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Abstract

We apply Christodoulou’s framework, developed to study the Einstein-scalar field equations in
spherical symmetry, to the linear wave equation in de Sitter spacetime, as a first step towards the
Einstein-scalar field equations with positive cosmological constant. We obtain an integro-differential
evolution equation which we solve by taking initial data on a null cone. As a corollary we obtain
elementary derivations of expected properties of linear waves in de Sitter spacetime: boundedness
in terms of (characteristic) initial data, and a Price law establishing uniform exponential decay, in
Bondi time, to a constant.

1 Introduction

The study of the linear wave equation
�gφ = 0 (1)

on fixed backgrounds (M, g) is a stepping stone to the analysis of the nonlinearities of gravitation. In
this paper we apply Christodoulou’s framework, developed in [3], to spherically symmetric solutions
of (1) on a de Sitter background, as a prerequisite to the study of the coupled Einstein-scalar field
equations with positive cosmological constant in spherical symmetry (which will be pursued elsewhere).
If the cosmological constant vanishes then the uncoupled problem (1) is trivial1, a fact that Christodoulou
explored in [3] to solve the coupled case for suitably small initial data. For positive cosmological constant,
however, the uncoupled case is more complicated2, and it is essential to understand it thoroughly in order
to ascertain how much freedom is there when perturbing it to the nonlinear case, as well as to determine
which decays to expect and which function spaces to use.

Following Christodoulou, we turn (1) into an integro-differential evolution equation, which we solve
by taking initial data on a null cone. This step, which is trivial in the case of vanishing cosmological
constant, turns out to be quite subtle for positive cosmological constant. As a corollary we obtain
elementary derivations of expected properties of linear waves in de Sitter spacetime: boundedness in
terms of (characteristic) initial data, and uniform exponential decay, in Bondi time, to a constant (from
which exponential decay to a constant in the usual static time coordinate easily follows; such boundedness
and decay results may be seen, respectively, as analogues of the Kay-Wald theorem [9] and of a Price
law [10, 4], both originally formulated for Cauchy data in a Schwarzschild background). Although widely
expected from the stability of de Sitter spacetime [7], we are unaware of a written proof of uniform
exponential decay. Similarly, the bound that we obtain for the solution in terms of the C0 norm of the
(characteristic) initial data is, to the best of our knowledge, original (notice that in particular the bound
(7) involves no “loss of derivatives”). Another novel aspect of our work is the fact that our results apply
to a domain containing the cosmological horizon in its interior, therefore including both a local and a
cosmological regions (as opposed to considering only the local region). This allows us to determine decays
for initial data which lead to uniform exponential decay in time of the solution.

1This can be seen from the fact that operator F in equation (13), whose fixed points are the solutions of (1), is a constant
operator for Λ = 0; when perturbing to the nonlinear problem this operator becomes a contraction for small initial data.

2In this case the operator F is not even a contraction in the full domain.
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Numerical evidence for pointwise exponential decay can be found in [2], and references therein, where
higher spherical harmonics are also studied, as well as the non-linear system. Yagdjian and Galstian [12]
constructed the fundamental solutions of (1) in de Sitter spacetime and proved exponential decay of
certain homogeneous Sobolev Lp norms, 2 ≤ p < ∞. Also along these lines, Ringström [11] obtained
exponential decay for non-linear perturbations of locally de Sitter cosmological models in the context of
the Einstein-nonlinear scalar field system with a positive potential. Finally, exponential pointwise decay
in the local region between the black hole and the cosmological horizons in a Schwarzschild-de-Sitter
spacetime follows from the papers by Dafermos and Rodnianski [5, 6] (see also [1]).

2 Christodoulou’s framework for spherical waves

Bondi coordinates [3] (u, r, θ, ϕ) map the causal future of any point in de Sitter spacetime isometrically
onto

(
[0,∞)× [0,∞)× S2, g

)
, where

g = −
(
1− Λ

3
r2
)
du2 − 2dudr + r2dΩ2 , (2)

with dΩ2 the round metric of the two-sphere (cf. Figure 1).
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Figure 1: Penrose diagram of de Sitter spacetime. The lines u = constant are the outgoing null geodesics

starting at r = 0. The point i corresponds to u = +∞, the cosmological horizon H to r =
√

3
Λ and the

future null infinity I + to r = ∞.

