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Abstract

The quantity of civil engineering infrastructures increased in a substantial manner within the
last few decades. As a result of this, countries become responsible for an enormous set of
infrastructures to be maintained during its whole life. However, and according to OECD
(Organization for Economic Co-operation and Development), the dispended budget in this

field is still lower than the recommended one.

Accordingly, it becomes necessary to develop advanced tools that, with the support of data
from diverse observation systems, would permit to obtain a real image of the analysed
structure. This way, some researchers produced, in the last few years, different structural
assessment frameworks. While some introduced the model identification techniques, others

presented the probabilistic assessment algorithms with Bayesian inference updating.

Within this thesis an advanced probabilistic assessment algorithm, that comprises both these
techniques of model identification and Bayesian inference, is developed. A two-step updating
procedure is then established. The developed algorithm is combined with commercial
nonlinear structural analysis software (ATENA®). This will allow the structure evaluation both

in service and failure region.

Additionally, it is intended to incorporate within this algorithm all different uncertainty sources
that coexist in a structural assessment procedure. Some of these sources are introduced
during the identification process, while others are incorporated during the probabilistic
analysis. The final purpose is to obtain a reliability index, based in the comparison between

loading and resistance curves, which provides a real measure of structural safety.

The developed algorithm is, posteriorly, validated with different sets of laboratory tested
structures which were loaded up to failure. These sets include both reinforced concrete and
composite beams. Furthermore it is tested on a composite bridge submitted to a load test
(Sousa River Bridge). Obtained results permit, in some situations, to identify an additional

structural capacity which was not known at beginning.
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Resumo

O numero de infraestruturas cresceu substancialmente nas ultimas décadas, fruto de um
crescimento econémico desmedido. Como resultado deste fenbmeno, os paises ficaram
detentores de um vasto parque de infraestruturas, a manter durante o seu ciclo de vida.
Contudo, e de acordo com a OCDE (Organizacédo para a Cooperacdo e Desenvolvimento
Econdmico), o valor despendido nesta matéria encontra-se, ainda, muito aquém do

recomendado.

Desta forma foi necessario desenvolver ferramentas que, com o apoio dos dados
provenientes dos diversos sistemas de observagcdo, permitissem a obtencdo de uma
imagem real da estrutura em andlise. Neste sentido, varios investigadores desenvolveram,
nos ultimos anos, diversos algoritmos de avaliagdo estrutural. Alguns incidiram sobre
técnicas de identificagdo, enquanto outros focaram as andlises probabilisticas com

atualizacéo inferencial.

Nesta tese, desenvolveu-se uma ferramenta de avaliagdo probabilistica da seguranca das
estruturas que combina ambas as técnicas de identificacdo e inferéncia Bayesiana. Esta
ferramenta €, posteriormente, implementada num programa comercial de analise néo linear
de estruturas (ATENA®), possibilitando, deste modo, a sua avaliacdo quer em servico quer

em rotura.

Em paralelo, pretende-se, com este algoritmo, a incorporacdo das diferentes fontes de
incerteza existentes num processo de avaliagdo estrutural. Enquanto algumas sé&o
introduzidas durante o processo de identificacdo estrutural, outras sao incorporadas durante
a propria andlise probabilistica. O objetivo final sera a obtencédo de um indice de fiabilidade,
baseado numa comparacdo entre curvas de resisténcia e de carga, que forneca uma

informacéo fidedigna da seguranca estrutural.

O algoritmo €, posteriormente, validado através de uma aplicacdo a um conjunto de
estruturas ensaiadas até a rotura em laboratério. Este conjunto incorpora vigas em betdo
armado e mistas aco-betdo. Seguidamente, sera testado com uma ponte mista ago-betdo
submetida a um ensaio de carga (Ponte sobre Rio Sousa). Os resultados obtidos permitem,
em algumas situacdes, a identificacdo de uma capacidade estrutural adicional ndo prevista

em projeto.
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Introduction

1.1. Introduction and motivation

The investment in infrastructure assets increased in the second half of the 20th century due
to an excessive economic growth. As a result, developed countries become responsible for
the maintenance and replacement, due to service and safety issues, of a set of
infrastructures, namely for transport, health, energy and water resources, which are now
ageing [141]. However, maintaining current infrastructure quality is not expected to be

economically sustainable.

According to the Organization for Economic Co-operation and Development (OECD) the
need for maintenance and replacement of public infrastructure represents, annually, 3.5% of
each country gross domestic product (GDP). Figure 1.la indicates the average GDP
percentage of OECD countries dedicated to infrastructure since the year 1980 [142]. This
reflects a general global trend of rarefaction of resources dedicated to infrastructure.

Figure 1.1b reports the result of a recent study on the maturity of the market in infrastructure
in several countries [140]. The respective rating is based in the country risk (including legal
and regulatory risk along with political economic and financial risk) together with the value of
completed deals in the last 24 months as a percentage of GDP (reflecting a country’s
experience with private involvement in infrastructure projects). It shows that most western

countries have infrastructure in advanced stage of maturity.
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The OECD noted that by 2030 “... a larger effort will need to be directed towards
maintenance and upgrading of existing infrastructure and to getting infrastructure to work
more efficiently” [32]. Therefore, it is extremely important for countries to prioritize their
budget expenditures and investments in this topic by improving the way structures are
currently being evaluated. Accordingly, several researchers developed structural assessment

frameworks that will provide an accurate image of analyzed structure [6, 41, 52, 165].
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Figure 1.1. OECD report results: a) average infrastructure investments in OECD countries

(adapted from [142]); b) world infrastructure market maturity (adapted from [140]).

Some of these researchers introduced model identification techniques [6, 70, 152, 165],
based in both static and dynamic data. The objective of these frameworks is to obtain an
accurate representation of evaluated structure. Several optimization algorithms are thus
implemented in order to obtain this model. The effectiveness of model identification will

depend of considered optimization algorithm.

Recently, some researchers have developed identification algorithms that consider both
modeling and measured data errors [6, 70, 152]. However, different ways of introducing such
errors exist. Some authors incorporate them as a bias in model parameter values [6]. Others

introduced them in an optimization algorithm criterion [70, 152].

The use of full probabilistic structural assessment algorithms is also recent [14, 41, 43, 52].
Although promising, as they permit to incorporate randomness into structural models, these
algorithms were constantly avoided due to their high computational cost. This is due to the
fact of being supported in sampling techniques, which obliges to compute, for several times,
a specific numerical model. Fortunately, the evolution of computers in the last decades

overcomes this important obstacle.

The use of permanent monitoring systems in critical infrastructures increased in the last few

years [14, 43]. Moreover, on non-critical structures, it is recommended, due to durability
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problems, to carry out scheduled nondestructive evaluations. Obtained data is so important
to describe the real structural behavior. A Bayesian inference algorithm [15] may be used to

update probabilistic numerical models through the use of such data [41, 52].

All these structural assessment algorithms will allow combining, at different stages, different
uncertainty sources. However, there still exist many doubts regarding the correct moment an
identification algorithm should be applied or a probabilistic model should be used, what
errors should be considered within an analysis, etc. The algorithm which is developed within
this thesis, described in Figure 1.2, combines different uncertainty sources. In order to

validate it, the algorithm is tested on two laboratory tested beams and on a real bridge.

—* Finish —;-l Structural Assessment Procedure |—y Stanf—pl Conservative Models (Codes)l

|

l Yes <«— Adequate Performance?
No

No Intervention

Probabilistic Models (Codes)

|
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|
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|

Conservative Models |«—[Mode| Identification l <—| Site Monitoring!

|
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!

Yes «— Adequate Performance?

!

No

|

Probabilistic Models |<—| Bayesian Inference |<— | Site Monitoringl

!

Yes «— Adequate Performance? — No — Intervention Required

Figure 1.2. Organization chart of developed algorithm.

Traditionally, structural assessment is developed according to existent codes in which
conservative or even probabilistic models are provided. However, there are some situations
in which the studied structure presents a higher capacity reserve. This fact becomes more
evident in existent structures. Accordingly, in those situations, site monitoring becomes
important in order to obtain real data from the evaluated structure. This data is then used to
predict the structural parameters, through the application of a model identification algorithm.
The same models may be used to evaluate the structural performance but, now, considering

the assessed parameters.




Chapter 1. Introduction

However, in some cases, the structural performance is still considered to be inadequate. In
those situations, full probabilistic assessment algorithms are recommended as they allow to
introduce randomness in model parameters and to evaluate the structural performance from
a probabilistic point of view. Sometimes, additional tests are important to characterize, in a
more realistic way, some parameters. In such situations it is recommended to automatically

update the developed model through the use of a Bayesian inference procedure.

The structural performance evaluation may be so developed in an automatic basis.
Therefore, within this thesis, a two-step updating algorithm is developed, which can be used
with success to evaluate the structural performance, see Figure 1.2. The developed

algorithm is then validated with reinforcement and composite steel-concrete structures.

This thesis focuses on the development of an advanced probabilistic assessment algorithm.
The main result of this application, both in service and failure region, is an updated
resistance curve for the assessed structure. The decision regarding the most adequate

intervention and its cost is a topic that will be held for future developments.

1.2. Objectives

The main objective of this thesis is to present an advanced probabilistic structural
assessment framework, which considers both model identification and Bayesian inference
algorithms. Such framework will be applied with existent reinforced concrete and composite
structures. Accordingly, it is first necessary to study existing procedures for structural

assessment and find out their advantages and drawbacks.

The proposed methodology aims to incorporate all uncertainty sources within the analysis.
This is important as most of the algorithms do not take them into account. Therefore, a
detailed description of those uncertainty sources and of how they can be considered within
the analysis becomes necessary. These sources include both modeling and measurement

errors as also randomness in model parameters.

It is also planned to implement the developed algorithm with a nonlinear structural analysis
software. This will allow the evaluation of the structural behavior both under service and
failure loads. Obtained results from the analysis under service loads, which is typical from
structure load tests, are further extrapolated for an analysis up to the structure collapse.
Finally, it becomes necessary to validate the proposed probabilistic assessment algorithm.

This will be done with both laboratory and real structures.

Thus, it is possible to identify the following objectives to attain within this thesis: (1) develop a

probabilistic based algorithm for structural assessment, which can be automatic updated with
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obtained data; (2) implement the developed structural assessment algorithm with a nonlinear
structural analysis framework, which will allow more accurate predictions of structural
behavior under both service and failure loads; (3) incorporate different uncertainty sources
within the structural assessment algorithm, giving a special attention to measurement and
modeling errors; (4) validate the developed structural assessment algorithm with both
reinforced concrete and composite beams loaded up to failure in laboratory controlled
conditions; (5) apply the developed structural assessment algorithm with a real case of a
composite bridge, submitted to a load test; (6) help operators to better characterize the real
state of their infrastructure and, especially, on the decision regarding the more appropriate
maintenance strategy; (7) contribute to the success of investment of countries in

maintenance and replacement of their infrastructure.

1.3. Outline of thesis

This thesis is composed by eight chapters which are complementary. The organization chart

of this thesis is schematized at Figure 1.3.

| Chapter 1. Introduction

!

Algorithm

Chapter 2. Optimization Algorithms I R Chapter 4. z;gliablléstig:ssessment (—l Chapter 3. Bayesian Inference
ructur

y

Validation

[ |
Laboratory Tests Real Prototype
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| —— |
!

I Chapter 8. Conclusions |

Figure 1.3. Outline of developed thesis.

The first chapter presents the scope and main motivations of this thesis. It specifically
focuses the OECD needs in maintenance and replacement infrastructure investments and
contrasts it with the financial support that countries actually provide. As a result, it indicates
the needs of more efficient assessment algorithms, in order to obtain a reliable image of the

studied infrastructure. It also presents the main objectives of this thesis.

In the second chapter, various optimization algorithms that might be used with an

identification methodology are presented. Both local and global algorithms, as well as, the
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advantages and drawbacks of each, are presented. These algorithms are firstly tested with
traditional optimization problems. Secondly, they are tested with a problem in which the
numerical model parameters of a reinforced concrete beam are adjusted in order that
obtained results best fit experimental data. Obtained results are then compared in terms of

computational cost and improvement in fitness function.

Chapter three describes the Bayesian inference method. This procedure is important to
update probabilistic models with acquired data. Its mathematical formulation as also some
simple and useful applications, are presented. These examples cover the inference of
Normal, Lognormal and Weibull probability density functions (PDF) which include most
significant input parameters. This method is relevant as it allows to control and eventually to

reduce the statistical uncertainty.

Chapter four presents the developed algorithm for probabilistic assessment of structures. It
begins with a description of structural assessment algorithms indicated in the literature and of
most important uncertainty sources. Then, a description of the developed model identification
algorithm is presented. Special attention is given to modeling and measurement errors. The
probabilistic framework, which includes a sampling algorithm, is then introduced. Finally, a
review of how reliability indexes are computed and of proposed target indexes, by different

authors, is provided.

In chapter five the proposed algorithm for probabilistic structural assessment is validated and
tested with a set of reinforced concrete beams that were loaded up to failure in laboratory. A

description of developed tests, numerical model and obtained results is provided.

In chapter six, the algorithm is tested with a set of composite beams. These structures
present a higher degree of uncertainty due to the difficulty in characterizing the steel-
concrete connection. The methodology is then validated, being presented the developed

tests, the numerical model and obtained results.

A final application of this methodology with a case study of a composite bridge is provided in
chapter seven. The load test, the developed numerical model and obtained results from
assessment algorithm are discussed in detail. This will allow to validate the algorithm and

also to confirm the real condition of the evaluated structure.

A summary of obtained results from the application of developed probabilistic structural
assessment algorithm with reinforced concrete and composite structures, both in laboratory
and in-situ, is presented at chapter eight. It is also indicated the future developments of this

research.




Optimization Algorithms

2.1. Introduction

In civil engineer field, when the need to interpret the behavior of any particular structure
arises, numerical models are commonly used. In an initial phase, such models are only a
simple representation of the real structure. The experimental data, despite the related errors,
is at such phase, more accurate. Then, these models may be updated within a procedure in
which the numerical results are adjusted to existent experimental data. Such procedure is
usually designated by model identification [6, 7].

This process is generally based in a mathematical optimization algorithm. The selection of
such algorithm is recognized as a very important step. It is verified that the majority of
structural numerical models are multi-parametric, as they depend on more than one
parameter, and nonlinear, due to the structural nonlinear behavior. Due to these factors, the
objective function might present several minima, becoming the process of finding the global

optimum more complex.

The optimization algorithms can be divided in local and global procedures (Figure 2.1) [184].
The former do not always find the global minimum of the objective function, that is, the
minimum of all local minima of the function. This minimum is very useful to identify in many
practical applications but it is usually a hard task to perform it. Also, it is very difficult to know
beforehand if the objective function contains besides global minima, also local minima, since

this requires the knowledge of the overall shape of the function.
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On the other hand, the global minima, as several local minima, may not be from a physical
point of view the value we are seeking for. In fact, the determined global minimum is only a
pure mathematic value. An engineering judgment is so necessary to evaluate if obtained
minima presents any logic from an engineer point of view. Sometimes the value we are
searching for may be a local and not a global minimum. Consequently, the use of any

optimization search procedure does not dispense an engineer evaluation of obtained results.

