learn similarly how to discriminate new stimuli along the stages of this task 

(CON: 14.5 ± 1.6 TC and AA: 19.8 ± 3.2 TC,  Mann-Whitney U= 279.5, p>0.05). However, the 

index of reversal, mean TC from the reversal stages, points out a striking difference between 

controls and animals depleted of astrocytes in the mPFC - fig 4.4 B (CON: 13.4 ± 1.7 TC; AA 

37.3 ± 6.1 TC, Mann-Whitney U= 11.5, p<0.001) which confirms the performance observed in 

both reversal learning stages (fig. 4.3).

Figure 4.3. Trials to criterion along ASST stages. Rats injected with aCSF (CON) and L-α-AA (AA) 
Data plotted as mean ± SEM.  * p<0.05, ** p<0.01.

Figure 4.4. Indexes of Learning and Reversal.  A - mean trials to criterion in learning stages, Index of 
learning; and B- mean trials to criterion in reversal stages, index of reversal, of rats injected with aCSF 
(CON) and L-α-AA (AA). Data plotted as mean ± SEM. n. s. p>0.05. *** p<0.001.

A B
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4.1.2.B. Water maze based tests

The water maze-based tests allowed assessing spatial working memory (WMT), spatial 

reference memory (RMT) and reversal learning (RLT) [119] in the animals depleted of 

astrocytes and respective controls (CON, n=6; AA, n= 8). The analysis of the WMT learning 

curve (fig. 4.5 A) showed that astrocyte depletion impaired consistently the acquisition 

process (AA, trial 4: 45.2 ± 7.8 s , t=2.6, p<0.05) when compared to control animals which 

showed a typical learning curve along trials (CON, trial 4: 15.3 ± 4.1 s ; p<0.05) [119]. In the 

spatial RMT (fig. 4.5 B) no differences were observed between both groups of animals 

regarding the shape of the learning curves (day 4: CON 16.4 ± 4.4 s and AA 25.5 ± 5.8 s, t=1.0 

p>0.05). It is noteworthy that in the first day of the task, a difference was observed between 

both groups (day 1, CON: 40.4 ± 4.1 s, and AA 65.0 ± 6.8 s, t=2.8, p<0.05), which is a reflex of 

their different performance in the WMT. In the RLT (fig. 4.6 A) the multivariate ANOVA test 

evidenced no differences in the percentage (%) of time spent by CON and AA animals in 

each quadrant. The absence of statistically significant differences in probe test confirms that 

although a tendency for both groups to spend more time in the quadrant where the platform 

was located in the RLT (Q4) is observed, both groups of animals failed to learn the RLT since 

in the probe trial the % time spent in the new quadrant (Q2) does not significantly differ 

from the % time spent in the old quadrant (Q4) (Q2: CON 32.8 ± 2.8 % and AA 34.1 ± 3.9 %; 

Q4: CON 27.6 ± 3.5 % and AA 22.5 ± 3.3 %) and does not differ between groups (Q2: CON 

32.8 ± 2.8 % and AA 34.1 ± 3.9 %, t=0.2, p>0.05 - fig. 4.6 B)

Figure 4.5. Escape latencies (s) in water maze tests. A - Escape latencies (s) in the working memory 
task, WMT; B -Escape latencies (s) in the spatial reference memory task, RMT of rats injected with 
aCSF (CON) and L-α-AA (AA). Data plotted as mean ± SEM. * p<0.05.

A B
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Figure 4.6. Performance of the rats in the reversal learning task, RLT and probe task of the water 

maze tests. A - Percentage of time (%) spent by rats rats injected with aCSF (CON) and L-α-AA (AA) 
in each of the quadrants in the reversal learning task, RLT ; and B - in the the probe task. Dotted line 
represents performance at chance level (25%). Data plotted as mean ± SEM. n. s. p>0.05.

A B

4.2. dnSNARE mice model of impaired vesicular release in astrocytes

After implementation of the dnSNARE colony at the ICVS, 48 animals were generated 

from crossings between heterozygous GFAP.tTA and tetO.dnSNARE mice. In order to avoid 

experimental bias, all animals were blind tested as the genotyping was only performed after 

the behavioural phenotype assessment.