In these coordinates the wave equation

�gφ = 0 ⇔ ∂µ

(√
−det(g) ∂µφ

)
= 0 ,

for spherically symmetric functions, ∂θφ = ∂ϕφ = 0, reads

−2r
∂

∂r

(
∂φ

∂u

)
− 2

∂φ

∂u
+ r

(
1− Λ

3
r2
)

∂2φ

∂r2
+

(
2− 4

3
Λr2

)
∂φ

∂r
= 0 . (3)

Following Christodoulou [3] we consider the change of variable

h :=
∂

∂r
(rφ) .

If we assume that
lim
r→0

rφ = 0 ,

it immediately follows that

φ = h̄ :=
1

r

∫ r

0

h (u, s) ds and
∂φ

∂r
=

∂h̄

∂r
=

h− h̄

r
. (4)
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Moreover, assuming that the crossed partial derivatives of rφ commute, we see that (3) is equivalent to

Dh = −Λ

3
r(h− h̄) , (5)

where D is the differential operator given by

D :=
∂

∂u
− 1

2

(
1− Λ

3
r2
)

∂

∂r
.

3 Main result: statement and proof

Our main result is the following

Theorem 1. Let Λ > 0. Given h0 ∈ Ck([0,∞)), for some k ≥ 1, the problem{
Dh = −Λ

3 r(h− h̄)
h(0, r) = h0(r)

(6)

has a unique solution h ∈ Ck([0,∞)× [0,∞)).
Moreover, if ‖h0‖C0 is finite3 then

‖h‖C0 = ‖h0‖C0 . (7)

Also, if ‖(1 + r)p∂rh0‖C0 is finite for some 0 ≤ p ≤ 4 and H ≤ 2
√

Λ
3 then

‖(1 + r)peHu∂rh‖C0 . ‖(1 + r)p∂rh0‖C0 , (8)

and, consequently, there exists h ∈ R such that

|h(u, r)− h| . (1 + r)n(p)e−Hu , (9)

with

n(p) =

{
0 , 2 < p ≤ 4
2 , 0 ≤ p ≤ 2

. (10)

Remark 1. The powers of 1 + r obtained are far from optimal. Since we are mainly interested in
understanding whether the decay in u obtained by this method is uniform in r, we were only careful in
computing precise estimates for 2 < p ≤ 4, which is enough to establish uniform decay for p > 2 (if p > 4
the p = 4 result applies, and in fact it does not seem to be possible to obtain a stronger decay in r for
∂rh). For p ≤ 2 our method does not provide uniform decay, but it is not clear if this is an artifact of
these techniques or an intrinsic property of spherical linear waves in de Sitter.

Proof. For h ∈ C0([0,∞) × [0,∞)), we have rh̄ ∈ C0([0,∞) × [0,∞)), and so we can define F(h) to be
the solution to the linear equation {

D(F(h)) = −Λ
3 r(F(h)− h̄)

F(h)(0, r) = h0(r)
. (11)

The integral lines of D (incoming light rays in de Sitter), which satisfy

dr

du
= −1

2

(
1− Λ

3
r2
)

, (12)

are characteristics of the problem at hand. Integrating (11) along such characteristics we obtain

F (h) (u1, r1) = h0(r(0))e
−Λ

3

∫ u1
0 r(s)ds +

Λ

3

∫ u1

0

r(v)h̄(v, r(v))e−
Λ
3

∫ u1
v

r(s)dsdv , (13)

where, to simplify the notation, we denote the solution to (12) satisfying r(u1) = r1 simply by s 7→ r(s);
we are dropping any explicit reference to the dependence on (u1, r1), but it should be noted, in particular,
that r(0) is an analytic function of (u1, r1).

3Recall that if f : X → R is continuous and bounded then ‖f‖C0 = supx∈X |f(x)|.