Local algorithms start from one initial point, generating in an iterative way a sequence of
improved estimates until the solution is reached. These procedures are generally based in
the gradient of the objective function. Although very popular, as they are very fast, these
methods do not guarantee to find the global minimum since they can be easily trapped into a
local solution. Global algorithms are more robust, as the choice of the starting point has little
influence on the final result, and are more likely to detect a global minimum. The main
drawback of such algorithms is the fact of requiring a large number of function evaluations,
since they are based on probabilistic searching without the use of any gradient information.

f(x)
y

e.

e R SOTTETTTTTTT RN TR )
Local Minima Global Minima X

Figure 2.1. Local and global minimum.

The first model identification procedures were developed by using local search optimization
algorithms [107], as the sequential quadratic programming (SQP) [56, 65, 132, 150]. These
techniques were applied with static [11, 12, 78, 161, 199] or dynamic [63, 88, 89, 112, 162]
measurements for model parameter estimation and, sometimes, in damage detection. Some

authors developed an improved formulation based on both measurement types [74, 143].

Global search algorithms were later used in model identification. Different techniques were
developed within the last decades. From those techniques it is important to mention the ant
system (ASO), introduced in 1991 by Dorigo [34, 35, 36], and the particle swarm (PSO),
presented in 1995 by Kennedy and Eberhart [39, 95]. These are population based algorithms
that mimic the social behavior of animals in a flock. Raphael and Smith [151] Robert-Nicoud
et al. [156, 157, 158] and Smith and Saitta [169] present a multiple-model identification

algorithm, designated as probabilistic global search Lausanne (PGSL). An improvement of
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PGSL, designated as candidate model search for system identification (CMS4SI), was
developed by Goulet et al. [70, 72] and Goulet and Smith [71].

Others significant global search algorithms are the simulated annealing (SA), the genetic
algorithms (GA) and the evolutionary strategies (ES). The first was conceived by
Kirkpatrick et al. [96, 191] and is based in an analogy between the annealing of solids and
the problem of solving optimization problems. The second one was first introduced by
Holland [79] and is defined by an algorithm that acts in a population of search points and
generates new populations using randomized operators that mimic those of natural evolution
as the selection, crossover and mutation. Several applications of GA in model identification
can be found in existent bibliography [27, 81, 82, 83, 168, 198]. The third algorithm,
presented first by Rechenberg [153] and later by Schwefel [167], is also a search procedure
that mimics the evolution of species in natural systems. Franco [57, 58] presents an
application of ES for model identification. Both GA and ES are considered as evolutionary
algorithms (EA) as they are based on Darwin’s theory of evolution. However, ES works
directly with real representations of decision variables being the defined transition rules, in

particular the ones related with selection, deterministic [9, 16].

The coupled local minimizers (CLM), is a hybrid method proposed by Suykens et al.
[178, 179]. In this method, a cooperative search mechanism is set up by performing a
number of local optimization runs simultaneously coupled by information exchange. The
global search process is directed by the gradients in each search point. In this way, CLM
combines the advantage of local with global algorithms. Teughels [184] uses such algorithm
for dynamic model identification. Other hybrid algorithms were developed by different
authors. Koh et al. [98] used a GA framework coupled to a suitable local search method for
identification of structural parameters of large structural systems. Lagaros et al. [100]
investigate the efficiency of various hybrids EA as GA-SQP and ES-SQP when applied to

large-scale structural problems.

This chapter describes different local and global optimization algorithms with the main
objective of identifying the most suitable for civil engineering model identification. In these
procedures, the used objective functions are nonlinear and dependent of several variables.
In a first step, optimization algorithms are applied to analytical optimization problems, being
further used in a real application, a reinforced concrete beam which was submitted to a
laboratory test up to failure. The computational cost, the number of function evaluations and

the obtained fitness value are compared.
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2.2. Optimization algorithms

Optimization algorithms are used to find a set of optimal parameters x. In simple cases, this
might be the minimization or maximization of some system that is dependent on x. In a more
advanced formulation, the objective function f(x) to be minimized or maximized might be

subjected to constraints. A general optimization problem may be stated as, (2.1),
min f(x) (2.1)

subjected to (2.2),

gi(x)=0,i=1,....me (2.2)
and to (2.3),
gi(xX) <0,i=me+l,....m (2.3)

where x is the design parameters vector, f(X) is the objective function which returns a scalar
value, and gj(x) a vector function containing the values of equality and inequality constraints.
An efficient and accurate solution to this problem depends, not only on the size of the
problem, in terms of the number of constraints and design variables, but also on

characteristics of the objective function and constraints.
2.3. Local optimization methods
2.3.1. Sequential quadratic programming

The sequential quadratic programming (SQP) is a local direct search method where
constraints are handled explicitly during the whole procedure. Within this method, the
solution is found by solving a sequence of quadratic programming (QP) problems [184]. SQP
can be considered as a generalization of Newton method for unconstrained optimization
[18, 75, 146, 147] as it finds a step away from the current point by minimizing a quadratic
model of the problem. Given the general problem described in expressions (2.1) to (2.3), the
main concept of SQP method is the formulation of a QP problem based on a quadratic

approximation of the following Lagrangian function (2.4),

LA = fG)+ ) A gi @) @4
i=1

being A the Lagrange multiplier. The QP problem is thus obtained by linearizing the nonlinear

constraints, (2.5),

10
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1
min EdkTdek + Vf(xk)T dk (25)

dgERMT

subjected to (2.6),

Vg () d + 9i(x) = 0,i = 1,...,m, (2.6)
and to (2.7),
Vgi(x)Td + gi(x) <0,i=m,+1,..,m (2.7)

being dy the search direction vector and Hy the Hessian matrix of the Lagrangian function.
This problem can be solved by using a QP algorithm. Therefore, the SQP implementation
consists of three main stages: (1) updating the Hessian matrix; (2) quadratic programming

solution; (3) line search and objective function.

2.3.1.1. Updating the Hessian matrix

A positive definite quasi-Newton approximation of the Hessian of the Lagrangian

function (2.4) is computed each iteration (2.8),

akqk _ HisksicHy

Hy,.i=H, + 2.8
k+1 k Q£Sk SIZHkSk ( )
where s, = X1 - Xk, and gy is obtained by expression (2.9).
m m
Qi = <Vf(xk+1) £y zngi(ka)) - (mxk) £y ﬂngi(xk)> 2.9)
i=1 i=1

Powell [146, 147] recommends keeping the Hessian positive definite within the whole
procedure, although it might be positive indefinite at solution points. A positive definite
Hessian is maintained providing that q,'s, is positive at each update and that Hy is initialized
with a positive definite matrix. When qi's, is not positive, g, is modified on an element-by-
element basis so that qkTsk > 0. The aim of this modification is to distort the elements of g,
which contribute to a positive definite update, as little as possible. Therefore, in an initial
phase of the modification, the most negative element of qg.'sy is repeatedly halved. This
procedure is continued until g.'s, is greater than or equal to a small negative tolerance. If,
after this procedure, qx'sy is still not positive, g is modified by adding a vector v multiplied by

a constant scalar w, that is, qx = ¢ + w v. Vector v is computed through expression (2.10).

v; = Vgi(Xk1)9i (ier1) — Vi (xi) gi (xi) (2.10)

if (Qi w < 0 and (q)i (sk)i < 0, fori =1, ..., m, otherwise v; = 0. This value is increased

systematically until g.'s, becomes positive.

11
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2.3.1.2. Quadratic programming solution
A QP problem of the following form, obtained from expressions (2.5) to (2.7), is solved each

iteration, (2.11),

1
min q(dy) = EdkTHdk +cTd, (2.11)

dgER™

subjected to (2.12),

Adc=b,i=1,....me (212)
and (2.13),
Adg £bj, i =met+l,...,m (213)

where A, refers to the i-th row of the m-by-n matrix A. An active strategy method may be used
to solve this problem [65]. This procedure involves two phases. The first one comprises the
computation of a feasible point, while the second corresponds to the generation of an
iterative sequence of feasible points that converges to the solution. In this method an active
set A,, that is an estimate of the active constraints at solution point, is maintained. The active
set is updated each iteration k and this is used to form a basis for the search direction dy. The
search direction dy is computed and minimizes the objective function, while remaining on any

active constraint boundaries.

The feasible subspace for dy is formed from a basis Z, whose columns are orthogonal to the
estimate of the active set A.. Thus a search direction, which is formed from a linear
summation of any combination of the columns of Z,, is guaranteed to remain on the
boundaries of the active constraints. The matrix Zy is formed from the last m - | columns of
the decomposition of the matrix A, where | is the number of active constraints or those
which are on the constraint boundaries. Once Z, is found, a new search direction dy is sought
that minimizes q(d), where dy is in the null space of the active constraints. Therefore dy is a
linear combination of the columns of Z,: d¢x = Z¢ p, for some vector p. Then by viewing

expression (2.11) as a function of p, it results in expression (2.14).
1 TT T
a(p) = 5P ZxHZkp + ¢ Zyp (2.14)

Differentiating this with respect to p yields expression (2.15).
Vq(p) = ZTHZp + Z] ¢ (2.15)

In which this differentiation is referred to as the projected gradient of the quadratic function
because it is the gradient projected in the subspace defined by Z,. Assuming the Hessian

matrix to be positive definite, then the minimum of the function q(p), in the subspace defined

12
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by Z,, occurs when the projected gradient is null, which corresponds to the solution of the

following system of linear equations (2.16).
ZIHzZyp = —ZIc (2.16)

A step is then taken of the form X1 = X+ a di. At each iteration, due to the quadratic nature
of the objective function, there are only two choices of step length (a).A step of unity along dy
is the exact step to the minimum of the function, restricted to the null space of A,. If such a
step can be taken, without violation of the constraints, then this is the problem solution.
Otherwise, the step along dy to the nearest constraint is less than unity and a new constraint
is included in the active set at the next iteration. The distance to the constraint boundaries in
any direction dy is given by (2.17),

—(Aixy — bi)}

“= L'EHl,.l..r,lm}{ A;d, (2.17)

which is defined for constraints not in the active set. When n independent constraints are
included in the active set, without location of the minimum, the Lagrange multipliers (/) are

computed in order to satisfy the nonsingular set of linear equations (2.18).

AT =c (2.18)

If all elements of A, are positive, than x, is the optimal solution of the QP problem. However,
if any component of A, is negative, and the component does not correspond to an equality
constraint, then the corresponding element is deleted from the active set and a new iterate is

sought.

2.3.1.3. Line search and objective function

The solution to the QP problem produces a vector d¢ which is used to form a new
iterate, (2.19).

Xis1 = X+ ady (219)

The step length parameter ay is determined in order to produce a sufficient decrease in the
objective function. The objective function used by Han [75] and Powell [146, 147] presents

the following form, (2.20),

0 = F@)+ ) 1gi0+ ) rimax(0,g:)] (2.20)
i=1

i=me+1

being r; the penalty parameter obtained by expression (2.21).

13
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(2.21)

(le)i+/1i} .
——i= 1,..,m

i = (My1); = max; {Ai'
This allows positive contribution from constraints that are inactive in the QP solution but were

recently active.

Although similar to other traditional active-set algorithms [184], SQP presents some
differences as: (1) strict feasibility with respect to bounds. The SQP algorithm takes every
step in the region constrained by bounds; (2) robustness. During iterations the SQP
algorithm can attempt to take a step that fails. In this situation the algorithm attempts to take
a smaller step; (3) refactored linear algebra routines. The SQP algorithm uses a different set
of linear algebra routines to solve QP problems. These routines are more efficient in both
memory usage and speed than traditional active-set routines; (4) reformulated feasibility
routines. SQP algorithm has two new approaches to the solution when constraints are not
satisfied: (a) the SQP algorithm combines the objective and constraint functions into an
objective function. This modified problem can lead to a feasible solution. This approach has
more variables than the original problem and this can slow the solution of the QP problem
[172, 186]; (b) the SQP considers an attempt step that causes the constraint violation to
grow. The SQP algorithm attempts to obtain feasibility using a second-order approximation to
the constraints. This technique can slow the solution by requiring more evaluations of the

nonlinear constraint functions.
2.4. Global optimization methods
2.4.1. Simulated annealing

Simulated annealing (SA) is a global search method, based in the annealing process of
heating up a solid and then cooling it down slowly until it crystallizes. The atoms in material
have high energies at high temperature and have more freedom to arrange them. As the
temperature is reduced, the atomic energy decreases. A crystal with regular structure is
obtained at the state where the system has minimum energy. If the cooling is carried out very
quickly, known as rapid quenching, widespread irregularities and defects can be found in the
crystal structure. The system does not reach the minimum energy state and ends in a

polycrystalline state which has a higher energy.

The analogy between the annealing process and optimization is as follows. The state of
physical substance corresponds to the value of the design vector in optimization, the physical
energy is represented by the objective function, the temperature is introduced as a control

parameter and finding the lowest energy state corresponds to find the global minimum. The
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same way atoms find their way to build a perfect crystal structure through random
movements, global minimum is reached through a search within randomly generated

candidates for the design vector.

The algorithm starts from an initial point and generates in an iterative process consecutive
points. At each iteration, a new random point is generated in the neighborhood of the current
point according to a neighborhood function. If the new candidate has a smaller objective
function value (downhill move), this point is accepted and replaces the old one. However, in
the opposite case (uphill move), the candidate may either be rejected or accepted depending
on the control parameter, defined in terms of the Metropolis criterion [124]. If Af = f(Xpew) -
f(Xeurrent) < 0, in which f is the objective function, then accept the new point unconditionally.

Otherwise, accept the new point with a probability of, (2.22),

_Af
Pu etr(Bf) = e kT (2.22)
where k is the Boltzmann constant and T is the control parameter or temperature.

When this algorithm is implemented, attention must be paid to the following choices:
(1) representation of solutions; (2) definition of the objective function; (3) definition of the
generation mechanism for the neighbors; (4) designing a cooling schedule. In designing the
cooling schedule for a simulated annealing algorithm, four parameters should be specified.
These are initial temperature, temperature updating rule, number of iterations to be

performed at each temperature step and a stopping criterion for the search.

The SA process starts at a high temperature To. A sequence of iterates is then generated
until the equilibrium is reached, that is when the average value of f remains stable as the
number of iterations increase. The temperature T is then reduced by a cooling schedule and
a new sequence of moves is made until again thermal equilibrium is obtained. The process is
repeated until a sufficiently low temperature is reached, at which very few new moves are
accepted. The algorithm flowchart is present in Figure 2.2a. The probability of accepting
uphill moves is higher at initial stages of optimization, due to the initial higher temperatures,
and is reduced later on, according to decreasing temperatures. Furthermore, the temperature

is reduced slowly so as not to get trapped into a local minimum.

