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Abstract

Epidemiological models may give some basic guidelines for public health practitioners,
allowing to analyze issues that can influence the strategies to prevent and fight a disease. To
be used in decision-making, however, a mathematical model must be carefully parameterized
and validated with epidemiological and entomological data. Here a SIR (S for susceptible, I for
infectious, R for recovered individuals) and ASI (A for the aquatic phase of the mosquito, S for
susceptible and I for infectious mosquitoes) epidemiological model describing a dengue disease
is presented, as well as the associated basic reproduction number. A sensitivity analysis of
the epidemiological model is performed in order to determine the relative importance of the
model parameters to the disease transmission.

Keywords: sensitivity analysis; basic reproduction number; epidemiological model;
dengue.

1 Introduction

Dengue is a major public health problem in tropical and sub-tropical countries. It is a vector-borne
disease transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Four different serotypes
can cause dengue fever. A human infected by one serotype, when recovers, gains total immunity
to that serotype, and only partial and transient immunity with respect to the other three.

Dengue can vary from mild to severe. The more severe forms of dengue include shock syndrome
and dengue hemorrhagic fever (DHF). Patients who develop these more serious forms of dengue
fever usually need to be hospitalized.

The full life cycle of dengue fever virus involves the role of the mosquito as a transmitter (or
vector) and humans as the main victim and source of infection. Preventing or reducing dengue
virus transmission depends entirely in the control of mosquito vectors or interruption of human-
vector contact [1].

In Section 2 an epidemiological model for dengue disease is presented. It consists of six
mutually-exclusive compartments, expressing the interaction between human and mosquito, and
designed for examining the process of the disease spread into a population.
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Similarly to humans, mosquitoes differ among themselves in terms of their life history traits.
Besides individual variations, the environment (temperature and humidity) also has strong effect
on the life history [2]. Another source of uncertainties, regarding appropriate parameter values,
is the scarcity of the data available for the mosquito population, and the diversity among the
international data.

Our model includes a set of parameters related to human and mosquito populations and their
interaction. Often the unknown parameters involved in the models are assumed to be constant over
time. However, in a more realistic perspective of any phenomenon, some of them are not constant
and implicitly depend on several factors. Many of such factors usually do not appear explicitly
in the mathematical models because of the need of balance between modeling and numerical
tractability and the lack of a precise knowledge of them [3].

Sensitivity analysis allows to investigate how uncertainty in the input variables affects the
model outputs and which input variables tend to drive variation in the outputs. Sensitivity of the
basic reproduction number for a tuberculosis model can be found in [4]. Here one of the goals
is to determine which parameters are worth pursuing in the field in order to develop a dengue
transmission model. For our specific model, a sensitivity analysis is performed in Section 4 to
determine the relative importance of the model parameters to disease transmission, taking into
account the basic reproduction number (Section 3).

Section 5 reports some numerical experiments: a set of simulations is presented to illustrate
the effect of the parameters on the number of infected individuals. Finally, some conclusions are
given in Section 6.

2 Dengue Model

Taking into account the model presented in [5, 6] and the considerations of [7, 8], a new model
more adapted to the dengue reality is proposed. The notation used in the mathematical model
includes three epidemiological states for humans:

Sh(t) — susceptible (individuals who can contract the disease),
Ih(t) — infected (individuals capable of transmitting the disease),
Rh(t) — resistant (individuals who have acquired immunity).

It is assumed that the total human population, Nh, is constant: Nh = Sh(t)+ Ih(t)+Rh(t) at any
time t. The population is homogeneous, which means that every individual of a compartment is
homogeneously mixed with the other individuals. Immigration and emigration are not considered.

Three other state variables, related to the female mosquitoes, are considered:

Am(t) — aquatic phase (that includes the egg, larva and pupa stages),
Sm(t) — susceptible (mosquitoes that are able to contract the disease),
Im(t) — infected (mosquitoes capable of transmitting the disease).

