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Abstract

The aim of our contribution is to call
attention to the relationship between
totally regular variables, introduced by
R. Delanghe in 1970, and Appell se-
quences with respect to the hypercom-
plex derivative. Under some natural nor-
malization condition the set of all par-
avector valued totally regular variables
defined in the three dimensional Eu-
clidean space will be completely charac-
terized. Together with their integer pow-
ers they constitute automatically Appell
sequences, since they are isomorphic to
the complex variables.

1 Introduction

Some years ago, authors of this note (see [6]) introduced for the first time mono-
genic power-like functions (i.e. Appell sequences with respect to the hypercom-
plex derivative) as examples for the generation of monogenic (cf. [3]), or Clif-
ford holomorphic (cf. [10]) functions by special polynomials given in terms of a
paravector variable and its conjugate. Meanwhile Appell sequences have been
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subject of investigations by different authors with different methods and in vari-
ous contexts (cf. [2]). The concept of a totally regular variable, introduced by R.
Delanghe in [5] and later also studied by Gürlebeck ([7], [9]) for the special case
of quaternions, has some obvious relationship with the latter. It describes the set
of linear monogenic functions whose integer powers are also monogenic (without
demanding to form an Appell sequence as it is the case for the integer powers
of the complex variable z = x + iy). Indeed, the simple example of the totally
regular Fueter-polynomials (cf. [10], [12]) shows, that not every totally regular
variable and its integer powers form an Appell sequence with respect to the hy-
percomplex derivative. From the other side, the Appell sequence constructed in
[6] is not constituted by a totally regular variable and its integer powers.

These facts motivated us to ask for the relationship between totally regu-
lar variables and Appell sequences with respect to the hypercomplex derivative
in the case of a paravector valued variable in R3. Therefore we characterize
completely the set of all paravector valued totally regular variables. The higher
dimensional case can be treated in the same way. In view of our aim to connect
totally regular variables with Appell sequences, we are using a natural normal-
ization condition for the set of all paravector valued totally regular variables. We
prove that under that normalization condition all totally regular variable consti-
tute automatically Appell sequences, since they are isomorphic to the complex
variables. We finish with some remarks on the role of polynomials in terms of
the totally regular Fueter-polynomials (which are not normalized in the afore-
mentioned way) as well as their use in the construction of Appell sequences with
respect to the hypercomplex derivative.

2 Basic Notations

As usual, let {e1, e2, . . . , en} be an orthonormal basis of the Euclidean vector
space Rn with a non-commutative product according to the multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. The set {eA : A ⊆ {1, . . . , n}} with

eA = eh1eh2 · · · ehr , 1 ≤ h1 < · · · < hr ≤ n, e∅ = e0 = 1,

forms a basis of the 2n-dimensional Clifford algebra C`0,n over R. Let Rn+1 be
embedded in C`0,n by identifying (x0, x1, . . . , xn) ∈ Rn+1 with

x = x0 + x ∈ An := spanR{1, e1, . . . , en} ⊂ C`0,n.
Here, x0 = Sc(x) and x = Vec(x) = e1x1+· · ·+enxn are, the so-called, scalar and
vector parts of the paravector x ∈ An. The conjugate of x is given by x̄ = x0−x
and its norm by |x| = (xx̄)

1
2 = (x20 + x21 + · · ·+ x2n)

1
2 .

To call attention to its relation to the complex Wirtinger derivatives, we use
the following notation for a generalized Cauchy-Riemann operator in Rn+1, n ≥
1:

∂ :=
1

2
(∂0 + ∂x), ∂0 :=

∂

∂x0
, ∂x := e1

∂

∂x1
+ · · ·+ en

∂

∂xn
.
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Definition 1 (Monogenic function).
C1-functions f satisfying the equation ∂f = 0 (resp. f∂ = 0) are called left
monogenic (resp. right monogenic).

We suppose that f is hypercomplex-differentiable in Ω in the sense of [8,12],
that is, it has a uniquely defined areolar derivative f ′ in each point of Ω (see
also [13]). Then, f is real-differentiable and f ′ can be expressed by real partial
derivatives as f ′ = ∂f where, analogously to the generalized Cauchy-Riemann
operator, we use ∂ := 1

2 (∂0 − ∂x) for the conjugate Cauchy-Riemann operator.

Since a hypercomplex differentiable function belongs to the kernel of ∂, it follows
that, in fact, f ′ = ∂0f = −∂xf which is similar to the complex case.

