
Pointfree Foundations for (Generic) Lossless

Decomposition

J.N. Oliveira

jno@di.uminho.pt

Techn. Report TR-HASLab:03:2011

Nov. 2011 1

HASLab - High-Assurance Software Laboratory

Universidade do Minho

Campus de Gualtar – Braga – Portugal

http://haslab.di.uminho.pt

1Document history: first version - Dec. 2009; updated: Nov. 2011

TR-HASLab:03:2011

Pointfree Foundations for (Generic) Lossless Decomposition
by J.N. Oliveira

Abstract

This report presents a typed, “pointfree” generalization of relational data depen-
dency theory expressed not in the standard set-theoretic way, “à la Codd”, but in
the calculus of binary relations which, initiated by De Morgan in the 1860s, is the
core of modern algebra of programming.

Contrary to the intuition that a binary relation is just a particular case of an n-
ary relation, this report shows the effectiveness of the former in “explaining” and
reasoning about the latter. Data dependency theory, which is central to relational
database design, is addressed in pointfree calculational style instead of reasoning
about (sets of) tuples in conventional “implication-first” logic style.

It turns out that the theory becomes more general, more structured and sim-
pler. Elegant expressions replace lengthy formulæ and easy-to-follow calculations
replace pointwise proofs with lots of “· · ·” notation, case analysis and natural lan-
guage explanations for “obvious” steps. In particular, attributes are generalized
to arbitrary (observation) functions and the principle of lossless decomposition is
established for arbitrary such functions.

The report concludes by showing how the proposed generalization of data
dependency theory paves the way to interesting synergies with other branches
of computer science, namely formal modeling and transition systems theory. A
number of open topics for research in the field are proposed as future work.

Pointfree Foundations for (Generic) Lossless

Decomposition

J.N. Oliveira
jno@di.uminho.pt

Nov. 2011 †

Abstract

This report presents a typed, “pointfree” generalization of rela-
tional data dependency theory expressed not in the standard set-theoretic
way, “à la Codd”, but in the calculus of binary relations which, initi-
ated by De Morgan in the 1860s, is the core of modern algebra of pro-
gramming.

Contrary to the intuition that a binary relation is just a particular
case of an n-ary relation, this report shows the effectiveness of the for-
mer in “explaining” and reasoning about the latter. Data dependency
theory, which is central to relational database design, is addressed in
pointfree calculational style instead of reasoning about (sets of) tuples
in conventional “implication-first” logic style.

It turns out that the theory becomes more general, more structured
and simpler. Elegant expressions replace lengthy formulæ and easy-
to-follow calculations replace pointwise proofs with lots of “· · ·” no-
tation, case analysis and natural language explanations for “obvious”
steps. In particular, attributes are generalized to arbitrary (observa-
tion) functions and the principle of lossless decomposition is estab-
lished for arbitrary such functions.

The report concludes by showing how the proposed generaliza-
tion of data dependency theory paves the way to interesting synergies
with other branches of computer science, namely formal modeling
and transition systems theory. A number of open topics for research
in the field are proposed as future work.

1 Introduction

In a paper addressing the influence of Alfred Tarski (1901-1983) in computer sci-
ence, Feferman (2006) quotes the following sentence by his colleague John Etchemendy:

You see those big shiny Oracle towers on Highway 101? They would never
have been built without Tarski’s work on the recursive definitions of satisfac-
tion and truth.

†Document history: first version - Dec. 2009; updated: Nov. 2011

1

The ‘big shiny Oracle towers’ are nothing but the headquarters of Oracle Corpo-
ration, the giant database software provider sited in the San Francisco Peninsula.

Already in 2001 Bussche (2001) had shown that many of Tarski’s ideas find
application in database theory. Among these, he mentions cylindric algebras and
relation algebras. Further back in time, Kanellakis (1990) had already commented
on the relationship between Codd’s theory and the former. Concerning the latter,
Tarski “single-handedly revived and advanced the 19th century work on binary relations
by Peirce and Schröder” (Feferman, 2006). This was part of his life-long pursuit in
developing methods for elimination of quantifiers from logic expressions, an effort
which ultimately lead to his formalization of set theory without variables (Tarski and
Givant, 1987; Givant, 2006).

Further to (Kanellakis, 1990), both Bussche (2001) and Feferman (2006) try and
find connections between Tarski’s research and Codd’s pioneering work on the
thereafter called relational data model theory (Codd, 1970). Recall that, in standard
relational data processing “à la Codd”, real life objects or entities are recorded by
assigning values to their observable properties or attributes. A database file is a
collection of such attribute assignments, one per object, such that all values of a
particular attribute (say i) are of the same type (say Ai). For n such attributes, a
relational database file R can be regarded as a set of n-tuples, that is, R ⊆ A1 × . . .×
An. A relational database is a collection of several such n-ary relations.

According to Kanamori (2003), it was Quine, in his 1932 Ph.D. dissertation,
who showed how to develop the theory of n-ary relations for all n simultaneously,
by defining ordered n-tuples in terms of the ordered pair. (Norbert Wiener is ap-
parently the first mathematician to publicly identify, in the 1910s, n-ary relations
with subsets of n-tuples.) Since the 1970s, the information system community is
indebted to Codd for his pioneering work on the foundations of the relational data
model theory (Codd, 1970).

Codd discovered and publicized procedures for constructing a set of simple n-
ary relations which can support a set of given data and constructed an extension
of the calculus of binary relations capable of handling most typical data retrieval
problems. Since then, relational database theory has been thoroughly studied and
found a distinguished place in computing curricula, supported by several text-
books among which (Maier, 1983; Ullman, 1988; Codd, 1990; O’Neil and O’Neil,
2001; Garcia-Molina et al., 2002) are widespread.

When software designers refer to the relational calculus, by default what is un-
derstood is the calculus of n-ary relations studied in logics and database theory
(Maier, 1983), and not the above mentioned calculus of binary relations which was
initiated by De Morgan in the 19c, was axiomatized by Tarski and others (Tarski
and Givant, 1987; Givant, 2006) and eventually became the core of the algebra of
programming (Aarts et al., 1992; Bird and de Moor, 1997; Backhouse, 2004) 1.

1The idea of encoding predicates in terms of relations was initiated by De Morgan in the
1860s and followed by Peirce who, in the 1870s, found interesting equational laws of the
calculus of binary relations (Maddux, 1991; Pratt, 1992). The pointfree nature of the nota-
tion which emerged from this embryonic work was later further exploited by Tarski and his
students (Tarski and Givant, 1987; Givant, 2006). In the 1980’s, Freyd and Scedrov (1990) de-
veloped the notion of an allegory (a category whose morphisms are partially ordered) which
finally accommodates the binary relation calculus as we understand it today. Interestingly
enough, Freyd and Scedrov (1990) develop (in the first part of the book) a categorial the-
ory of tables and relations based on monic n-tuples which bears a strong relationship to the

2

The common understanding is that binary relations are just n-ary relations, for
n = 2, and so there seems to be little point in explaining n-ary relational theory in
terms of binary relations. As a matter of fact, when Codd (1970) talks about the
binary relation representation of an n-ary relation, one has the feeling that there are
more disadvantages than advantages in such a representation. Moreover, further
attempts to impose a binary relation data model such as in eg. MDV (Jones et al.,
1985) and AW/1 (Welsh, 1989) have not gained widespread adoption.

Contrary to such common understanding, this report aims at providing evi-
dence that refactoring n-ary relational theory in terms of binary relations is worth-
while. This is nothing but following the exercise proposed by Bussche (2001):

We conclude that Tarksi produced two alternatives for Codd’s relational alge-
bra: cylindric set algebra, and relational algebra with pairing [...] For exam-
ple, we can represent the ternary relation {(a, b, c), (d, e, f)} as {(a, (b, c)), (d, (e, f))}.
Using such representations, we leave it as an exercise to the reader to simu-
late Codd’s relational algebra in RA+ [relational algebra with pairing].

In this report we carry out this exercise with respect to data dependency the-
ory. We will show that Tarskian binary relational algebra is directly applicable to
calculating with data dependencies in a rather advantageous way.

Outside the database context, functional data dependencies have been of help
in solving type system ambiguities in modern functional programming languages
such as Haskell (Jones, 2000). The current report provides for another cross-breeding
between the areas of database programming and functional programming: our ap-
proach to reasoning about data dependencies is based on the same calculus which
— in a so-called pointfree style — is used to reason (relationally) about functional
programs (Bird and de Moor, 1997).

Despite its 19th century ancestry and visibility since John Backus’ Turing Award
Lecture (1978), pointfree reasoning is not yet widespread. As most theories in
computing, classical relational database theory is pointwise. This leads to lengthy
formulæ and proofs with lots of “. . .” notation, case analyzes and natural language
explanations for “obvious” steps. We show that the adoption of the (pointfree) bi-
nary relation calculus is beneficial in several respects. First, the fact that pointfree
notation abstracts from “points” or variables makes the reasoning more compact
and effective. Second, proofs are performed by easy-to-follow calculations. Third,
one is able to generalize the original theory, as will happen with our generalization
of attributes to arbitrary (suitably typed) functions in functional dependencies and
multi-valued dependencies.

1.1 Paper structure

This report is laid out as follows. The section which follows provides some moti-
vation for the pointfree transform. Then we introduce the standard notions of func-
tional dependency (FD) and multi-valued dependency (MVD) and revise the pointfree
theory of functions and binary relations. Both worlds are combined in section 6,
where FDs are presented in the pointfree style. (The pointfree transform of MVDs
is deferred to section 10.) Section 7 shows that injectivity is what matters in FD rea-
soning. Sections 8 to 12 provide calculational proofs for the foundations of data
dependency theory, including the Armstrong-axioms and the theorem of lossless

approach put forward in the current report.

3

decomposition. The remainder of the report presents conclusions and prospect
for future work. The reader is referred to the appendices for some useful (but not
mainstream) results.

2 On the pointfree transform

Science is about understanding how things work and technology is about ensur-
ing that some desirable things happen reliably. Properties of real-world entities
are identified which, once expressed by mathematical formulæ, become abstract
models which can be queried and reasoned about. This universal problem-solving
strategy often raises a kind of notation conflict between descriptiveness (ie., ade-
quacy to describe domain-specific objects and properties, inc. diagrams or other
graphical objects) and compactness (as required by algebraic reasoning and solu-
tion calculation).

Database design is paradigmatic in this respect. The complex structure of the
objects and entities to be modeled demands much on descriptiveness, and thus the
need for graphical notations (eg. entity-relationship diagrams (Chen, 1976), UML
(Booch et al., 1999) etc.) and verbose programming notations such as Cobol (1974)
and SQL (1992). When it comes to reasoning about the semantics of such diagrams
or notations, predicate/temporal logics and naı̈ve set theory are the most common
formal resources.

However, such pointwise notations involving operators as well as variable sym-
bols, logical connectives, quantifiers, etc. are not agile enough. This kind of nota-
tional problem is not new in engineering mathematics. Elsewhere in physics and
several branches of engineering, people have learned to overcome it by changing
the “mathematical space”, for instance by moving (temporarily) from the t-space
(t for time) to the s-space in the Laplace transformation. Quoting (Kreyszig, 1988),
p.242:

The Laplace transformation is a method for solving differential equations (...)
The process of solution consists of three main steps:

1st step. The given “hard” problem is transformed into a “sim-
ple” equation (subsidiary equation).

2nd step. The subsidiary equation is solved by purely alge-
braic manipulations.

3rd step. The solution of the subsidiary equation is transformed
back to obtain the solution of the given problem.

In this way the Laplace transformation reduces the problem of solving a dif-
ferential equation to an algebraic problem.

The pointfree transform (PF-transform for short) adopted in this report is at the
heels of this old reasoning technique. Standard set-theory-formulated database
concepts are regarded as “hard” problems to be transformed into “simple”, sub-
sidiary equations dispensing with points and involving only binary relation con-
cepts. As in the Laplace transformation, these are solved by purely algebraic ma-
nipulations and the outcome is mapped back to the original (descriptive) mathe-
matical space wherever required.

4

Note the advantages of this two-tiered approach: intuitive, domain-specific
descriptive formulæ are used wherever the model is to be “felt” by people. Such
formulæ are transformed into a more elegant, simple and compact — but also more
cryptic — algebraic notation whose single purpose is easy manipulation.

3 What is a data dependency?

In an n-ary relation, attribute names are more expressive than natural number in-
dices as attribute identifiers. The enumeration of all attribute names in a database
relation, for instance

S = {PILOT, FLIGHT,DATE,DEPARTS} (1)

concerning an airline scheduling system 2, is a finite set called the relation’s scheme.
This scheme captures the syntax of the data. What about semantics?

Even non-experts in airline scheduling will accept attaching the following “busi-
ness” rule to schema (1): A single pilot is assigned to a given flight, on a given date. This
restriction is an example of a so-called functional dependency (FD) among attributes,
which can be stated more formally as follows: attribute PILOT is functionally depen-
dent on FLIGHT and DATE. In the standard practice, this will be abbreviated by
writing

FLIGHT DATE→ PILOT

which has the following, alternative reading: FLIGHT and DATE functionally deter-
mine PILOT. Another FD in this example is

FLIGHT→ DEPARTS (2)

which captures the fact that a given flight always departs at the same time.
The addition of functional dependencies to a relational schema is comparable

to the addition of axioms to an algebraic signature, eg. axioms such as pop(push(a, s)) =
s adding semantics to the syntax of a stack datatype involving operators push and
pop. How does one reason about such functional dependency-based semantics of
data?

Functional dependencies (FD) are central to standard relational database the-
ory, where they addressed in an axiomatic way based on the definition of FD-
satisfiability which follows (Maier, 1983).

Definition 1 Given subsets x, y ⊆ S of the relation scheme S of a n-ary relation R, this
relation is said to satisfy functional dependency x→ y iff all pairs of tuples t, t′ ∈ R which
“agree” on x also “agree” on y, that is,

〈∀ t, t′ : t, t′ ∈ R : t[x] = t′[x] ⇒ t[y] = t′[y] 〉 (3)

(Notation t[x] means “the values in t of the attributes in x” and will be scrutinized in the
sequel.)
�

2This well-known example is taken from (Maier, 1983).

5

Formula (3), with its logical implication inside a two-dimensional universal
quantification, is not particularly agile. Designs involving many FDs at the same
time would be hard to reason about if based on (3) alone. This situation gets worse
when the more general (and useful) concept of a multi-valued dependency (MVD)
is addressed. This is defined by Maier (1983) as follows:

Definition 2 Given subsets x, y ⊆ S of the relation scheme S of an n-ary relationR, this
relation is said to satisfy the multi-valued dependency (MVD) x→→ y iff, for any two
tuples t, t′ ∈ R which “agree” on x there exists a tuple t′′ ∈ R which “agrees” with t on
xy and “agrees” with t′ on z = S − xy, that is,

〈∀ t, t′ : t, t′ ∈ R : t[x] = t′[x]
⇓

〈∃ t′′ : t′′ ∈ R : t[xy] = t′′[xy] ∧
t′′[z] = t′[z]

〉

〉 (4)

holds. �

Beeri et al. (1977) give the alternative definition which follows:

Definition 3 Given subsets x, y ⊆ S of the relation scheme S of an n-ary relation R, let
z = S − xy. R is said to satisfy the multi-valued dependency (MVD) x→→ y iff, for
every xz-value ab, that appears in R, one has Y (ab) = Y (a), where for every k ⊆ S and
k-value c, function Y is defined as follows:

Y (c) = {v | 〈∃ t : t ∈ R : t[k] = c ∧ t[y] = v〉}

�

Notation is overly simplified in this definition. In fact, function Y should be
equipped with two extra parameters, attribute k and relationR itself. So, the over-
all definition should be

〈∀ a, b : 〈∃ t : t ∈ R : t[xz] = ab〉 : YR,x(a) = YR,xz(ab)〉 (5)

as illustrated in the following picture:

x y z

t a c b

t′′ a c b′

t′ a c′ b′

t′′′ a c′ b

(6)

Despite its complexity, the MVD concept is central to one of the main ingre-
dients of relational data refinement — that of loss-less decomposition (Maier, 1983).
Its complexity has lead database theorists to develop FD/MVD-theory in an ax-
iomatic style, based on the so-called Armstrong axioms, which can be used as in-
ference rules for such dependencies. Equivalent axioms have been found which
make FD/MVD checking more efficient. However, most database practitioners
use this theory while ignoring its foundations. Even textbooks such as (Ullman,
1988) and (Garcia-Molina et al., 2002) don’t go very deep into the subject. Can this
be accepted?

