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Abstract. We consider the weakly asymmetric simple exclusion process and we show that the density
field is governed by an Ornstein-Uhlenbeck process for strength asymmetry n2−γ if γ ∈ (1/2, 1), while
for γ = 1/2 it is an energy solution of the KPZ equation.
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1 Introduction

We consider the one-dimensional weakly asymmetric simple exclusion process, i.e. our micro-
scopic dynamic is given by a stochastic lattice gas with hard core exclusion. This process arises
as a simple model for the growing of random interfaces. The presence of weak asymmetry breaks
down the detailed balance, which implies the system to exhibit a non trivial behavior even in the
stationary situation. Using renormalization group techniques, the dynamical scaling exponent
has been established as z = 3/2 and one of the challenging problems is to establish the limit
distribution for the density or current of particles, see Spohn (1991). The weakly asymmetric
simple exclusion process was studied in Masi et al (1986) and in Dittrich and Gartner (1991), for
γ = 1; and in Bertini and Giacomin (1997) for γ = 1/2. The equilibrium density fluctuations (for
γ = 1) are given by an Ornstein-Uhlenbeck process. For γ = 1/2 (which corresponds to strength
asymmetry nz), Bertini and Giacomin (1997) used the Cole-Hopf transformation to derive the
non-equilibrium fluctuations of the current of particles. By removing the drift to the system,
there is no effect of the strength of the asymmetry on the limit distribution of the density field.
By strengthening the asymmetry the limit distribution ”feels” the effect of this strengthening,
by developing a non linear term in the limit distribution. In this case the limit density field
is a solution of the Kardar-Parisi-Zhang (KPZ) equation. The KPZ equation was proposed in
Kardar et al (1986) to model the growth of random interfaces. Denoting by ht the height of the
interface, this equation reads as

∂th = D∆h+ a(∇h)2 + σWt,

whereD, a, σ are related to the thermodynamical properties of the interface andWt is a Gaussian
space-time white noise with covariance given by E[Wt(u)Ws(v)] = δ(t− s)δ(u− v). According
to z, a non-trivial behavior occurs under re-scaling hn(t, x) = n−1/2h(tn3/2, x/n). This means,
roughly speaking, that in our case, for γ = 1/2 a non trivial behavior is expected even in the
stationary situation and the model belongs to the universality class of the KPZ equation. We
provide the characterization of the transition from the Edwards-Wilkinson class to the KPZ class,
for the weakly asymmetric simple exclusion process. We prove that the transition depends on
the strength of the asymmetry without having any other intermediate state and by establishing
precisely the strength in order to have the crossover.
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2 The crossover

We consider ηt as the weakly asymmetric simple exclusion process evolving on Z. The state
space is Ω = {0, 1}Z, and after a mean one exponential time a particle jumps to an empty
neighboring site according to a transition rate that has a weak asymmetry to the right. The
process is speeded up on the diffusive time scale n2 so that ηnt = ηtn2 and the transition rate
from x to x+1 is 1/2+1/nγ and from x+1 to x is 1/2. We notice that if we decrease the value
of γ, this corresponds to speeding up the asymmetric part of the dynamics on longer time scales
as n2−γ . A stationary state for this process is {νρ : ρ ∈ [0, 1]} the Bernoulli product measure
on Ω of parameter ρ. Here we recall briefly the hydrodynamic limit for ηnt , with γ = 1. For that
purpose we introduce the empirical measure as the positive measure in R defined by

πn
t (dx) =

1

n

∑
x∈Z

ηnt (x)δx/n(dx),

where for u ∈ R, δu is the Dirac measure at u. Take ρ0 a strictly positive and piecewise continuous
function for which there exists ρ ∈ (0, 1) such that

∫
|ρ0(x)−ρ|dx < +∞. Start the process from

{µn;n ∈ N}, a product measure in Ω, whose marginal at x is Bernoulli of parameter ρ0(x/n).
In Guo et al (1988) it was shown that πn

t (dx) converges in probability to the deterministic
measure ρ(t, x)dx, where {ρ(t, x); t ≥ 0, x ∈ R} is the unique weak solution of the viscous
Burgers equation

∂tρ(t, x) =
1

2
∆ρ(t, x)−∇χ(ρ(t, x))

where χ(ρ) = ρ(1− ρ) is the static compressibility of the system. We establish the fluctuations
of the empirical measure from the stationary state νρ. We fix a density ρ and we take ηnt moving
in a reference frame with constant velocity (1− 2ρ)n2−γ . We define the density fluctuation field
on H ∈ S(R) as:

Yn,γ
t (H) =

1√
n

∑
x∈Z

T γ
t Hx

(
ηnt (x)− ρ

)
, (1)

where T γ
t H(·) = H(· − (1 − 2ρ)tn1−γ). Here and from now on we use the denotation Hx =

H(x/N). For γ = 1, it is not hard to show that {Yn,γ
t ;n ∈ N} converges to Yγ

t solution of

dYγ
t =

1

2
∆Yγ

t dt+
√
χ(ρ)∇dWt, (2)

where Wt is a space-time white noise, that is, a Gaussian process of mean zero and covariance
δ(x− x′)δ(t− t′). So, for γ = 1 the system belongs to the Edwards-Wilkinson class.

In order to see the effect of the asymmetry in the limit density field we increment the strength
of the asymmetry by decreasing the value of γ. As discussed in Bertini and Giacomin (1997),
the effect of the asymmetry is presented in the limit field when γ = 1/2 and in that case Yγ

t has
a very different qualitatively behavior from the one obtained for γ = 1, namely the solution of
(2). Here we characterize the limit field Yγ

t for the intermediate state, i.e. for γ ∈ (1/2, 1), by
showing that it solves (2) and in this case the system still belongs to the Edwards-Wilkinson
class. The idea of the proof is to use Dynkin’s formula together with simple computations, to
write down

Yn,γ
t (H) =Mn,γ

t (H) + Yn,γ
0 (H) + In,γ

t (H) +An,γ
t (H)

where Mn,γ
t (H) is a martingale with respect to the natural filtration,

In,γ
t (H) =

∫ t

0

1

2
√
n

∑
x∈Z

∆nT γ
s Hx(η

n
s (x)− ρ)ds,
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An,γ
t (H) =

∫ t

0

n1−γ

√
n

∑
x∈Z

∇nT γ
s Hx

{
ηns (x)(1− ηns (x+ 1))− χ(ρ)− (1− 2ρ)(ηns (x)− ρ)

}
ds,

and ∆n, ∇n are the discrete laplacian and the discrete derivative, respectively. Then we need to
analyze the asymptotic behavior of the martingale and the integral terms. The hard programme
is to analyze An,γ

t (H). We can show that this term vanishes as N → +∞ as a consequence of the
stronger Boltzmann-Gibbs principle given in Corollary 7.4 of Gonçalves (2008). There the result
was obtained for the symmetric simple exclusion but is also true for the weakly asymmetric
version. In fact the result can be stated as: if ψ : Ω → R is a local function, γ ∈ (1/2, 1) and if
H ∈ S(R) then

lim
n→∞

Eνρ

[( ∫ t

0

n1−γ

√
n

∑
x∈Z

Hx

{
τxψ(η

n
s )− Eνρ [ψ(η)]− ∂ρEνρ [ψ(η)](η

n
s (x)− ρ)

}
ds
)2]

= 0. (3)

Last result together with some computations on the quadratic variation of the martingale,
gives us that Yγ

t is solution of (2).
So, if we want to see the effect of the asymmetry in the limit field, we go towards decreasing

the value of γ, which, as mentioned above, corresponds to speeding up the asymmetric part of
the dynamics. This is in agreement with the result of Bertini and Giacomin (1997) which says
that for γ = 1/2 that is indeed the case. Recently in Jara and Gonçalves (2010), it was shown
that for γ = 1/2, {Yn,γ

t ;n ∈ N} is tight and any limit point is a weak solution of the KPZ
equation:

dYγ
t =

1

2
∆Yγ

t dt+∇(Yγ
t )

2dt+
√
χ(ρ)∇dWt. (4)

Since we are in the presence of a stronger asymmetry, the result in (3) is no longer true.
In order to establish last result, a second order Boltzmann-Gibbs principle was derived in Jara
and Gonçalves (2010). The ingredients invoked in order to derive this stronger replacement is a
multi-scale argument introduced in Gonçalves (2008) combined with some fundamental features
of the model: as a sharp spectral gap bound for the dynamics restricted to finite boxes, plus a
second order expansion on the equivalence of ensembles.

The results beyond the hydrodynamic time scale, the crossover at γ = 1/2 and the KPZ
class, are in fact true for a general class of weakly asymmetric exclusion processes see Gonçalves
and Jara (2010).
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