3



Given U,R > 0, let C0
U,R denote the Banach space

(
C0 ([0, U ]× [0, R]) , ‖ · ‖C0

U,R

)
, where

‖f‖C0
U,R

= sup
(u,r)∈[0,U ]×[0,R]

|f(u, r)| . (14)

Let rc :=
√

3
Λ be the unique non-negative zero of 1 − Λ

3 r
2 (see (2) and (12)). The non-decreasing

behavior of the characteristics satisfying r1 ≥ rc shows that the restriction of F to C0
U,R is well defined

for all R ≥ rc. In fact:

Lemma 1. Given U > 0 and R ≥ rc :=
√

3
Λ , F contracts in C0

U,R.

Proof. Fix U > 0 and R ≥ rc. Then

‖F(h1)−F(h2)‖C0
U,R

= sup
(u1,r1)∈[0,U ]×[0,R]

|F(h1)(u1, r1)−F(h2)(u1, r1)|

≤ sup
(u1,r1)∈[0,U ]×[0,R]

{
Λ

3

∫ u1

0

r(v)
∣∣h̄1(v, r(v))− h̄2(v, r(v))

∣∣ e−Λ
3

∫ u1
v

r(s)dsdv

}
≤ sup

(u1,r1)∈[0,U ]×[0,R]

{∫ u1

0

Λ

3
r(v)e−

Λ
3

∫ u1
v

r(s)dsdv

}
· ‖h̄1 − h̄2‖C0

U,R

≤ sup
(u1,r1)∈[0,U ]×[0,R]

{[
e−

Λ
3

∫ u1
v

r(s)ds
]u1

v=0

}
· sup
(u,r)∈[0,U ]×[0,R]

{
1

r

∫ r

0

|h1(u, s)− h2(u, s)|ds
}

≤ sup
(u1,r1)∈[0,U ]×[0,R]

{
1− e−

Λ
3

∫ u1
0 r(s)ds

}
︸ ︷︷ ︸

:=σ

·‖h1 − h2‖C0
U,R

.

Throughout, to obtain estimates, and in particular to estimate σ, one needs to consider three (causally)
separate regions, naturally corresponding to the bifurcations of (12): the local region (r < rc), the
cosmological horizon (r = rc), and the cosmological region (r > rc). However, since the computations
are similar we will only present the details concerning the most delicate case, r > rc .

The solution to (12) satisfying r1 = r(u1) > rc :=
√

3
Λ , is given by

r(u) =

√
3

Λ
coth

(
1

2

√
Λ

3
(c− u)

)
, (15)

where

c = u1 + 2

√
3

Λ
arcoth

(√
Λ

3
r1

)
(in particular c > u1, and so (15) is well defined for 0 ≤ u ≤ u1). It follows that

−Λ

3

∫ u1

0

r(s)ds =

∫ u1

0

−
√

Λ

3
coth

(
1

2

√
Λ

3
(c− s)

)
ds

=

∫ u1

0

2
d

ds
ln

[
sinh

(
1

2

√
Λ

3
(c− s)

)]
ds = ln

 sinh
(

1
2

√
Λ
3 (c− u1)

)
sinh

(
1
2

√
Λ
3 c
)


2

,

and consequently

e−
Λ
3

∫ u1
0 r(s)ds =

sinh2
(

1
2

√
Λ
3 (c− u1)

)
sinh2

(
1
2

√
Λ
3 c
) =

cosh2
(

1
2

√
Λ
3 (c− u1)

)
sinh2

(
1
2

√
Λ
3 c
)
coth2

(
1
2

√
Λ
3 (c− u1)

)
=

[
cosh (α(c− u1))

sinh (αc)

1

2αr1

]2
=

[
eα(c−u1) + e−α(c−u1)

eαc − e−αc

]2
1

4α2r21

≥ e−2αu1

4α2r21
,
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where α := 1
2

√
Λ
3 . Define

σcosm (U,R) := sup
(u1,r1)∈[0,U ]×(rc,R]

(
1− e−

Λ
3

∫ u1
0 r(s)ds

)
≤ sup

(u1,r1)∈[0,U ]×(rc,R]

(
1− e−2αu1

4α2r21

)
≤

(
1− 3

Λ

e−
√

Λ
3 U

R2

)
< 1 .