Various implementations of SA exist, based on different neighborhood functions and cooling
schedules. A selection of four neighborhood functions is given by Levin and Lieven [103]. In
the line adjustment, random moves are made along each coordinate direction x;. The new
coordinate values are uniformly distributed within the coordinate’s valid range. In the fixed
radius adjustment, a new point X.e, iS generated on a hyper sphere that is a fixed radius from

the current point Xqurent. This approach requires an extra parameter, the radius.
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Figure 2.2. Optimization algorithm: a) simulated annealing; b) genetic algorithm.

Several cooling schedules have been studied in literature [73, 96, 191]. Levin and Lieven
[103] describes a standard cooling schedule for SA that simply reduces the current
temperature by a factor p (0 < p < 1). The choice of initial temperature T, depends on both
objective and neighborhood function. An appropriate choice of T, can be made based on
initial acceptance ratio, which is the ratio between the accepted moves over the total moves
made. If the ratio is high, a significant part of the SA will be spent in the molten state implying
unnecessary wasted effort. If this value is too low, then the risk of getting trapped in a local
minimum increases. The success of SA relies on occasional acceptance of uphill moves

avoid getting stuck in a local minimum.

2.4.2. Genetic algorithm

The basic genetic algorithm (GA) is a global search method, based on Darwin’s natural
evolution and the concept of survival of the fittest. In natural evolution, members of a
population compete with each other to survive and reproduce successfully. If the genetic
makeup of an individual member of a population gives that individual an advantage over its
rivals, then it is more likely to breed successfully. The combination of genes that confer this
advantage is likely to spread across the population. This is a natural optimization process

that may also be simulated.
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In GA the design vectors are represented as strings of binary digits, 0 and 1 [31, 125]. If each
design variable x;, i=1,...,n is coded in a string of length ny,, a design vector is represented
with a string of total length n x n,,. In the standard binary encoding, a binary number given by

bn.-1 ... bobibg Where b; = 0 or 1, denotes a decimal number x (integer), (2.23).

np—1

x= Z 21D, (2.23)
i=0

Several bits are so needed to represent a real valued search variable. The used number of
bits depends on the number range and needed precision. The sum of all bits, which
represent a search variable, is called “gen”. The sum of all “genes” collected in a binary
vector is called “chromosome”. The binary code leads to very long vectors combined with
large search spaces when coding high precision variables in high dimensional problems.
However, it is possible to apply real coding. In this situation, the search variable (“gene”) is
saved as real number and subsequently collected in vectors (“chromosomes”). The

disadvantage of this coding is that the classical procedure of crossover cannot be performed.

The mathematic optimization method acts on a population of “chromosomes”. Each
“chromosome” is a representation of a design vector and its fitness value is given by the
objective function. GA consists in generating a new population of “chromosomes” from the
old population using three randomized operators that mimic those of natural evolution:
selection, crossover and mutation. The nature of these operators is such that each
subsequent generation tends to have an average fithess level higher than the previous one.

A flowchart of GA is given in Figure 2.2b.

There exist two methods to define the initial solution of GA. The first consists of randomly
producing solutions based in a uniform probability density function (PDF) within the given
bounds. This method is preferable when no prior knowledge exists. The second method uses
prior knowledge in such a way a set of requirements is obtained, and solutions which satisfy
those requirements are collected to form an initial population. So, the GA starts the
optimization with a set of approximately known solutions converging to an optimal solution in

less time than the previous method.

Selection is a process in which the “chromosomes” are selected based on their fitness values
relatives to that of population. During this process, each individual “chromosome” is assigned

a probability of being selected (ps) for copying as (2.24),

fi
ps ST (2.24)
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where f; is the objective function value of the j-th “chromosome” and t is the population size.
The fittest “chromosomes” may typically be selected two or three times for mating and

subsequent genetic action. This process reflects the principle of the survival of the fittest.

Two selection procedures [195] can be used: (1) proportional; (2) ranking-based.
Proportional is usually called as “roulette wheel” due to the fact of the mechanism being
reminiscent from the operation of a roulette wheel. Fitness values of individuals represent the
widths of slots on the wheel. After a random spinning of the wheel, to select an individual for
next generation, individuals in slots with large widths, representing higher fitness values, will
have a higher chance to be selected. In ranking-based production procedure, each individual

generates an expected number of offspring based on the rank of its fithess value [10].

Crossover is the operator that generates descendants based on proved individuals from last
generation. The crossover operator mixes genetic information amongst the population and is
implemented in two steps. First, the “chromosomes” are randomly paired together. Next, a
crossover point is randomly selected along the string length of each pair of “chromosomes”
and the binary digits following the crossover point are swapped between both
“chromosomes”. This recombination can be performed according to different crossover
schemes (single-, point-, multipoint-, and shuffle-crossover). The crossover operator is
applied with a specific probability (p;). This operator has the potential of joining successful

genetic fragments together to form fitter individuals.

The mutation operator randomly reverses the individuals bit values, according to a specific
rate. Unlike crossover, this is an operator in which each child string is produced from a single
parent string. The main objective is to find a new region of the search space and to avoid the
convergence to a suboptimum. In real coding each “gene” is mutated according to a uniform
PDF. The mutation operator has the potential to reintroduce genetic information that has
been lost from the population. After crossover has occurred, each binary digit of each
“chromosome” has a small probability of mutating (p,, = 0.01 — 0.001). A binary digit that

mutates is simply inverted.

The population size is generally kept constant. Therefore it is necessary to decide which
individuals should survive or substituted for next generation. There are different substitution
schemes (substitution of complete generation, elitism, slight elitism, cancelation of n worst
individuals, and many others). A direct method is to reprobate all invalid solutions with the
disadvantage of increased computational time. An alternative is the implementation of the so-

called “penalty functions”.
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Important control parameters include the population size, crossover and mutation rate. A
large population size means the simultaneous handling of many solutions and increases the
computational time. However, since many samples from the search space are used, the
probability of convergence to a global optimum is higher. The crossover rate determines the
frequency of crossover operation. It is useful at the start of optimization to discover a
promising region. A low value decreases the speed of convergence to such an area. If this
value is too high, it may lead to saturation around a solution. The mutation operator is
controlled by the mutation rate. A higher value introduces high diversity in population and
might cause instability. On the other hand, it becomes very difficult to find a global optimal

solution with a too low value.

The capability of finding the global minimum, mainly due to the simultaneous search by a
whole population of search points using randomized operators, such that the search space is
widely explored, is an advantage of using GA. Moreover, the information exchange between
selected pairs, directs the process towards the optimal point. The major drawback is that it

requires a huge number of function evaluations.
2.4.3. Evolutionary strategies

Evolutionary strategies (ES) is a global search algorithm based on Darwin’s natural evolution
and in the concept of survival of the fittest. It consists in selecting a set of y candidates for
the optimization problem solution and applying the rules of evolution until an optimal solution
is obtained. A typical candidate or an individual consists of a pair of vectors, one containing
the parametric solution of the system (x) and other containing a vector of standard
deviations (o) which controls the evolution of the individual in subsequent steps. From these
U solutions, a batch of A offspring’s are generated according to the mechanisms of
recombination and mutation. Then, these are evaluated according to the objective function
value or optimizations criterion and they are ranked from best to worst. The best are then
chosen, following a selection method to form the next parent population and the process is

iterated.

2.4.3.1. Initial parent population

The first step of this algorithm is to define the initial parent population. This is carried out by
picking p individuals at random from the search space. The initial population a = (x,0)"
(k=1, ..., p) is defined by (2.25),

xik = Xmin,i + Ui(o:l) ' (xmax,i - xmin,i) (2-25)

and (2.26),
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1
= (2.26)

where U;(0,1) denotes a random number following an uniform PDF in interval [0,1] and n is

k Xmax,i — Xmin,i
o; = _—

2

K
Xi — (xmin,i +

the problem dimension . The initialization of the standard deviation is obtained by using
expression o;= Ax; / Vn where Ax; denotes the estimated parametric distance to the optimum.
The values of these deviations will evolve during the optimization process, making the choice
of their initial values not of critical importance. However, such a choice must be reasonable
as a too large value might make the algorithm diverge for a long time. Analogously, too small
values will slow down the process until the deviations become large enough to make

significant improvements in fitness.

2.4.3.2. Recombinant operator

Schwefel [167] has reported a remarkable acceleration in the search process, as well as, the
facilitation of self-adaptation of parameters by introducing a recombination operator.
Basically, it consists on recombining a set of chosen parents to find a new solution. A given
number p of parents (1 < p < u) are randomly chosen for recombination. Thus, the
nomenclature for ES can now be extended to (u/p+A)-ES or (u/p,A)-ES, where p represents
the number of parents involved in the procreation of an offspring. These parameters (u, p
and A) are designated by “exogenous strategy parameters” as they are kept constant during

the evolution run.

This operation will distinguish ES from standard technique of GA. Unlike standard crossover
in GA where two parents produces two offspring, the application of standard ES
recombination operator to a parent family of size p produces only an offspring. Two
recombination types exist: (1) intermediate; (2) discrete. The former consists in taking an
individual from the parent population and holding it fixed while other parents are chosen to
recombine with it. For each parameter, one mating individual is picked at random from the
parent population. The parameters of the fixed and the mating parent are then weighed with
a random factor from the interval [0,1] so that new offspring’s parameter might be at any
intermediate point between its parent’'s parameter values. This process is mathematically
explained by (2.27),

xi' = xR,i + UL(O']-) ' (xQ,l- - xR,l-) (227)
and (2.28),

O'i’ = GR,i + UL(O,].) ' (GQ,i - GR,i) (228)
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where an apostrophe denotes the result of applying the genetic operator. Q and R denote the
fixed and the mating parent. Discrete recombination means that each component of the

offspring is chosen from one of the p parents at random.

2.4.3.3. Mutation operator

In order to introduce new information into the population pool, the mutation operator is used.
It consists in slightly perturbing the parameters of the offspring individuals after they have
been generated by the recombination procedure. During the search, the step sizes for
mutation are adapted. Several self-adaptation schemes are possible. A possibility is to
update the standard deviation o; for each decision variable. Expressed in mathematical

terms, the mutation operator (Gaussian mutation) for the i-th parameter is defined by (2.29),

o] = g;exp[t’'N(0,1) + tN;(0,1)] (2.29)
and (2.30),
x/ = x; + {N;(0,1) (2.30)

where N(0,1) denotes a random sample from a Normal PDF with zero mean and a unitary
standard deviation. The values of 7and 7 appear to be rather robust and they can be picked
as (2.31),

- ( /2\/H>_ (2.31)

and (2.32),

v o (V2n) (2.32)

where the proportional constants are usually unitary. To guarantee a minimum variation in
the mutation of the parameters, all o; are required to remain above a certain threshold value.
As suggested by Schwefel [167], this minimum deviation should be expressed as a

percentage of the parameter value, (2.33).
g; = %lx;| (2.33)

The standard deviations o; are updated using the 1/5 success rule. This rule can be
formulated in the following manner: “from time to time, during the optimum search, obtain the
frequency of successes or the ratio of the number of successes to the total number of trials.
If the ratio is greater than 1/5, increase the variance, if it is less than 1/5, decrease the
variance”. Assuming this rule to be applied periodically, for each p generations, it can be

expressed as, (2.34),
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1
Cdeco_ < Prsuc(p) < g

1
ClnCO- < Prsuc(p) >= (2-34)

(

|
(k+1) {
5

(k) 1
g; ~ < Prsuc(p) = g

where Prg.(p) is the success rate during the last p generations and cg4ec < 1 and ¢, > 1 are
the decreasing and increasing factors of the standard deviations o;. Mutation is an internal
parameter which is self-adapted, and optimized, during the evolution, together with other
parameters. This intrinsic characteristic differentiates ES from standard GA in which the

mutation rate is a fixed external parameter [29, 30].

2.4.3.4. Selection operator

The selection operator in ES is deterministic, contrasting with some selection mechanisms
often used in GA. Mainly, it is necessary to distinguish between elitist and non-elitist
selection operators. Elitism, or (u+A)-ES, dictates that the old parent individuals will be
pooled together with the new-offspring individuals and then the ranking of all y+A individuals
will be performed according to their fithess value. The best fitted u individuals, selected from
the pool, will substitute the old parent population. This technique guarantees survival of the
best adapted individuals but also hinders evolution if these apparently well-adapted
individuals approach a local optimum instead of the global one. In contrast, non-elitism, or
(u,A)-ES, dictates the ranking to be performed only on the offspring population of A
individuals and the best uy of these will substitute the old parent population. Thus, this
selection procedure might lose well adapted parent individuals but it provides also the power

to leave local optima in search for the global optimum.

More refined selection methods have been introduced, out of which, the fitness-based-
reinsertion combined with the elitist selection is recommended. In this method, the A
offspring’s are ranked in terms of their fithess and the best u-y (y < u) are selected to
become part of the next parent generation. The remaining yslots in the parent population to
complete the p individuals are filled by the best parents of the older generation. This
technique represents an intermediate scenario between elitist and non-elitist selection and it
aims to capture the best of both methods. Figure 2.3a illustrates the (u+A)-ES while

Figure 2.3b presents the (u,A)-ES selection procedure.
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Figure 2.3. Evolutionary strategies: a) (u+A1); b) (u,A).

2.4.3.5. Tolerance criteria

In order to halt the process and accepts the best found individual as the solution to the
optimization problem, one or several criteria have to be established. As tolerance criteria we
may have: (1) maximum number of generations; (2) maximum computational time;
(3) convergence in the space of fithess value; (4) convergence in object parameter;
(5) convergence in strategy parameter. In respect to objective function, this algorithm
evaluates its minimum value for generation i (f) and i+n (f.,), and determines its
improvement (Af). A threshold value (€), commonly designated by algorithm precision, is then

defined for this criterion through expression (2.35).
Af =fiun—filSe->fin<fite (2.35)

The gap between generations is computed by the product of the maximum number of
generations (MaxGen) by a tolerance value (see Figure 2.4).

Offspring Offspring
Best = fi Best = fi+n

il 1 il
il 1l 1

Worst Worst

Generation i Generation i+n

'

n = MaxGen x Tolerance i

Figure 2.4. Objective function criterion.
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2.5. Example

The previous presented optimization algorithms were tested with three analytical functions by
assuming four different starting points or starting point sets. For each initial point or set, five
runs were developed. An average fitness value, the number of function evaluations and the
required computational time is then determined. Regarding ES both (+) and (,) selection

operators were considered. Table 2.1 presents the algorithm parameters.

Table 2.1. Algorithm parameters.

Parameters SQP SA GA ES (+) ES (,)
Maximum number of function evaluations 1000 1000 * * *
Maximum number of iterations 1000 1000 * * *

Maximum number of generations * * 1000 1000 1000
Initial temperature (To) * 100 * * *
Mutation probability (pm) * * 1.00%10° * *
Crossover probability (pc) * * 0.80 * *
Parent population () (hnumber of individuals) * * 10 10 10
Parent for recombination (o) (humber of individuals) * * * 10 10
Offspring population (A) (humber of Individuals) * * * 50 50

* Not applicable.