Note that male mosquitoes are not taken into account, because they are not capable of transmitting
the disease, and that there is no resistant phase, due to the short lifespan of mosquitoes.

It is assumed homogeneity between host and vector populations, which means that each vector
has an equal probability to bite any host. Humans and mosquitoes are assumed to be born
susceptible. The dengue epidemic is modeled by the following nonlinear system of time-varying
ODEs (ordinary differential equations):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dSh

dt
= μhNh −

(
Bβmh

Im
Nh

+ μh

)
Sh,

dIh
dt

= Bβmh

Im
Nh

Sh − (ηh + μh)Ih,

dRh

dt
= ηhIh − μhRh,

(1)
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Parameter Description Value

Nh total human population 480000
B average daily biting (per day) 0.8
βmh transmission probability from Im (per bite) 0.375
βhm transmission probability from Ih (per bite) 0.375
μh average lifespan of humans (in days) 1/(71× 365)
ηh mean viremic period (in days) 1/3
μm average lifespan of adult mosquitoes (in days) 1/10
ϕ number of eggs at each deposit per capita (per day) 6
μA natural mortality of larvae (per day) 1/4
ηA maturation rate from larvae to adult (per day) 0.08
m female mosquitoes per human 3
k number of larvae per human 3

Table 1: Parameters used in the dengue mathematical model (1)–(2).

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dAm

dt
= ϕ

(
1−

Am

kNh

)
(Sm + Im)− (ηA + μA)Am,

dSm

dt
= ηAAm −

(
Bβhm

Ih
Nh

+ μm

)
Sm,

dIm
dt

= Bβhm

Ih
Nh

Sm − μmIm,

(2)

with initial conditions

Sh(0) = Sh0, Ih(0) = Ih0, Rh(0) = Rh0,
Am(0) = Am0, Sm(0) = Sm0, Im(0) = Im0.

(3)

The meaning of the parameters of the model, together with the baseline values used in Section 4,
are given in Table 1.

3 Basic Reproduction Number

Due to biological reasons, only nonnegative solutions of the initial value problem (1)–(3) are
acceptable. More precisely, it is necessary to study the solution properties of the system (1)–(2)
subject to given initial conditions (3) in the closed set

Ω =
{
(Sh, Ih, Rh, Am, Sm, Im) ∈ R

6
+ : Sh + Ih +Rh ≤ Nh, Am ≤ kNh, Sm + Im ≤ mNh

}
.

It can be verified that Ω is a positively invariant set with respect to (1)–(2). The proof of this
statement is similar to the one in [9].

Definition 1. A sextuple E = (Sh, Ih, Rh, Am, Sm, Im) is said to be an equilibrium point for
system (1)–(2) if it satisfies the following relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μhNh −
(
Bβmh

Im
Nh

+ μh

)
Sh = 0,

Bβmh
Im
Nh

Sh − (ηh + μh)Ih = 0,

ηhIh − μhRh = 0,

ϕ
(
1− Am

αkNh

)
(Sm + Im)− (ηA + μA + cA)Am = 0,

ηAAm −
(
Bβhm

Ih
Nh

+ μm + cm

)
Sm = 0,

Bβhm
Ih
Nh

Sm − (μm + cm)Im = 0.
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An equilibrium point E is biologically meaningful if and only if E ∈ Ω. The biologically meaningful
equilibrium points are said to be disease free or endemic, depending on Ih and Im: if there is no
disease for both populations of humans and mosquitoes, that is, if Ih = Im = 0, then the equilibrium
point is said to be a Disease Free Equilibrium (DFE); otherwise, if Ih �= 0 or Im �= 0, in other
words, if Ih > 0 or Im > 0, then the equilibrium point is called endemic.

It is easily seen that system (1)–(2) admits at most two DFE points. Let

M = − (ηAμm + μAμm − ϕηA) .