4.2.1. Genotyping and selection of animals

The results from the genotyping are summarised in the figure 4.7 A and B. From the 48 

animals used in the behavioural phenotype assessment 18 were wt (10 female, ♀ and 8 male, 

♂), 8 were dnSNARE (5 ♀ and 3 ♂), 15 were tetO.dnSNARE (5 ♀, and 10 ♂) and 7 were 

GFAP.tTA (4 ♀ and 3 ♂). Only wild type (wt) animals and double mutant animals 

(dnSNARE) were considered for the analysis of the behavioural performance in the different 

tests.
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4.2.2. Behaviour performance

In order to characterise the behavioural phenotype of the dnSNARE mice strain, 48 

animals originated by the mattings between the mice lines GFAP.tTA and tetO.dnSNARE 

were subjected to four behaviour tests: EPM, OF tests, water maze based tests and 

continuous spontaneous alternation task. These tests aimed to assess anxiety, locomotion and 

exploratory behaviour, and cognition (memory and learning) of the dnSNARE animals, 

comparing to their wt littermates.

4.2.2.A. Elevated plus maze (EPM)

The elevated plus maze test was used to assess if dnSNARE mice exhibited or not an 

anxious phenotype [113]. 

Regarding mice preference for open or closed arms, given by the percentage of time spent 

in each EPM arms, a two-way repeated measures ANOVA test revealed no significant 

differences between groups, whether female and male mice where considered together  (fig. 

4.8 A) in the analysis or not (fig. 4.8 B). In the second analysis, although there were no 

significant different between groups, dnSNARE male mice tend to spent less time in closed 

arms (wt ♀: 52.9 ± 3.1; wt ♂: 55.6 ± 4.1; dnSNARE ♀: 51.4 ± 6.4; dnSNARE ♂: 47.8 ± 1.8) 

that apparently is compensated by the time spent in area that links the two opposite arms of 

Figure 4.7. Mice genotyping. A- Agarose gel (1% in TAE buffer) with the PCR products of the 4 
possible band patterns in for the mice genotyping results. L: ladder (#SM1331, Fermentas); a: wt 
(C57/Bl6); b: double positive, dnSNARE; c: tetO.dnSNARE ; d: wt (C57/Bl6); d; B- Frequency 
distribution of the genotypes from the animals generated in the mattings between mice lines 
GFAP.tTA and tetO.dnSNARE used for the behaviour testing.

BA

1000 b.p. 

700 b.p. 

200 b.p. 

dL a b c
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the plus maze - hub (wt ♀: 13.7 ± 1.9; wt ♂: 13.8 ± 1.10; dnSNARE ♀: 13.2 ± 2.4; dnSNARE 

♂: 20.7 ± 2.1). 

Figure 4.8. Time spent (as percentage of total, %) in the arms and hub of the EPM.  A - wt and 
dnSNARE mice, females and males plotted together; and B - wt and dnSNARE mice, females and 
males plotted separately. Data plotted as mean ± SEM. 

B

A

The number of entrances in open or closed arms did not significantly differ between the 

groups, either considering both gender together (open arms, wt: 9.0 ± 0.9; dnSNARE: 9.9 ± 

1.2; closed arms, wt: 10.1 ± 1.0; dnSNARE: 11.1 ± 1.4 -  fig. 4.9 A) or separately (open arms, wt 

♀: 8.6 ± 1.1; wt ♂: 9.5 ± 1.4; dnSNARE ♀: 10.6 ± 1.7; dnSNARE ♂: 8.7 ± 1.5; closed arms, wt 

♀: 9.5 ± 1.5; wt ♂: 10.9 ± 1.3; dnSNARE ♀: 10.2 ± 1.9; dnSNARE ♂: 12.7 ± 1.9 - fig. 4.9 B). 

The same result was observed in what concerns to the number of arm explorations of female 

and male together (open arms, wt: 14.5 ± 1.0; dnSNARE: 17.1 ± 1.9; closed arms, wt: 13.3 ± 

1.1; dnSNARE: 15.4 ± 2.3 -  fig. 4.10 A) and separately (open arms, wt ♀: 14.5 ± 1.6; wt ♂: 

14.5 ± 1.4; dnSNARE ♀: 14.8 ± 2.4; dnSNARE ♂: 21.0 ± 1.5; closed arms, wt ♀: 12.9 ± 1.4; wt 

♂: 13.8 ± 1.8; dnSNARE ♀: 13.0 ± 2.5; dnSNARE ♂: 19.3 ± 4.1 - fig. 4.10 B), indicating the 

preservation of the exploratory and locomotor activity within all groups of animals. 