Similar computations give

σloc := sup
(u1,r1)∈[0,U ]×[0,rc)

(
1− e−

Λ
3

∫ u1
0 r(s)ds

)
≤

(
1− e−

√
Λ
3 U

4

)
< 1 ,

for the local region, and

σhor := sup
u1∈[0,U ]

(
1− e−

Λ
3

∫ u1
0 rcds

)
≤ 1− e−

√
Λ
3 U < 1 ,

along the cosmological horizon. Finally σ = max{σloc, σhor, σcosm} < 1, and the statement of the lemma
follows.

By the contraction mapping theorem [8], given U > 0 and R ≥ rc, there exits a unique fixed point
hU,R ∈ C0

U,R of F . Uniqueness guarantees that in the intersection of two rectangles [0, U1]×[0, R1]∩[0, U2]×
[0, R2] the corresponding hU1,R1 and hU2,R2 coincide. Consequently, there exists a unique continuous map
h : [0,∞)× [0,∞) → R such that h = F(h), i.e.,

h(u1, r1) = h0(r(0))e
−Λ

3

∫ u1
0 r(s)ds +

Λ

3

∫ u1

0

r(v)h̄(v, r(v))e−
Λ
3

∫ u1
v

r(s)dsdv , (16)

in [0,∞) × [0,∞). Continuity of h implies continuity of rh̄, so we are allowed to differentiate (16) in
the direction of D, which proves that h is in fact a (C0) solution of (6). Existence and uniqueness in
C0 ([0,∞)× [0,∞)) follow.

To see that a solution of (6) is as regular as its initial condition assume that h0 ∈ Ck+1, k ≥ 0, and
start by noticing that if h ∈ Ck then rh̄ and ∂r(rh̄) are also in Ck. In particular for h ∈ C0 we can
differentiate (16) with respect to u1 to obtain

∂h

∂u1
=

∂

∂u1

(
h0(r(0))e

−Λ
3

∫ u1
0 r(s)ds

)
+

Λ

3

(
rh̄
)
(u1, r1)

+
Λ

3

∫ u1

0

∂(rh̄)

∂r
(v, r(v))

∂r

∂u1
(v)e−

Λ
3

∫ u1
v

r(s)dsdv

+
Λ

3

∫ u1

0

r(v)h̄(v, r(v))
∂

∂u1

(
e−

Λ
3

∫ u1
v

r(s)ds
)

.

(17)

This last expression shows that h0 ∈ Ck+1 and h ∈ Ck implies ∂h
∂u1

∈ Ck. The same reasoning works for
the derivative with respect to r1 (note that although r(v) is given by different expressions according to
whether r1 < rc, r1 = rc or r1 > rc, it is still the solution of a smooth ODE satisfying r(u1) = r1, and as
such depends smoothly on the data (u1, r1)). Consequently, if h0 ∈ Ck+1 and h ∈ Ck, then h is in fact in
Ck+1 and the regularity statement follows by induction.

To establish (7) first note that:

Lemma 2. If ‖h0‖C0 ≤ y0 and ‖h‖C0 ≤ y0, for some y0 ≥ 0, then ‖F(h)‖C0 ≤ y0.

Proof. From (13) we see that

|F(h)(u1, r1)| ≤ ‖h0‖C0 e−
Λ
3

∫ u1
0 r(s)ds + ‖h̄‖C0

Λ

3

∫ u1

0

r(v)e−
Λ
3

∫ u1
v

r(s)dsdv

≤ y0

(
e−

Λ
3

∫ u1
0 r(s)ds +

Λ

3

∫ u1

0

r(v)e−
Λ
3

∫ u1
v

r(s)dsdv

)
︸ ︷︷ ︸

≡1

= y0 .
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The last step follows by a direct computation, as before, or by noticing that since h ≡ 1 is a solution
to (6), with h0 ≡ 1, one has F(1) ≡ 1.

Now consider the sequence {
h0(u, r) = h0(r)
hn+1 = F(hn)

.