In general, C`0,n-valued functions defined in some open subset Ω ⊂ Rn+1

are of the form f(z) =
∑

A fA(z)eA with real valued fA(z). However, in several
applied problems it is very useful to construct An-valued monogenic functions
as functions of a paravector with special properties. In this case we have

f(x0, x) =

n∑
j=0

fj(x0, x)ej (1)

and left monogenic functions are also right monogenic functions, a fact which
follows easily by direct inspection of the corresponding real system of first order
partial differential equations (generalized Riesz system).

Example 1.

1. Consider the A3-valued function

f(x) = f(x0, x1, x2, x3) = x1x2x3 − x0x2x3e1 − x0x1x3e2 − x0x1x2e3.

Simple calculations allow to conclude that ∂̄f = 0 which means that f is
left monogenic. Since f is of the form (1), it follows that f is also right
monogenic. Moreover, f ′(x) = ∂0f(x) = −x2x3e1 − x1x3e2 − x1x2e3.

2. Consider now the A2-valued functions

fk(x0, x1, x2) = (x0 + x1e1 + x2e2)k, k = 1, 2, . . . .

It follows easily that

∂̄f1 =− 1;

∂̄f2 =− 2x0;

∂̄f3 =− 3x20 + (x21 + x22);

∂̄f4 =
(
−4x20 + 4(x21 + x22)

)
x0.

In fact, by induction, on can prove that

∂̄fn =



r−1∑
k=0

(−1)1+k

(
2r

2k + 1

)
x2r−1−2k0 (x21 + x22)k, if n = 2r;

r∑
k=0

(−1)1+k

(
2r + 1

2k + 1

)
x2r−2k0 (x21 + x22)k, if n = 2r + 1.
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Therefore, neither z := f1(x) nor any of its nonnegative integer powers are
left or right monogenic functions.

We use also the classical definition of sequences of Appell polynomials [1]
adapted to the hypercomplex case.

Definition 2 (Generalized Appell sequence).
A sequence of monogenic polynomials (Pk)k≥0 of exact degree k is called a gen-
eralized Appell sequence with respect to the hypercomplex derivative if

1. P0(x) ≡ 1,
2. P ′k = kPk−1, k = 1, 2, . . . .

The second condition is the essential one while the first condition is the usually
applied normalization condition which can be changed to any constant different
from zero.

3 Totally Regular Variables

Underlining the fact that, in general, an integer power of a hypercomplex variable
is not monogenic, Delanghe introduced the following concept (see [5])

Definition 3 (Totally regular variable).
A totally regular variable is a linear monogenic function of the form

z = x0eA0
+ x1eA1

+ . . .+ xneAn
∈ C`0,n (2)

whose integer powers are monogenic.

Depending on the choice of eAk
, Delanghe obtained for the general Clifford

Algebra valued case, where e2i = εie0, for real εi, (i = 1, . . . , n), necessary
and sufficient conditions for a hypercomplex variable z to be totally regular [5,
Theorem 4]. For our purpose here, we would like to call attention to the following
weaker result, involving a much simpler condition.

Theorem 1. [5, Corollary 1 of Theorem 4] Any monogenic variable z of the
form (2) for which

eAk
eAl

= eAl
eAk

, k, l = 0, . . . , n, (3)

is totally regular.

Additionally, Delanghe showed that (3) is only sufficient, by referring to the
special case of the totally regular variable z = x2e1e2 + x3e1e3, with e21 = ε1 6=
0, e22 = e23 = 0, for which clearly e1e2 · e1e3 6= e1e3 · e1e2.

Later on Gürlebeck [7] studied the case of quaternion valued (H - valued)
variables in the form of

z = x0d0 + x1d1 + x2d2 + x3d3 ∈ H, (4)
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with dk = ak0e0 + ak1e1 + ak2e2 + ak3e1e2 not necessarily linearly independent
(see also [9]). In order to obtain H-totally regular variables he found a necessary
and sufficient condition, expressed by the rank of the matrix

A =


a01 a02 a03
a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (5)

which can be rewritten as follows:

Theorem 2. Let z be a quaternionic holomorphic variable of the form (4). The
following statements are equivalent:

I. z is a a totally regular variable;

II. dkdl = dldk, l, k = 0, 1, 2, 3;

III. The rank of the matrix (5) is less than 2.

We note that the general form of a totally regular variable has not been
explicitly determined, neither in the general case (2) nor in the quaternionic
case (4). The aim of the present work is to characterize totally regular variables
defined in R3.