2.5.1. Function 1

The first test function is a 2D well-shaped function with a clear global minimum defined
as, (2.36),

£y, x,) = 0.01- z [G; + 0.5)* —30-x2 — 20 - x;] (2.36)
i=1,2

with -5 < x; <5 (i = 1, 2). This function is presented in Figure 2.5a. The global minimum of this
function f is at x* = (3.29; 3.29) and is represented in contour plot in Figure 2.5b. The

obtained value for this point is of -3.68.
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Figure 2.5. Function 1: a) 3D plot; b) contour plot.

The average of results obtained for each algorithm is presented in Table 2.2. The second
column shows the gap (4f) between the fithess and the real value. Figure 2.6 indicates

obtained results, for each initial point or set xq(i), represented by a plot bar graphic.

Table 2.2. Obtained results.

Optimization algorithm Af [%] Nugclgleura(ﬂ‘ofsgt[:_t]ion Computational time [s]
SQP 100.00 30 0.17
SA 98.71 193 0.06
GA 100.00 1020 0.08
ES (+) 100.00 1010 0.17
ES (,) 100.00 1010 0.18

Obtained results indicate that all the four algorithms reached the global minimum. In respect
to required computational time, it is verified that local search techniques present a higher
value due to the need to compute the numerical derivatives of objective function in each
step. Identically, ES presents a high value as they perform the search in a wider range of
pool of points. SA is the algorithm that requires less computing time as it is based in a more
guided search procedure.
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Figure 2.6. Function 1: a) fitness value gap (%); b) computational time (s).
2.5.2. Function 2

The second test function is a 2D polar coordinate composite function with several local
minima and a clear global minimum. This function is described by (2.37),

f(x1,x2) = g(x1) - h(x) (2.37)
when g(x;) and h(x,) are respectively described by (2.38) and (2.39),

g(x;) = (sinx; —sin2x; /2 +sin3x,/3 —sin4x; /4 + 4) - x;%/(x; + 1) (2.38)
h(x,) =2+ cosx, + (cos2x, —1/2)/2 (2.39)

with -20 < x; < 20 (i = 1, 2). This function is plotted in Figure 2.7a. The global minimum of
function g is obtained for x; = 0, with a value of 0, while function h presents two local minima,
one of them, global. The global minimum of function f, indicated at contour plot in
Figure 2.7b, is at x* = (0; 0) with a value of 0.

S00--
400~
300
Global Optimum |

200+

100-

a) b)

Figure 2.7. Function 2: a) 3D plot; b) contour plot.
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Table 2.3 presents obtained average results for each algorithm. The second column shows
the gap (4f), between the fitness and the real value. Figure 2.8 indicates the results,

determined for each initial point or set Xq(i), and illustrated as a plot bar graphic.

Table 2.3. Obtained results.

Optimization algorithm Af [%] Nuglg?urac;ifofrlgu[:_t]ion Computational time [s]
SQP 84.87 78 0.17
SA 98.86 217 0.07
GA 100.00 1024 0.08
ES (+) 99.99 1010 0.18
ES (,) 99.96 1010 0.17

From a first analysis it is possible to indicate that all global search algorithms present very
good results. The performance of used local search technique was not as good as the others
as, in some situations, a local minimum is identified. Additionally, this algorithm is too much
dependent of considered starting point. In terms of computational time all the analyzed
algorithms present identical values. SA is the one that involves less computing time due to a

direct search procedure.

100 0,50
75 4 0,40 4
mx0(1) - ux0(1)
= ® 030 4
£ 50 4 x0(2) @ x0(2)
2 =x0(3) (& 020

1 mx0(3)
! . . 0.00 M= . I_- - l. - . .
sQpP SA G

SQP SA GA ES(+) ES() A ES() ES()
a) b)

Figure 2.8. Function 2: a) fithess value gap (%); b) computational time (s).

2.5.3. Function 3

The third function to be analyzed is a 2D function commonly designated as Rastrigin’s
Function [187]. This function has several local minima and one global. It is described by the

following expression, (2.40),

f(xq,x5) =20 + Z [x? — 10 - (cos 2mx;)] (2.40)

i=1,2
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with -5 < x; < 5 (i = 1, 2). This function is plotted in Figure 2.9a. The global minimum of

function f, indicated in the contour plot in Figure 2.9b, is at x* = (0; 0) with a value of 0.

Global Optimum

a) b)
Figure 2.9. Function 3: a) 3D plot; b) contour plot.

Table 2.4 presents obtained average results for each algorithm. The second column shows
the gap (4f), between the fithess and the real value. Figure 2.10 indicates the results,

determined for each initial point or set xo(i), and illustrated as a plot bar graphic.

Table 2.4. Obtained results.

Optimization algorithm Af [%] Nugclgleura(ﬂ‘ofsgt[:_t]ion Computational time [s]
SQP 84.08 50 0.19
SA 91.21 199 0.06
GA 99.00 1030 0.08
ES (+) 99.05 1010 0.19
ES () 99.05 1010 0.19

The results pointed out the main limitation of local search techniques, as, for the analyzed
function, the SQP converges to the solution close to the starting basin. Therefore, the
performance of this algorithm is directly dependent of the chosen starting point. SA did not
find the global minimum either but it presents better results. In fact the pool of points in which
SA performs it search is not as large as it should be. However, SA presents a reduced
computational cost. All the EA present very good results as they all found the global
optimum. In respect to computing costs, GA presents a lower value. For global search
techniques, the obtained results are independent of considered starting point.
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Figure 2.10. Function 3: a) fitness value gap (%); b) computational time (s).
2.6. Real application

In order to study the applicability of these algorithms to structural problems, an example, a
reinforced concrete beam loaded up to failure in laboratory is presented [114, 115, 116, 117].
In this example, the optimization algorithms are used to minimize the difference between

numerical and experimental results, as (2.41),

num exp

f=Zn: /max( ex")IZI/n[%] (2.41)

i=1

Yi

um

where y™" and y®* are the numerical and experimental values and n the number of
evaluated points. Such minimization procedure, usually designated as model identification
[6, 7], is developed by continuously changing the model critical parameters, the ones that
present a higher influence in the structural behavior. This behavior is highly nonlinear due to
the constitutive materials. In this situation the optimization function f is multi-parametric and
nonlinear. Used algorithm parameters are indicated at Table 2.1. Each algorithm was
processed for 10 times, being represented the obtained best result from the whole population

of models.
2.6.1. Experimental test

A set of two pinned-pinned reinforced concrete beams, characterized by a longitudinal
reinforcement of 3¢6 (As = 0.848 cm? and a transversal reinforcement of @4@0.10
(As/s = 2.513 cm?/m), were loaded in laboratory up to failure. In design phase, C25/30
concrete and S500B steel reinforcement were specified, according to EN 1992-1-1 [48]. The
tested beams present a rectangular section of 75 x 150 mm? and a 1.50 m span length (see
Figure 2.11a). The concrete cover was considered to be 10 mm in all sides. Applied loads

were located at 1/3 and 2/3 of the span length.
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0.50 m
D IU,IS m
F F
e
0.075 m

1.50 m

a) b)

Figure 2.11. Real application: a) scheme; b) collapse mechanism (top: experimental;

bottom: numerical).

Each beam was supported in two points. While one of those elements restricts only the
vertical displacement, the other restricts both vertical and horizontal one. The laboratory test
was developed with displacement control. During the test the applied load and the middle
span displacement were monitored. A bending failure mode with concrete crushing and
yielding of longitudinal steel reinforcement was obtained. The collapse mechanism,
presented in Figure 2.11b, is characterized by a plastic hinge located at middle span. An

average value of 24.79 kN is obtained for failure load (Fg).
2.6.2. Numerical model

A nonlinear numerical model of the tested beams was developed in ATENA® [22, 23]. A
uniform finite element mesh, composed by quadrilateral elements, was used. The steel
reinforcement was considered to be completely embedded in concrete elements. Two
different load cases were considered, one in which the supports were inserted and other in
which the applied load is represented. A steel plate was introduced in both supports and
applied load points, to avoid concentration of stresses. The middle span displacement and
the applied load were measured during the analysis.

2.6.3. Obtained results

Obtained results from running those different optimization algorithms are presented further.
The collapse mechanism is, for all algorithms, characterized by a plastic hinge at beam
middle span (see Figure 2.11b). A bending failure mode, with concrete crushing and yielding
of longitudinal steel reinforcement, is obtained. In Figure 2.12 the applied load is plotted
against the middle span displacement for experimental and numerical results, considering
each optimization algorithm. The objective of these algorithms is to give the curve that best

fits the experimental data. In order to do so, they start with an initial vector, equal for all
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algorithms, which correspond to the values considered in design (nominal values), and

iteratively change these values. The optimal vector, obtained from each algorithm, and also

the initial one are given in Table 2.5. In the same table, between brackets, the bias factor,

which represents the ratio between the identified and the nominal value for each variable, is

also presented.

In this situation the identified model parameters are: (1) concrete elasticity modulus (E.);

(2) concrete tensile strength (f;); (3) concrete compressive strength (f;); (4) reinforcing steel

elasticity modulus (Es); (5) reinforcing steel yield strength (oy); (6) reinforcing steel area (As);

(7) section width (b); (8) section height (h); (9) inferior concrete cover (Cix).

Table 2.5. Model parameters.

. Optimization algorithm
. Nominal
Numerical model value
sQP* | SA* | GA* |ES()*|ES(+)*
30.97 | 29.10 | 3042 | 3154 | 31.44
Ee | [GPa] | 3100 | 140) | (0.94) | (0.98) | (1.02) | (1.01)
260 | 253 | 244 | 264 | 254
Concrete | fo | [MPa] |\ 260 | 55 | (097) | (0.94) | (1.02) | (0.98)
3295 | 3436 | 33.98 | 31.09 | 20.87
fo | [MPa] | 33.00 | 5q) | (104) | (1.03) | (0.94) | (0.92)
Material
197.78 | 156.99 | 172.56 |174.70 | 186.73
Es | [GPa] | 200.00 | "9y | (0.78) | (0.86) | (0.87) | (0.93)
@ o
2 Longt'te”e‘i"”a' (MPa] | 50000 | 49971 | 486.92 | 52091 |520.32 | 535.83
& . % : (L00) | (0.97) | (L06) | (1.04) | (1.07)
I reinforcement
2 08 | 093 | 087 | 090 | 0.91
As | [em] | 085 1.00) | (1.09) | (1.02) | (1.06) | (1.07)
100 | 104 | 097 | 1.02 | 099
Cot | fem] | 100\ 200y | (104) | (0.97) | (1.02) | (0.99)
749 | 714 | 711 | 690 | 7.27
Geometry b [em] | 750 1 1700) | ©095) | (0.95) | (0.92) | 0.97)
14.96 | 1523 | 14.87 | 14.70 | 14.28
h | [em] | 1500 1 100) | @02) | (0.99) | (0.98) | (0.95)

* Bias factor is presented between brackets.

In a first analysis it is possible to conclude that global search techniques give better results

than the local one. In fact, the latter provides a result that does not differentiate from the

starting point. By analyzing the results from Table 2.5 it is important to identify the following:

(1) concrete parameter values are close to each other and to the nominal ones;

(2) reinforcing steel elasticity modulus (Es) is always inferior to the nominal value;

(3) reinforcing steel yield strength (oy) is, in general, higher than the nominal value;
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(4) reinforcing steel area (As) is always higher than the nominal value; (5) section dimensions
are, in general, inferior to nominal values; (6) inferior concrete cover (ciy;) values are close to
each other and to the nominal one.

30¢
25¢
s
=20 Experimental Data
2=, - —Nominal Values
ke 10 —SA
GA
5 —ES (,)
0 ES (+)
0 0.005 0.01 0.015

Displacement (m)
Figure 2.12. Obtained results.

Two bar graphics, one representing the improvement in fitness value (4f), according to
expression (2.41), and other the computational time, are respectively presented in
Figure 2.13a and 2.13b. The fithess value, obtained from the application of each algorithm,

and the respective improvement are indicated in Table 2.6.

Table 2.6. Obtained results.

Fitness function
Numerical model
Value [%)] Improvement [%]

Nominal values 7.70
SQP 7.54 2.06
SA 4.34 43.66
Optimization GA 2.47 67.92

algorithm

ES () 2.01 73.91
ES (+) 1.86 75.90

From the analysis of obtained results it is possible to conclude that: (1) local search
techniques fail to find global minimum. Therefore, these techniques cannot be used in
nonlinear multi-parametric models; (2) SA gives poor results but presents a very low
computational time. This algorithm, although belonging to the global search techniques, is

based in a directional search procedure reducing so the number of searching points; (3) It is
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verified that the performance of EA is extremely good for nonlinear multi-parameter
optimization algorithms, being, the best results obtained with ES (+) algorithm; (4) GA
present a high computational cost reducing so the respective efficiency for this kind of
problems. It is important to note that by applying EA, an improvement of around 70% is
achieved for the fitness value. Table 2.7 indicates the failure load (Fr) obtained from the
application of different optimization algorithms. EA provide the most suitable results, being,

the best results obtained with ES (+) algorithm.

100 - 500 000
80 400 000
~— B0 300 000
& o
< a0 200000
20 : - - 100 000
0 _ 0 — - - - -
ESQP mSA EGA EES() EES(+) HSQP mSA MGA MES() WES(+)
a) b)

Figure 2.13. Obtained results: a) fithess value improvement (%); b) computational time (s).

Table 2.7. Failure load (Fg).

Failure Load
Numerical model
Value [kN] Error [%] *
Nominal values 23.28 6.13
SQP 23.22 6.37
SA 25.03 0.93
Optimization

algorithm GA 24.84 0.16
ES (,) 24.89 0.36
ES (+) 24.84 0.16

* Comparing with the real failure load.

2.7. Conclusions

The use of optimization algorithms in structural engineering analysis grew within the last
years, especially in the model identification field. Within this procedure, an objective function
is minimized in order to obtain a numerical curve that best fits the acquired experimental

data. In order to do so, model input parameters are iteratively changed so that an optimum
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combination of values is identified. Once this global minimum is identified, engineers become

able to interpret the structural behavior in a more reliable way.

However, this objective function is usually nonlinear and multi-parametric, which makes
model identification a complex problem. Therefore, the identification of an appropriate
optimization algorithm is the core issue of a correct model identification procedure. These
algorithms can be classified into local or global ones. The former usually requires the
computation of the objective function derivative to determine its minimum, while the latter are

stochastically based and only dependent of the fitness value.

Within this chapter it is studied the sequential quadratic programming (SQP), which belongs
to the local search algorithms. From the set of global search algorithms, the simulated
annealing (SA), the genetic algorithms (GA) and the evolutionary strategies (ES) are
analyzed. It is also evaluated the performance of two ES selection procedures, respectively,
the ES (+) and the ES (,) algorithms.

These algorithms are then tested with three simple analytical functions in order to point out
their advantages and disadvantages. As the objective of this chapter is to analyze the
applicability of each algorithm in a structural model identification problem, a real application,

a reinforced concrete beam loaded up to failure in laboratory, is respectively introduced.