If M≤ 0, then there is only one biologically meaningful equilibrium point E∗
1 :

E∗

1 = (Nh, 0, 0, 0, 0, 0) .

If M > 0, then there are two biologically meaningful disease free equilibrium points: E∗
1 and

E∗

2 =

(
Nh, 0, 0,

kNhM

ηAϕ
,
kNhM

μmϕ
, 0

)
.

By algebraic manipulation, M > 0 is equivalent to condition

(ηA + μA)μm

ϕηA
< 1,

which is related to the basic offspring number for mosquitoes: if M ≤ 0, then the mosquito
population will die out; ifM > 0, then the mosquito population is sustainable, and the equilibrium
E∗

2 is more realistic from a biological standpoint.
An important measure of transmissibility of the disease is the epidemiological concept of basic

reproduction number [10]. It provides an invasion criterion for the initial spread of the virus in a
susceptible population.

Definition 2. The basic reproduction number, denoted by R0, is defined as the average number
of secondary infections that occurs when one infective is introduced into a completely susceptible
population.

Using the next generation matrix of an ODE [11], one concludes that the basic reproduction
number R0 associated to the differential system (1)–(2) is given, in the caseM > 0, by

R2
0 =

kB2βhmβmhM

ϕ(ηh + μh)μ2
m

. (4)

If R0 < 1, then the disease cannot invade the population and the infection will die out over a
period of time. The amount of time this will take generally depends on how smallR0 is. If R0 > 1,
then an invasion is possible and infection can spread through the population. Generally, the larger
the value of R0, the more severe, and possibly widespread, the epidemic will be [12].

In determining how best to reduce human mortality and morbidity due to dengue, it is necessary
to know the relative importance of the different factors responsible for its transmission. In the
next section the sensitivity indices of R0, related to the parameters in the model, are calculated.

4 Sensitivity Analysis

Sensitivity analysis tell us how important each parameter is to disease transmission. Such infor-
mation is crucial not only for experimental design, but also to data assimilation and reduction of
complex nonlinear models [13]. Sensitivity analysis is commonly used to determine the robustness
of model predictions to parameter values, since there are usually errors in data collection and
presumed parameter values. It is used to discover parameters that have a high impact on R0 and
should be targeted by intervention strategies.
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Parameter Sensitivity

index

B +1
βmh +0.5
βhm +0.5
μh -0.0000578748
ηh -0.499942
μm -1.03691
ϕ +0.0369128
μA -0.0279642
ηA +0.527964
k +0.5

Table 2: Sensitivity indices of R0 evaluated at the baseline parameter values given in Table 1.

Sensitivity indices allow us to measure the relative change in a variable when a parameter
changes. The normalized forward sensitivity index of a variable with respect to a parameter is
the ratio of the relative change in the variable to the relative change in the parameter. When the
variable is a differentiable function of the parameter, the sensitivity index may be alternatively
defined using partial derivatives.

Definition 3 (cf. [14]). The normalized forward sensitivity index of R0, that depends differentiably
on a parameter p, is defined by

ΥR0

p =
∂R0

∂p
×

p

R0

.

Given the explicit formula (4) for R0, one can easily derive an analytical expression for the
sensitivity of R0 with respect to each parameter that comprise it. The obtained values are de-
scribed in Table 2, which presents the sensitivity indices for the baseline parameter values in the
last column of Table 1. Note that the sensitivity index may be a complex expression, depending
on different parameters of the system, but can also be a constant value, not depending on any of
the parameter values. For example, ΥR0

βmh
≡ +0.5, meaning that increasing (or decreasing) βmh

by 10% increases (or decreases) always R0 by 5%.
A highly sensitive parameter should be carefully estimated, because a small variation in that

parameter will lead to large quantitative changes. An insensitive parameter, on the other hand,
does not require as much effort to estimate, since a small variation in that parameter will not
produce large changes to the quantity of interest [15].