Following this idea we study here the case of linear paravector valued func-
tions of three real variables, subject to a normalization condition with respect
to the real variable x0. This normalization condition is given in terms of the
hypercomplex derivative by demanding that

∂z = z∂ = 1. (6)

This is motivated by the fact that at the same time we are looking for the
characterization of all totally regular variables whose integer powers form an
Appell sequence in the sense of Definition 2 as we know it from the complex case
for z = x+ iy.

We note that not every totally regular variable (TRV) and its powers form an
Appell sequence. In addition the first degree polynomial of an Appell sequence
is not necessarily a TRV. The following examples illustrate these situations.

Example 2.

1. The variables

zs := xs − x0es, s = 1, 2, (7)

are TRV, which are not Appell sequences in the sense of Definition 2, because

∂zks = 0, k = 1, 2, . . . but ∂zs = ∂0zs = −es 6= 1.
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2. A sequence of the form considered in [6]

Pk(x) =

k∑
s=0

1

2s

(
k

s

)(
s

b s2c

)
xk−s0 xs, (8)

is an Appell sequence which does not consist of a TRV and its powers, since
besides the fact that

z̃ := P1(x) = x0 + 1
2 (x1e1 + x2e2)

is not a TRV, we also have z̃k 6= Pk, k > 1.
3. The variables

ẑs := x0 + xses, s = 1, 2, (9)

are TRV and their powers form an Appell sequence, because

∂ẑks = 0 and ∂ẑks = ∂0ẑ
k
s = kẑk−1s , s = 1, 2, . . . .

4 The Explicit Form of Paravector Valued Totally
Regular Variables

As mentioned before, for reasons of applications and simplicity we concentrate
on the computation of the explicit form of TRV given by

z = x0d0 + x1d1 + x2d2 ∈ A2 ⊂ Cl0,2. (10)

We first note that from ∂z = 0 it follows that

d0 + e1d1 + e2d2 = 0. (11)

In addition, the application of the normalization condition (6) implies immedi-
ately that

d0 = 1 (12)

and therefore, combining (11) and (12) we obtain as a first condition on the dk’s
the following relation

1 + e1d1 + e2d2 = 0. (13)

For z to be TRV we also need that the square of z and all other integer
powers of z are monogenic. We will see, that the case of z2 implies conditions
which guarantee the same property for all integer powers. Since

∂z2 = x0(1 + e1d1 + e2d2) + (1 + e1d1)x1d1 + +(1 + e2d2)x2d2

+ 1
2 (x2e1 + x1e2)(d1d2 + d2d1)

= x0(1 + e1d1 + e2d2) + (1 + e1d1 + e2d2)x1d1 + (1 + e1d1 + e2d2)x2d2

+ 1
2 (x1e2 − x2e1)(d1d2 − d2d1)
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and taking into account condition (13), we obtain a second condition on the dk’s,
namely

d1d2 − d2d1 = 0. (14)

Notice that (14) is identical to the necessary and sufficient conditions, men-
tioned in Theorem 2. For a detailed analysis of the consequences of (13) and
(14) we use the notation of [7] and write

d1 = a10 + a11e1 + a12e2,

d2 = a20 + a21e1 + a22e2,

with alm ∈ R, l,m = 0, 1, 2. Therefore, from (13) it follows easily that

a11 + a22 = 1, (15)

a12 = a21 (16)

and
a10 = a20 = 0, (17)

while condition (14) implies

a11a22 − a12a21 = 0. (18)

We note that, based on (10) and (12), the matrix (5) has the form

A =

 0 0 0
a11 a12 0
a21 a22 0

 ,

which has obviously rank less than 2, due to (18).
Relation (16) together with (18) gives

a11a22 = λ2, for some real λ.

Let us now consider the two possible cases, for the values of the parameter
λ.

Case A: λ 6= 0.

In this first case, a11 and a22 have the same sign and as a consequence of
(15), both coefficients are positive. Therefore we can define

i21 := a11; i22 := a22 with i21 + i22 = 1,

in order to write
λ2 = (i1i2)2.

Remark: Because of
i21 + i22 = 1,
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we can choose, for instance,

i1 = t, i2 =
√

1− t2, (with |t| = |i1| ≤ 1),

or
i1 = cosα, i2 = sinα, (for some angle α).

The relation with the roots of unity is obvious and permits interesting applica-
tions (see [4]).

The consequences of case A for the general form of the TRV z are the following:

z = x0 + x1(i21e1 + i1i2e2) + x2(i1i2e1 + i22e2)

= x0 + i1x1(i1e1 + i2e2) + i2x2(i1e1 + i2e2)

= x0 + (i1x1 + i2x2)(i1e1 + i2e2),

where the constant “imaginary unit”

ı̂ := i1e1 + i2e2

is such that ı̂2 = −i21 − i22 = −1. Writing

xı̂ := i1x1 + i2x2,

we recognize the isomorphism with z = x+ yi ∈ C:

x→ x0; y → xı̂; i→ ı̂.