6

To show that FD/MVD-theory can be re-factored into a generic, elegant and
easy-to-follow body of knowledge is the main motivation of this report. The work
stems from the author’s own experience and method for relational data modeling
(Oliveira, 1992; Alves et al., 2005; Cunha et al., 2006; Oliveira, 2008), itself a way
to dispense with such a theory provided designs are expressed in model-oriented
formal specification notations such as, eg., VDM-SL (ISO/IEC 13817-1) (Interna-
tional Organization for Standardization, 1996).

Both in the current report and in (Oliveira, 2008) the approach is the same —
the avoidance of complex pointwise formulæ and proofs via the pointfree algebra
of programming (Bird and de Moor, 1997). It turns out that the theory becomes
more general and considerably simpler, thanks to the calculus of simplicity and
coreflexivity. (Details about this terminology will be presented shortly.)

We will start by reviewing some basic principles. Qualifier “functional” in
“functional dependency” stems from “function”, of course. (Garcia-Molina et al.,
2002) write:

What Is “Functional” About Functional Dependencies? A1A2 · · ·An →
B is called a “functional dependency” because in principle there is a function
that takes a list of values (...) and produces a unique value (or no value at all)
for B (...) However, this function is not the usual sort of function that we
meet in mathematics, because there is no way to compute it from first prin-
ciples. (...) Rather, the function is only computed by lookup in the relation
(...)

In order to prepare the reader for our own answer to the question above, our first
effort goes into making sure we have a clear idea of “what a function is”.

4 What is a function? — the “Leibniz view”

A function f is a special case of binary relation satisfying two main properties 3:

• “Left” uniqueness

b f a ∧ b′ f a ⇒ b = b′ (7)

• Leibniz principle

a = a′ ⇒ f a = f a′ (8)

It can be shown (see section 5) that establishing properties (7, 8) is the same as
saying that functions are simple and entire relations 4, respectively:

• f is simple:

img f ⊆ id (9)

3Following a widespread convention, functions will be denoted by lowercase characters
(eg. f , g, φ) or identifiers starting with lowercase characters, and function application will
be denoted by juxtaposition, eg. f a instead of f(a).

4This terminology is borrowed from (Freyd and Scedrov, 1990). Being simple means
being “functional”; being entire means being total.

7

• f is entire:

id ⊆ ker f (10)

Formulæ (9,10) are examples of pointfree notation in which points — eg. a, a′, b, b′

in (7,8) — disappear. For instance, instead of writing a = a′, one resorts to the
identity relation id which relates a and a′ if and only if they are the same.

In order to parse such compressed formulæ we need to understand the meaning
of expressions such as ker f (read: “kernel of f”) and img f (read: “image of f”),

kerR = R◦ ·R (11)

imgR = R ·R◦ (12)

whose definitions involve two standard binary relation combinators (Bird and
de Moor, 1997): converse (R◦) and composition (R · S). The former converts a re-
lation R into R◦ such that a(R◦)b holds iff bRa holds. (Following the standard
practice, we write bRa to mean that pair (b, a) is in R. Wherever R is a function
f , bfa means the same as b = f a.) The latter (composition) is defined in the usual
way: given binary relations

B A
Roo C

Soo (13)

assertion b(R · S)c holds wherever there exist one or more mediating a ∈ A such
that conjunction bRa ∧ aSc holds.

Converse commutes with composition in a contravariant way,

(R · S)◦ = S◦ ·R◦ (14)

and so image and kernel commute via converse:

ker (R◦) = imgR (15)

img (R◦) = kerR (16)

As in (9,10), the underlying partial order on relations is written R ⊆ S, mean-
ing

R ⊆ S ⇔ 〈∀ b, a :: bRa⇒ bSa〉 (17)

for all suitably typed a and b. All relational combinators presented so far are mono-
tonic with respect to ⊆.

The simple and entire classes of relation mentioned above are part of a wider
binary relation taxonomy, depicted in figure 1, whose four top-level classification
criteria are captured by table

Reflexive Coreflexive

kerR entire R injective R
imgR surjective R simple R

(18)

where R is said to be reflexive iff it is at least the identity (id ⊆ R) and it is said to
be coreflexive (or a partial identity) iff it is at most the identity (R ⊆ id).

Coreflexive relations are fragments of the identity relation which can be used
to model predicates or sets. The meaning of a predicate φ is the coreflexive relation

8

binary relation

ZZZZ
ZZZZ

ZZZZ
ZZZ

RR
R

mm
m

dddd
dddd

dddd
dddd

injective
QQQ

entire
mm
mm QQ

QQ
simple

OOll
l

surjective
oo

representation
QQQ

function
RR

RR

mm
mm

abstraction
oo
oo

injection
QQQ

surjection
lll

bijection

Figure 1: Binary relation taxonomy

JφK such that bJφKa⇔ (b = a) ∧ (φ a). We often denote JφK by uppercase Φ. This is
the simple relation that maps every a which satisfies φ onto itself and is undefined
otherwise. The meaning of a set S is the meaning of its characteristic predicate
Jλa.a ∈ SK, that is,

bJSKa ⇔ (b = a) ∧ a ∈ S (19)

Wherever clear from the context, we will drop brackets J K.
Standard set theory can thus be expressed in terms of coreflexives, the algebra

of which is therefore very rich in useful properties, see eg. (Bird and de Moor,
1997; Backhouse, 2004). For instance, every coreflexive Φ is symmetric (Φ◦ = Φ)
and pre/post-conditioning are closure operators (Backhouse, 2004),

R · Φ ⊆ S ⇔ R · Φ ⊆ S · Φ (20)

Φ ·R ⊆ S ⇔ Φ ·R ⊆ Φ · S (21)

for arbitrary R,S and coreflexive Φ.
Set union, intersection etc are thus modeled by their obvious counterparts at

coreflexive level. A more interesting example is the relational equivalent to the
cross-product of two sets S and T ,

JSK⊗ JT K = {(b, a) | b ∈ S ∧ a ∈ T}

where

R⊗ S
def
= R · ⊤ · S (22)

Above, ⊤ is the largest relation of its type, that is, the relation which is such that
b ⊤a holds for every (suitably typed) a and b.

Before embarking on converting (3,4) and (5) into pointfree notation, let us see
an alternative view of functions better suited for calculation.

5 What is a function? — the “Galois view”

To say “f is a function” is equivalent to stating any of the two Galois connections
which follow 5:

f ·R ⊆ S ⇔ R ⊆ f◦ · S (23)

5These equivalences are popularly known as the “shunting rules” (Bird and de Moor,
1997).

9

R · f◦ ⊆ S ⇔ R ⊆ S · f (24)

As a warming-up exercise, let us check one of these, say (23). (The whole
picture can be found in eg. (Hoogendijk, 1997; Bird and de Moor, 1997; Backhouse,
2004).) That f being simple and entire (9, 10) implies equivalence (23) can be
proved by circular implication:

f ·R ⊆ S

⇒ { monotonicity of composition }

f◦ · f ·R ⊆ f◦ · S

⇒ { f is entire (10) }

R ⊆ f◦ · S

⇒ { monotonicity of composition }

f ·R ⊆ f · f◦ · S

⇒ { f is simple (9) }

f ·R ⊆ S

That (23) implies that f is entire and simple can be checked via instantiationR,S :=
id, f (left-cancellation) and S,R := id, f◦ (right-cancellation), respectively.

The following are easy-to-show outcomes of Galois connections (23, 24) rele-
vant to this report. First of all, functions are difunctional 6:

f · f◦ · f = f (25)

Secondly, kernels of functions are equivalence relations. That is, besides reflexivity
(10), one has

(ker f) · ker f = ker f (26)

(ker f)◦ = ker f (27)

Finally, pre/post-composition with functional kernels are closure operations:

S · ker f ⊆ R · ker f ⇔ S ⊆ R · ker f (28)

(ker f) · S ⊆ (ker f) ·R ⇔ S ⊆ (ker f) ·R (29)

(See section C.2 in the appendix.)
Function converses enjoy a number of properties of which the following is

singled out because of its rôle in pointwise-pointfree conversion,

b(f◦ ·R · g)a ⇔ (f b)R(g a) (30)

where f and g are functions 7. The interested reader may wish to resort to (30) in
checking the equivalence between (7, 8) and (9, 10), respectively.

The following precedence order on prefix or infix relational operators

◦ > {ker , img } > (·) > ∩ > ∪

is assumed in order to save parentheses in relational expressions. Assuming this,
expression R · kerS◦ ∩ T ∪ V will abbreviate ((R · (ker (S◦)))∩ T)∪ V , for instance.

6See appendix C.2 for a generalization of this concept.
7See eg. (Backhouse and Backhouse, 2004).

10

6 FD-satisfiability in pointfree style

6.1 Attributes are functions

Let R be a n-ary relation with schema S, t be a tuple in R and a be an attribute
in S. Notation t[a] was adopted in (3) to mean “the value exhibited by attribute
a in tuple t”. Tuples can be regarded as inhabitants of n-dimensional Cartesian
products, either in the standard format (eg.A1×· · ·×An) or in “rich syntax format”
equipped with tuple constructors and selector (field) names, one per attribute.
For instance, relational scheme (1) can be modeled in the Haskell type system by
declaring (assuming types Pilot , Flight , Date , Departs declared elsewhere)

data S = S {
pilot :: Pilot,
flight :: Flight,
date :: Date,
departs :: Departs

}

or simply by typing

data S = S (Pilot , Flight , Date , Departs)

which is Cartesian product Pilot ×Flight ×Date ×Departs in Haskell-speak.
From our perspective, it doesn’t matter which of these alternatives is adopted,

since in both cases attributes are modeled by functions. For instance, function pilot
:: S -> Pilot gives access to the values of attribute PILOT in the first model

of S, in the same way projection function π1(a, b)
def
= a extracts the same data from

the Cartesian tuples of the second model. In summary, attributes are (projection)
functions 8. Since this view extends smoothly to a collection x of attributes (please
wait until section 7.3 for some technical details), we can convert (3) into

〈∀ t, t′ : t, t′ ∈ R : (x t) = (x t′) ⇒ (y t) = (y t′) 〉

Assuming the universal quantification implicit, we reason:

t ∈ R ∧ t′ ∈ R ∧ (x t) = (x t′) ⇒ (y t) = (y t′)

⇔ { let f,R, g := x, id, x in (30) — twice }

t ∈ R ∧ t′ ∈ R ∧ t(x ◦ · x)t′ ⇒ t(y ◦ · y)t′

⇔ { (19) twice }

t = u ∧ tJRKu ∧ t′ = u′ ∧ t′JRKu′ ∧ t(x ◦ · x)t′ ⇒ t(y ◦ · y)t′

⇔ { ∧ is commutative; substitution of equals for equals; converse }

tJRKu ∧ u(x ◦ · x)u′ ∧ u′JRK
◦
t′ ⇒ t(y ◦ · y)t′

⇔ { going pointfree via composition and relation inclusion (17) }

8Attributes in this view correspond to columns in the monic n-tuple categorial approach
of Freyd and Scedrov (1990).

11

JRK · (x ◦ · x) · JRK
◦ ⊆ y ◦ · y

⇔ { rules (23) and (24) }

y · JRK · x ◦ · x · JRK
◦ · y ◦ ⊆ id

⇔ { converse versus composition (14) followed by (12) }

img (y · JRK · x ◦) ⊆ id

In summary: a n-ary relation R as in definition 1 satisfies functional dependency
x→ y iff binary relation

y · JRK · x ◦ (31)

is simple, cf. (9) 9.

6.2 Functional dependencies in general

Our approach to the FD concept starts from the observation that coreflexive rela-
tion JRK and projection functions x and y in (31) can be generalized to arbitrary
binary relations and functions. This leads to the more general definition which
follows. (The use of “⇀” instead of “→” is intentional: it is an indication that we
are moving from the restricted to the generic notion.)

Definition 4 Binary relation B A
Roo is said to satisfy the “f ⇀ g” functional de-

pendency — written f
R
⇀ g — iff g ·R · f◦ in

B

g

��

A
Roo

f

��
C D

g·R·f◦

oo

is simple (9). Equivalent definitions are

f
R
⇀ g ⇔ R · (ker f) ·R◦ ⊆ ker g (32)

and

f
R
⇀ g ⇔ ker (f ·R◦) ⊆ ker g (33)

thanks to (11, 14, 23) and (24).
Function f (resp. g) will be mentioned as the left side or antecedent (resp. right side

or consequent) of FD f
R
⇀ g. �

9It can be observed that our reasoning above instantiates rule (141) of the PF-transform
(given in appendix A) which generalizes binary relation inclusion (17).

12

6.3 Trivial properties and examples

In contrast with (3), equations (32, 33) are easy to reason about, as the reader may
check by proving the following, elementary properties, which hold for all R, f , g
of appropriate type:

f
⊥
⇀ g

(where ⊥ denotes the empty relation)

f
R
⇀ ! (34)

(where 1 B
!oo denotes the unique, constant function of its type and 1 denotes

the singleton type)

id
R
⇀ id ⇔ R is simple (35)

f
R
⇀f ⇐ R ⊆ id (36)

An immediate consequence of (36) is

f
id
⇀f (37)

Back to pointwise notation, (32) and (33) expand to the following generaliza-
tion of (3):

〈∀ b, b′ : 〈∃ a, a′ :: b R a ∧ b′ R a′ ∧ f a = f a′〉 : g b = g b′〉 (38)

Even inepter than (3) for calculation purposes, formula (38) is interesting for its

appeal to intuition, as the reader may feel by checking that f
R
⇀ g holds for R any

of the relations tabulated by the a and b columns of

b a f a = a2 g b = rem b 3
2 −1 1 2
5 −1 1 2
17 1 1 2
10 −2 4 1
4 −2 4 1
1 2 4 1

and

b a f = id g = π1
(1, 2) −1 −1 1
(1, 10) −1 −1 1
(0, 0) 1 1 0
(5, 6) −2 −2 5
(5, 0) −2 −2 5
(1, 2) 2 2 1

In the sequel, we proceed to another, more elegant pointfree statement of FD-
satisfiability which takes advantage of the rich mathematics underlying injectivity,
one of the classification criteria of the taxonomy of figure 1.

7 The role of injectivity

7.1 Ordering relations by injectivity

It can be observed that what matters about f and g in (32) is their “degree of injec-
tivity” as measured by ker f and ker g — recall table (18) — in opposite directions:

13

more injective f and less injective g will strengthen a given FD f
R
⇀g. An extreme

case is f = id and g = !, since functional dependency id
R
⇀ ! will always hold for

any R, cf. (34).
In order to measure injectivity in general we define the injectivity preorder on

relations as follows:

R ≤ S ⇔ kerS ⊆ kerR (39)

that is, R ≤ S means R is less injective than S 10. To be more precise, we should
write “less injective or more defined” since ker measures both properties, cf. (18) and

R ⊆ S ⇒ S ≤ R (40)

(see appendix D). In case of functions, f ≤ g unambiguously means that f is less
injective than g 11.

Limit cases of injectivity (or the lack of it) are apparent from

! ≤ R ≤ ⊥

since the kernel of function ! is the top (ie. largest) relation of its type,

!◦ · ! = ⊤ (41)

and that of the empty relation is empty (⊥◦ · ⊥ = ⊥).
The fact pre-composition respects the injectivity preorder,

R ≤ S ⇒ R · T ≤ S · T (42)

is easy to prove 12:

R ≤ S

⇔ { (39) and (11) }

S◦ · S ⊆ R◦ ·R

⇒ { monotonicity of (T ◦ ·) and (· T) }

T ◦ · S◦ · S · T ⊆ T ◦ ·R◦ ·R · T

⇔ { (14) twice, followed by (11) and (39) }

R · T ≤ S · T

The following property involving two functions ordered by injectivity

(ker f) ∩ (S · ker g) = (ker f ∩ S) · ker g ⇐ f ≤ g (43)

will be useful in the sequel. It instantiates the more general fact (148) proved in
appendix B.