Obtained results revealed that global search methods are, in general, more robust than local
ones, as the choice of the starting position has little influence on the final result, and they can
find the global solution with a high probability. Accordingly, in these methods the risk of being
trapped into local minima is reduced. For typical optimization problems the computational
effort of global search techniques is higher, which makes local search techniques more
appropriate when time is an important concern. However, this is not true when the number of
parameters to optimize and the objective function nonlinearity increase. In such situations the
number of necessary derivatives in local search methods increases and, consequently, the

respective computational time.

In civil engineer applications, specially, in structural model identification, in which the
objective function depends from several parameters and is highly nonlinear, global search
techniques are so more suitable. From those algorithms SA is the one that involves less
computing time but, at same time, it might not find the global minimum due to the reduced
pool of points in which performs its search. ES are the most efficient algorithms in terms of
computational cost. This is confirmed with the results obtained by Costa and Oliveira

[29, 30]. In this real application the best results are obtained with ES (+) algorithm.
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3.1. Introduction

The data analysis principles and methodologies that derive from subjective uncertainty
sources are often mentioned as Bayesian statistics and they were studied in the last decades
by several authors [15, 19, 28, 145]. These authors present the Bayesian inference of
several probabilistic distributions and examples of its application. One of these examples is
in the updating of probabilistic numerical models. This may be further incorporated into
structural assessment algorithms, in which data acquired from permanent monitoring

systems is used to update numerical models [80, 149, 175].

Two interesting works were developed in Portugal in this field. One of them was developed
by Miranda [127], who presented a Bayesian framework for updating geomechanical
parameters. This framework is applied to the deformability modulus updating of large
underground structures. The second is the work of Jacinto [87], who used Bayesian
inference techniques to reduce the statistical uncertainty of structural assessment algorithms.
For this author, although statistic uncertainty may be reduced with additional collected data, it
is always important to evaluate its impact in structural assessment in order to study if

collecting such data will change results at all.

The Bayesian perspective of probability is different from the frequentist one. While the latter
takes the perspective that probability is an objective concept, the former indicates that

probability is the individual degree of belief that a given event will occur. Frequentist
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interprets each parameter as a fixed but unknown quantity, while Bayesian regards it as a
distribution of possible values. For the latter, the probability function reflects the degree of
belief on where the true parameters may be. If this distribution is narrow then the confidence

about the parameter location is high.

The frequentist data analysis methodologies are computationally simpler and this is why its
use is more widespread. However, Bayesian techniques allow the update of random
parameters in a sequential way, when new data is available. This process is divided in [33]:
(1) setting up a joint probability distribution for all parameters, consistent with knowledge;
(2) computing the conditional posterior distribution of relevant parameters, given new
observed data; (3) evaluating the model fit to such data, analysing if conclusions are
reasonable and how sensitive they are to modelling assumptions. The obtained posterior
distribution is a compromise between prior information and the one contained in new data.
This compromise is controlled by the data sample size. The posterior is thus the updated

random parameter distribution.

In a probabilistic numerical model the material, geometric and physic parameters are usually
characterized by random distributions. These distributions are introduced to represent
physical uncertainties. In Bayesian approach, and unlike the frequentist one, the distribution
parameters are also considered to be unknown, being represented by random distributions
too [127]. Those distributions reflect the statistical uncertainty or, in other words, the degree
of belief of each distribution parameter. Therefore, they can be updated given the data and

used to infer each probabilistic numerical model parameter distribution.

Figure 3.1 presents a general scheme concerning the stages where an updating procedure
can be applied to revaluate any structural parameter. In this case, the procedure is
particularly applied to the concrete compressive strength (f). In the initial stages, this
parameter can be evaluated based on preliminary research (f.;). During construction more
information may be gathered from laboratory tests which can be used to update the
prediction (fe acwal stage)- TiS parameter can be incorporated in probabilistic numerical model,
at any time, for structural assessment purposes. During exploitation phase new information
concerning this parameter can be obtained from several sources (e.g. monitoring systems).
This information may be used in a dynamic process that improves such parameter prediction
(fe) as the quantity of data increases (fc acwal siage). Therefore, the probabilistic numerical

model and obtained results from structural assessment are continuously updated.

A general Bayesian framework for updating numerical model parameters is further
presented. This framework is applied to update the initial prediction on lightweight concrete

compressive strength (f.). This updating procedure is based in data obtained from laboratory
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characterization tests. In this approach, this parameter is considered as a random variable
with a Normal or Lognormal distribution. Different levels of initial information, uncertainty
levels and degree of belief in initial assumptions were considered, being the obtained results
compared to evaluate its sensitivity to prior concerns. In order to overcome the problem of
choosing a given probability distribution function, an alternative Bayesian methodology that

uses a Weibull distribution, is also presented.

— Preliminary Stage

Prelimi fc1 C actual

reliminary —_— — AR o [ iy s

Research |
Update

t S

b T / 2D/3D Numerical\
Laboratory Tests " Models

— Construction / Service Phase

Monitoring, Visual Inspec- fci fc actua‘l fc
tion, NDT — —_—i stage —lp
Update

Figure 3.1. Updating procedure for structure compressive strength (f.) (random distributions

are merely indicative).
3.2. Bayes theorem

Bayesian methods provide tools to incorporate external information into data analysis
process [15]. This process starts with a given distribution, designated as prior, whose
parameters may be chosen or estimated based on bibliography, experience or from previous
experimental results. This distribution represents the uncertainty of a given variable. As more
data is collected, Bayesian analysis is used to update the prior distribution into a posterior
distribution. The Bayes theorem, which weights the prior information with evidence provided
by new data, is the basic tool for the updating procedure. This process is shown in

Figure 3.2.
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| Previous Results |

| Judgment |<—‘ Empirical Knowledge |

[ Prior |-<—| Theory [

Y

| Updating |<—| New Data |

| Posterior |

Figure 3.2. Updating procedure scheme, adapted from Faber [53].

The discrete version of Bayes theorem is given in expression (3.1). This is only possible
when the prior distribution of parameter © with n possible outcomes is discrete, and the new

information x comes from a discrete model too,

(3.1)

where P(©) is the prior distribution, which indicates the prior beliefs about the parameter
values, P(x|©) is the conditional probability or likelihood of data given @ and P(Qx) is the

posterior distribution of @given observed data x.

The more usual form of this theorem, in terms of continuous variables, is indicated at
expression (3.2). In this situation, the prior and the posterior distributions of @ are

represented by density functions, respectively, p(©@) and p(&Ix).

p(6]x) = p(x|6)cp (6)

“Tp(xle)p(e)as 7 ° oo

The joint probability distribution of the data and the parameter is given by p(x|@), which is
called the likelihood, L(®), and is defined by expression (3.3),

p(x[0)=L(6)=[]p(x 10) (3.3)

being assumed that all observations x; are independent. The integral of expression (3.2) is a

normalizing constant. Therefore, this expression can be written as (3.4),

p(61x)0p(x|68)p(8) (3.4)
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Accordingly, the Bayes theorem consists in multiplying the prior and the likelihood and then

normalizing it in order to get the posterior distribution.
3.3. Prior distributions

One of the main issues of the Bayesian approach and part of the modeling process is the
choice of a prior distribution. Several alternatives exist for the prior distribution, but it is
important to verify the impact this choice in the stability of the posterior distribution. If the
posterior distribution is highly dependent on the prior, then acquired data may not contain
sufficient information. On the other hand, if it is relatively stable over a choice of priors, it
means that data contains significant information. The prior should reflect [53]: (1) known
observations of random variables, from which parameter estimates of prior distribution can

be computed; (2) subjective knowledge on parameters distribution.

It is possible to choose a prior distribution that presents a range of situations from high (small
standard deviation) to reduced knowledge (large standard deviation) and even no
knowledge. In this latter situation, the prior is designated as non-informative, as it does not
have any impact on the parameter posterior distribution. In this case it can be represented by

a constant, as expression (3.5),
1
p(f) =c=—— for a< &<b (3.5)
b-a

assuming a, b and c as any value from the real space. In this situation, and considering

expression (3.4), the posterior is just one constant times the likelihood, (3.6),
p(61x)OL(6) (3.6)

The use of a non-informative prior is often useful but it is always necessary to check if the
obtained posterior distribution is proper [145]. A distribution is proper if it integrates to unity. It

is verified that traditional non-informative priors are improper, (3.7),
[p(6)do =0 (3.7)

An improper prior may, or not, result in an improper posterior. Thus it is always important to
check if the posterior presents a finite integral. A common non-informative prior is the
Jeffrey’s prior. In order to define this function it is important to define first the Fisher

information, 1(@), through expression (3.8),

1(6)=-E (GZI‘EL;(B)J (3.8)
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This is the negative expectation of the second derivative of the log-likelihood, LogL(&), and
measures the curvature of the likelihood function. The flatter the likelihood is, the less
information it provides about parameter values. Jeffrey’s prior is then defined by

expression (3.9).
p(6) 0 1(8) (3.9)

The Jeffrey’'s rule allows finding prior distributions which are invariant under
reparametrizations. Additionally, in most situations, although these priors are improper,

computed posterior distributions are proper.

When there is any information regarding the interest parameter, an informative prior may be
used instead. This prior is not dominated by the likelihood and has an impact on posterior

distribution. However, this prior should be specified with caution.

The property that the posterior distribution follows the same parametric form as the prior
distribution is called conjugacy. Conjugate families are mathematical convenient as the
posterior distribution follows a known parametric form. Obtained results are easy to
understand and can be often represented in its analytical form. However, a more realistic

prior may be used if there is information that contradicts the conjugate family [145].
3.4. Bayesian inference

The Bayesian inference procedure involves passing from a prior to a posterior distribution
using the likelihood data function. Considering a Normal likelihood has the advantage of
either conjugate or non-informative priors resulting in proper posteriors [33]. Within the
Bayesian approach, interest parameters are assumed to follow certain probability
distributions. Such distributions are defined by one or more unknown parameters. These
parameters are also considered to have given distributions. They are further updated given

the data and will be used to infer each interest parameter.

The simplest model is the consideration of mean as an unknown random variable with known
deterministic variance. A more complex approach involves the consideration of both mean
and variance as unknown. Accordingly, the following cases will be further analyzed:
(1) Normal data with unknown mean (u) and known variance (¢°): Jeffrey’s prior; (2) Normal
data with unknown mean (u) and known variance (¢°): conjugate prior; (3) Normal data with
unknown mean (u) and variance (o°): Jeffrey’s prior; (4) Normal data with unknown mean (u)

and variance (¢°): conjugate prior.
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3.4.1. Normal data with unknown mean (u) and known variance (¢°): Jeffrey’s prior

The Jeffrey's prior for mean parameter is an improper uniform distribution over the real
space [15], (3.10),

p(/J) =C, —0 < <o (3.10)

being ¢ an arbitrary constant. Obtained posterior distribution is proper. Considering that data
x follows a Normal distribution, and after dropping all constants, it can be given
by [15], (3.11),

n —\2
x)Oexp| - -X
p(ulx) p{ S iy )} (3.11)
where n is the number of samples and ‘X the data set mean value. The posterior distribution

of the mean, given the data x, is thus a Normal with mean X (u1) and variance o®/n (04%).

The posterior population follows a Normal distribution with mean p; (Upop), and

variance (opopz), given by (3.12),

o2 _(n_ﬂj B (3.12)

pop n

3.4.2. Normal data with unknown mean (u) and known variance (6%): conjugate prior

The conjugate prior for the mean, an informative prior, follows a Normal distribution with

known initial mean (uo) and variance (gy°) [15], (3.13),

1 2
p() Dexlf{-2D7§ fu- 1) } (3.13)

Therefore, the posterior is also a Normal distribution with mean (u;) and variance (o0:°)

computed according to prior and likelihood values [15], (3.14),

1 2
p(4) Dexl{—mJf - 1) } (3.14)

The updated mean is then analytically determined through (3.15),
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Qe
el ¥

QN‘ > QN‘ S

H = (3.15)

Precision is the inverse of variance. Hence, the posterior mean is the weighted average of
prior and data set mean, with weights proportional to precision. The variance is computed

according to (3.16),

i—i-}-i 316
o} o o° (3.16)

The posterior population follows a Normal distribution with mean u; (Upop), and

variance (0pop°), given by (3.17),

(3.17)

3.4.3. Normal data with unknown mean (u) and variance (o°): Jeffrey’s prior

In this situation, the simplest joint prior is obtained by assuming that mean and variance can
be estimated independently and that a vague prior distribution may be used for each. A

common pair of vague priors for the Normal model is given by [15], (3.18),
p(u)0c, —o < <o (3.18)

and by (3.19),

9(02)5%’ o’ >0 (3.19)

which is equivalent to the joint Jeffrey’s improper prior for (u,0°), (3.20),

p(107) 0=

0_2,—oo<,u<oo,0'2 >0 (3.20)

In order to infer the unknown parameters it becomes necessary to derive the posterior
distribution from Bayes theorem, given all observations x. The respective posterior is a

proper distribution that takes the following form [15], (3.21),
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V2 N (“‘i)*l
p(u,aZ | x) 0 (%) Eéxp[—% EE(/’TI/—\/%J ] EE%) exp{—% EIJS—Z} (3.21)

being S:Z(xi-?). The form of p(u,0%|x) indicates that the conditional posterior distribution of

U conditional on o is a Normal distribution with mean x and variance o°In, (3.22),

Ul X - N[Y,%j (3.22)

Being the marginal posterior distribution of 1/0” an inverse y* distribution, (3.23),

-1) 52
(na—z) X (3.23)

where s=Z(xi-?)2/(n-1) is the sample variance. As o appears in conditional distribution

u|o? (3.22) this means that y and ¢ are necessarily interdependent. In this case the main
parameter distributions can be obtained by simulation, through the application of expressions

(3.22) and (3.23), or by analytical solutions [15]. Therefore, the mean value of the distribution
mean (u;) is equal to the sample mean (?), being its variance (o(u;)?) computed through

(3.24),

o(u) :n—f?’& n>3 (3.24)

The precision distribution mean (1/0,°) is given by (3.25),

1_n-1
ol nis

(3.25)

while its variance (o(1/0,%)) is given by (3.26),

%i}z _2dn-1) (3.26)

0?2 n? 052

The standard deviation distribution mean (o) and variance (o(0y)?) is then computed through
expressions (3.25) and (3.26) [15]. The posterior population mean is equal to u;, (Upop), While

its variance (apopz) is obtained through (3.27),

1
o ::—_3 3,n>3 (3.27)
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3.4.4. Normal data with unknown mean (u) and variance (¢°): conjugate prior

When both mean and variance are unknown, the natural conjugate prior has the
form [15], (3.28),

n, \"? n 2 1 )e/2 S
p(u,az)m (a_%j @xp{—zm‘;z - u,) }E@?] @xp{—zm‘;z} (3.28)

where ng is the initial sample size and S, is the prior value of S. The prior is a Normal-