Nevertheless, male dnSNARE mice tended to explore more both open and closed arms.
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Figure 4.9. Number of entrances in open arms and closed arms of the EPM. A - wt and dnSNARE 
mice, females and males plotted together; and B - wt and dnSNARE mice, females and males plotted 
separately. Data plotted as mean ± SEM.

B

A

Figure 4.10. Number of explorations in open arms and closed arms of the EPM. A - wt and 
dnSNARE mice, females and males plotted together; and B - wt and dnSNARE mice, females and 
males plotted separately (B). Data plotted as mean ± SEM. 

B

A
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4.2.2.B. Open Field test (OF)

The spontaneous locomotor activity, exploratory behaviour and also possible anxiogenic-

like behaviour (tendency to spend more time in the periphery, close to the walls - 

thigmotaxis) of dnSNARE mice were further analysed in a OF arena [116]. 

In what concerns to the locomotor activity, no significant differences were found in the 

distance travelled (fig. 4.11 A and B) and velocity between wt or dnSNARE mice (fig. 4.12 A 

and B), considering both genders together or separately. In the first parameter, t-test sowed 

no significant differences between the groups (wt: 2906.0 ± 194.0 cm, dnSNARE: 2907.0 ± 291 

cm; t=0.0, p>0.05) and a two-way ANOVA revealed no differences in the distance travelled 

within mice of the same genotype but different sex (wt ♀: 2824.3 ± 315.8 cm, wt ♂: 2977.7 ± 

254.4 cm, dnSNARE ♀: 2833.4 ± 274.3 cm, dnSNARE ♂: 3005.9 ± 658.9 cm). In the velocity, 

no differences were evidenced by the t-test considering the two genotypes (wt: 9.1 ±  0.78 

cm/s, dnSNARE: 8.9 ± 0.7 cm/s, t=0.6, p>0.05), and by the two-way ANOVA, taking to 

account both genotype and sex (wt ♀: 9.6 ± 1.3 cm/s; wt ♂: 8.5 ± 0.9 cm/s ; dnSNARE ♀: 

7.6 ± 1.0 cm/s; dnSNARE ♂: 9.3 ± 0.6 cm).

The exploratory behaviour, given by the number of rearings that mice do during the 5 

minutes of testing in the OF, was similar between both genotypes - fig. 4.13 A (wt: 50.1 ± 5.2 

and dnSNARE: 60.3 ±3.3, t=1.3, p>0.05) and gender within each genotype - fig 4.13 B (wt ♀: 

43.3 ± 4.2,  wt ♂: 56.1 ± 8.7, t=1.3, p>0.05; dnSNARE ♀: 59.7 ± 5.8, dnSNARE ♂: 61.0 ± 3.1,  

t=0.1, p>0.05 ).

Figure 4.11. Distance travelled (cm) in the open field arena. A -  wt and dnSNARE mice, females 
and males plotted together;  and B -  wt and dnSNARE mice, females and males plotted separately. 
Data plotted as mean ± SEM. 

A B
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The last parameter analysed in the OF test, time spent on centre, was also similar in 

dnSNARE mice and their wt littermate controls. Comparing the two genotypes including 

females and males, t-test showed no significant differences (wt: 21.6 ± 4.1, dnSNARE: 17.7 ± 

2.2, t=0.63, p>0.05 - fig. 4.14 A) as well as no significant effect of gender was evidenced in 

either wt or dnSNARE mice, by the two-way ANOVA (wt ♀:18.0 ± 4.5,  wt ♂: 24.8 ± 6.7; 

t=0.1, p>0.05; dnSNARE ♀: 17.0 ± 3.8, dnSNARE ♂: 18.6 ± 1.9, t=0.7, p>0.05 - fig. 4.14 B). 

This means that wt and dnSNARE mice, either female or male, have similar thigmotaxic 

behaviour when subjected to the OF test.

A B

Figure 4.13. Number of rearings in the open field arena. A -  wt and dnSNARE mice, females and 
males plotted together;  and B - wt and dnSNARE mice, females and males plotted separately. Data 
plotted as mean ± SEM.