10Note that R and S must have the same source type but don’t need to share the same
target datatype.

11This restriction of ≤ to functions is referred to as the collapsing order in (Matsuda et al.,
2007).

12This proof instantiates a more general construction presented in appendix D.

14

7.2 FD defined via the injectivity preorder

The close relationship between FDs and injectivity of observations is well captured
by the following re-statement of (33) in terms of (39):

f
R
⇀ g ⇔ g ≤ f ·R◦ (44)

For its conciseness, this definition of FD is very amenable to calculation, as is illus-
trated below by proving two facts which will be useful in the sequel:

f
S·R
⇀ h ⇐ f

R
⇀ g ∧ g

S
⇀h (45)

f
R
⇀ g ⇐ f

S
⇀ g ∧ R ⊆ S (46)

The first shows how two FDs with matching antecedent / consequent functions
yield a composite FD, cf.

f
R
⇀ g ∧ g

S
⇀h

⇔ { (44) twice }

g ≤ f ·R◦ ∧ h ≤ g · S◦

⇒ { ≤-monotonicity of (· S◦) (42) followed by (14) }

g · S◦ ≤ f · (S ·R)◦ ∧ h ≤ g · S◦

⇒ { ≤-transitivity }

h ≤ f · (S ·R)◦

⇔ { (44) again }

f
S·R
⇀ h

Fact (46) states that FD-satisfiability is downward-closed, cf.

R ⊆ S ∧ f
S
⇀ g

⇔ { converses and (44) }

R◦ ⊆ S◦ ∧ g ≤ f · S◦

⇒ { monotonicity of (f ·) and (40) }

f · S◦ ≤ f ·R◦ ∧ g ≤ f · S◦

⇒ { ≤-transitivity }

g ≤ f ·R◦

⇔ { (44) }

f
R
⇀ g

Note in passing that (37) and (45) together suggest that we can build a category

whose objects are functions f , g, etc. and whose arrows f
R // g are relations

which satisfy f
R
⇀ g.

15

7.3 Simultaneous observations

In the same way x and y in (3) may involve more that one observable attribute, we
would like f and g in (32) to involve more than one observation function. Multiple
observations add more detail and so are likely to be more injective. The relational
split combinator 〈 , 〉— also termed fork 13 and defined by

(a, b)〈R,S〉c ⇔ a R c ∧ b S c (47)

— captures this effect, and facts

R ≤ 〈R,S〉 and S ≤ 〈R,S〉 (48)

are easy to check by recalling

ker 〈R,S〉 = (kerR) ∩ (kerS) (49)

which stems from equality

〈R,S〉◦ · 〈X,Y 〉 = (R◦ ·X) ∩ (S◦ · Y)

proved by Bird and de Moor (1997). Moreover, (48) is nothing but left-cancellation
of Galois connection

〈R,S〉 ≤ T ⇔ R ≤ T ∧ S ≤ T (50)

which stems from the one underlying ∩ (see appendix D) and can be used to state
other facts, eg.

〈R, !〉 ≤ R (51)

The anti-symmetric closure of ≤ yields an equivalence relation

R ≃ S ⇔ kerR = kerS

which is such that, for instance, ! ≃ ⊤ holds. We also have

S ≤ R ⇔ 〈S,R〉 ≃ R (52)

The following equivalences will be relevant in the sequel, for suitably typed R, S
and T :

R ≃ 〈R,R〉 (53)

〈R,S〉 ≃ 〈S,R〉 (54)

〈T, 〈R,S〉〉 ≃ 〈〈T,R〉, S〉 (55)

The product of two relations,

(a, b)(R× S)(c, d) ⇔ a R c ∧ b S d (56)

is a special case of split. Thanks to these two constructs, we can elaborate on an-

tecedents and consequents of FDs and write, for instance, 〈f, h〉
R
⇀ g or f × h

R
⇀ g,

both expressing two simultaneous observations on the antecedent (similarly for
the consequent) of a FD.

13This is the pairing operation which Tarski found missing in relation algebra (Tarski and
Givant, 1987; Bussche, 2001). Its addition has lead to the study of so-called fork algebras
(Veloso and Haeberer, 1991).

16

7.4 FDs on functions

Since attributes in the n-ary relational database model are (projection) functions,
we will be particularly interested in comparing functions for their injectivity. Re-
call that the kernel of a function is always reflexive (10). So, restricted to functions,
the ≤ ordering is such that, for all f ,

! ≤ f ≤ id (57)

and

f ≃ id ⇔ f is an injection (figure 1)

Given function f , any function f such that

id ≤ 〈f, f〉 (58)

holds is referred to as a (view) complement of f (Matsuda et al., 2007). The pair of
functions (f, f) is also said to be a monic pair (Freyd and Scedrov, 1990) or jointly
monic (Bird and de Moor, 1997). For instance, the two projections

π1(a, b)
def
= a , π2(a, b)

def
= b

are each other’s complement, since (by reflection) 〈π1, π2〉 = id and therefore (58)
holds. Clearly, id complements any function, including itself.

From (57) and (42) we obtain f ·R ≤ Rwhich, in words, means that (f ·) always
lowers injectivity. From (9) we draw id ≤ f◦ and thus S ≤ f◦ · S, thanks to (42).
Moreover, Galois connection

R · g ≤ S ⇔ R ≤ S · g◦ (59)

holds — see proof in appendix D — which can be regarded as the “injectivity
counterpart” of “shunting” rule (24).

As special cases of relations, functions may also satisfy functional dependen-

cies. For instance, it will be easy to show that bagify
setify
⇀ id holds, where bagify

(resp. setify) is the function which extracts, from a finite list, the bag (resp. set) of
all its elements 14. From (59) we draw:

g · h ≤ f ⇔ f
h
⇀ g ⇔ g ≤ f · h◦ (60)

Thus the equivalences

g ≤ f ⇔ f
id
⇀ g (61)

h ≤ f ⇔ f
h
⇀ id (62)

and a more general pattern of FD chaining

f
S·R
⇀ h ⇐ f

R
⇀ g ∧ g ≤ j ∧ j

S
⇀h (63)

which extends (45) via (61).

14The bagify / setify terminology is taken from (Bird and de Moor, 1997).

17

It can be observed that — restricted to functions — the ≤ ordering is nothing
but the converse of functional “right divisibility”:

f ≤ g

⇔ { (61) ; (31) }

f · g◦ is simple

⇔ { simple relations are fragments of functions ; “at most simple is simple” }

〈∃ k :: f · g◦ ⊆ k〉

⇔ { shunting (24) }

〈∃ k :: f ⊆ k · g〉

⇔ { function equality }

〈∃ k :: f = k · g〉

⇔ { right-divisibility }

g (right) divides f

From (50) we know that split is the lub of the injectivity preorder. From above we
can also regard it as the glb of right divisibility, whose universal bounds are also
established by (57), in opposite order.

There is another interesting connection between FDs on functions and discrete

mathematics. This can be easily grasped by reverting the particular FD f
h
⇀ f to

points, while making explicit the equivalence relation which the kernel of function
f always is, below denoted by ∼f :

f
h
⇀f

⇔ { (60) }

∼f ⊆ h◦ · ∼f · h

⇔ { go pointwise, for all suitably typed a, b (30) }

a∼f b ⇒ (h a)∼f (h b) (64)

The line just above can be recognized as the statement that h is compatible with∼f ,
that is, that ∼f is a congruence with respect to h. Clearly, this generalizes to n-ary
functions, eg. to binary h in FD

f × f
h
⇀f

which involves the product of f by itself (56) and expands to

a∼f b ∧ c∼f d ⇒ h(a, c)∼f h(b, d) (65)

for all (suitably typed) a, b, c, d. This furthermore generalizes to heterogeneous
compatibility, that is, to multiple congruences associated to the different functions
involved in functional dependencies of shape

f × g
h
⇀k

etc.

18

7.5 On ≃-equivalence and simplified “split” notation

Discriminating functions beyond ≃-equivalence is unnecessary in the context of
FD reasoning. Since order and repetition in “splits” are ≃-irrelevant — recall (53,
54) and (55) — we will abbreviate 〈f, g〉 by fg, or by gf , wherever this notation
shorthand is welcome and makes sense 15. Such is the case in fact

f
R
⇀ gh ⇔ f

R
⇀ g ∧ f

R
⇀h (66)

which will be particularly helpful in the sequel, despite its straightforward proof:

f
R
⇀ gh

⇔ { (44) ; expansion of shorthand gh }

〈g, h〉 ≤ f ·R◦

⇔ { (50) }

g ≤ f ·R◦ ∧ h ≤ f ·R◦

⇔ { (44) twice }

f
R
⇀ g ∧ f

R
⇀h

7.6 FD strengthening

The comment above about the contra-variant behavior (concerning injectivity) of
the antecedent and consequent functions of an FD is now made precise,

h
R
⇀k ⇐ h ≥ f ∧ f

R
⇀ g ∧ g ≥ k (67)

and justified:

h ≥ f ∧ f
R
⇀ g ∧ g ≥ k

⇔ { (61) twice }

h
id
⇀f ∧ f

R
⇀ g ∧ g

id
⇀k

⇒ { (45) twice; identity of composition }

h
R
⇀k

The following are corollaries of (67), since fh ≥ f :

fh
R
⇀ g ⇐ f

R
⇀ g (68)

f
R
⇀ g ⇐ f

R
⇀ gh (69)

15This is inspired by a similar shorthand popular in the standard notation of relational
database theory: attribute set union, eg. X ∪ Y , is denoted by simple juxtaposition, eg.
XY (Maier, 1983). Under this correspondence, equivalence (52) becomes the expected X ⊆
Y ⇔ X ∪ Y = Y . In the terminology of Freyd and Scedrov (1990), f ≤ g ⇔ fg ≃ g

corresponds to saying that f is a short column.

19

By ⇐-transitivity, we see that it is always possible to move observations in a FD
from the consequent (“dependent”) side to the antecedent (“independent”) one:

fh
R
⇀ g ⇐ f

R
⇀ gh

Moving the “very last” one also makes sense, since

fhg
R
⇀ ! ⇐ fh

R
⇀ g

holds.

7.7 Keys

Every function x such that x
R
⇀id holds is called a superkey for R. Keys are minimal

superkeys, that is, they are attributes (functions) x such that, for all y ≤ x such that

y 6≃ x, y
R
⇀ id does not hold. In symbols:

x is a key of R ⇔ x
R
⇀ id ∧ 〈∀ y : y

R
⇀ id : y ≃ x ∨ y 6≤ x〉

From (35) and (57) we draw that id is always a (maximal) superkey for simple
relations, coreflexives included.

In the Cartesian model of tuples (recall section 6) we can resort to the ×-
reflection property 〈π1, . . . , πn〉 = id to infer that all attributes together are maxi-
mal superkeys: π1 · · ·πn ≃ id. (A similar inference takes place in the “rich syntax
format”, however less generic since it is dependent on the chosen selectors.) In
fact, any permutation of this split is an isomorphism (eg. swap = π2π1, for n = 2)
and therefore a maximal superkey. Wherever f is an arbitrary split of attributes,
we denote by f the split of the remaining attributes, in any order — a notation
convention consistent with the fact that f and f are each other complements (58).

8 The Armstrong-axioms

In this section we prove the correctness of the Armstrong-axioms (Maier, 1983),
which are the standard inference rules for FDs underlying relational database the-
ory. We show that this subset of FD theory is an immediate consequence of the
pointfree formalization presented so far.

In the standard formulation, these axioms involve sets of attributes of a rela-
tional schema S ordered by inclusion, eg. X ⊆ Y ⊆ S. Unions of such attribute
sets are written by juxtaposition, eg. XY instead of X ∪ Y . Since attributes Xand
Y “are” (projection) functions, XY will mean the split of such projections in our
setting. Moreover, we generalize these to arbitrary functions ordered by injectiv-
ity. Let us, for notation economy, use the same symbolsX and Y to denote both the
attribute symbols and the associated projection functions. ThenX ⊆ Y — which is
equivalent to the equality of attribute setsX∪Y and Y — PF-transforms toX ≤ Y
— which is equivalent to the ≃-equivalence between the split of projections XY
and projection Y .

The whole schema S corresponds to a maximal observation. In our setting,
this is captured by the identity function id, since — by product reflection — the
split of all projections in a finite product is the identity (recall section 7.7).

20

As seen already in section 6, n-ary relational database tables are sets of tuples
which PF-transform to coreflexive relations. For instance, a table

T ⊆ A×B × C

with three attributes will be modeled by coreflexive

A×B × C A×B × C
JT Koo

such that tJT Kt′ ⇔ t = t′ ∧ t ∈ T (19). As a rule, we will abbreviate JT K by
T for economy of notation.

Calculational proofs of the Armstrong-axioms follow:

• F1. Reflexivity:

x
T
⇀x (70)

This is (36), since T is coreflexive. An equivalent way to put it is

yz
T
⇀y (71)

That (70) entails (71) is an instance of (68). Conversely, (71) instantiates to
(70) for z := ! — recall (51). Yet another way to express (70) is

y ≤ x ⇒ x
T
⇀y (72)

see eg. (Beeri et al., 1977) and (O’Neil and O’Neil, 2001), where it is called

the inclusion rule. That (70) entails (72) follows from x
T
⇀x ∧ x ≥ y, via (67).

Conversely, (70) instantiates (72) for y := x, given that ≤ is a preorder.

• F2. Augmentation: Maier’s statement of this axiom (1983)

x
T
⇀y⇒ xz

T
⇀y (73)

is an instance of our fact (68). Another version of this axiom (O’Neil and
O’Neil, 2001) is

x
T
⇀y ⇒ xz

T
⇀yz (74)

which is easily shown to be equivalent to (73):

xz
T
⇀yz

⇔ { (66) }

xz
T
⇀y ∧ xz

T
⇀ z

⇔ { (71), since T is coreflexive }

xz
T
⇀y

Beeri et al. (1977) give yet another (equivalent) version of this axiom:

v ≤ w ∧ x
T
⇀y ⇒ xw

T
⇀yv (75)

21

Clearly, (75) instantiates to (74) for v = w. That (74) entails (75) is also easy
to show:

v ≤ w ∧ x
T
⇀y

⇔ { (61) }

w
id
⇀v ∧ x

T
⇀y

⇒ { (74) twice }

xw
id
⇀xv ∧ xv

T
⇀yv

⇒ { (63) }

xw
T
⇀yv

• F3. Additivity (or Union):

x
T
⇀y ∧ x

T
⇀ z ⇒ x

T
⇀yz (76)

This is the⇐-part of equivalence (66).

• F4. Projectivity:

x
T
⇀yz ⇒ x

T
⇀y ∧ x

T
⇀ z (77)

This is the⇒-part of equivalence (66).

• F5. Transitivity:

x
T
⇀y ∧ y

T
⇀ z ⇒ x

T
⇀ z (78)

This stems from (45) for S andR the same coreflexive T , thanks to T ·T = T .

• F6. Pseudo-transitivity:

x
T
⇀y ∧ wy

T
⇀ z ⇒ xw

T
⇀ z (79)

As in the standard theory, this stems from F2 and F5:

x
T
⇀y ∧ wy

T
⇀ z

⇒ { augmentation (74) }

xw
T
⇀yw ∧ wy

T
⇀ z

⇒ { transitivity (77) }

xw
T
⇀ z

This completes the six inference axioms which are presented and proved by
Maier (1983) either directly — using (3) — or indirectly, using tuple counting and
properties of two standard n-ary relation operators: select and project. Our proofs
are substantially simpler thanks to the economy of (44) and derived results.

To complete the set, we present below two consequences of the standard ax-
ioms which are often adopted for FD reasoning efficiency:

22

• Decomposition :

x
T
⇀y ∧ z ≤ y ⇒ x

T
⇀ z (80)

This is (67) for z = k.