5 Numerical Analysis

The simulations were carried out using the following values for the initial conditions (3):

Sh0 = Nh − 10, Ih0 = 10, Rh0 = 0,

Am0 = kNh, Sm0 = mNh, Im0 = 0.
(5)

The final time was tf = 100 days. Computations were run in Matlab with the ode45 routine. This
function implements a Runge–Kutta method with a variable time step for efficient computation.

Figures 1a and 1b show the solutions to (1)–(3) with the baseline parameter values given in
Table 1, for human and mosquitoes, respectively.

Figure 2 shows a set of graphics that reflects the effects on the disease through parameters
variation. Each graphic presents the number of infected humans using the baseline parameter
values (solid line) described in Table 1 and the corresponding curves with a specific parameter
increase of 10% (dashed line).
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Figure 1: State variables of the ODE system (1)–(2) with initial conditions (5) and parameters as
in Table 1.

The obtained graphics reinforce the sensitivity analysis made in Section 4. Some parameters,
μh, ϕ and μA, present residual sensitivity indices having small influence in R0 and the changes are
not graphically perceptible. The most positive sensitive parameter is the mosquito biting rate, B,
where ΥR0

B = +1 (see Figure 2a). Figures 2b, 2e and 2f reflect the same behavior as the previous
one with respect to βmh, ηA and k parameters, respectively. As the sensitivity index for βhm is
equal to the βmh, and its effect in the infected humans is similar, the graphic is omitted. For all
these five parameters the positive signal in the sensitivity indices of R0 agrees with our intuition.

The parameters ηh and μm have a negative sensitivity index. The most negative sensitive
parameter is the average lifespan of adult mosquitoes, μm, with ΥR0

μm
= −1.03691. If ηh and μm

are increased 10%, then the basic reproduction number R0 decreases approximately 5% and 10%,
respectively. In this situation the infected humans also decrease accordingly, as can be seen in
Figures 2c and 2d.

Figure 2g presents the comparison of the infected humans when the original parameters are
considered and all the parameters are increased 10%.

6 Conclusions

A dengue model was studied by evaluating the sensitivity indices of the basic reproduction num-
ber, R0, in order to determine the relative importance of the model parameters in the disease
transmission. Such information allow us to identify the robustness of the model predictions with
respect to parameter values, the influence of each parameter in the basic reproduction number, and
consequently in the disease evolution. Such analysis can provide critical information for decision
makers and public health officials, who may have to deal with the reality of an infectious disease.

We trust that the research direction here initiated can be of great benefit to citizens affected
by dengue, with an impact on both the prevention and control of an epidemic. Such contribution
is especially interesting regarding a disease like dengue, which causes a large disruption in the lives
of sufferers and has enormous social and economic costs, as was well illustrated by the outbreak
of dengue that occurred in Cape Verde in 2009.

Acknowledgements

This work was supported by FEDER funds through COMPETE — Operational Programme
Factors of Competitiveness (“Programa Operacional Factores de Competitividade”) — and by

6



0 20 40 60 80 100
0

2

4

6

8

10

12
x 104

Time (days)

In
fe

ct
ed

 H
um

an
original B
increased B

(a) Effect on Ih of the variation of B.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10
x 104

Time (days)

In
fe

ct
ed

 H
um

an

original βmh
increased βmh

(b) Effect on Ih of the variation of βmh.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9
x 104

Time (days)

In
fe

ct
ed

 H
um

an

original ηh
increased ηh

(c) Effect on Ih of the variation of ηh.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9
x 104

Time (days)

In
fe

ct
ed

 H
um

an

original μm
increased μm

(d) Effect on Ih of the variation of μm.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10
x 104

Time (days)

In
fe

ct
ed

 H
um

an

original ηA
increased ηA

(e) Effect on Ih of the variation of ηA.
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Figure 2: Infected individuals with initial parameter values as given in Table 1 (solid line) and
with an increase of 10% of a specific (or all, in g) parameter (dashed line).
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