A B

Figure 4.12.  Velocity (cm/s) in the open field arena.  A - wt and dnSNARE mice, females and 
males plotted together; B - wt and dnSNARE mice, females and males plotted separately. Data 
plotted as mean ± SEM. 
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Figure 4.14.  Time (as percentage of total,  %) spent in the center of the open field arena. A - wt and 
dnSNARE mice,  females and males plotted together; and B - wt and dnSNARE mice, females and 
males plotted separately. Data plotted as mean ± SEM.

A B

4.2.2.C. Water maze based tests

Following the characterisation of the locomotor activity, exploratory and anxiogenic 

behaviour, mice performed cognitive tests to assess their learning and memory abilities, and 

check whether astrocytic vesicular release is important for these tasks. The first cognitive 

tests performed were the water maze based tests, that aim to evaluate the spatial reference 

memory and the reversal learning of dnSNARE animals in comparison to their littermate wt 

controls.

The spatial reference memory task of the water maze revealed spatial memory 

impairment of the dnSNARE mice, since in the last day of the task they needed significantly 

more time to find the submerged platform than wt animals, when analysing female and male 

animals together (day 4, wt: 29.4 ± 4.9 s, dnSNARE 66.5 ± 12.1, t=3.4, p<0.01 - fig 4.15 A). 

However, this impairment is no longer evident if female and male animals where considered 

separately within the two genotypes (day 4, wt ♀: 32.3 ± 7.9 s, wt ♂: 25.9 ± 5.5 s,  dnSNARE 

♀: 62.4 ± 15.4 s, dnSNARE ♂: 73.5 ± 23.1 s - fig. 4.15 B).

In the reversal learning task mice were required to find the platform in the quadrant of 

opposite location (Q2) relative to the one in the spatial reference memory task (Q4). The 

ability of learning a new location of the platform was assessed in terms of the mean 

percentage of time spent in each of the imaginary quadrants along the 3 trials of the task. The 

more time spent in the Q2, the more capable mice were to find the platform in its new 

location. Through the MANOVA test and Bonferroni post-hoc tests significant differences 

were found, within groups, in the time spent in each of the imaginary quadrants, by wt mice 
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(Q1: 25.8 ± 1.4 %, Q2: 32.2 ± 1.9%, t=2.4, p<0.05; Q2: 32.2 ± 1.9 %, Q3: 21.7 ±  1.5 %,  t= 3.9, 

p<0.001; Q2: 32.2 ± 1.9 %, Q4: 20.2 ±  1.9 %,  t= 4.5, p<0.001) and dnSNARE mice (Q2: 32.4 ± 

3.1 %, Q4: 19.2 ± 1.6 %, t= 3.3, p<0.01) - fig. 4.16 A. However, no significant differences were 

found in the time spent in each quadrants between groups of mice. Furthermore, taking into 

account both genotype and gender of animals in each group (fig. 4.16 B), significant 

differences were found within animals of the same group and sex regarding the time spent in 

the quadrant of the new location of the platform (Q2), when compared to the time spent in 

other quadrants (wt ♀: Q2,  30.4 ± 2.5 %,  Q4, 21.0 ± 2.6 %, t= 2.7, p<0.05; wt ♂: Q2, 34.4 ± 2.7 

%, Q3, 19.7 ± 1.3 %, t=3.8, p<0.01; Q2,  34.4 ± 2.7 %, Q4,  19.2 ± 2.8 %, t= 3.9, p<0.001; 

dnSNARE ♀: Q2, 33.9 ± 4.9 % and Q4, 19.9 ± 2.2 %, t= 2.8, p<0.05). Overall, it is notorious 

that mice with astrocytic dysfunction and their littermate controls were able to learn the new 

location of the platform, indicating an intact reversal learning.

Figure 4.15.  Escape latency (s) in the spatial reference memory task, RMT. A - Escape latency by 
genotype, with both gender plotted together; and B - Escape latency by genotype, with both gender 
plotted  separately, in mice with astrocytic dysfunction (dnSNARE) and their littermate controls (wt). 
Data plotted as mean ± SEM. ** p<0.01, compared to wt littermate controls.