• Accumulation (O’Neil and O’Neil, 2001):

x
T
⇀yz ∧ z

T
⇀wv ⇒ x

T
⇀yzv (81)

In fact:

x
T
⇀yz ∧ z

T
⇀wv

⇒ { (74) }

x
T
⇀yz ∧ yz

T
⇀ywv

⇒ { (78) }

x
T
⇀yz ∧ x

T
⇀ywv

⇔ { (66) }

x
T
⇀yzwv

⇒ { (69) }

x
T
⇀yzv

8.1 Generalization

In the same way the PF-definition of a FD (44) generalizes the standard set-theoretic
definition (3), it is to be expected that the Armstrong axioms (may) extend to re-
lations other than coreflexives. Let R be an arbitrary binary relation. In the dis-
cussion of the generalization of the Armstrong axioms which follows the reader
should recall the terminology of figure 1 and analyze that of figure 2, noting that
a relation R is transitive iff R · R ⊆ R holds, cotransitive iff R ⊆ R · R holds 16,
anti-symmetric iff R ∩R◦ ⊆ id holds and connected iff R ∪R◦ = ⊤ holds.

• F1. Reflexivity: (70) — ie. (36) — generalizes to

x
R
⇀x ⇐ R ⊆ kerx (82)

thanks to (46) and trivial FD x
ker x
⇀ x, which is a direct consequence of the di-

functionality of x (25). ThusR has to be an endo-relation, but not necessarily
coreflexive. Since the equivalence between (70) and (71) is independent of
T , the latter also generalizes to

yz
R
⇀y ⇐ R ⊆ ker y (83)

16We follow the terminology of (Kahl, 2006).

23

endo-relation

symmetric transitive co-transitive anti-symmetric connected

reflexive

per preorder

coreflexive equivalence partial order

id linear order

Figure 2: Endo-relation taxonomy, where per stands for partial equivalence
relation.

• F2. Augmentation: Coreflexive T in (73) can be generalized to any arbitrary
binary relation R, recall (68). Thanks to (83), (74) generalizes to

x
R
⇀y ∧ R ⊆ ker z ⇒ xz

R
⇀yz (84)

and (75) generalizes to

v ≤ w ∧ x
R
⇀y ∧ R ⊆ ker v ⇒ xw

R
⇀yv

• F3. Additivity (or Union): As part of (66), (76) holds for arbitrary relations.

• F4. Projectivity: As part of (66), (76) holds for arbitrary relations.

• F5. Transitivity : Thanks to (45, 46) together, coreflexive T in (78) generalizes
to any relation R satisfying the cotransitivity condition R ⊆ R ·R. Reflexive
relations and partial equivalence relations (which include coreflexives, cf.
pers in figure 2) qualify for this property.

• F6. Pseudo-transitivity: Thanks to the above generalizations of F5 and F2,
coreflexive T in (79) generalizes to any cotransitive sub-relation of kerw, that
is, to any R such that R ⊆ R ·R ∩ kerw holds.

• Decomposition: As an instance of (67), T in (80) extends to arbitrary rela-
tions.

• Accumulation: Similarly to F6, T in (81) generalizes to any cotransitive sub-
relation of ker y.

All in all, three main conclusions arise from the generalization:

• augmentation (F2 in version (72)), additivity (F3), projectivity (F4) and de-
composition scale up to arbitrary binary relations;

• equivalent statements of axiom F2 (73, 74) in the standard theory get split
throughout the generalization, cf. (84);

24

• cotransitivity (figure 2) emerges as an interesting property of endo-relations,
which encompasses a quite broad set of sub-classes, eg. pers, partial and
linear orders, etc.

We proceed to the pointfree formulation and generalization of other standard
concepts in relational database theory which are required by our final aim in the
report: to establish the principle of lossless decomposition (Maier, 1983) by pointfree
calculation.

9 Generic relational projections

Relational database theory incorporates a concept which is central to the principle
of relational data decomposition — that of a relational projection. Given n-ary re-
lation T with schema S and x ⊆ S, Maier (1983) defines the x-projection of T as
set-comprehension

πxT = {x[t] | t ∈ T} (85)

Above we have shown how to express concepts involving a given n-ary rela-
tion T — which in the binary relation calculus is modeled by coreflexive JT K — in
terms of binary relations. A similar construction can be provided for the projection
operator (85), as follows: given a binary relation R and functions f and g such as
in definition 4, the g, f -projection of R is defined as binary relation

πg,fR
def
= g ·R · f◦ (86)

So, f
R
⇀ g can be rephrased by saying that projection πg,fR is simple.

The set-theoretical meaning of πg,fR can be grasped by noting that, while
putting together the lower adjoints of shunting rules (23, 24), πg,f is itself a lower
adjoint:

πg,fR ⊆ S ⇔ R ⊆ g◦ · S · f (87)

This means that πg,fR is the smallest relation which, wherever b is R-related to a,
relates (g b) to (f a) — recall (30). Regarding relations as sets of pairs, we have

πg,fR
def
= {(g b, f a) | (b, a) ∈ R} (88)

The close relationship between FDs and (binary) relational projection is cap-
tured by the following equivalence

h
πg,fR
⇀ k ⇔ (h · f)

R
⇀ (k · g) (89)

which enables observer function “trading” between a projection and a (composite)
FD. The calculation of (89) is yet another display of agility of (44) and associated
theory:

h
πg,fR
⇀ k

⇔ { (44), (86) and (14) }

25

k ≤ h · f ·R◦ · g◦

⇔ { (59) }

k · g ≤ h · f ·R◦

⇔ { (44) }

(h · f)
R
⇀ (k · g)

A rather interesting view of (87) is

πg,fR ⊆ S ⇔ g(S←R)f (90)

where S←R is Reynolds “arrow combinator”

g(S←R)f ⇔ g ·R ⊆ S · f (91)

which is extensively studied by Backhouse and Backhouse (2004). So, a (f, g-
parametric) projection between two relations (R and S) can be equated as a (R,S-
parametric) relation on the projection functions f and g themselves.

Besides monotonicity and∪-preservation, ensured by lower-adjointedness (Aarts
et al., 1992), binary relation projection obeys to a number of useful properties,
namely

πid,id = id

πf,g · πh,k = πf ·h,g·k

(πf,gR)
◦ = πg,f (R

◦)

and

πf,fR ⊆ id ⇔ R ⊆ ker f (92)

which is related to (82, 83). It follows that the πf,f projection of a coreflexive is also
coreflexive, in fact it own domain:

πf,fR = δ (πf,fR) ⇐ R is coreflexive (93)

Thus (86) extends (85), as shown by equality

JπxT K = πx,xJT K

which holds for any n-ary relation T thanks to (88, 92). Note the use of the same
symbol π to denote both the standard set-theoretic projection operator, on the left
hand side of the equality, and the pointfree one, on the right hand side.

Also useful in the sequel is fact

πz,xR ⊆ (πz,yR) · (πy,xR) ⇐ R ⊆ ker y (94)

cf. diagram

A

z

��

A
Roo

y

��

A
Roo

x

��
Z Y

πz,yRoo X
πy,xRoo

πz,xR

gg

easy to infer by monotonicity of composition and the fact that R ⊆ R ·R◦ ·R holds
for every R (see section C.2).

26

10 Lossless decomposition

Arbitrary FDs are, in general, hard to maintain because they constrain the CRUD
(create, update, and delete) operations on database files, and waste space. There-
fore, instead of allowing for some n-ary relation T to satisfy an arbitrary FD, it is
preferable to “extract” such a dependency by decomposing T in two parts — the
FD itself, eg. with schema

S1 = {FLIGHT,DEPARTS}

recalling FD (2) in our introductory example, and the “rest” of T , with schema

S2 = {PILOT, FLIGHT,DATE}

in the same example. Such components are nothing but projections πS1
T and πS2

T

of T , respectively — recall (85).
In this example, the fact that FLIGHT — the antecedent of the selected FD —

is kept in schema S2 has to do with the principle of lossless decomposition: once T
is decomposed into projections πS1

T and πS2
T , by “joining” them one should be

able to recover the original relation 17:

(πS1
T) ⋊⋉ (πS2

T) = T

Lossless decomposition is a representation technique which is central to rela-
tional database implementation. Of course, not every pair of projections is lossless.
A kernel topic of the process of database design by decomposition is precisely that of
finding conditions for safe decomposition. Such is the case of extracting functional
dependencies, as illustrated above, thanks to a couple of theorems which will be
dealt with in the sequel.

The first of these — exercise 6.4 in (Maier, 1983) — is as follows: given relation
schemes Y and Z such that Y ∩ Z = X and a relation T with schema Y Z satisfying FD
X → Y , then lossless decomposition

T = (πY T) ⋊⋉ (πZT)

holds.
Our proof of this result boils down to almost no-work-at-all thanks to the bi-

nary relation extension of the projection operator given by (86). Recall that (86)
expresses the standard semantics of relational projection, the only difference be-
ing in requiring two projection functions — antecedent f and consequent g —
instead of one. This pair leads to a straightforward definition of join: joining two
projections which share the same antecedent function, say x, is nothing but binary
relation split (47, 149):

(πy,xR) ⋊⋉ (πz,xR)
def
= 〈y ·R · x◦, z ·R · x◦〉 (95)

17The standard, set-theoretic semantics of the n-ary relation join operator ⋊⋉ is as follows
(Maier, 1983): given relations T, T ′ with schemes S, S′, respectively, T ⋊⋉ T ′ is the relation
with schema SS′ defined by

T ⋊⋉ T
′ = {t′′ | 〈∃ t, t

′ : t ∈ T ∧ t
′ ∈ T

′ : t = t
′′[S] ∧ t

′ = t
′′[S′]〉}

27

And lossless decomposition can be expressed parametrically with respect to con-
sequent functions y and z,

(πy,xR) ⋊⋉ (πz,xR) = πyz,xR

that is,

〈y ·R · x◦, z ·R · x◦〉 = 〈y, z〉 ·R · x◦

It is well-known that such unconditioned ×-fusion doesn’t hold in relation
algebra, in general. Theorem 12.30(b) in (Aarts et al., 1992) adds a side-condition
for such a fusion to take place, where R,S, T are suitably typed binary relations 18:

〈R,S〉 · T = 〈R · T, S · T 〉 ⇐ R · (imgT) ⊆ R ∨ S · (imgT) ⊆ S (96)

The instance of (96) which suits our needs is (R,S := y, z)

〈y, z〉 · T = 〈y · T, z · T 〉 ⇐ y ≤ T ◦ ∨ z ≤ T ◦

— recall (15) and (39) — whereby further instantiating T := R · x◦ we obtain

〈y, z〉 · (R · x◦) = 〈y ·R · x◦, z ·R · x◦〉 ⇐ x
R
⇀y ∨ x

R
⇀ z

that is,

πyz,xR = (πy,xR) ⋊⋉ (πz,xR) ⇐ x
R
⇀y ∨ x

R
⇀ z (97)

In summary, lossless decomposition via FD extraction is, in our framework,
a corollary of (conditioned) ×-fusion (96). The question arises: are there side-
conditions weaker than that of (97) for lossless decomposition to take place?

It turns out that FD existence is a sufficient but not necessary condition for
safe decomposition to take place: the more general (but less intuitive) concept of a
multi-valued dependency — already introduced in section 3, recall (4) — is what is
actually required.

10.1 Multi-valued dependencies

Recall from section 3 that we have two alternative definitions of a multi-valued
dependency, as captured by logical formulæ (4) and (5).

The task of calculating the pointfree transform of (4) will be considerably soft-
ened by rule (142) of the appendix, which generalizes relational composition (13).
We remind the reader that x, y and z = S − xy are relational attributes which will
be regarded as projection functions in the PF-transformation of (4) which follows.
We address the existential quantification of same formula first:

〈∃ t′′ : t′′ ∈ T : t[xy] = t′′[xy] ∧ t′′[z] = t′[z]〉

⇔ { (142) for φ := (∈ T), and so on }

t(kerxy · JT K · ker z)t′

18This result can be regarded as an instance of property (145) in the appendices.

28

Then we insert this in the overall formula and proceed:

〈∀ t, t′ : t, t′ ∈ T : t[x] = t′[x] ⇒ t(kerxy · JT K · ker z)t′ 〉

⇔ { rule (141) for φ = ψ = (∈ T) }

JT K · (kerx) · JT K ⊆ (kerxy) · JT K · ker z

Thus we reach pointfree definition (98) below, in which we generalize JT K to an

arbitrary endo-relation A A
Roo and introduce notation x

R

⇀⇀ y (read: x multi-

determines y in R) in the spirit of notation x
R
⇀y already adopted for FDs:

x
R

⇀⇀y
def
= R · (kerx) ·R ⊆ (kerxy) ·R · ker z (98)

where z is the projection function associated to the attributes in S − xy. For sym-
metric R (ie. such that R = R◦) this can be rewritten into the form

x
R

⇀⇀y
def
= ker (x ·R◦) ⊆ (kerxy) ·R · ker z (99)

which bears closer resemblance with definition (33) of a FD.
That definition (98) requires R to have the same source and target type can be

checked by expanding its right hand-side and “shunting” wherever possible:

R · (kerx) ·R ⊆ (kerxy) ·R · ker z (100)

⇔ { (11) ; (23 and 24) }

(xy ·R · x◦) · (x ·R · z◦) ⊆ xy ·R · z◦ (101)

⇔ { (86) three times }

(πxy,xR) · (πx,zR) ⊆ πxy,zR (102)

In this way we obtain diagram

A

xy

��

x
++VVV

VV
VV

VV
VV

VV
VV

VV A
Roo

x

ttiiii
ii
ii
ii
ii
ii
i

z

��

X

πxy,xR

xxqqq
qq
qq
qq
qq
qq
qq
qq
q

⊆

X × Y Z
πxy,zR

oo

πx,zR

eeJ
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

(103)

which requires R to be an endo-relation and provides an alternative meaning for

MVDs: x
R

⇀⇀y holds iff projection πxy,zR “factorizes” through x, for instance

x y x

t a c a

t′ a c′ a

 ·

x z

t a b

t′ a b′

 ⊆

x y z

t a c b

t′′′ a c′ b

t′′ a c b′

t′ a c′ b′

29

recalling (6).
It is easy to see that condition R · (kerx) ·R ⊆ R is sufficient for (99) to

hold, since function kernels are reflexive (10). Thus, both ⊥ and ⊤ (resp. the least
and the greatest endo-relations over A) satisfy any MVD.

The special case x
R

⇀⇀x is also easy to calculate:

x
R

⇀⇀x

⇔ { (99) for x := y ; xx ≃ x (53) }

R · (kerx) ·R ⊆ (kerx) ·R · ker z

⇔ { (102) }

(πx,xR) · (πx,zR) ⊆ πx,zR

⇐ { monotonicity }

πx,xR ⊆ id

⇔ { (92) }

R ⊆ kerx

Thus we have established the MVD counterpart of (82):

x
R

⇀⇀x ⇐ R ⊆ kerx (104)

As it happens with FDs, the standard axiomatic theory of MVDs (Maier, 1983)
assumes R to be “a set of tuples”. As earlier on, we model such a set by a core-
flexive relation and use capital letter T to mark this assumption (R will be written
otherwise). Clearly, (102) becomes equality for R := T (coreflexive),

(πxy,xT) · (πx,zT) = πxy,zT (105)

since the converse inclusion always holds thanks to (94). In this situation, there is
still another alternative to (105) which will be useful later on:

(πz,xT) · π1 · δ (πz,xyT) = πz,xyT (106)

The fact that T is coreflexive is central to the equivalence between (105) and (106):

(πxy,xT) · (πx,zT) = πxy,zT

⇔ { converses (92) ; T coreflexive }

(πz,xT) · (πx,xyT) = πz,xyT

⇔ { ×-cancellation }

(πz,xT) · π1 · (πxy,xyT) = πz,xyT

⇔ { (93) }

(πz,xT) · π1 · δ (πxy,xyT) = πz,xyT

⇔ { domain of composition; z and xy are entire }

(πz,xT) · π1 · δ (πz,xyT) = πz,xyT

30

The fact that FDs are special cases of MVDs is known from the standard theory
and is captured by Maier (1983)’s replication axiom C1:

x
T
⇀y ⇒ x

T

⇀⇀y (107)

In our (more general) setting, we state with care: within coreflexive relations,
MVDs are more general than FDs 19, as the following calculation shows for arbi-
trary coreflexive T :

x
T
⇀y

⇔ { (36) and (66) } (108)

x
T
⇀xy

⇔ { definition (33) }

ker (x · T ◦) ⊆ kerxy

⇔ { expansion of ker (x · T ◦), symmetry of T and (20) } (109)

T · (kerx) · T ⊆ (kerxy) · T

⇒ { ker z is reflexive (10) } (110)

T · (kerx) · T ⊆ (kerxy) · T · ker z

⇔ { definition (99) }

x
T

⇀⇀y

10.2 Generic lossless decomposition theorem

Maier (1983) gives the replication axiom (107) as a corollary of the theorem of

lossless decomposition of MVDs. This theorem 20 states that fact x
T

⇀⇀ y holds if and
only if T decomposes losslessly into two relations with schemata yx and zx (for
z = S − yx), respectively:

x
T

⇀⇀y ⇔ (πy,xT) ⋊⋉ (πz,xT) = πyz,xT (111)

The pointwise proof of this result given by Maier (1983) follows the “implication-
first” logic style, in two parts — the if side followed by the only if side of the
equivalence. Being performed as they are directly over formula (4), these proofs
aren’t easy to follow with their existential and universal quantifications over no
less than six tuple variables t, t1, t2, t

′
1, t

′
2, t3. By contrast, our proof is a sequence

of PF-equivalences:

(πy,xT) ⋊⋉ (πz,xT) = πyz,xT

⇔ { (95) ; (86) three times }

19This statement will be further generalized in section 11.4 to a subclass of cotransitive,
symmetric relations.