Moreover, under the conditions of case A, z is a TRV whose integer powers

zk = [x0 + (i1x1 + i2x2)(i1e1 + i2e2)]k = (x0 + xı̂ ı̂)
k

form an Appel sequence, because obviously (zk)′ = kzk−1 and z0 = 1.

Consider now the second case:

Case B: λ = 0

If
a11 6= 0 and a22 = 0,

then a11 = 1 and z = x0 + x1e1 (trivial case). On the other hand, if

a11 = 0 and a22 6= 0,

then a22 = 1 and z = x0 + x2e2 (also a trivial case).

The above considerations can be summarized as follows:
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Theorem 3. The set of all linear monogenic variables of the form

z = x0 + x1d1 + x2d2 ∈ A2 ⊂ Cl0,2,

which are TRV explicitly consists of pseudo-complex variables of the form

zı̂ = x0 + (i1x1 + i2x2)(i1e1 + i2e2) = x0 + xı̂ ı̂,

with (i1, i2) ∈ R2 and i21 + i22 = 1.
Moreover, due to their isomorphism with the complex variable z = x + yi

these pseudo-complex variables together with their integer powers zkı̂ form auto-
matically an Appell sequence with respect to the hypercomplex derivative.

5 Concluding Remarks

Even the consideration of homogeneous polynomials of degree k, with a “relaxed”
binomial expansion (characteristic property of Appell sequences) of the form

Pk(z) =
k∑
0

ms

(
k

s

)
xk−s0 [X1(x1, x2)e1 +X2(x1, x2)e2]s, (19)

where Xi(x1, x2), i = 1, 2, are real valued functions in x1 and x2, leads only to
the cases A e B of TRV with ms ≡ 1 or to the case where

ms =
1

2s

(
s

b s2c

)
, s = 0, 1, . . . , k, (20)

with X1(x1, x2) = x1 and X2(x1, x2) = x2 (not covered by A or B and not based
on the integer powers of a TRV, since P1

2 6= P2).

Polynomials of the form (19) as elements of generalized Appell sequences of
paravector valued monogenic polynomials in A2 have been studied in [14]. It
was proved that both mentioned cases, i.e. where ms ≡ 1 or ms given by (20),
are the only one examples of Appell sequences with respect to the hypercomplex
derivative and normalized as in Definition 2. This means that with the exception
of polynomials (19) in the special form

Pk(z) =

k∑
0

1

2s

(
s

b s2c

)(
k

s

)
xk−s0 (x1e1 + x2e2)s,

all other Appell sequences with respect to the hypercomplex derivative and nor-
malized as in Definition 2, consist of totally regular variables (TRV) and its
integer powers in the form

zı̂ = x0 + (i1x1 + i2x2)(i1e1 + i2e2) = x0 + xı̂ ı̂.

Further, let us mention the following. If we admit that the usually used nor-
malization condition P0 = 1 (or initial value of the polynomial of degree 0) in



10

Definition 2 is changed to P0 = −e1, resp. P0 = −e2, (a possibility that we
mentioned), then also the TRV in the examples of Section 4

zs = xs − x0es = −es(x0 + xses), s = 1, 2, (21)

form together with its integer powers Appell sequences, which can be verified
by straightforward calculations. The initial value appears as the constant factor
−e1 resp. −e2 of the considered zkı̂ with (i1, i2) = (1, 0), resp. (i1, i2) = (0, 1). Of
course, the same is true for other choices of initial values of the polynomial of
degree 0 and constant factors of the “natural” two copies of the complex variable
z = x+ yi, i.e. for the first degree polynomials

zr = x0 + xrer, r = 1, 2.

But since both TRV zs of the form (21) are the first degree Fueter polynomials
(see [10]), we mention finally a remark of Habetha in [11, p. 233], on the use of
those “natural” copies of several complex variables, i.e. x0 + xses = eszs, with
s = 1, 2, instead of Fueter polynomials for the power series representation of any
monogenic function. Theorem 3 shows (here only for the case of R3), that also the
more general pseudo-complex variables of the form zı̂ = x0 +(i1x1 + i2x2)(i1e1 +
i2e2) = x0 + xı̂ ı̂ can play a decisive role in the power series representation of
any monogenic function. Of course, this is also true in the general case for Rn+1

where one has to work analogously with a parameter set (i1, i2, . . . , in).
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