A B
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Figure 4.16.  Performance in the reversal learning task, RLT. A - time (%) spent in each of the 
imaginary quadrants of the water maze by mice with astrocytic dysfunction (dnSNARE) and their 
littermate controls (wt),  plotted per genotype; and B - time (%) spent in each of the imaginary 
quadrants of the water maze by mice with astrocytic dysfunction (dnSNARE) and their littermate 
controls (wt), plotted per genotype and sex. Dotted line represents performance at chance level (25%). 
Data plotted as mean ± SEM; * p<0.05, **p<0.01, ***p<0.001. 

A B

4.2.2.D. Continuous spontaneous alternation test

While the water maze based tests assessed spatial reference memory and reversal learning 

of wt and dnSNARE animals, the continuous spontaneous alternation test allowed to 

characterise the spatial working memory of these animals. Making an overall analysis, with 

no gender discrimination, to the percentage of arm alternations (alternation score, %) from 

the two mice groups, t-test showed no significant differences between wt and dnSNARE 

mice (wt:  28.0 ± 1.6 %; dnSNARE: 29.2 ± 2.4 %, t=0.4, p>0.05) - fig 4.17 A. However, when the 

animals gender was taken into account for the statistical analysis, significant differences were 

found between subjects of different genotype and within the same gender - dnSNARE male 

mice have higher alternation score which means improved working memory, when 

compared to their littermate wt male controls (wt ♂: 26.2 ± 1.6 %, dnSNARE ♂: 36.7 ± 3.3 %, 

t=2.5, p<0.05). Regarding female subjects, no differences were found between both genotypes 

(wt ♀:  29.0 ± 2.6 %, dnSNARE ♀: 27.5 ± 1.1 %, t=0.6, p>0.05) - fig 4.17 B. As no genotype-

effect (wt: 24.3 ± 1.0 %, dnSNARE: 21.5 ± 0.6 %, t= 1.8, p>0.05 - fig. 4.18 A) or genotype-by-

sex interaction (wt ♀: 23.2 ± 1.3 %, dnSNARE ♀: 21.6 ± 0.6 %, t=0.8, p>0.05; wt ♂:  25.8 ± 1.7 

%, dnSNARE ♂: 21.3 ± 0.9 %, t=1.7, p>0.05 - fig. 4.18 B) were observed regarding the total 

number of arm entries, the greater alternation score of dnSNARE male mice is attributable to 

an improved spatial working memory and not to a greater locomotor activity or motivation 

to explore the maze.
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Figure 4.18.  Total arm entries in the continuous spontaneous alternation task, performed in the Y-

maze. A - total arm entries of mice with astrocytic dysfunction (dnSNARE) and their littermate 

controls (wt), plotted per genotype; and B -  total arm entries of mice with astrocytic dysfunction 

(dnSNARE) and their littermate controls (wt), plotted per genotype and sex. Data plotted as mean ± 

SEM. ; n. s. p>0.05.

 

A B

Figure 4.17.   Arm alternation (alternation score, %) in the continuous spontaneous alternation task, 

performed in the Y-maze. A - alternation score of mice with astrocytic dysfunction (dnSNARE) and 

their littermate controls (wt),  plotted per genotype; and B -  alternation score of mice with astrocytic 

dysfunction (dnSNARE) and their littermate controls (wt), plotted per genotype and sex.  Data plotted 

as mean ± SEM. ; n. s. p>0.05,  * p<0.05.
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5.  DISCUSSION AND CONCLUSION

The main aim of this work was to implement and study animal models of astrocytic 

dysfunction and assess if these animals would display cognitive differences when compared 

to the respective controls, as a way to dissect the astrocytic role in the construction of 

complex behaviour outputs. Here we show the implementation process and the first results 

of the behavioural phenotype characterisation of learning and memory, in the two models: 

one pharmacological rat model, with a single bilateral intracranial injection of L-α-

aminoadipate in the mPFC that depletes astrocytes in the region; and one genetic mice 

model, consisting of a conditional blockade of the exocytotic release in astrocytes by means 

of a “tet-Off” system. 