20Theorem 7.1 in (Maier, 1983).

31

〈y · T · x◦, z · T · x◦〉 = yz · T · x◦

⇔ { since 〈R,S〉 · T ⊆ 〈R · T, S · T 〉 holds by monotonicity }

〈y · T · x◦, z · T · x◦〉 ⊆ yz · T · x◦

⇔ { “split twist” rule (154) — twice ; converses }

〈y · T · x◦, id〉 · x · T ◦ · z◦ ⊆ 〈y, x · T ◦〉 · z◦

⇔ { on the lower side, (162) and T ◦ = T ; (153) on the upper side, Φ := T ◦ = T }

〈y · T · x◦, x · x◦〉 · x · T · z◦ ⊆ 〈y, x〉 · T · z◦

⇔ { (152) for S := x, followed by (153) for Φ := T }

(〈y, x〉 · T · x◦) · (x · T · z◦) ⊆ 〈y, x〉 · T · z◦

⇔ { (101) }

x
T

⇀⇀y

It should be noted that the assumption that z is the projection associated to all
attributes other than xy in (99) has played no rôle whatsoever in the calculations
of (104, 107, 111) given above. This means that z can be regarded as yet another
arbitrary (but suitably typed) observer function. Altogether, we are lead to the
following, more general relational definition of a multi-valued dependency:

Definition 5 Given endo-relation A A
Roo and three functions X A

xoo , Y A
yoo

and Z A
zoo , multivalued dependency x

R

⇀⇀z y holds (note the subscript z) if and only
if

R · (kerx) ·R ⊆ (kerxy) ·R · ker z (112)

holds, which equivales

xy ·R · x◦ · x ·R · z◦ ⊆ xy ·R · z◦ (113)

itself the same as

(πxy,xR) · (πx,zR) ⊆ πxy,zR (114)

For cotransitive R, (113,114) strengthen to equality,

(πxy,xR) · (πx,zR) = πxy,zR (115)

since R ⊆ R · x◦ · x · R holds for such relations. For symmetric R, (112) can be further
re-written into

ker (x ·R◦) ⊆ (kerxy) ·R · ker z (116)

As with FDs, x (resp. y) will be referred to as the antecedent (resp. consequent) of MVD

x
R

⇀⇀z y. Function z will be mentioned as the context 21.
�

21The context of the standard definition (Maier, 1983) is fixed to z = S − yx.

32

Hereupon we shall write x
R

⇀⇀y as an abbreviation of 〈∀ z :: x
R

⇀⇀z y〉, meaning
that the MVD holds for every context z. As we will see in the sequel, there are MVD
rules which are context-independent and rules which are context-dependent 22.
A simple example of context-independence is the following generic statement of
MVD reflexivity

y ≤ x ⇒ x
R

⇀⇀y ⇔ x
R

⇀⇀x (117)

which generalizes rule MVD1 of (Beeri et al., 1977)

y ≤ x ⇒ x
T

⇀⇀y (118)

to an arbitrary endo-relation R. (Rule (118) stems from (117) thanks to (104), for R
instantiated to coreflexive T .) The calculation of (117) follows from the definitions:

y ≤ x

⇔ { (52) and (53) }

kerxy = kerxx

⇒ { Leibniz }

(kerxy) ·R · ker z = (kerxx) ·R · ker z

⇒ { (112) }

x
R

⇀⇀y ⇔ x
R

⇀⇀x

We close this section by stating the theorem of lossless decomposition in the generic
context of definition 5.

Theorem 1 Given coreflexive relation A A
Too and projection functions x, y and z

such as in definition 5, multivalued dependence x
T

⇀⇀z y — as defined by (112,113,114) —
equivales lossless decomposition of projection πyz,xT into projections πy,xT and πy,xT .
That is,

x
T

⇀⇀z y ⇔ πyz,xT = (πy,xT) ⋊⋉ (πz,xT)

holds. Proof: it suffices to regard z as an arbitrary context in the calculation of (111) given
above. �

Our first comment about theorem 1 goes to the fact that it is stated and proved
free of the restrictions on x, y and z which are found in the literature, see eg. propo-
sition 2 in (Beeri et al., 1977) and theorem 7.1 in (Maier, 1983). Thus lossless de-
composition is far more general than it has been understood thus far.

In its standard, restricted format, Beeri et al. (1977) regard this result as “proba-
bly the most important single property of multi-valued dependencies”. The PF-restatement
of this theorem and proof fulfills the main target of this report, as purported by its

22Fagin (1977) was among the first to identify the relevance of context-dependency in
MVD reasoning.

33

title: we wanted to produce evidence that lossless decomposition is more general
that it has been regarded so far, in particular with respect to its extension to func-
tions and binary relations and to the freedom enjoyed by context z in definition
5.

Such a broader view of this classical result can be regarded as a kind of follow-
up of similar generalizations which occurred in the past. For instance, it is only
after section 8 that Fagin (1977) relaxes antecedent x and consequent y from being
disjoint.

Conversely, it is to be expected that not all standard MVD inference rules will
survive such a generalization, in particular those relying on attribute (set) dif-
ference. We will devote the following sections to (generic) MVD reasoning and
inference-rules not involving difference 23.

11 Calculating with (generic) MVDs

11.1 Limit cases

Let us start by calculating limit cases x
R

⇀⇀ ! and !
R

⇀⇀y, which correspond to MVDs
x→→ ∅ and ∅ →→ y in the standard theory (Maier, 1983). The former is the MVD
counterpart to (34):

x
R

⇀⇀ !

⇔ { ! ≤ x in (117) }

x
R

⇀⇀x

⇔ { (104) }

R ⊆ kerx

Thus, for coreflexive T , x
T

⇀⇀ ! always holds, since function kernels are reflexive.

Concerning !
T

⇀⇀z y, Maier (1983) shows (somewhat short-circuitously) that
any T satisfying this MVD must be the cross product of projections πyT and πzT . The
detailed calculation given below shows this to be an equivalence (and not just an
implication) and that T can be any endo-relation R:

!
R

⇀⇀z y

⇔ { (112) together with (41) and !y ≃ y ; shunting }

y ·R · ⊤ ·R · z◦ ⊆ y ·R · z◦

⇔ { equality ensured by circular inclusion, since R ⊆ R · ⊤ ·R for all R }

y ·R · ⊤ ·R · z◦ = y ·R · z◦

⇔ { (41) and fusion-law ! · f = ! for all f }

23How to suitably generalize attribute (set) difference to the FD and MVD definitions
given in this report is subject of ongoing research, see section 14.

34

y ·R · y◦ · ⊤ · z ·R · z◦ = y ·R · z◦

⇔ { (86) and definition of cross-product (22) }

πyyR⊗ πzzR = πyzR

Mapped back to the pointwise level, for R the coreflexive representing a n-ary
relation T , the last line of the reasoning above yields the expected

{t[y] | t ∈ T} × {t[z] | t ∈ T} = {(t[y], t[z]) | t ∈ T}

11.2 Monotonicity

From (112) we draw the MVD counterpart of (67) which follows

x ≤ x′ ≤ xy ∧ x
R

⇀⇀z y ∧ y′ ≤ xy ∧ z′ ≤ z ⇒ x′
R

⇀⇀z′ y
′ (119)

simply by solving a system of equations

kerx′ ⊆ kerx
kerxy ⊆ kerx′y′

ker z ⊆ ker z′
⇔

x ≤ x′ ≤ xy
y′ ≤ xy
z′ ≤ z

which altogether ensure x′
R

⇀⇀z′ y
′ from x

R

⇀⇀z y, thanks to monotonicity of compo-
sition.

From this we immediately generalize Proposition 1 in (Beeri et al., 1977) in a
way which is context free and dispenses with attribute difference and complemen-
tation:

x
R

⇀⇀yv ⇔ x
R

⇀⇀y ⇐ v ≤ x (120)

The equivalence is proved by circular implication:

x
R

⇀⇀y

⇒ { yv ≤ xy in (119) since v ≤ x, keeping antecedent and context }

x
R

⇀⇀yv

⇒ { y ≤ xyv in (119), still keeping antecedent and context }

x
R

⇀⇀y

Another immediate consequence of (119) is that context can always “shrink”
in MVDs:

x
R

⇀⇀z y ∧ z′ ≤ z ⇒ x
R

⇀⇀z′ y (121)

From (67) we know that consequents can always “shrink” in FDs. Does the
same happen with MVDs? Below we show that for this to hold in an MVD the
relation involved must be coreflexive,

T is coreflexive ∧ x
T

⇀⇀z y ∧ y′ ≤ y ⇒ x
T

⇀⇀z y
′ (122)

35

a fact which stems from an auxiliary result which ensures that, for R := T core-
flexive, context z and consequent y are interchangeable in definition 5:

x
T

⇀⇀z y ⇔ x
T

⇀⇀y z ⇐ T is coreflexive (123)

The proof of (123) goes as follows:

x
T

⇀⇀z y

⇔ { (116) ; expansion of xy after shunting }

〈x, y〉 · (ker (x · T ◦)) · z◦ ⊆ 〈x, y〉 · T · z◦

⇔ { “split twist” rule (154) ; converses }

〈x, z · ker (x · T ◦)〉 · y◦ ⊆ 〈x, z · T ◦〉 · y◦

⇔ { (161,153) since T is coreflexive and thus x · T ◦ is simple }

〈x, z〉 · ker (x · T ◦) · y◦ ⊆ 〈x, z〉 · T ◦ · y◦

⇔ { shunting and (116) }

x
T

⇀⇀y z

We are now in position to check (122) just by putting (123), (121) and (119) together:

x
T

⇀⇀z y ∧ y′ ≤ y

⇔ { (123) }

x
T

⇀⇀y z ∧ y′ ≤ y

⇒ { (119) }

x
T

⇀⇀y′ z

⇒ { (121) }

x
T

⇀⇀z y
′

It should be noted that (121) and (122) generalize Theorem 5 in (Fagin, 1977)
and that (123) can also be regarded as a generalization of rule MVD0 (Complemen-
tation) of (Beeri et al., 1977) to arbitrary x, y and z. (In the formulation of (Beeri
et al., 1977), constraint xyz ≃ id is implicit).

11.3 Handling context

Definition 5 imposes no constraints whatsoever to functions x, y and z apart from
well-typing according to diagram (103). So one may wonder about what happens
for particular instances of context z relative to antecedent x and consequent y.
Below we look at the special cases where z is as injective as x, y, ! and id.

Before we deal with these special cases, let us recall our observation in section
7.5 that discriminating functions beyond ≃-equivalence is irrelevant in reasoning

36

about data dependences. This happens because antecedent, consequent and con-
text functions participate in (112) as arguments of operator ker . This means that
such functions can always be substituted by other ≃-equivalent functions, cf. eg.

z ≃ z′ ⇒ (x
R

⇀⇀z y ⇔ x
R

⇀⇀z′ y) (124)

For its triviality, we consider case z ≃ ! in the first place:

x
R

⇀⇀! y

⇔ { (112) and (113) }

xy ·R · (kerx) ·R · !◦ ⊆ xy ·R · !◦

⇐ { monotonicity of composition }

(kerx) ·R · !◦ ⊆ !◦

⇔ { shunting ; (41) }

(kerx) ·R ⊆ ⊤

⇔ { every relation is below top }

TRUE

Case z ≃ x is also easy to handle:

x
R

⇀⇀x y

⇔ { (114) for z ≃ x }

(πxy,xR) · (πx,xR) ⊆ πxy,xR

⇐ { monotonicity of composition }

πx,xR ⊆ id

⇔ { (92) }

R ⊆ kerx

From this we draw that, for coreflexives, all MVDs with antecedent as injective as
context hold trivially.

Finally, we show that the remaining cases (z ≃ y and z ≃ id) boil down to

functional dependency x
T
⇀y, for T coreflexive. Concerning z ≃ y, we recall (107),

which abbreviates

x
T
⇀y ⇒ 〈∀ z :: x

T

⇀⇀z y〉

for T coreflexive. So, in particular,

x
T
⇀y ⇒ x

T

⇀⇀y y (125)

holds. Conversely,

x
T

⇀⇀y y ⇒ x
T
⇀y (126)

37

holds, cf.

x
T

⇀⇀y y

⇔ { (116) }

ker (x · T ◦) ⊆ (kerxy) · T · ker y

⇒ { y ≤ xy ; T ⊆ ker y ; monotonicity }

ker (x · T ◦) ⊆ ker y · ker y · ker y

⇔ { (26) twice }

ker (x · T ◦) ⊆ ker y

⇔ { (32) }

x
T
⇀y

(Noting that T · ker y ⊆ ker y is equivalent to T ⊆ ker y (28), we can say that the rea-
soning above expands to symmetric relations at most the kernel of the consequent
function y.) Putting (125, 126) together, we draw the equivalence

x
T

⇀⇀y y ⇔ x
T
⇀y (127)

which means that, wherever context is as injective as consequent in MVDs over
coreflexives, these degenerate to the corresponding FDs.

Finally, we deal with case z ≃ id (ie. z is injective) in MVDs over coreflexives:

x
T

⇀⇀id y

⇔ { ker id = id ; coreflexive T is symmetric (116) }

ker (x · T ◦) ⊆ (kerxy) · T

⇔ { closure property (20) }

ker (x · T ◦) ⊆ kerxy

⇔ { (33) }

x
T
⇀xy

⇔ { (76) and (70) }

x
T
⇀y

Therefore, equivalence

x
T

⇀⇀id y ⇔ x
T
⇀y

holds.

11.4 (Generic) inference rules for MVDs

We close the study of MVD inference rules in this report by discussing the general-
ization of the standard MVD axioms entailed by definition 5. As mentioned earlier

38

on, we do not consider rules which make difference of observations explicit — a
price to pay so far for the generalization, see section 14. We adopt Maier (1983)’s
enumeration and terminology:

• M1. Reflexivity: This has already been dealt with and generalized in (104),
(117) and (118).

• M2. Augmentation: Our (generic) version of this rule

x
T

⇀⇀zw y ⇒ xw
T

⇀⇀z y (128)

makes it explicit that the observation w which augments antecedent x can-
not be arbitrary: it must be “taken out” from the context (as happens in
the standard, set-theoretic approach). The calculation which underlies (128)
assumes T coreflexive:

x
T

⇀⇀zw y

⇔ { (112) }

T · (kerx) · T ⊆ (kerxy) · T · ker zw

⇒ { x ≤ xw }

T · (kerxw) · T ⊆ (kerxy) · T · ker zw

⇔ { T · (kerxw) · T ⊆ kerw since w ≤ xw and T is coreflexive }

T · (kerxw) · T ⊆ (kerw) ∩ ((kerxy) · T · ker zw)

⇔ { (43) since w ≤ zw }

T · (kerxw) · T ⊆ (kerw ∩ (kerxy) · T) · ker zw

⇔ { (148) since T is coreflexive }

T · (kerxw) · T ⊆ (kerxwy) · T · ker zw

⇔ { (112) }

xw
T

⇀⇀zw y

⇒ { (119) }

xw
T

⇀⇀z y

The version MVD2 of this rule given by Beeri et al. (1977) is written as fol-
lows in our notation

x
T

⇀⇀zw y ∧ v ≤ w ⇒ xw
T

⇀⇀z yv (129)

and is easily shown to stem from (128):

xw
T

⇀⇀z yv

⇔ { (119) under the assumption v ≤ w }

39

xw
T

⇀⇀z y

⇐ { (128) }

x
T

⇀⇀zw y

Is augmentation extensible to an arbitrary endo-relation R? Rule

w ≤ xy ∧ x
R

⇀⇀z y ⇒ xw
R

⇀⇀z y

follows from (119) in the same way (68) follows from (67). Clearly, the cost
of this generalization is a quite strong constraint on w.