Gamma distribution or, in other words, the product of an inverted Gamma distribution, with
argument ¢, and v, (Vp=no-1) degrees of freedom, by a Normal distribution with argument p,
being the variance proportional to ¢®. The conditional prior distribution of u conditional on ¢®

is thus a Normal with mean i, and variance 0/n, (o(io)?), (3.29),

ulo® - N[yo,azJ (3.29)

n,
Being the prior distribution of 1/0> a Gamma with parameters 1,/2 and So/2, (3.30),

1 gammaﬁi 3.30
o? 22 (3.30)

The conditional posterior distribution of y conditional on ¢® is a Normal distribution with

mean p; and variance ¢°/n; (o(uy)?) [15], (3.31),

ulo® - N[M§] (3.31)

1

Being the marginal posterior distribution of 1/0* a Gamma, (3.32),

iz| X - gamma(ﬁ,iJ (3.32)
o 2 2

being, (3.33),

V, =V, +n (3.33)
and, (3.34),

Sl=So+nE‘sz+%Eﬂ>_<—ﬂo)z (3.34)

0

Accordingly, the posterior sum of squares (S;) combines the prior (Sp) and the sample (s)

sums, with the additional uncertainty given by the difference between the sample and the
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prior mean. As ¢® appears in conditional distribution y|o® (3.31) this means that y and ¢” are
necessarily interdependent. In this case, the main parameter distributions can be obtained by
simulation, through the application of expressions (3.31) and (3.32), or by analytical

solutions [15]. Thus, the posterior mean p; is computed through a weighted average of
prior (ug) and sample data (?) mean values, with weights determined by the relative

precision of two pieces of information, (3.35),

n n

)7 =_0 ujo +—[X (335)
nl nl

being, (3.36),

N =n, +n (3.36)

The posterior distribution parameters combines thus prior information with the one contained

in new data. The mean distribution variance (o(u,)?) is given by (3.37),

2 1
U(/Jl) - (n +n0) [tl/ls—lZ)’ v, >2 (3.37)

The precision distribution mean (1/0,) is given by (3.38),

ol S, (3.38)
while its variance (o(1/0,%)) is given by (3.39),
1Y) 2w
J(_Zj == (3.39)
Jl Sl

The standard deviation distribution mean (o) and variance (o(0y)?) is then computed through
expressions (3.38) and (3.39) [15]. The posterior population mean is equal to u; (Upop), While

its variance (apopz) is obtained through (3.40),

_(n+n,+1) _ s,
" (n+n) (1-2

W >2 (3.40)

3.5. Posterior simulation

The main objective of Bayesian inference analysis is to obtain the posterior distribution. In
several situations, it is enough to obtain point estimates that summarize the overall

information (e.g. mean and variance parameters). Sometimes, this can be performed by
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using analytical closed form solutions, especially if prior distributions are properly chosen.

One other alternative is to infer it from simulated distributions.

There are several algorithms to simulate the posterior distribution. One of these algorithms is
the Markov Chain Monte Carlo (MCMC), introduced by Metropolis et al. [124]. MCMC is a
general method based on a sequential draw of sampled values with the distribution of
sampled draw only dependent on the last value. It is thus a sequence of random variables or
samples, 6,,...,6,, for which, at any instant t, the distribution 6, is only dependent of 6.
Hastings [76] presents a detailed description of this algorithm and Tierney [185] introduced

several MCMC techniques for sampling posterior distributions.

One of those sampling procedures, implemented in WinBugs® [111], is the Gibbs sampler.
Other technique is the Metropolis algorithm [185]. The Gibbs sampler is the most popular
and is normally chosen for simulation in conditionally conjugate models. Gelfand et al. [62]
presents the Gibbs sampler as a method for computing the Bayesian marginal posterior
distribution. The Metropolis is generally used in models which are not conditionally
conjugate. In this situation, the Gibbs sampler is recommended because standard forms are

used for posterior distributions.

The following example is used to better explain this algorithm. Within this example, two
parameters 6; and 6,, with known conditional distributions p(6,|6,) and p(6,|6,), are
considered. In this situation it is necessary to compute one or both marginal distributions,
p(6y) or p(B,). This sampler starts with an initial value of 6,"* and obtains 6,' from the
conditional distribution p(6,]6,=6,""). Then the sampler uses 6,' to generate a new value 6,'
computed from the conditional distribution p(6,/6,=6,"). Accordingly, the samplers are taken
from those two conditional distributions through the following sequence, by considering
(3.41),

6 - p(616,=6,") (3.42)
and (3.42),
& -p(616=6) (3.42)

This sequence is a Markov chain as the values from step t are only dependent of values from
step t-1. If this sequence is long enough, the distribution of current values converges to the

simulated distribution.

In the situation of the Normal model with conjugate prior for unknown mean and variance, a
simulation procedure, based in MCMC and in Gibbs sampler, is recommended. Therefore, it

becomes necessary to obtain draws from the marginal posterior distribution of precision,
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expression (3.32), and then to simulate the mean value from the conditional posterior

distribution of the mean given the variance, expression (3.31).

Accordingly, in this situation, the sampler starts with an initial value of vy and S,, and obtains

1/0® from the marginal posterior distribution (3.43),

1 Ve S,
peC) | X - gamma > (3.43)

Then the sampler uses the 1/0° value to generate a new u value, computed from the

conditional posterior distribution of the mean, given the variance (3.44),

2(0)
g
wo? - N [uo,n—J (3.44)

0

The samplers are then taken from those two conditional distributions through the following

sequence (3.45),

1 l/t—l St—l
Wlx - gamma| —%,— (3.45)
and (3.46),
2(t-1)
a
o LN, —— (3.46)
nt—l

where V.;, S:.1, U1 and ny; are respectively computed through expressions (3.33), (3.34),
(3.35) and (3.36). This process finishes when convergence is reached. At the end of it, a final

point estimate for mean and variance is obtained.
3.6. An application of Bayesian inference framework

The developed Bayesian framework is applied to infer the compressive strength value (f;) of
lightweight concrete material (LC 50/55) [48], used in a composite beam that was tested in
laboratory up to failure. This parameter is then introduced in the developed probabilistic
numerical model [118, 120, 121]. The first information for this parameter is gathered from
bibliography [93, 188]. In this situation, complementary characterization tests (e.g. uniaxial
compressive strength tests) were executed at laboratory [188], Figure 3.3. This data is used

to update the respective parameter distribution.
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Figure 3.3. Compressive strength test and numerical model updating procedure.

The studied parameter is considered as a random variable. The initial distribution of the
population is not known. Typically, in probabilistic approaches the concrete compressive
strength follows a Normal or Lognormal distribution. Accordingly, both distributions were
considered in order to evaluate its impact on final results. The Normal distribution presents
some drawbacks as the possibility of considering negative parameter values which, in this
particular situation, is physically impossible. However, this distribution is computationally

convenient and good results are usually obtained with it.

When using a Lognormal distribution, three steps are considered [127]: (1) Proceed to the
logarithmic transformation of data and compute the distribution parameters (mean and
standard deviation); (2) Apply the Bayesian inference formula for Normal distribution, to
update such parameters; (3) Transform the updated parameters (Y) into their equivalent
ones on the Lognormal distribution (X) by using expression (3.47),

Uy = e)(p[,uY + %j (3.47)
and(3.48),
o, =exp(2;./Y +a§)[@exp(a§)—1) (3.48)

Bayesian updating is developed in this example by considering several situations of initial
information, uncertainty levels and degree of belief in initial assumptions. The scope of this
study is to represent what is happening in reality. Therefore, two different uncertainty levels
are considered: (i) unknown mean and known variance; (i) unknown mean and variance. For
each case, both non-informative (Jeffrey’s prior) and informative (conjugate prior) priors were

considered.

Accordingly, eight computations, outlined in Figure 3.4, were developed and compared,
being chosen the one that provides the highest degree of belief. The posterior is obtained for

all these analysis by simulation, through the use of WinBugs® [111]. In all these analysis, the
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mean, standard deviation and 95% confidence interval of each posterior distribution will be

computed [15].

Conjugate Prior

Jeffreys Prior Jeffreys Prior Conjugate Prior

Unknown Mean
Unknown Variance

Unknown Mean
Unknown Variance

Unknown Mean
Unknown Variance

Unknown Mean
Unknown Variance

Unknown Mean
Known Variance

Unknown Mean
Known Variance

Unknown Mean
Known Variance

Unknown Mean
Known Variance

Figure 3.4. Scheme of performed computation for Bayesian inference.
3.6.1. Statistical analysis of data

The conjugate prior distribution is defined from bibliography [93, 188]. According to
JCSS [93], a Normal distribution with mean 58.00 MPa and standard deviation 5.80 MPa is
recommended. A Lognormal distribution, with mean 4.056 MPa and standard deviation
0.101 MPa, is therefore adjusted to this distribution.

In this situation, experimental data is obtained from uniaxial compressive tests [188]. 10 tests
were performed, resulting in the histogram presented at Figure 3.5a. Figure 3.5b indicates
the histogram of the logarithmic transformation (to be used in the Lognormal case). The
mean and standard deviation values for these two situations are indicated at Table 3.1.
Obtained mean value from experimental tests [188] is close to the one from bibliography [93].

This validates the initial estimate.

Table 3.1. Distribution parameters for experimental data.

Parameter Normal distribution Lognormal distribution
U [MPa] 57.96 4.06
o [MPa] 4.64 0.08
o [MPa?] 21.57 0.01

The histograms of Figure 3.5 present a Normal trend for the data. Accordingly, and in order
to evaluate it, the Shapiro-Wilk normality test was performed to test this hypothesis [33]. This
test shows that for a confidence level of 95% both distributions may be considered as

normally distributed. This observation is important for the inference procedure.
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Figure 3.5. Obtained histograms for experimental data, considering: a) raw data;
b) logarithmic transformation.

3.6.2. Normal data with unknown mean (u) and known variance (o)

The first updating procedure corresponds to the situation of unknown mean and known
variance, considering the Jeffrey’s prior. Obtained results for the posterior distribution of the
mean are closer for both Normal and Lognormal distribution. By analyzing Figure 3.6a it can
be observed that the Lognormal distribution presents a slightly lower mean value than the
Normal distribution. The population simulated values are also identical, as shown in
Figure 3.6b. For both cases the simulated standard deviation value is lower than the initial

one, which means that uncertainty is reduced with inference.

Table 3.2. Posterior estimates for the mean value, considering the Jeffrey’s prior.

Parameter Normal distribution Lognormal distribution
I [MPa] 57.94 57.79
o1 [MPa] 1.46 1.45
95% CI for the mean [MPa] 55.08 — 60.81 54.95 - 60.63
Hpop [MPa] 57.94 57.97
Opop [MPa] 4.85 4.82
95% CI for the population mean [MPa] 48.43 - 67.45 48.52 - 67.43

In order to use the conjugate informative prior, it was necessary to define a standard
deviation for the initial mean. The adopted procedure, both for Normal and Lognormal
distribution, was to use the obtained value from a non-informative prior (Jeffrey’s prior).
Table 3.3 provides the prior and posterior distributions. The posterior results are slightly
different from those obtained using the Jeffrey’s prior. In fact, a diminishment on the standard
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deviation is verified. This point out the impact that the information provided by the used

conjugate prior has in posterior results.
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Figure 3.6. Posterior distribution, considering Jeffrey’s prior, for: a) mean value of f;

b) simulated values of f.

Table 3.3. Prior and posterior estimates for mean value, considering conjugate prior.

Parameter Normal distribution Lognormal distribution

Lo [MPa] 58.00 57.76
Oo [MPa] 1.46 1.45
A [MPa] 57.98 57.76
o1 [MPa] 1.03 1.02

95% CI for the mean [MPa] 55.95 - 60.00 55.76 — 59.77
Hpop [MPa] 57.98 57.95
Opop [MPa] 4.76 4.73

95% CI for the population mean [MPa] 48.65 - 67.30 48.68 — 67.21

Figure 3.7a presents both prior and posterior distributions for the mean parameter. It can be
observed the effect of experimental tests on obtained results. The uncertainty in mean value
decreases since its standard deviation is reduced for both Normal and Lognormal case.
Additionally, it can be observed that the Lognormal distribution presents a slightly lower

mean value than the Normal distribution for both prior and posterior distributions.

Figure 3.7b shows a plot of prior and posterior population distribution for the Normal case. It
is possible to conclude that updating the parameter mean presents a higher influence on
simulated population. In fact, the posterior distribution is steeper than the prior one which

means a reduction in the uncertainty value.
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Figure 3.7. Prior and posterior distribution, considering the conjugate prior, for: a) mean

value of fi;; b) simulated values of fic.

Figure 3.8 compares the posterior distributions for the population considering different priors
and both Normal and Lognormal distribution. Practically, it is verified that all these
approaches lead to similar posterior distributions.
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Figure 3.8. Posterior distribution for simulated values of f,,, considering different prior

distributions.
3.6.3. Normal data with unknown mean (u) and variance (o?)

In this section, the parameter updating methodology, considering both mean and variance as
unknown parameters, is presented. In a first step, a non-informative distribution, the Jeffrey’'s
prior, is considered. The main results are presented in Table 3.4. Obtained results for the
posterior distribution of the mean are identical for both Normal and Lognormal case.
Simulated population mean values are closer to previous ones and they do not differ from

Normal to Lognhormal approach. This can be observed at Figure 3.9a.

The posterior values of the mean are closer to previous case, where variance is considered
as a known parameter. In this situation the variance is only dependent from experimental
tests, namely, from obtained variance and number of specimens. Therefore, due to the low
number of specimens, obtained value is higher than the one obtained when variance is

considered as a known parameter.
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Table 3.4. Posterior estimate for mean value, considering the Jeffrey’s prior.

Parameter Normal distribution Lognormal distribution

th [MPa] 57.97 57.83
o(u1) [MPa] 1.74 1.76
o1 [MPa] 5.34 1.10
o(o01) [MPa] 1.44 0.03

95% CI for the mean [MPa] 57.29 — 58.65 57.15-58.51
Upop [MPa] 57.97 58.10
Opop [MPa] 5.82 5.90

95% CI for the population mean [MPa] 55.71 - 60.23 55.81 - 60.39

In the case of a conjugate prior, the initial distribution, obtained from bibliography [48, 188] is
used to compute both mean and variance priors. In this case, the variance of the mean and
of the variance is determined by applying first the inference considering a non-informative
prior (Jeffrey’s prior). The conditional posterior distribution for the mean and the marginal
posterior for the variance are then obtained through the Bayes theorem. The main results are
indicated at Table 3.5.

Table 3.5. Prior and posterior estimates for mean value, considering conjugate prior.

Parameter Normal distribution Lognormal distribution

Lo [MPa] 58.00 57.76
o(uo) [MPa] 1.46 1.45
T [MPa] 57.98 57.78
o(u1) [MPa] 1.20 1.20
o1 [MPa] 5.28 1.10
o(o1) [MPa] 1.07 0.02

95% CI for the mean [MPa] 57.51 — 58.45 57.31-58.25
Hpop [MPa] 57.98 58.03
Opop [MPa] 5.50 5.53

95% CI for the population mean [MPa] 55.82 - 60.13 55.86 — 60.20

An insignificant variation on the mean value from prior to posterior estimates can be

observed. In fact, the initial mean value is already close to the results provided by
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experimental tests. This confirms that prior assumptions provide a good estimate of the
analyzed parameter. Obtained distributions for the mean parameter are presented in
Figure 3.9b. A clearly uncertainty reduction can be observed with inference, due to the fact

that experimental tests provide lower standard deviation than prior distribution.