We have already established that, for any U > 0 and R ≥ rc, hn converges in C0
U,R to h, the solution

of (6). Lemma 2 then tells us that

‖hn‖C0
U,R

≤ ‖hn‖C0 ≤ ‖h0‖C0 , and so ‖h‖C0
U,R

= lim
n→∞

‖hn‖C0
U,R

≤ ‖h0‖C0 .

Since this holds for arbitrarily large U and R, the bound (7) follows.

We will now show that the estimate (8) holds. First of all if h ∈ C1 we see that Dh and ∂rDh are
both continuous, and consequently D∂rh exists and its equal to ∂rDh + [D, ∂r]h

4. Using this last fact
and equations (4) while differentiating (5) with respect to r we obtain an evolution equation for ∂rh:

D∂rh = −2
Λ

3
r ∂rh . (18)

Integrating the last equation along the (ingoing) characteristics, as before, yields

∂rh(u1, r1) = ∂rh0(r0)e
− 2Λ

3

∫ u1
0 r(s)ds. (19)

It is then clear that initial data controls the supremum norm of ∂rh. In fact, let

d0 = ‖(1 + r)p∂rh0‖C0 .

In the cosmological region (r > rc), one has, after recalling (15),∣∣(1 + r1)
peHu1∂rh(u1, r1)

∣∣ = ∣∣∣(1 + r1)
peHu1∂rh0(r0)e

− 2Λ
3

∫ u1
0 r(s)ds

∣∣∣
≤ d0

(
1 + r1
1 + r0

sinh (α(c− u1))

sinh (αc)

)p

eHu1

(
sinh (α(c− u1))

sinh (αc)

)4−p

,
(20)

where α = 1
2

√
Λ
3 as before. Now, since c− u1 ≤ c, then e−2α(c−u1) ≥ e−2αc, and

sinh (α(c− u1))

sinh (αc)
=

eα(c−u1) − e−α(c−u1)

eαc − e−αc

= e−αu1
1− e−2α(c−u1)

1− e−2αc

≤ e−αu1 .

(21)

Also
1 + r1
1 + r0

sinh (α(c− u1))

sinh (αc)
=

1 + 1
2α coth (α(c− u1))

1 + 1
2α coth (αc)

sinh (α(c− u1))

sinh (αc)

=
sinh (α(c− u1)) +

1
2α cosh (α(c− u1))

sinh (α(c)) + 1
2α cosh (αc)

≤
1 + 1

2α
1
2α

· cosh (α(c− u1))

cosh (αc)

≤ (2α+ 1) 2e−αu1 .

(22)

4Here we are using the following generalized version of the Schwarz Lemma: if X and Y are two nonvanishing C1 vector
fields in R2 and f is a C1 function such that X · (Y · f) exists and is continuous then Y · (X · f) also exists and is equal to
X · (Y · f)− [X,Y ] · f .
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Therefore, if 0 ≤ p ≤ 4 and H ≤ 4α = 2
√

Λ/3, we plug (21) and (22) into (20) to obtain

sup
(u1,r1)∈[0,U ]×[rc,R]

∣∣(1 + r1)
peHu1∂rh(u1, r1)

∣∣ ≤ d0 sup
(u1,r1)∈[0,U ]×[rc,R]

∣∣∣2p(2α+ 1)pe(H−4α)u1

∣∣∣
≤ 2p(2α+ 1)pd0 .

(23)

Similar, although simpler, computations yield

sup
(u1,r1)∈[0,U ]×[0,rc]

∣∣(1 + r1)
peHu1∂rh(u1, r1)

∣∣ ≤ 16 sup
r1∈[0,rc]

|(1 + r1)
p∂rh0(r1)| ≤ 16d0 (24)

for the local region. This proves (8).

To finish the proof of Theorem 1 all is left is to establish the uniform decay statement (9). Start with∣∣h(u, r)− h̄(u, r)
∣∣ ≤ 1

r

∫ r

0

|h(u, r)− h(u, s)| ds

≤ 1

r

∫ r

0

∫ r

s

|∂ρh(u, ρ)| dρ ds

. 1

r

∫ r

0

∫ r

s

e−Hu

(1 + ρ)p
dρ ds .


e−Hu

1+r , 2 < p ≤ 4

re−Hu , 0 ≤ p ≤ 2

.