• M3. Additivity: The interplay between consequents and contexts, which in
the standard presentation is “frozen” to context being the complement of
the union of antecedent and consequent, is particularly apparent from the
generic layout of this inference rule, which Beeri et al. (1977) term union:

x
T

⇀⇀z y ∧ x
T

⇀⇀zy w ⇒ x
T

⇀⇀z yw (130)

The calculation of (130) is based on auxiliary result (131) to follow shortly:

x
T

⇀⇀z y ∧ x
T

⇀⇀zy w

⇒ { augmentation (128) }

x
T

⇀⇀z y ∧ xy
T

⇀⇀z w

⇒ { (119) since yw ≤ xyw }

x
T

⇀⇀z y ∧ xy
T

⇀⇀z yw

⇒ { (131) below, since coreflexive T is cotransitive }

x
T

⇀⇀z yw

Finally, the auxiliary result assumed above

x
R

⇀⇀z y ∧ xy
R

⇀⇀z v ⇒ x
R

⇀⇀z v (131)

is an inference rule valid for every cotransitive relation R (ie. such that R ⊆

R ·R). To show this we first derive the following consequence of xy
R

⇀⇀z v:

xy
R

⇀⇀z v

⇔ { (112) }

R · (kerxy) ·R ⊆ (kerxyv) ·R · ker z

⇒ { xv ≤ xyv }

R · (kerxy) ·R ⊆ (kerxv) ·R · ker z

⇒ { monotonicity of (· ker z) followed by (26) }

R · (kerxy) ·R · ker z ⊆ (kerxv) ·R · ker z (132)

40

Then we take (132) into account in showing that x
R

⇀⇀z y entails x
R

⇀⇀z v:

x
R

⇀⇀z y

⇔ { (112) }

R · (kerx) ·R ⊆ (kerxy) ·R · ker z

⇒ { monotonicity of (R ·) }

R ·R · (kerx) ·R ⊆ R · (kerxy) ·R · ker z

⇒ { R assumed cotransitive }

R · (kerx) ·R ⊆ R · (kerxy) ·R · ker z

⇒ { (132) }

R · (kerx) ·R ⊆ (kerxv) ·R · ker z

⇔ { (112) }

x
R

⇀⇀z v

• M4. Projectivity: Putting (119) and (123) together, we obtain, for T coreflex-
ive:

x
T

⇀⇀z yw ⇒ x
T

⇀⇀z y ∧ x
T

⇀⇀z w (133)

cf.

x
T

⇀⇀z yw

⇔ { (123) }

x
T

⇀⇀yw z

⇒ { (119) twice, since y ≤ yw and w ≤ yw }

x
T

⇀⇀y z ∧ x
T

⇀⇀w z

⇔ { (123) twice }

x
T

⇀⇀z y ∧ x
T

⇀⇀z w

Rule (133) compares favorably to its standard formulation (Maier, 1983)
involving intersection and difference of y and z (regarded as “sets” of at-
tributes). It clearly shows the advantage of handling context z explicitly in
MVD reasoning.

• M5. Transitivity: See section 14.

• M6. Pseudo-transitivity: See section 14.

• M7. Complementation: Maier (1983) gives the complementation axiom

x
T

⇀⇀y ⇒ x
T

⇀⇀y (134)

41

as example of MVD axiom which has no FD counterpart. Clearly, (134) can
be recognized as an instance of our generic interchangeability rule (123) for
z := y. This rule, however, is an equivalence and not just an implication.
Although the rules of attribute complementation in (Maier, 1983) allow for
the inference of the equivalence by mutual implication, our reasoning es-
tablishes the general equivalence in one go thanks to the power of pointfree
equational reasoning when compared with traditional implication-first logic.

• C1. Replication: This has already been dealt with in (107). It can be ob-
served that in our calculation of (107), all steps but one (110) are equiva-
lences. Clearly, step (108) still holds for non-coreflexive relations provided
these are at most kerx, cf. (104). And step (109) still works for symmetric,
cotransitive relations, although the equivalence gives room to an implica-
tion 24.

All in all, we may say that the replication axiom extends to all symmetric,
cotransitive sub-relations of kerx. This singles out all pers at most kerx (an
equivalence relation) as a class of relations in which both FDs and MVDs
can be discussed as in the standard theory.

• C2. Coalescence: Our (generic) version of this inference rule

x
T

⇀⇀z y ∧ v
T
⇀w ∧ w ≤ y ∧ v ≤ z ⇒ x

T
⇀w

is calculated as follows, for T coreflexive:

x
T

⇀⇀z y

⇒ { (121) since v ≤ z }

x
T

⇀⇀v y

⇒ { (135) below is applicable since v
T
⇀w holds }

x
T

⇀⇀w y

⇒ { (122) since w ≤ y }

x
T

⇀⇀w w

⇔ { (127) }

x
T
⇀w

We are left with calculating the following rule, which is valid forR an arbitrary per
(partial equivalence relation), and therefore for any coreflexive T (recall figure 2):

x
R

⇀⇀z y ∧ z
R
⇀w ⇒ x

R

⇀⇀w y (135)

24This is due to (20), which holds as an implication when Φ is generalized to a cotransitive
relation.

42

We reason:

x
R

⇀⇀z y ∧ z
R
⇀w

⇔ { (112) and (32) }

R · (kerx) ·R ⊆ (kerxy) ·R · ker z ∧ R · (ker z) ·R◦ ⊆ kerw

⇒ { composition is monotonic (twice) }

R · (kerx) ·R ·R◦ ⊆ (kerxy) ·R · ker z ·R◦ ∧
(kerxy) ·R ·R · (ker z) ·R◦ ⊆ (kerxy) ·R · kerw

⇔ { R = R ·R = R ·R◦ since R is a per }

R · (kerx) ·R ⊆ (kerxy) ·R · ker z ·R◦ ∧
(kerxy) ·R · (ker z) ·R◦ ⊆ (kerxy) ·R · kerw

⇒ { ⊆-transitivity }

R · (kerx) ·R ⊆ (kerxy) ·R · kerw

⇔ { (112) }

x
R

⇀⇀w y

12 Epilogue

In its original set-theoretic setting, the equivalence between lossless decomposi-
tion and MVDs has been known for thirty years. So, what has been gained with
its (pointfree) re-statement presented in the current report, after all?

If we compare our calculations with earlier expressions of the same results
— see eg. (Fagin, 1977) and (Beeri et al., 1977) — it is clear that a sheer amount
of detail was overlooked in their short-circuitous, almost telegram-like proofs,
which were trusted on the basis of an almost informal common understanding
of naı̈ve set theory. This includes the use of two, seemingly equivalent, definitions
for MVD, one universally quantified over pairs of tuples (4) and the other univer-
sally quantified over data values (5) and based on a set-valued function. While
the latter is typical of earlier publications in the field (eg. (Fagin, 1977; Beeri et al.,
1977)), the former is favored in textbooks such as Maier’s (1983).

No dedicated proof has been produced — to the best of the author’s knowl-
edge — of the equivalence between these definitions. We close this report by calcu-
lating this equivalence as an exercise in relational transposition, a device commonly
used in the PF-relational calculus. The main ingredient behind transposition is the
fact that every binary relation R can be converted into a (set-valued) function ΛR
via the power-transpose isomorphism (Bird and de Moor, 1997) defined by universal
property

f = Λ R ⇔ (bRa ⇔ b ∈ f a) (136)

This means that any set-valued function (eg. Y in definition 3) can be regarded as
the power-transpose of some binary relation. Substitution f := Λ R in (136) yields
the so-called Λ-cancellation law b ∈ (ΛR)a ⇔ bRa , that is,

∈ · (ΛR) = R (137)

43

which means that (ΛR)a yields exactly the set of all b which R relates to a.
The theory behind relation transposition can be found in eg. (Bird and de Moor,

1997; Oliveira and Rodrigues, 2004). For our purposes below, it is enough to record
the following property of the power-transpose 25:

R · δ S = S ⇔ ΛR · δ S ⊆ ΛS (138)

Our proof below of the equivalence between the two MVD definitions is, for
coreflexive relations, a calculation which re-writes Maier’s definition (1983) into
(Beeri et al., 1977)’s:

x
T

⇀⇀z y

⇔ { (123) since T is coreflexive }

x
T

⇀⇀y z

⇔ { (106) }

(πy,xT) · π1 · δ (πy,xzT) = πy,xzT (139)

⇔ { (138) }

Λ(πy,xT · π1) · δ (πy,xzT) ⊆ Λ(πy,xzT)

⇔ { Λ(R · f) = (ΛR) · f ; then introduce γg,fT = Λ(πg,fT) }

(γy,xT) · π1 · δ (πy,xzT) ⊆ γy,xzT

⇔ { shunting (23), since γy,xT · π1 is a function ; δ (πy,xzT) = img(xz · T) }

img(xz · T) ⊆ (γy,xT · π1)
◦ · γy,xzT

⇔ { go pointwise noting that, for T coreflexive, xz · T is simple ; (30) }

〈∀ k : k img (xz · T) k : (γy,xT · π1)k = (γy,xzT)k〉

⇔ { (143) }

〈∀ k : 〈∃ t : t ∈ T : (xz t) = k〉 : (γy,xT · π1)k = (γy,xzT)k〉

⇔ { rename k := (b, a) and simplify }

〈∀ a, b : 〈∃ t : t ∈ T : xz t = (a, b)〉 : (γy,xT) a = (γy,xzT)(a, b)〉

We thus reach (5), the only difference being that function Y is generalized to

γg,f = Λ · πg,f (140)

which is nothing but the power-transpose of a projection (86). So, while Y groups
y-values only, γ’s two parameters cater for any such groups of values:

(γg,fR)a = {g b | 〈∃ a : : b R a ∧ c = f a〉}

25This follows from exercise 4.48 in (Bird and de Moor, 1997).

44

13 Conclusions

This report puts forward a generalization of data dependency theory, the kernel
of relational database design “à la Codd”. Contrary to the intuition that a binary
relation is just a particular case of n-ary relation, the report shows the effectiveness
of the former in “explaining” and reasoning about the latter. It turns out that the
theory becomes more general, better layered and more algebraic.

The adoption of the pointfree binary relation calculus is beneficial in several
respects. First, pointfree notation abstracts from “points” or variables and makes
the reasoning more compact and effective. Elegant formulæ such as eg. (44) —
when compared with eg. (3) — come in support of this claim. Second, proofs are
performed by easy-to-follow calculations in a “let the symbols do the work” reason-
ing style, reminiscent of school algebra.

It is the author’s belief that this change in reasoning style is essential to data de-
pendency theory “refactoring” as a whole, so as to meet current standards on proof
by calculation (Bird and de Moor, 1997; Boute, 2003; Backhouse, 2004; Oliveira,
2008) and the original research aims of its pioneers, as expressed by Beeri et al.
(1977) three decades ago: a general theory that ties together dependencies, relations and
operations on relations is still lacking. Surely, the whole theory has advanced enor-
mously in the thirty years which separate us today from the times of such highly
innovative work. But the expected general theory has not yet become available
because its kernel concepts have been kept too specific.

In the current report, one gets closer to such research aims by generalizing the
original FD/MVD theory in two main directions: sets of tuples become binary re-
lations and attributes generalize to arbitrary (suitably typed) functions. Awareness
of function injectivity as being what matters in FD reasoning is another outcome of
the generalization.

In retrospect, the use of coreflexive relations to model sets of tuples and pred-
icates as binary relations is perhaps the main ingredient of the simplification and
subsequent generalization. (The role of coreflexives as inspiring devices for point-
free transforming standard results in set theory can be observed elsewhere, eg. in
(Oliveira and Rodrigues, 2004) concerning pointfree models of hash tables and most
notably in (Doornbos et al., 1997) concerning well-foundedness and induction.)

To the best of our knowledge, this report presents the first comprehensive
study of PF-transformed data dependency theory. Our main conclusion is that
this theory would have been built perhaps rather differently should it be based on
such a transformation in the first place. It is the complexity of formulæ (3) and (4)
that led database theorists to invest solely into an axiomatic theory based on infer-
ence rules, closures of sets of dependencies and so on, instead of calculating directly
from the definitions themselves, as we have shown it can be done once the latter
are PF-transformed. We hope this launches a new approach in the field where new
intuitions can be gathered simply by looking at PF-formulæ and their patterns.

But — in a sense — our contribution is still more qualitative than quantitative,
as much work remains to be done. In the section which follows we browse a
number of topics for research which we feel pointfree data dependency theory
brings about. The lemma is to capitalize on the genericity and algebraic flavor of
the approach and find synergies with other branches of computer science.

45

14 Related and future work

Foundational work FD-generalization opens paths for fresh developments, as
is the case of results of functional programming theory which can be related to
data dependency theory. For instance, injective functions are easily shown to be
left-cancellable in a FD,

x
R
⇀y ⇔ f · x

R
⇀f · y ⇐ f is injective

and the monotonicity of a parametric type F (relator) (Backhouse et al., 1992) with
respect to the injectivity preorder (see equation (169) in the appendix) leads to
structural FDs:

x
R
⇀y ⇔ Fx

FR
⇀ Fy

Moreover, positive impact of such a generic FD theory can be expected on the
foundations of the current use of the functional dependency concept in type level
functional programming (Hallgren, 2001; Duck et al., 2004). For instance, FDs are
used by Silva and Visser (2006) both at the meta level (as a mechanism underlying
multiple parameter type classes in the Haskell type system) and at the target level,
where a strongly typed database model is defined.

At the level of the PF-transform itself, our notion of kernel of a binary relation
may look simplistic when compared to that adopted by Gibbons (2003), which
applies to arbitrary relations the greatest extension of a per (partial equivalence re-
lation) studied by Voermans (1999). This extension ensures kernels as equivalence
relations (thus entire and reflexive) but is less agile and sacrifices some of the con-
ceptual economy of our approach. Advantages of going in this direction need to
be properly evaluated. Anyway, both approaches coincide on functions.

Another interesting topic at foundational level is the connection between bi-
nary relation projection and Reynolds “relation on functions” expressed by (90).
This is worth studying in more detail, taking into consideration the corresponding
point-free theory already developed by Backhouse and Backhouse (2004).

Last but not least, our approach should be related to the τ -category theory of
relations given by Freyd and Scedrov (1990) based on monic n-tuples. Concepts
such as table, column, short column etc. fit into the spirit of pointfree data depen-
dency (and database) theory and should be carefully studied in this context.

MVD generalization Our experiments in generalizing data-dependency the-
ory via the PF-transform show that, while FD theory broadens scope in a rather
smooth way, MVD theory is not as straightforward to generalize. This is because it
is not obvious how to extend attribute set intersection and difference to the generic
view where such attributes become arbitrary functions. This is why two axioms
were left out in section 11.4 which explicitly involve attribute set difference. Al-
though related to the concept of function complement (58), a suitable notion of dif-
ference f − g of two functions f and g with respect to the injectivity preorder (39)
is not easy to define (Oliveira, 2006).

B

y

��

A
Roo

xz

��
Y X × Z

πy,xzRoo

δ πz,yR

��
X × Z

π1

��
X

πy,xR

YY4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

An alternative way to generalization could be taking
the PF-version of the MVD definition given by Beeri et al.
(1977), as captured by (139), as starting point. In fact, the
type diagram of (139) displayed aside allows for a general

46

binary relation R when compared to the endorelation of
(103).

Summing up, (generic) MVD theory requires further re-
search and a new evaluation as a whole, once more definite
(generic) results are obtained and the issues of soundness
and completeness are thoroughly re-evaluated. This should
include generalizing other kinds of data dependency — eg.
difunctional dependencies (Jaoua et al., 2004) — which have
not been dealt with at all in the current report.