Using simulation, it is possible to infer the population parameter values. The updating
procedure practically did not change the mean value. However, a reduction in uncertainty is
verified due to a reduction in standard deviation value. This point out the impact that the

information provided by the used conjugate prior has in posterior results.
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Figure 3.9. Obtained distributions for: a) simulated values of f,,, considering Jeffrey’s prior;

b) mean value of f,;, considering conjugate prior.

Figure 3.10a compares the posterior distribution for the mean value considering different
priors. It is possible to observe that the conjugate prior provides a distribution with a lower
uncertainty. Additionally, it is possible to observe that Normal distribution provides a higher
mean value than the Lognormal distribution. Figure 3.10b compares the posterior distribution
for the population, considering different priors. It is verified that the conjugate prior provides a
distribution with a lower uncertainty.
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Figure 3.10. Posterior distribution, considering both priors, for: a) mean value of fy;

b) simulated values of fi.
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In this situation, while the number of experimental tests is known (10 values), the number of
initial samples is adopted according to the degree of belief in initial assumptions. For
instance, in the previous analysis 10 samples were considered in order to equilibrate the
belief in prior distribution and in registered data from experimental tests. A study on the
impact of different prior samples (no) in posterior distribution is thus developed. Accordingly,
and for this situation, this value varies from 1 (no belief in prior model) to 10’000 (total belief

in prior model). Obtained results are presented at Table 3.6.

Table 3.6. Posterior population distribution, considering different weights for initial

assumptions.
Hpop Opop 95% CI for the population mean

" [MPa] [MPa] [MPa]
1 57.96 5.61 55.76 — 60.16
10 57.98 5.50 55.82 -60.13
100 58.00 5.39 55.88 - 60.11
1000 58.00 5.37 55.89 - 60.10
10’000 58.00 5.37 55.89 - 60.10

Accordingly, as the number of prior samples increases, the posterior distribution mean
converges from data sample to prior distribution mean value. At same time, the standard
deviation decreases with this value. This is essentially due to the fact that as the prior sample
increases, its weight in posterior distribution increases too and, at same time, the degree of

belief on sampled data. Figure 3.11 shows these distributions.
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Figure 3.11. Simulated values of f,; considering different weights for initial assumptions.

Bayesian methods present an inherent flexibility due to the incorporation of multiple
uncertainty levels, the ability to combine information from different sources and the possibility

of considering different degrees of belief in initial assumptions. The major advantage of this
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framework is to deal, in a rational way, with uncertainty. Accordingly, random variables are

updated through this methodology as new data is acquired.

The first approach considered the mean value as a random unknown variable and the
variance known and deterministic. Good results were obtained for updating the mean
parameter, providing the conjugate prior a higher reduction in uncertainty. In both situations,
the population standard deviation values are lower than the initial ones. Obtained results also
showed to be less sensitive to distribution type assumed for the data. The major drawback of
this approach is related to the computation of each parameter characteristic value, necessary
for design purposes. As the population variance is considered to be constant, the

characteristic values are kept almost unchanged.

The second approach considers both mean and variance as unknown variables, even
computationally costly, allows overcoming this problem. In this situation, the population
variance is also updated. This approach allows a more global treatment of uncertainty.
Obtained probabilistic distributions are almost identical for both Normal and Lognormal case
and for both priors. An important note is that the mean value practically did not change with
conjugate prior, which means that sampled data and prior assumptions are closer. However,

the new data led to a significant decrease in parameter uncertainty.

Concluding, the unknown mean and known variance approach is simpler and can be used
when the parameter of interest is the mean value. However, in structural parameters the prior
information regarding the variance usually presents a high uncertainty and using it to define
the deterministic variance may compromise the updating procedure. The more complex
problem of considering both mean and variance as unknowns, allows overcoming this
problem. It deals with uncertainty in a global way, reducing it in several dimensions. In both

situations, posterior inferences showed stability to the choice of different priors.

The Bayesian framework provides a consistent way of treating data from different sources, in
order to increase the reliability of structural parameters. In this situation, this approach
revealed to be little sensitive to distribution type assumed for the data. This is essentially due
to the fact of not being obtained any negative value for this parameter and thus there is no
need to truncate any value when using the Lognormal distribution. However, for parameters
in which the probability of obtaining a negative value is higher, Lognormal distributions are

recommended.
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3.7. Alternative updating methodology using Weibull distribution

Previous presented Bayesian framework showed good results in uncertainty treatment.
However this approach might be sensitive to the distribution type assumed for the data.
Therefore, Miranda [127] proposed a new methodology to overcome this problem. In this
methodology, a two-parameter Weibull distribution is used to model both prior and likelihood.
This distribution is, in fact, more flexible and easily adaptable to available data transforming it

into a Normal or any other distribution according to its configuration.

Since Weibull data is not conjugate with prior, there is no closed form solution to the problem
as there is for Normal distribution [66, 94]. Thus, to avoid heavy computations which would
make the method difficult to implement in a practical sense, some acceptable simplifications
are considered. Accordingly, a heuristic approximation to produce a fast method of
estimating Weibull parameters assuming that they are normally distributed is proposed by
Miranda [127].

3.7.1. The Weibull distribution

The Weibull distribution is one of the most widely distributions used in reliability engineering.
The two-parameter Weibull distribution is characterized by a probability density function
given by (3.49),

f(x)= ﬁ(ijﬂ_l exp(—ijﬁ ' x20 (3.49)

a a

where (>0 is the shape parameter and a>0 is the scale parameter. The cumulative

distribution function is given by (3.50),
VP
F(x):l—exp(—gj (3.50)
The reliability of a distribution is one minus the cumulative distribution function, (3.51),
Y
R(x)= exp[—;} (3.51)

To obtain the value (x) corresponding to a certain reliability degree, expression (3.52) can be

used,
X :a{—ln[R(x)}}w (3.52)

R(x) = 0.50 corresponds to the median value. The mean (u) of a Weibull random variable is
given by (3.53),
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1
=g =+1 .
u=a (ﬁ+j (3.53)

and the standard deviation (0) is given by (3.54),

a:aJr(%ﬂ)-r(%ﬂy (3.54)

in which I"is a Gamma distribution defined by (3.55),

r(n)=] e™x""dx (3.55)

This distribution is very versatile and flexible since it adapts to the data and can easily mimic
the behavior of other distribution types, based on the shape parameter value [33]. There are
many methods to estimate Weibull parameters from a specific data set. One of the most

appropriate methods is to perform the curve fitting to the histogram of data.

A measure of good fitness of a statistical model is the AIC (Akaike Information Criteria) [4],
defined by (3.56),

AIC =2k - 2In(L) (3.56)

where k is the number of parameters in the statistical model and L is the maximized value of
the likelihood function for the estimated model. Given a set of models, the most appropriate

is the one which presents the lowest AIC value.
3.7.2. The proposed methodology

In the methodology proposed by Miranda [127], it is assumed that a prior distribution is
already known. Accordingly, both prior and new data are modeled with Weibull distributions
to take advantage of its flexibility. However, this may be very complex as prior parameters
are not conjugate with data and thus there is no analytical formula for the posterior

probability distribution of parameters [66, 94].

To overcome this problem a simple heuristic, in which the Weibull distribution parameters are
considered to be random variables that follow a multivariate Normal distribution and can be
analytically updated as such, is proposed. The main disadvantages of this method are that it
does not use formal Bayesian procedures and assumes that parameter estimates are
normally distributed [127].

Brennan and Kharroubi [20] considered identical simplifications in a similar Weibull

approach. The accuracy of the method is context dependent. In fact, if the prior is weak (e.g.
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based on little knowledge) and data is strong (e.g. large sample size), or in inverse case, the
result can be almost equivalent to formal Bayesian updating, but, between these extremes,

this simplification can lead to a reduced accuracy.

The methodology starts with the computation of Weibull parameters from prior data.
Accordingly, it is assumed that uncertainty in these parameters can be correctly
characterized by a multivariate Normal distribution (Prior » N(uo,00)). The standard deviation
value was considered to be related to the 95% confidence interval of the Weibull analysis
regression parameters. Therefore, it is computed as the distance between the mean and the

upper or lower bound of the confidence interval.

The same procedure is then applied to the data, considering a multivariate Normal
distribution to characterize the parameters uncertainty (Data-N(u,0)). The Bayesian
updating formula for multivariate Normal distribution is then used to compute the posterior

parameter estimates, (3.57),

1 1
= Ly "'? Lu
/'Il: ° 1 1 (357)
4+
o o
and, (3.58),
1 1 1
— :—2+—2 (3.58)
o 0, O

A simulation procedure is then used to obtain the population distribution. Accordingly, 10°000
samples of Weibull distribution parameters are generated from their Normal distributions.
These values are then reused to generate Weibull random values which are again fitted to a
Weibull distribution, considered to be the population distribution. With this distribution it is
possible to obtain the respective parameters. Figure 3.12 presents a scheme of the proposed

methodology.
3.7.3. Obtained results

This methodology is applied with the data samples obtained from experimental tests.
Accordingly, a Weibull analysis is applied to initial data and to likelihood (LLH). The posterior
is then computed through the application of a Bayesian framework. Table 3.7 indicates the
obtained distribution parameter values. Additionally, it also provides the AIC values from

curve fitting to such data.
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The population values are then generated through simulation. The parameters of the Weibull

fit to simulated data are indicated at Table 3.8. The AIC values indicate that the fitting

procedure is excellent for all distributions. Obtained inference values for the posterior are

closer to both prior and likelihood, as expected.
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Figure 3.12. Bayesian updating scheme using Weibull distribution, adapted from

Miranda [127] (random distributions are merely indicative).

Table 3.7. Mean and standard deviation of Weibull distribution parameters.

a B
Standard Standard AlC
- Mean - Mean .
deviation deviation
[MPa] [MPa] [MPa] [MPa] [
Prior 60.62 0.01 10.61 0.01 6.43 * 10°
LLH 60.16 3.11 12.74 5.98 6.45 * 10
Posterior 60.70 1.55 10.40 1.51 -

Figure 3.13 presents the probability density functions for simulated prior, LLH and posterior

populations, according to Table 3.8. A clear uncertainty reduction can be observed with

inference. Additionally, a slightly increment of the population mean value is verified.

The Weibull distribution allows using reliability concepts in parameter computations.

Accordingly, it is possible to compute values with certain reliability levels for simulated

distributions. The reliability of a certain value is interpreted as the probability that the
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parameter true value has of being higher than it. Table 3.9 presents the obtained values for

prior and posterior distributions considering different reliabilities.

Table 3.8. Weibull fit parameters for simulated population values.

a B AIC
- [MPa] [MPa] []
Prior 60.63 10.61 6.53 * 10°
LLH 60.16 12.73 6.17 * 10°
Posterior 61.89 11.09 5.89 * 10°
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Figure 3.13. Weibull distributions for simulated values of f.

Table 3.9. Values of parameter f,; for different reliability levels.

fic
Reliability [MPa]
Prior Posterior
0.010 39.28 40.86
0.025 42.86 44.20
0.050 45.81 46.93
0.100 49.02 49.89
0.500 58.56 58.56
0.900 65.57 64.85
0.950 67.22 66.31
0.975 68.55 67.50
0.990 70.00 68.78

This alternative methodology tries to overcome the sensitivity of chosen distribution, through

the use of a more flexible distribution that can easily adapt to available data. In this case the
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two-parameter Weibull distribution is used to avoid more rigid Normal and Lognormal
distributions. As it is not possible to find a conjugate prior for this distribution, some
simplifications are considered. The methodology is based in a heuristic procedure, in which

the model parameters are random variables that follow a Normal distribution.

This methodology should be applied when there is little information regarding the most
recommended distribution. However, it is suggested to process it with all parameters in order
to evaluate if it provides a higher degree of belief than the other models. Hence, the model

that provides the lowest uncertainty value should be chosen.
3.8. Conclusions

This chapter presents the Bayesian inference framework that is used to updated structural
parameters with acquired experimental data. It begins with a brief presentation of the Bayes
theorem and the relation between prior, likelihood and posterior probabilistic distributions. A
detailed description of prior distributions is also provided. The choice of the prior distribution

is discussed, as well as the advantages of using an informative prior.

The Bayesian inference procedure is then clarified. Therefore, eight different inference
situations are studied. These cases vary in considered probabilistic distribution for data,
Normal or Lognormal, in the uncertain distribution parameters, mean (u) and variance (o) or
both, and in the chosen prior, Jeffrey’s or conjugate. For each case, it is indicated how the
posterior distribution is obtained. Sometimes, it is necessary to use specific simulation
algorithms to obtain such distributions. One of those algorithms is the Markov Chain Monte
Carlo (MCMC), which is also described.

These eight cases are then tested with a real example of the inference applied on the
compressive strength of lightweight concrete (fi;). Accordingly, the statistical analysis of data
obtained in uniaxial compressive tests is first indicated. Some additional studies are made in
order to evaluate the impact of different levels of initial information, uncertainty levels and

degree of belief in initial assumptions.

An alternative updating methodology for Weibull distributions, initially proposed by
Miranda [127], is also provided. This tool is interesting, as this distribution type is very
versatile and can be adopted for different numerical input parameters. Its formulation is
presented, together with an application on the compressive strength (f.) of lightweight
concrete that corresponds to the same example presented before. The reliability concept is

also introduced.
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4.1. Introduction

The assessment of structures comprises all necessary activities to evaluate their condition
for future use. A general flowchart of this procedure is provided in ISO 13822 [86]. A review
of the philosophy, theoretical concepts and tools necessary to carry out this procedure is
provided by Faber [52]. During structural assessment, several sources of uncertainty may be
identified. In order to consider them, reliability algorithms are commonly used. It was verified
that the use of these algorithms on the assessment of structures resulted in substantial cost
savings [101].

Safety assessment is based on the established relation between the assessed structure
resistance and the applied load. A reliability index is obtained from the probabilistic-based
safety assessment [123, 134]. This index characterizes the failure probability of the assessed
structure, through the comparison of both resistance and loading probability density functions
(PDF). This index represents a more objective mean to assess the structural performance
[59]. Several authors have been using probabilistic-based safety assessment procedures
within the last few decades [41, 77, 113, 197].

Some authors proposed a probabilistic-based safety assessment method that considers both
resistance and loading PDF as time-variant quantities [5, 40, 43, 130]. Recently, Bayesian

inference was introduced to update the resistance PDF with collected data from real
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structure [14, 80, 133]. Strauss et al. [175] proposed a methodology for continuous safety
assessment that incorporates data from permanent monitoring systems, through a Bayesian

inference algorithm.

The use of nonlinear analysis software in structural assessment procedures, although
computational costly, enables a realistic estimation of the structural response both in service
and failure region. Bergmeister et al. [14] introduced a probabilistic-based safety assessment
concept for concrete structures that integrates nonlinear finite element analysis software with

reliability algorithms.