 During the establishment of the first model, multiple parameters required careful 

adjustment: from the surgical procedure for the cannula implementation (the choice of 

stereotaxic coordinates and the method of fixing the cannula to the skull); recovery period 

before drug administration; drug administration (concentration, vehicle and infusion rate, 

and methods for rat restraint during the drug infusion - implicating the establishment of a 

new anaesthesia protocol); lag phase between drug administration and behavioural testing;  

to histological analysis (brain sections immunofluorescence) and correlation to the 

behavioural output of rats with astrocytic ablation. Nevertheless, after all parameters were 

defined, the experiments carried out with this rat model of pharmacological astrocytic 

ablation provided us several interesting results.

Before the behavioural output analysis, we started to get an insight into the real location 

of the cannula and into the extent of the lesion caused by the drug injected through the 

bilateral internal cannula, as well as the kind of collateral damage due to the cannula 

implantation itself. By following the established stereotaxic coordinates, we were able to 

target the medial and dorsal portions of the PrL and the Cg regions of the PFC. The 

determination of the number of GFAP- and NeuN-positive cells, through confocal imaging, 

allowed to further characterise the cortical tissue subjected to the injections of L-α-AA or 

aCSF. The observation of astrocyte depleted areas within the mPFC of animals that 

performed ASST and water maze based tests evidenced the astrocyte ablation by L-α-AA as a 

dynamic lesion. Apart from complete absence of GFAP staining in the lesion site of animals 

injected with L-α-AA, we observed that the lesions in animals that performed water maze 

tests (sacrificed 7 days post-drug infusion) were relatively smaller than the ones observed in 

animals that performed ASST (sacrificed 3 days post-drug administration), although due to 

the method of selection of brain sections we could not quantify the lesion size. This 

47



observation correlates with the dynamic status of the L-α-AA caused astrocyte ablation [89]. 

Moreover, this fact suggests a repopulation of the lesioned area by other astrocytes whose 

origin and functional integration into the existing glial network needs to be clarified [120]. 

Despite of the absence of astrocytes within lesioned areas, the number of neurons was not 

affected within these areas.

From the behaviour assessment of the rats subjected to the bilateral intracranial injections 

of L-α-AA we could conclude that the astrocytic ablation in the mPFC affects the attentional 

set-shifting, the working memory and the reversal learning. First, by performing the ASST, 

AA animals have shown difficulty to discriminate textures in the SDT stage, but this was not 

observed in the precedent discrimination of odours because rodents are very sensitive to 

olfactory stimuli [121]. Apparently, astrocyte depletion impairs the learning of the 

discrimination of stimuli from a new dimension (texture). In CDO and EDST (corresponding 

to a compound discrimination of textures), animals injected with the gliotoxin have shown 

similar performance to the control animals. But the depletion of astrocytes caused a 

strikingly worse performance in the reversal stages, which indicates an impairment of the 

reversal learning. These observations are consistent with the fact that the mPFC mediates 

shifts between new strategies or rules [122]. Nevertheless, these observations do not comply 

with the data observed in the RLT of the water maze, as the similar performance of AA and 

CON animals in the reversal learning and probe task of the water maze based tests (7 days 

post-injection) suggests that were not result of the astrocyte depletion lesions. That could be 

explained by the fact that astrocyte ablation lesions were considerably smaller in animals 

that performed water maze based tests, than in animals that performed ASST [89]. 

Concerning the other tasks of the water maze based tests, astrocyte depleted animals 

displayed impaired working memory, which is a cognitive function dependent on the 

regions affected [99]. The learning curve in the RMT was similar in both groups of animals, 

except for the first day of this task, where differences between groups escape latencies reflect 

a working memory impairment in AA animals. Indeed, an intact mPFC is necessary for 

proper working memory, but not for spatial learning and memory [110].

Together, these observations go against the classical concept that learning and memory 

processes are exclusively result of the neuronal activity and supports the tripartite synapse 

theory [32], meaning that  astrocytes are crucial for such cognitive processes.