Incomplete information Besides pointfree coverage of normal forms (Maier,
1983), null-values and partial information present another challenge, whereby an-
tecedent and consequent functions of FD/MVDs become partial (ie. pure func-
tions give place to simple relations). At first sight, transposition (136) has potential
to map this new situation back to the one already dealt with in the current report,
but semantically things are not that straightforward, as Maier (1983) takes some
time to explain. The definition of functional dependence with nulls given by Lien
(1982) PF-translates to

R · kerX ·R◦ ⊆ ker (ΛY)

where antecedent X and consequent Y are demoted to simple relations. Levene
and Loizou (1998) provide an interesting update on FDs with nulls by letting two
(dual) approaches to partial information coexist: strong FDs and weak FDs. Both are
defined in a modal style relying on all possible completions (“worlds”) of a given
incomplete relation R. In our PF approach this means keeping R and completing
the antecedent and consequent of the given (partial) FD:

• Strong semantics:

〈∀ f, g : X ⊆ f ∧ Y ⊆ g : f
R
⇀ g〉

• Weak semantics:

〈∃ f, g : X ⊆ f ∧ Y ⊆ g : f
R
⇀ g〉

XML Functional dependencies have also been defined for XML documents. Vin-
cent et al. (2007) address the equivalence between FDs in XML and relational FDs
using the so called closest node approach. Another way of relating both kinds of
FD relies on tree tuples, which are “flattened” representations of XML documents
mapping paths allowed by the relevant type definition (DTD) to nodes in the cor-
responding XML tree. Both approaches are quite complex notation-wise and can
benefit from the generality of the PF-transform taking into account treatment of
similar nested structures such as hierarchical file systems as given in (Oliveira,
2009a).

Synergies with other theories Last but not least, we find that the more generic
data dependency theory becomes, the more synergies will be found between clas-
sical database theory and computer science in general 26, hopefully blending ev-
erything into a unified framework. For instance, the upper-adjoint of (87) is of

26And discrete maths, recall (64,65) in section 7.4.

47

interest to reference (Barbosa et al., 2008) in developing a PF approach to bisimu-
lations and invariants, in a coalgebraic setting. This shows a connection between
the (apparently remote) fields of database design and automata (transition sys-
tems) which includes FDs holding for special classes of bisimulation, for instance.

Another synergy arises when comparing PF-transformed FDs and PF-transformed
proof obligations capturing (extended) type-checking (ESC) as studied in (Oliveira,

2009a), where arrow notation Φ
f // Ψ is adopted to mean that a given function

f ensures post-condition Ψ once pre-conditioned by Φ. The analogy with FDs is
apparent from fact

Φ
f // Ψ ⇔ Ψ · f ≤ Φ

cf. (44). So functions and coreflexives swap places when compared with ESC ar-
rows. The parallel between the FD-calculus and the ESC-calculus is well appar-
ent by putting the rules of both calculi side by side. For instance, the weaken-
ing/strengthening rule of the latter (Oliveira, 2009a)

Φ
f // Ψ ⇐ Φ ⊆ Υ ∧ Υ

f // Θ ∧ Θ ⊆ Ψ

has the same “shape” of decomposition rule (67) given in this report. Our conclu-
sion is that functional dependencies form a type system (Naik and Palsberg, 2005)
for relational databases, a view which, barely implicit in the standard theory, is
detailed in (Oliveira, 2009b).

Our current interests include yet another such synergy: the use of FDs to
record and reason about software model properties in formal modeling. For in-
stance, the invariant on the explosives store controller model of (Fitzgerald and
Larsen, 1998) imposing that stores have unique names within sites is of course a
FD, and many other examples abound in the literature of similar FDs embedded
in formal models. Quite often, FDs arise as invariants in data refinement. For ex-
ample, simple relations of type B ↼ A are often refined into association lists of
type (B ×A)⋆ subject to an invariant preventing duplication of ‘keys’ of type A.
This invariant can be easily shown to be an FD, once every such list of pairs l is

represented by simple relation B ×A N
Loo telling which pair takes which po-

sition in list. Relation π1 · ρL · π
◦
2 relates all A and B recorded in L. Checking the

simplicity of this relation easily yields FD π2
ρL
⇀ π1.

Also interesting would be to study invariants such as that implicit in the uni-
versal expression tree datatype (see eg. (Oliveira, 2004)) imposing that at every node
of a given expression tree, the number of sub-trees is functionally dependent on
the associated operator symbol arity, for instance. Recursive invariants of this
kind can be regarded as inductive FDs, a concept which, only hinted at by Necco
and Oliveira (2002), deserves attention.

Our final hint for future research has to do with the Algebra of Programming
itself, where we started from: Bird and de Moor (1997) present the following spec-
ification of sorting

Sort
def
= JorderedK · ker bagify

where bagify is the function mentioned in section 7.4 and ordered is the predi-
cate which tests whether a finite list is ordered wrt. some pre-defined (usually lin-
ear) order. Clearly, Sort is below ker bagify and therefore satisfies FD-reflexivity

48

bagify
Sort
⇀ bagify, thanks to (82). This example drives attention to specs which are

at most the kernel of a given function, a pattern of practical interest which we have
seen emerging from a number of inference rules in this report. In particular, such
specs can be partial equivalence relations (pers). The fact perceived in the current
report that most inference rules of standard data dependency theory extend from
coreflexives (sets of tuples) to pers on arbitrary data domains is interesting: it tal-
lies with the view expressed by Voermans (1999) that datatypes are better viewed
as pers (data sets “quotiented” by sets of axioms which create equalities among
their elements) than as coreflexives (data sets obeying particular data type invari-
ants). Studying this extension in detail can be a promising way of freeing standard
data dependency theory from its original relational database context.

Acknowledgements

The work reported in this report has been carried out in the context of the PURE

Project (Program Understanding and Re-engineering: Calculi and Applications) funded
by FCT (the Portuguese Science and Technology Foundation) under contract POSI/ICHS/44304/2002 .
It has been the subject of several presentations, the first one at the CAFEPURE sem-
inar series (Oliveira, 2005) and the last at the IFIP WG 2.1 #62 Meeting in Namur,
Belgium (Oliveira, 2006). Subsequent exchange of ideas with Jan van den Bussche,
Zhenjiang Hu, Jeremy Gibbons, Joost Visser, Claudia Necco and Alexandra Silva
are gratefully acknowledged.

References

C. Aarts, R.C. Backhouse, P. Hoogendijk, E.Voermans, and J. van der
Woude. A relational theory of datatypes, December 1992. Available from
www.cs.nott.ac.uk/˜rcb .

T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira. Strategic term rewriting and its
application to a VDM-SL to SQL conversion. In FM’05, volume 3582 of LNCS,
pages 399–414. Springer-Verlag, 2005.

American National Standards Institute and International Organization for Stan-
dardization. American National Standard programming language COBOL, approved
May 10, 1974: ANSI X3.23-1974: revision of X3.23-1968, volume 21-1 of Federal
Information Processing Standards publication. American National Standards Insti-
tute, 1430 Broadway, New York, NY 10018, USA, 1974.

K. Backhouse and R.C. Backhouse. Safety of abstract interpretations for free, via
logical relations and Galois connections. SCP, 15(1–2):153–196, 2004.

R.C. Backhouse. Mathematics of Program Construction. Univ. of Nottingham, 2004.
Draft of book in preparation. 608 pages.

R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and
J. van der Woude. Polynomial relators. In AMAST’91, pages 303–362. Springer,
1992.

J. Backus. Can programming be liberated from the von Neumann style? a func-
tional style and its algebra of programs. CACM, 21(8):613–639, August 1978.

49

L.S. Barbosa, J.N. Oliveira, and A.M. Silva. Calculating Invariants as Coreflexive
Bisimulations. In AMAST’08, volume 5140 of LNCS, pages 83–99. Springer-
Verlag, 2008.

C. Beeri, R. Fagin, and J.H. Howard. A complete axiomatization for functional and
multivalued dependencies in database relations. In D.C.P. Smith, editor, Proc.
1977 ACM SIGMOD, Toronto, pages 47–61, New York, NY, USA, 1977. ACM.

R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science.
Prentice-Hall International, 1997. C.A.R. Hoare, series editor.

G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User Guide.
Addison Wesley Longman, Inc., 1999. ISBN 0-201-57168-4.

R. Boute. Concrete generic functionals: Principles, design and applications. In
Jeremy Gibbons and Johan Jeuring, editors, Generic Programming, pages 89–119.
Kluwer, 2003.

J. Bussche. Applications of Alfred Tarski’s ideas in database theory. In CSL ’01:
Proceedings of the 15th International Workshop on Computer Science Logic, pages
20–37, London, UK, 2001. Springer-Verlag. ISBN 3-540-42554-3.

P.P. Chen. The entity-relationship model: toward a unified view of data.
ACM Trans. Database Syst., 1(1):9–36, 1976. ISSN 0362-5915. doi:
http://doi.acm.org/10.1145/320434.320440.

E.F. Codd. A relational model of data for large shared data banks. CACM, 13(6):
377–387, June 1970.

E.F. Codd. The Relational Model for Database Management: Version 2. Addison Wesley
Publishing Company, 2nd edition, 1990. ISBN 0-201-14192-2.

A. Cunha, J.N. Oliveira, and J. Visser. Type-safe two-level data transformation. In
FM’06 , volume 4085 of LNCS, pages 284–299. Springer-Verlag, Aug. 2006.

H. Doornbos, R. Backhouse, and J. van der Woude. A calculational approach to
mathematical induction. Theoretical Computer Science, 179(1–2):103–135, 1997.
ISSN 0304-3975. doi: 10.1016/S0304-3975(96)00154-5.

G.J. Duck, S.L. Peyton Jones, P.J. Stuckey, and M. Sulzmann. Sound and decidable
type inference for functional dependencies. In David A. Schmidt, editor, ESOP,
volume 2986 of LNCS, pages 49–63. Springer, 2004. ISBN 3-540-21313-9.

R. Fagin. Multivalued dependencies and a new normal form for relational
databases. ACM Trans. Database Syst., 2(3):262–278, 1977. ISSN 0362-5915. doi:
http://doi.acm.org/10.1145/320557.320571.

S. Feferman. Tarski’s influence on computer science. Logical Methods in Computer
Science, 2:1–1–13, 2006. doi: 10.2168/LMCS-2(3:6)2006.

J. Fitzgerald and P.G. Larsen. Modelling Systems: Practical Tools and Techniques
for Software Development . Cambridge University Press, 1st edition, 1998.

50

P.J. Freyd and A. Scedrov. Categories, Allegories, volume 39 of Mathematical Library.
North-Holland, 1990.

H. Garcia-Molina, J.D. Ullman, and J.D. Widom. Database Systems: The Complete
Book. Prentice Hall, 2002. ISBN: 0-13-031995-3.

J. Gibbons. When is a function a fold or an unfold?, 2003. Working document 833
FAV-12 available from the website of IFIP WG 2.1, 57th meeting, New York City,
USA.

S. Givant. The calculus of relations as a foundation for mathemat-
ics. J. Autom. Reasoning, 37(4):277–322, 2006. ISSN 0168-7433. doi:
http://dx.doi.org/10.1007/s10817-006-9062-x.

T. Hallgren. Fun with data dependencies. In Proc. of the Joint CS/CE Winter Meeting,
pages 135–145. DCS of Chalmers Götebord University, 2001.

P. Hoogendijk. A Generic Theory of Data Types. PhD thesis, Univ. of Eindhoven, The
Netherlands, 1997.

International Organization for Standardization. ISO/IEC 13817-1:1996: Information
technology — Programming languages, their environments and system software in-
terfaces — Vienna Development Method — Specification Language — Part 1: Base
language. International Organization for Standardization, Geneva, Switzerland,
1996.

ISO. Information technology – database languages – SQL, Nov. 1992. Reference
number ISO/IEC 9075:1992(E).

A. Jaoua, S. Elloumi, A. Hasnah, J. Jaam, and I. Nafkha. Discovering Regularities
in Databases Using Canonical Decomposition of Binary Relations. JoRMiCS, 1:
217–234, 2004.

C.B. Jones, T.N. Nipkow, and M. Wolczko. MDB: A graph-like persistent database.
In Data Types and Persistence (Appin), Informal Proceedings, pages 25–34, 1985.

M.P. Jones. Type classes with functional dependencies. In Gert Smolka, editor,
Programming Languages and Systems, 9th European Symposium on Programming,
ESOP 2000, Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings,
volume 1782 of LNCS, pages 230–244. Springer, 2000. ISBN 3-540-67262-1.

W. Kahl. Semigroupoid interfaces for relation-algebraic programming in Haskell.
In RelMiCS’06, volume 4136 of Lecture Notes in Computer Science, pages 235–250.
Springer, 2006.

Akihiro Kanamori. The empty set, the singleton, and the ordered pair. The Bulletin
of Symbolic Logic, 9(3):273–298, 2003.

P.C. Kanellakis. Elements of relational database theory. Handbook of theoretical
computer science: formal models and semantics, B:1073–1156, 1990.

E. Kreyszig. Advanced Engineering Mathematics. J. Wiley & Sons, 6th edition, 1988.

51

M. Levene and G. Loizou. Axiomatisation of functional dependencies in incom-
plete relations. Theor. Comput. Sci., 206(1-2):283–300, 1998.

Y.E. Lien. On the equivalence of database models. J. ACM, 29(2):333–362, 1982.
ISSN 0004-5411. doi: http://doi.acm.org/10.1145/322307.322311.

R.D. Maddux. The origin of relation algebras in the development and axiomatiza-
tion of the calculus of relations. Studia Logica, 50:421–455, 1991.

D. Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN
0-914894-42-0.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirectionalization
transformation based on automatic derivation of view complement functions,
2007. 12th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP 2007), Freiburg, Germany, October 1-3.

S.-C. Mu and R.S. Bird. Inverting functions as folds. In Eerke Boiten and Bernhard
Möller, editors, Sixth International Conference on Mathematics of Program Construc-
tion, number 2386 in LNCS, pages 209–232. Springer-Verlag, July 2002. URL
citeseer.ist.psu.edu/mu02inverting.html .

M. Naik and J. Palsberg. A type system equivalent to a model checker. In ESOP,
volume 3444 of Lecture Notes in Computer Science, pages 374–388. Springer, 2005.
ISBN 3-540-25435-8.

C. Necco and J.N. Oliveira. Generic data processing: A normalization exercise. In
CACIC’02 , pages 751–761, October 2002. 8th Argentinian Computer Science
Congress, Univ. Buenos Aires, 15-18th October.

J.N. Oliveira. Invited paper: Software Reification using the SETS Calculus. In
Tim Denvir, Cliff B. Jones, and Roger C. Shaw, editors, Proc. of the BCS FACS 5th
Refinement Workshop, Theory and Practice of Formal Software Development, London,
UK, pages 140–171. Springer-Verlag, 8–10 January 1992.

J.N. Oliveira. Calculate databases with ‘simplicity’, September 2004. Presentation
at the IFIP WG 2.1 #59 Meeting, Nottingham, UK. (Slides available from the
author’s website.).

J.N. Oliveira. Functional dependency theory made ’simpler’. Techni-
cal Report DI-PURe-05.01.01, DI/CCTC, University of Minho, Gual-
tar Campus, Braga, 2005. PUReCafé, 2005.01.18 [talk]; available from
http://wiki.di.uminho.pt/twiki/bin/view/Research/PU Re/PUReCafe .

J.N. Oliveira. Data dependency theory made generic — by calculation, December
2006. Presentation at the IFIP WG 2.1 #62 Meeting, Namur, Belgium. (Joint work
with A. Silva and L.S. Barbosa. Slides available from the author’s website).

J.N. Oliveira. Transforming Data by Calculation. In GTTSE’07, volume 5235 of
LNCS, pages 134–195. Springer, 2008.

J.N. Oliveira. Extended Static Checking by Calculation using the Pointfree Trans-
form . In A. Bove et al., editor, LerNet ALFA Summer School 2008, volume 5520 of
LNCS, pages 195–251. Springer-Verlag, 2009a.

52

J.N. Oliveira. Functional dependencies: the under-appreciated type system of re-
lational databases, 2009b. (In preparation).

J.N. Oliveira and C.J. Rodrigues. Transposing relations: from Maybe functions to
hash tables. In MPC’04, volume 3125 of LNCS, pages 334–356. Springer, 2004.