These estimates for 2 < p ≤ 4 are obtained by direct computation; they seem to be the optimal results
which follow from this method. The remaining cases, with the exception of p = 0, are far from optimal.
In fact, since we are mainly interested in a qualitative analysis, namely if the decay obtained is or not
uniform in r (see Remark 1), the results for p ≤ 2 were obtained simply using 1

(1+r)p ≤ 1.

Using (5) we then see that

|∂uh| =
∣∣∣∣Dh+

1

2

(
1− Λ

3
r2
)
∂rh

∣∣∣∣
≤
∣∣∣∣−Λ

3
r
(
h− h̄

)∣∣∣∣+ 1

2

∣∣∣∣(1− Λ

3
r2
)
∂rh

∣∣∣∣ . (1 + r)n(p)e−Hu ,

with n(p) as in the statement of the theorem.
Now since ∂uh is integrable with respect to u, by the fundamental theorem of calculus, we see that

there exists

lim
u→∞

h(u, r) = h(r) .

But
|h(r2)− h(r1)| = lim

u→∞
|h(u, r2)− h(u, r1)|

≤ lim
u→∞

∣∣∣∣∫ r2

r1

|∂rh(u, r)|dr
∣∣∣∣

. lim
u→∞

|r2 − r1|e−Hu = 0 ,

and, consequently, there exists h ∈ R such that

h(r) ≡ h .

Finally

|h(u, r)− h| ≤
∫ ∞

u

|∂vh(v, r)| dv

.
∫ ∞

u

(1 + r)n(p)e−Hvdv . (1 + r)n(p)e−Hu .

Remark 2. The same calculation shows that given R > 0 the solutions of (6) satisfy |h(u, r)−h| . e−Hu

uniformly for r ∈ [0, R], even if ‖(1 + r)p∂rh0‖C0 is not finite.
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4 Boundedness and exponential uniform decay for spherical lin-
ear waves in de Sitter

We now translate part of the results in Theorem (1) back into results concerning linear waves in de Sitter.

Theorem 2. Let (M, g) be de Sitter spacetime with cosmological constant Λ and (u, r, θ, ϕ) Bondi coor-
dinates as in Section 2. Let φ = φ(u, r) ∈ C2 ([0,∞)× [0,∞)) be a solution 5 to

�gφ = 0 .

Then
|φ| ≤ sup

r≥0
|∂r (rφ(0, r))| . (25)

Moreover, if for some 0 ≤ p ≤ 4

sup
r≥0

∣∣∣∣(1 + r)p
∂2

∂r2
(rφ(0, r))

∣∣∣∣ < ∞ , (26)

then there exists φ ∈ R such that, for H ≤ 2
√

Λ
3 ,∣∣φ(u, r)− φ
∣∣ . (1 + r)n(p)e−Hu , (27)

where

n(p) =

{
0 , 2 < p ≤ 4
2 , 0 ≤ p ≤ 2

. (28)

Proof. Since φ is a spherically symmetric C2 solution of (1) we saw in Section 2 that h = ∂r(rφ) satis-
fies (5), with φ = h̄. Applying Theorem (1) the results easily follow.

Remark 3. Note that the bound (25) for φ, unlike the bound (7) for h, depends on the derivative of the
initial data, so we do have “loss of derivatives” in this case.

Remark 4. Once more that the powers of 1 + r obtained are far from optimal, see Remark 1.

Remark 5. It should be emphasized that the boundedness and decay results are logically independent. In
fact (25) follows from (7), which in turn is a consequence of a fortunate trick (see proof of Lemma 2)
relying on the non-positivity of the factor of the zeroth order term in (5) (here, non-negativity of Λ) and
the fact that F (13) is a contraction in appropriate function spaces; in some sense one is required to prove
existence and uniqueness of (6) in the process. That is no longer the case for obtaining (9), from which
uniform decay of φ follows.
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