In order to identify a possible mechanism for the effects observed in the astrocyte 

depletion model, we implemented the dnSNARE mice model [106] at our lab, so that we 

could study the impact of astrocytic vesicular release of neurotransmitters in the build-up of 

complex behaviour forms. For the establishment of the transgenic mice dnSNARE model in 

our lab, the GFAP.tTA and tetO.dnSNARE mice lines kindly supplied by the lab of Philip 

Haydon (Tufts University, Boston) were first maintained in heterozygous state before we 

48



could start with the mattings between mice of these two lines. Animals GFAP.tTA and 

tetO.dnSNARE generated by the back-crossings were then mated to produce dnSNARE 

mice. This whole process lasted for several months, since we needed a considerable number 

of animals suitable to perform all behaviour testis (at least 3 animals of each genotype and 

sex). Once mice from the mattings between the two different mice lines reached 10 weeks old 

they, we had for the first time in our lab mice with exocytotic release blockade in astrocytes 

ready to behaviour phenotype characterisation. Initially, our main focus was to characterise 

dnSNARE behavioural performance in cognitive tests that assessed learning and memory, 

but as this mice line was being established for the first time in our lab, we decided to go 

further on the behavioural phenotype characterisation. Hence, we opted to test these animals 

in the EPM, the OF, the water maze tests and the continuous spontaneous alternation test in 

the Y-maze to screen additionally for cognition, exploratory motivation, locomotion 

difficulties or anxiety, as this mice strain was only tested by other groups by the the novel 

object recognition task [40, 90], in the context of sleep deprivation, and in the zero maze, to 

assess anxiety levels [40].

In the EPM test, mice preference for closed arms was not different from their preference 

for closed arms, regarding genotype and sex, meaning that wt and dnSNARE animals have 

the similar anxiety level. However, male dnSNARE mice tended to spend less time in the 

closed arms, apparently compensated by the time spent in the hub. But since the number of 

arm entries and explorations was similar in all mice groups, the tend for dnSNARE male 

mice spend less time in closed arms and to explore more both open and closed arms was not 

due to different locomotor and exploratory activity. These similarities in the anxiety level of 

dnSNARE mice and littermate wt controls assessed in the EPM are consistent with the ones 

already reported in the zero maze by Halassa and colleagues [39]. This means that the fact 

that the blockade of exocytotic release in astrocytes per se is not sufficient to cause an 

alteration in the anxiety patterns in these animals.

Open field arena testing revealed no significant differences between wt and dnSNARE 

mice locomotor activity (distance travelled and velocity), exploratory behaviour (rearings) 

and thigmotaxis (related to the time spent in the centre of the arena). The thigmotaxis results 

of wt and dnSNARE mice are coherent with the similar anxiogenic level between these 

animal observed by us in the EPM. Once again, we can say that the condition of astrocytic 

dysfunction in terms of vesicular release has no impact in the locomotor activity, exploratory 

and thigmotaxic behaviour.

Since we achieved the characterisation of locomotor, exploratory and anxious behaviour 

in mice with astrocytic dysfunction and confirmed that both genotypes were similar in these 

characteristics (and therefore they would not influence the motivation to perform additional 

tests) we aimed to further characterise these dnSNARE and wt littermates in what concerns 
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to their learning and memory abilities. The water maze based tests revealed an impairment 

of the spatial reference memory of dnSNARE animals when compared to littermate wt 

controls, with no gender discrimination. However these differences are no longer evident 

when female and male mice from the two genotypes were considered to the analysis 

separately. This means that the gender of the animals has no effect in the behavioural output 

of control and dnSNARE mice and suggests that differences are only evident when the 

number of animals per group is increased. Following the reference memory task, wt and 

dnSNARE animals performed the RLT, on which animals from both genotypes have learnt 

the new location of the platform (Q2). Even so, wt animals seem to be more effective than 

dnSNARE animals in the learning of the new platform location, as the first spent 

significantly more time in the Q2 than in any other quadrant, while the time spent by the 

seconds in the Q2 was only significantly different in comparison to the Q4. Apparently, wt 

animals are more objective when navigating towards the platform, while the navigation of 

dnSNARE animals seems more disperse in the four quadrants of the water maze. The 

analysis of this data separately for females and males from each group evidenced that both 

female and male wt mice were able to learn the new location of the platform, while within 

the dnSNARE genotype, only female could learn to reach the platform in the Q2, instead of 

the Q4. 

With the water maze tests we could, assess the reference memory, dependent on the 

hippocampus and the reversal learning, dependent on the PFC. Since we were interested in 

further characterise the PFC function of dnSNARE, we opted to also test them through the 

continuous spontaneous alternation test in a Y-shaped maze. This test allowed us to 

characterise the terms of spatial working memory of animals with astrocytic dysfunction. 