P. O’Neil and E. O’Neil. Database (2nd ed.): principles, programming, and perfor-
mance. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001. ISBN
1-55860-438-3.

V. Pratt. Origins of the calculus of binary relations. In Proc. of the 7th Annual IEEE
Symp. on Logic in Computer Science, pages 248–254, Santa Cruz, CA, 1992. IEEE
Comp. Soc.

A. Silva and J. Visser. Functional pearl: Strong types for relational databases. In
Proc. of the ACM SIGPLAN 2006 Haskell Workshop, pages 25–37. ACM, September
2006. ISBN: 1-59593-489-8.

A. Tarski and S. Givant. A Formalization of Set Theory without Variables. American
Mathematical Society, 1987. ISBN 0821810413. AMS Colloquium Publications,
volume 41, Providence, Rhode Island.

J.D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, 1988.

P.A.S. Veloso and A.M. Haeberer. A finitary relational algebra for classical first-
order logic. Bulletin of the Section of Logic, 20:52–62, 1991.

M.W. Vincent, J. Liu, and M.K. Mohania. On the equivalence between FDs in XML
and FDs in relations. Acta Inf., 44(3-4):207–247, 2007.

T.S. Voermans. Inductive Datatypes with Laws and Subtyping — A Relational Model.
PhD thesis, University of Eindhoven, The Netherlands, 1999.

A. Welsh. Formal methods for database language design and constraint handling.
IEEE Software Engineering Journal, 4(1):15–24, January 1989.

APPENDIX

A Guarded inclusion and composition

The following two rules of the pointfree transform generalize standard relational
inclusion and composition by addition of coreflexive relations which internalize
constraints or logical guards:

Given two binary relations B A
R,Soo and two predicates 2 A

ψoo and

2 B
φoo (coreflexively denoted by Ψ and Φ, respectively), then

〈∀ b, a : (φ b) ∧ (ψ a) : b R a⇒ b S a〉 ⇔ Φ ·R ·Ψ ⊆ S (141)

�

53

Clearly, (17) instantiates (141) for Φ = Ψ = id. Concerning (guarded) composition,
we have:

Given two binary relations B A
Roo and A C

Soo and predicate φ

(coreflexively denoted by A A
Φoo), we have that, for all b, c

〈∃ a : φ a : b R a ∧ a Sc〉 ⇔ b(R · Φ · S)c (142)

holds and extends relational composition (for Φ = id we are back to R · S).
�

For R a function f in (142) and S its converse, one obtains the image of pre-
conditioned f · Φ (a coreflexive):

b(f · Φ · f◦)c ⇔ b(img (f · Φ))c

⇔ b = c ∧ 〈∃ a : φ a : b = f a〉 (143)

B Some properties of relational meet

Backhouse (2004) infers the following distribution properties

R · (S ∩ T) = (R · S) ∩ (R · T) ⇐ (kerR) · S ⊆ S ∨ (kerR) · T ⊆ T (144)

(T ∩ S) · U = (T · U) ∩ (S · U) ⇐ T · imgU ⊆ T ∨ S · imgU ⊆ S (145)

from the so-called modular identity rule

R ∩ (S · T) ⊆ ((R · T ◦) ∩ S) · T (146)

also known as the Dedekind rule. Among other consequences of (146) we find

〈∀ S, T :: R · S ∩ T = R · (S ∩ T)〉 ⇔ R ⊆ id (147)

in the same reference.
Our rule (43) is an instance of

R ∩ (S · T) = (R ∩ S) · T ⇐ T ⊆ R and R symmetric and transitive (148)

which is another, obvious consequence of (146), easy to prove by mutual inclusion:

R ∩ (S · T)

⊆ { (146) }

((R · T ◦) ∩ S) · T

⊆ { T ⊆ R is assumed }

((R ·R◦) ∩ S) · T

⊆ { R assumed symmetric and transitive }

(R ∩ S) · T

⊆ { monotonicity of composition }

54

R · T ∩ S · T

⊆ { T ⊆ R again ; monotonicity of composition }

R ·R ∩ S · T

⊆ { R assumed transitive }

R ∩ (S · T)

C Some properties of relational “split”

Relational split is a special case of meet, as can be checked by PF-transforming (47):

〈R,S〉 = π◦
1 ·R ∩ π

◦
2 · S (149)

Together with (145), (149) leads straight to (guarded) ×-fusion (96) and, in turn, to
the following corollaries of×-fusion (96): fusion takes place wherever T is simple,

〈R,S〉 · T = 〈R · T, S · T 〉 ⇐ T is simple (150)

and wherever R (or S) is simple and T is its converse,

〈R,S〉 ·R◦ = 〈imgR,S ·R◦〉 ⇐ R is simple (151)

〈R,S〉 · S◦ = 〈R · S◦, imgS〉 ⇐ S is simple (152)

Together with (147), (149) leads straight to the following “split” pre-conditioning
rule

〈R,S〉 · Φ = 〈R,S · Φ〉 (153)

for Φ coreflexive, which is required in a step of the proof of lossless decomposition
(111) and is easy to justify:

〈R,S〉 · Φ = 〈R,S · Φ〉

⇔ { (149) }

(π◦
1 ·R ∩ π

◦
2 · S) · Φ = π◦

1 ·R ∩ π
◦
2 · S · Φ

⇔ { converses and commutativity }

Φ · (S◦ · π2 ∩R
◦ · π1) = (Φ · S◦ · π2) ∩ (R◦ · π1)

⇐ { (147) }

Φ ⊆ id

C.1 The “split twist” rule

Another step of the proof of lossless decomposition (111) is based on the following
equivalence,

〈R,S〉 ⊆ 〈U, V 〉 ·X ⇔ 〈R, id〉 · S◦ ⊆ 〈U,X◦〉 · V ◦ (154)

itself a consequence of

〈R,S〉 · T ⊆ 〈U, V 〉 ·X ⇔ 〈R, T ◦〉 · S◦ ⊆ 〈U,X◦〉 · V ◦ (155)

55

for T := id. In order to prove (155), we reason in terms of universally quantified
points x, y and z:

(y, z) (〈R,S〉 · T) x

⇔ { composition and split (47) }

〈∃ u :: y R u ∧ z S u ∧ u T x〉

⇔ { converses }

〈∃ u :: y R u ∧ x T ◦ u ∧ u S◦ z〉

⇔ { split and composition again }

(y, x) (〈R, T ◦〉 · S◦) z

Similarly,

(y, z) 〈U, V 〉 ·X x ⇔ (y, x) 〈U,X◦〉 · V ◦ z

Therefore:

(y, z) (〈R,S〉 · T) x⇒ (y, z) 〈U, V 〉 ·X x

⇔ { logical implication is a congruence }

(y, x) (〈R, T ◦〉 · S◦) z⇒ (y, x) 〈U,X◦〉 · V ◦ z

holds, which shrinks to (155) once points are dropped.

C.2 “Splits” involving difunctional relations

A relation S is difunctional iff S · S◦ · S = S holds (Bird and de Moor, 1997; Jaoua
et al., 2004). This is equivalent to S · S◦ · S ⊆ S since S ⊆ S · S◦ · S holds for every
S (Bird and de Moor, 1997; Backhouse, 2004).

Two extreme instances of difunctional relations are⊤ and⊥. That every simple
relation is difunctional is easy to check: it only requires relaxing function f in the
shunting rules (23, 24) to a simple relation S, leading to equivalences (Mu and Bird,
2002)

S ·R ⊆ T ⇔ (δ S) ·R ⊆ S◦ · T (156)

R · S◦ ⊆ T ⇔ R · δ S ⊆ T · S (157)

which, albeit similar to (23, 24), are not Galois connections. These rules involve
the δ (domain) operator, which satisfies properties

δ R = kerR ∩ id (158)

R · δ R = R (159)

among many others not used in this report 27. The calculation of S · S◦ · S ⊆ S for
simple S follows:

S · S◦ · S ⊆ S

27See eg. (Bird and de Moor, 1997; Backhouse, 2004) for details.

56

⇔ { converses }

S◦ · S · S◦ ⊆ S◦

⇔ { (156) }

S◦ · S · δ S ⊆ S◦ · S

⇔ { (159) }

S◦ · S ⊆ S◦ · S

⇔ { trivial }

TRUE

Therefore, functions are (as expected) difunctional, as are coreflexives, which are
also simple.

A trivial monotonicity argument will show that symmetry and transitivity en-
tail difunctionality. So partial equivalence relations (pers in figure 2) also belong
to the class of difunctional relations. It is also easy to show that kernels of difunc-
tional relations are transitive and cotransitive at the same time,

kerS · kerS = kerS ⇐ S is difunctional (160)

In the case of functions, difunctionality combines with shunting (23, 24) and leads
to (28, 29). The calculation of (28) is as follows (that of (29) can be obtained by
taking converses):

S ⊆ (ker f) ·R

⇔ { (23) }

f · S ⊆ f ·R

⇔ { (25) }

f · f◦ · f · S ⊆ f ·R

⇔ { (23) }

f◦ · f · S ⊆ f◦ · f ·R

⇔ { (11) }

(ker f) · S ⊆ (ker f) ·R

The following equality holds for difunctional S

〈S,R · kerS〉 = 〈S,R〉 · kerS (161)

cf.

〈S,R〉 · S◦ · S

= { (96) since S is difunctional (S = S · S◦ · S) }

〈S · S◦ · S,R · S◦ · S〉

= { S is difunctional (S = S · S◦ · S) }

〈S,R · S◦ · S〉

57

The following equality holds for simple (thus difunctional) S

〈R, T 〉 · S = 〈R, T · imgS〉 · S (162)

cf.

〈R, T 〉 · S

= { S is difunctional }

〈R, T 〉 · S · S◦ · S

= { (153) since S is simple }

〈R, T · S · S◦〉 · S

D A little preorder construction

The concept of a preorder — ie. that of a reflexive and transitive endo-relation (fig-
ure 2) — is central to the mathematics of computing. It paves the way to Galois
connections and other interesting topics (eg. lexicographic orders, etc.). In this
annex we concentrate on a particular preorder construction which is used exten-
sively in this report. For more about preorders see eg. (Aarts et al., 1992) and (Bird
and de Moor, 1997).

D.1 The construction

Let A A
⊑oo be a preorder. Given a function A B

hoo , the relation B B
�oo

defined by

�
def
= h◦ · ⊑ · h (163)

is also a preorder: it is reflexive,

id ⊆ �

⇔ { (163) and shunting (23) }

h ⊆ ⊑ · h

⇐ { (·h) is monotonic }

id ⊆ ⊑

⇔ { ⊑ is a preorder, thus reflexive }

TRUE

and transitive:

� · �

= { (163) twice; associativity of composition }

h◦ · ⊑ · (h · h◦) · ⊑ · h

58

⊆ { h is simple (9) }

h◦ · ⊑ · ⊑ · h

⊆ { ⊑ is a preorder, thus transitive }

h◦ · ⊑ · h

= { (163) }

�

Relations ⊑ and � in (163) will be referred to below as the base preorder and the
derived one, respectively, the former being at most the latter iff h is a ⊑-monotonic
endofunction over B,

⊑ ⊆ � ⇔ h is ⊑-monotonic (164)

cf.

⊑ ⊆ �

⇔ { definition of � (163) followed by (23) }

h · ⊑ ⊆ ⊑ · h

⇔ { definition of ⊑-monotonicity }

h is ⊑-monotonic

D.2 Example

The injectivity preorder defined by (39) in the main body of the report is an example
of this construction, for h := ker, � := ≤◦ and ⊑ := ⊆:

≤◦ = ker◦ · ⊆ · ker (165)

that is,

≤ = ker◦ · ⊆◦ · ker

(Note the extra converse operator in ⊆◦.) Since ker is monotonic, (40) in the main
body of the report is an instance of (164): R ⊆ S implies S ≤ R. (Again note the
effect of converse.)

D.3 Preorder homomorphism

By construction, (163) establishes h as a preorder homomorphism — cf.

a � a′ ⇔ h a ⊑ h a′

in pointwise notation — which can be exploited to “lift” results from the ⊑ to
the � order. We present two such results, one concerning monotonicity and the
other concerning Galois connections. For space economy, both will be presented
restricted to endo-functions. (The general formulation is similar.)

59

D.4 Lifting monotonicity

Let A A
⊑oo , A B

hoo and B B
�oo be as above. Let A A

koo be a
⊑-monotonic endo-function, and k′ be such that

h · k′ = k · h (166)

holds, cf. diagram:

B

h

��

B

h

��

�oo B

h

��

k′oo

A A
⊑

oo A
k

oo

Then k′ is �-monotonic,

k′ · � ⊆ � · k′ (167)

cf.

(167)

⇔ { shunting }

� ⊆ k′
◦· � ·k′

⇔ { (163) twice ; (14) }

h◦ · ⊑ · h ⊆ (h · k′)◦ · ⊑ · h · k′

⇔ { (166) twice ; (14) }

h◦ · ⊑ · h ⊆ h◦ · k◦ · ⊑ · k · h

⇐ { (h◦ · · h) is monotonic }

⊑ ⊆ k◦ · ⊑ · k

⇔ { since k is assumed ⊑-monotonic }

TRUE

Note that (166) equivales k(h ← h)k′ — recall (90) — meaning that they are h-
homomorphic.

D.5 Examples

From

ker (R · T) = T ◦ · (kerR) · T (168)

we identify h = ker, k = (T ◦ · · T) and k′ = (· T) satisfying (166). Since ker is
⊆-monotonic, from (167) we draw that (·T) is≤◦-monotonic, which is equivalent
to being ≤-monotonic. This justifies equation (42) in the main body of the report.

60

A similar argument can be provided to justify ≤-monotonicity of any relator F

(Backhouse et al., 1992; Bird and de Moor, 1997),

R ≤ S ⇒ FR ≤ FS (169)

for k = k′ = F, since F is ⊆-monotonic and

ker (FR) = F(kerR)

holds.

D.6 Lifting Galois connections

Suppose that functions A A
k,joo are Galois connected under preorder ⊑

k◦ · ⊑ = ⊑ · j (170)

and that k′, j′ are h-homomorphic to lower-adjoint k and upper-adjoint j, respec-
tively:

h · k′ = k · h (171)

h · j′ = j · h (172)

Then k′, j′ are �-Galois connected,

k′
◦
· � = � · j′ (173)

as proved below:

k′
◦
· �

= { (163) }

k′
◦
· h◦ · ⊑ · h

= { (171) and converses }

h◦ · k◦ · ⊑ · h

= { (170) followed by (172) }

h◦ · ⊑ · h · j′

= { (163) }

� · j′

D.7 Examples

Consider instances T := g◦ and T := g in (168), for some function g of appropriate
type. Then build the corresponding instances of k, k′ (renamed j, j′ in the second
case to avoid name clashing):

T := g◦
{

k′ = (· g◦)
k = (g · · g◦)

T := g

{

j′ = (· g)
j = (g◦ · · g)

61

The fact that k and j are Galois connected is an instance of (87):

g ·X · g◦ ⊆ Y ⇔ X ⊆ g◦ · Y · g

Then, from (173) we draw

k′
◦
· ≤◦ = ≤◦ · j′

which, taking converses, is the same as

j′
◦
· ≤ = ≤ · k′

that is,

(· g)◦ · ≤ = ≤ · (· g◦)

Thus (59) holds.
A similar argument will justify Galois connection (50), stemming from rela-

tional split being ker-homomorphic to relational meet (49), which is the upper-
adjoint in its defining Galois connection:

T ⊆ R ∩ S ⇔ T ⊆ R ∧ T ⊆ S (174)

Because of the extra converse in ≤◦ in (165), the fact that meet is the upper-adjoint
wrt. ⊆ casts split as the lower-adjoint wrt. ≤:

〈R,S〉 ≤ T ⇔ R ≤ T ∧ S ≤ T

Readers wishing to check this more explicitly are invited to follow the argument
which follows:

〈R,S〉 ≤ T

⇔ { (39) and (49) }

kerT ⊆ (kerR) ∩ (kerS)

⇔ { (174) }

kerT ⊆ kerR ∧ kerT ⊆ kerS

⇔ { (39) twice }

R ≤ T ∧ S ≤ T

62