When placed in the centre and allowed to explore the maze during 5 minutes, dnSNARE 

male animals revealed improved working memory, as they got a higher alternation score 

than wt male mice, even with similar locomotor and exploratory activity, comparing to other 

groups of animals, of different genotype and sex.

To our knowledge, we are first reporting behavioural phenotype characterisation of 

dnSNARE mice terms of: anxiety level in the elevated plus maze; locomotor, exploratory and 

thigmotaxic activity in an OF, spatial reference memory and reversal learning in a water 

maze and spatial working in a Y-shaped maze. Along all this behavioural phenotype 

characterisation, we could observe that the gender may have an effect in the behaviour 

output of the dnSNARE animals. This idea is supported by the results obtained in the 

reversal learning task of the water maze bases tests and also in the continuous spontaneous 

alternation test. In either of those, male dnSNARE animals revealed a behaviour phenotype 

distinct from female subjects: in the reversal learning task of the water maze based tests, 

female subjects had better performance, while in the continuous spontaneous alternation 
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task male subjects have performed better. Therefore, the performance of males and females 

should be considered individually, at least in water maze tests and in the continuous 

spontaneous alternation test.

Overall, astrocyte depletion in the mPFC induced and impairment of behavioural 

functions dependent on this region, such as working memory and reversal learning. These 

findings are in line with the data obtained from the cognitive characterisation of the 

dnSNARE mice, which display impaired vesicular release by astrocytes and therefore 

impaired gliotransmission. Altering astrocytic function at this level causes changes in the 

behaviour output, as these animals showed impairment in the reference learning and 

curiously an improvement in working memory. It seems that the outputs observed require 

different mechanisms, which represent new scientific questions in this field. In the case of  

the gliotoxin astrocytic depletion, it is obvious that all the astrocyte functions in brain 

metabolism (bridging the nutrient passage from blood to neurons) [24] and homeostasis of 

ions ([K+] and [H+]) [16] and neurotransmitters [14, 17-20] are arrested in lesioned sites, 

compromising the neuronal activity in those region. Besides the classically accepted 

functions of astrocytes [15], all the astrocytic implications in the modulation of the synaptic 

transmission [32] and integration of neuron-glia circuits [41] are also interrupted. Therefore, 

it would be expectable that the cognitive functions of the gliotoxin-injected animals would be 

somehow compromised. However, as the lesion caused by L-α-AA is so severe, the 

dissection of the mechanisms underlying the obtained behavioural phenotypes gets 

complicated. With the assessment of the behavioural phenotype of the dnSNARE mice, the 

behavioural output of these animals is easily attributed to the blockade of the gliotransmitter 

release in GFAP-expressing astrocytes, since the formation of SNARE complex for the 

docking of gliotransmitter-containing vesicles does not occur in these animals [106, 107]. 

Nevertheless, we cannot point out which of the absent gliotransmitters is making the 

difference, but we can speculate about it. Could be ATP or glutamate, once these are the most 

recognised chemical transmitters that mediate astrocyte-neuron signaling [123], or even D-

serine, because it has been recently identified as major gliotransmitter in the central nervous 

system that serves as an endogenous ligand for the glycine site of NMDA receptors [55, 

124-127]. However, either glutamate or D-serine seem to have more relevance because the 

most common forms of synaptic plasticity found in the brain are dependent of the activation 

of NMDA receptors, including long-term potentiation (LTP) and long-term depression (LTD), 

which are in the cellular substrates of cognitive learning and memory [128].

We show here interesting results, regarding the influence of astrocytes in complex 

cognitive functions. However, further studies are required to help the elucidation of the 
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mechanisms involved such as using electrophysiological and neurochemical techniques to 

understand how brain dynamics are altered and if those alterations can be correlated with 

others observed under pathological states.

With the present work we have attained the successful implementation in our lab of two 

different animal models of astrocytic pathologies. The aminoadipate pharmacological rat 

model, was established through surgery and post-recovery drug infusion, while the 

transgenic mice model required multiple mattings between different mice lines and selection 

of offspring for the obtention of the dnSNARE animals and their wt littermate controls. 

Despite the distinct nature of these two animals models, we were able to characterise its 

behaviour phenotype in the pathological conditions induced, leaving these available for 

further studies in our lab. From now on, we can use these models to study brain function in 

conditions of stress or dementia to try to disclose more about astrocytes role.
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