Some authors used model identification techniques for parameter estimation of structures. A
review of these procedures was provided in chapter two. However, the combination of these
techniques with a probabilistic-based safety assessment framework is still scarce. More
recently, Novak et al. [133] and Strauss et al. [174, 176, 177] developed a complex
methodology for assessment of structures which combines structural analysis and reliability

algorithms with new modules for model identification.

A multilayered probabilistic-based structural assessment framework [118, 119, 121],
composed by both model identification and reliability algorithms, is described in this chapter.
This methodology aims to incorporate all the uncertainty sources inherent to a structural
assessment procedure. This chapter begins so with a summary of these uncertainty sources.
Then the developed framework is presented. It is given an emphasis to sensitivity analysis as

a measure to reduce computational costs.

A description of implemented model identification technique is further presented. Within this
procedure, model parameters are adjusted in a way that obtained numerical results best fit
the experimental data. A convergence criterion, based in a combination of measurement and
modeling errors, is therefore established for incorporated optimization algorithms. An
engineering judgment procedure is finally introduced to select the best model from a pool of

optimal models.

The probabilistic model is obtained by considering randomness in identified model
parameters. A Bayesian inference algorithm, described in chapter three, is used to update
each model parameter PDF with acquired data. Obtained results, from probabilistic analysis,
are statistically processed. An updated resistance PDF is thus obtained. Structural
performance is evaluated through specific indexes. Some of these indexes are especially
important as they give an indication of the structure safety. At the end, some considerations

are made from the proposed methodology.

64



Uncertainty Evaluation of Reinforced Concrete and Composite Structures Behavior

4.2. Uncertainty sources

Uncertainty is always present in structural assessment procedures. Accordingly, and from a
pragmatic standpoint, it is useful to categorize it within this process in order to clarify which
uncertainties have the potential of being reduced. Kiureghian and Ditlevsen [97] introduced
categorization in probabilistic assessment of structures. It is shown that, for proper
formulation of reliability, careful attention should be paid to the categorization of
uncertainties. Failing to do so may result in underestimation or overestimation of failure
probability. Uncertainties are generally characterized as epistemic, if the modeler sees a
possibility to reduce them by gathering more data or by refining models, and as aleatoric, if

the modeler does not foresee the possibility of reducing them.

A more detailed classification procedure consists on the following [77]: (1) modeling errors,
that result from theoretical approximations from the real behavior of materials and from
simplifications considered in loading and on its effects; (2) physic uncertainty, due to
randomness in structural parameters (material, geometry and physic sources) and loading;
(3) statistic uncertainty, due to the uncertainty in estimating the PDF parameters through a
finite number of proofs; (4) human errors, which results from human involvement during the
whole procedure. The measurement errors, due to transducer precision, cable losses, and
data acquisition and transmission equipment’s, is considered by some authors as an

uncertainty source too [87].
4.3. Safety assessment levels

Different levels of structural safety assessment can be defined according to the way the
uncertainty sources are processed. The following division is established by different authors
[77, 87, 196]: (1) level O, purely deterministic analysis where all parameters present
deterministic values and a global safety factor is used; (2) level 1, semi-probabilistic method
as the randomness in resistance and loading parameters is considered through
representative values (nominal and characteristic) and partial safety factors. The
characteristic values are defined through the specified mean value, coefficient of variation
(CV) and PDF; (3) level 2, probabilistic method as a PDF is established for each model
parameter. Such PDF is defined by statistic measures that describe the central tendency
(e.g. mean value) and dispersion (e.g. variance). A failure probability (reliability index) is
therefore computed, considering these PDF and a correlation matrix; (4) level 3, full
probabilistic method that considers the joint PDF of all parameters for computing the failure

probability (reliability index).
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Other structural safety assessment classifications are also presented in literature. Ryall [160]
introduced several safety assessment levels. Some of these levels use reliability algorithms
and others combine numerical and measured data. The concept of rating factor, which
relates resistance and loading, is introduced. A more complex factor that combines the
assessed and design reliability index is also present. Wisniewski et al. [197] suggests the
use of simplified probabilistic-based safety assessment methods. Accordingly, the use of
level 2 assessment techniques increased in the last years [14, 41, 43, 197]. Maljaars et al.
[113] present a variant of this level, which incorporates additional measurements at critical

parts of the structure for determining its safety.
4.4. Probabilistic assessment

The proposed probabilistic assessment methodology [118, 119, 121] is also a variant of level
2 assessment technique, as it combines a simplified probabilistic-based approach with
measured data. The main result of this methodology is an updated resistance PDF of the
assessed structure. This updating procedure is executed within the structure lifetime, as data
is collected from the structure. Once the updated resistance PDF is obtained, the safety
assessment can be developed through a comparison with loading PDF. This methodology is
divided into the following steps, indicated in Figure 4.1.: (1) step 1: model identification;

(2) step 2: probabilistic analysis.

The main objective of model identification is to obtain the most likely values of model
parameters. Within this procedure the numerical results are fitted to collected data from real
structure, by adjusting the model parameter values. Obtained results are then compared to
measured data and the distance between these two values (or fitness function) is minimized
with an optimization algorithm. The main result of this procedure is an updated deterministic
numerical model. In order to compute the numerical model the nonlinear structural analysis
software ATENA® [24] is used. A Matlab® algorithm [25, 129] is developed to: (1) automatic
generate and compute the numerical models; (2) compute the distance between numerical
and experimental data; (3) optimize this distance. This procedure presents a high
computational cost. It is usually developed when the uncertainty about the evaluated
structure is high and an in-depth assessment becomes necessary. Figure 4.2a indicates a

flowchart of this algorithm.

The main objective of probabilistic analysis is to include uncertainty in numerical model.
Therefore, randomness is considered in model parameters through a PDF. Each prior PDF is
then updated with complementary data (or likelihood) through a Bayesian inference

procedure. The posterior PDF is therefore computed and an updated probabilistic numerical
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model is obtained. The nonlinear structural analysis software ATENA® [24] is used to
compute the numerical model. A Matlab® algorithm [25, 129] is developed to: (1) random
generation of model parameter values based on Iman and Conover algorithm [85, 134];
(2) automatic compute the pool of generated numerical models; (3) process the obtained
results through a statistical analysis. The Bayesian inference is performed with WinBugs®
[111]. In this case, a Matlab® algorithm [25, 129] is developed to: (1) generate the prior PDF;
(2) compute the posterior PDF. This procedure presents a low computational cost. Figure

4.2b gives a flowchart of this algorithm.
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Figure 4.1. Probabilistic assessment algorithm [118, 119, 121].

The developed probabilistic assessment methodology considers all previous identified
uncertainty sources. These uncertainties are: (1) measurement and modeling errors, that are
introduced when defining the model identification convergence criterion; (2) physic
uncertainty, that is incorporated when considering randomness in model parameters
(material, geometric and physical); (3) statistical uncertainty, that is reduced with Bayesian
inference as complementary data is obtained; (4) human errors, that are usually identified

with model identification.
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Figure 4.2. Implemented algorithm: a) model identification; b) probabilistic analysis.
4.5. Sensitivity analysis

The main drawback of the proposed methodology is its computational cost. This cost is
proportional to the number of input parameters. Accordingly, before applying the respective
methodology, it is recommended to perform a sensitivity analysis with the developed

numerical model.

The main objective of this analysis is to obtain the critical parameters. Critical parameters are
those that present a higher influence on the overall structural response. In each sensitivity
analysis it is possible to evaluate the influence of material (e.g. concrete strength), geometric
(e.g. section dimensions) and physic (e.g. spring support stiffness) properties of analyzed
structure. This analysis can be performed either in service or failure region. In fact,
parameters that present a higher influence in service may not present an identical impact in

failure.
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Accordingly, the following procedure is recommended: (1) to develop the deterministic
numerical model of analyzed structure using mean values for input parameters; (2) to divide
the structural parameters by category (material, geometric, physic) and subcategory
(concrete, steel, interface, support, ...); (3) for each parameter, to determine the most
suitable CV; (4) to vary each parameter by adding or subtracting a standard deviation value,
keeping all the other parameters fixed; (5) for each set of parameter values, to proceed to the
numerical analysis with a nonlinear structural analysis software; (6) to apply the following
expression (4.1) [33],

b, =Zn“(Ayk 1Y)/ (DX, /X ) TV [%] (4.1)

i=1

being by the importance measure of parameter k, Ay, the variation in structural response due
to a deviation of Axy in relation to the parameter mean value X, yn the average response
and n the number of generated parameters; (7) to determine the maximum importance
measure value; (8) to normalize all values in relation to the maximum; (9) to plot the
standardized importance measures in a bar plot; (10) to define a limit for the importance
measure (b;,). The critical parameters are those that present an importance measure higher

than this value.
4.6. Model identification

In a first step, and according to Figure 4.1, the proposed probabilistic assessment
methodology performs the model identification in order to obtain an updated deterministic
numerical model. During this procedure, model parameters are assessed through an
automatic adjustment procedure to measured data. The set of procedures necessary to
determine an updated model are designated by model updating. The organization chart of

the developed algorithm is indicated at Figure 4.3.
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Figure 4.3. Model identification procedure.
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The algorithm runs the nonlinear numerical model, for each set of input parameters
obtaining, from each run, the respective numerical results. At same time, experimental data
is collected by specific instrumentation, from real structure. A comparison that consists in
determining the cumulative difference between numerical and experimental data is
performed for each monitoring point (Figure 4.4a). The objective function value, to be
minimized, is then obtained. When there is a population of models, this value is computed for
all models. However, for a matter of convergence criterion the considered value is the

minimum.

Accordingly, the basis of this methodology is an objective function, designated by fitness
function (f), that describes the approximation between numerical results and experimental
data, (4.2),

num

yim -y

/max(yexP) Un [%] 4.2)

in which y™™ and y®® are the numerical and experimental values and n is the number of
evaluated points. Therefore, for each analyzed point, the ratio between the absolute
difference of numerical and experimental results and obtained maximum measured value is

computed. The sum of these values is then divided by the number of analyzed points.

It is important to note that this function is normalized and so, it can be used with different
transducers, placed in different regions of the structure, measuring different parameters.
Additionally, it can be also applied when more than a structure is tested, in identical
conditions, and/or when more than a load case is implemented. In this situation, the fithess

function is obtained by using the following expression (4.3),

n o p

f= \/Z fi,zj,k,l (4.3)
i=1 j=1 k=1 1=1
being fi;«, the fitness function value computed from expression (4.2) for each measurement i
in each position j at tested structure k for load case I. According to Figure 4.3, an established
stop criteria for model identification algorithm is the fithess function convergence criterion,
given by expression (4.4),

Af =

fo. —f|se (4.4)

being f the fitness function for generation i and i + n, and n the defined gap between two

generations. If the difference between these two values is less than or equal to a pre-
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specified threshold value (&), than the algorithm stops and the population of models is
extracted. However, if this criterion is not accomplished, the developed algorithm will
rearrange the input parameters set and the procedure restart. The extracted models are then
analyzed by an engineering judgment procedure, based in the probability of occurrence of

each model. The most likely model is the updated model.

When using a multi-parameter model identification methodology, there are two sources of
errors, related to experimental measurements and to numerical analysis, which should be
considered during the analysis. Consequently, when computing the difference between
numerical and experimental data, according to fitness function (4.2), used points should not
be considered as deterministic but as an interval of values, all of them with the same
probability (uniform PDF). This is exemplified in Figure 4.4b. Therefore, the threshold

value (¢) is a combination of both measurement and modeling errors.

Y y A
: ___ Exp. _ Exp.
Exp ; Exp. E '
yi T Yi ipi u = g
Num. _ Num.
_Num. - Num Num.
yi - + yi *u =
Xi < Xi x
a) b)

Figure 4.4. Fitness function: a) definition; b) convergence criterion.

A similar procedure is presented by Goulet et al. [67, 69]. For these authors, the fithess
function is defined as the root-mean-square of the difference between measured values and
model predictions. When this value is less than a certain threshold value, the model is
classified as a candidate model. The threshold is evaluated by assuming reasonable values
for modeling and measurement errors. Accordingly, a model involving the right set of
assumptions and correct parameter values has a fitness function value that is less than or

equal to this threshold.

These authors introduce the concept of reliability in model identification. The identification
presents 100% reliability when the following three conditions are met: (1) all possible models
are considered in the set of models; (2) there are sufficient measurement data to filter out
wrong models; and (3) all errors are zero. Although, it is almost impossible to completely

fulfill these three conditions, it is possible to assume that the first two conditions are
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commonly met. In fact, for many structures the use of a stochastic algorithm is enough to
generate all possible models. Additionally, enough measurement data is available to filter out

wrong models.

During model identification procedure, human errors (e.g. due to bad concreting) are usually
detected. This procedure is commonly used in: (1) assessment of existent structures in order
to determine if those structures present any additional carrying capacity; (2) in forensic
engineering, when it is necessary to determine any human error developed during
construction (e.g. an inferior concrete cover). Therefore, model identification permits to

identify this source of errors.

Within the model identification procedure, some Matlab® routines were developed, as

indicated at Figure 4.2a [25, 129]. These routines are provided in Appendix A, respectively:

(1) backanalysis.m: run the model identification procedure. It defines the optimization
algorithm parameters (e.g. threshold value of the convergence criterion) and also the lower

and upper bound limits of each variable;
(2) fobj.m: compute the fitness function of the model identification procedure;

(3) es.m [29]: evolutionary strategies algorithm, used to compute the best model from the
population of models. This algorithm was modified in order to give all the population of

models, necessary for the engineering judgment procedure;
(4) run_num.m: run the structural analysis software;
(5) parameter.m: define each model parameter value;

(6) data.m: generate the data file which will be read and then processed in structural analysis

software;

(7) processment.m: process the generated data file and convert the obtained results into
Matlab® [25, 129];

(8) matrix_num.m: convert the obtained results from the structural analysis software into the

same unities of experimental data, necessary to compute the fithess function value;

(9) test_num.m: divide the numerical results into specific steps in order to guarantee that the

same points of experimental data are compared in the fitness function (4.2);
(10) run_exp.m: read experimental data and convert it into Matlab® [25, 129];

(11) matrix_exp.m: convert the experimental data into the same unities of numerical results,

necessary to compute the fitness function value;
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(12) test_exp.m: divide the experimental data into specific steps in order to guarantee that

the same points of numerical results are compared in the fitness function (4.2);
(13) constraint_value.m: introduce, when necessary, specific constraint values;
(14) limit.m: determine limits for service and failure region evaluation.

Additionally, the nonlinear structural analysis software ATENA® [24] is used in this situation.
The following executable files are thus incorporated: (1) atenaconsole.exe: run the
developed numerical model using the finite element methodology; (2) gawk.exe [3]: convert

obtained results from ATENA® into readable data for Matlab® processing.
4.6.1. Optimization algorithm

In order to minimize the distance between measured and numerical data, given by the fithess
function (4.2), it will be necessary to use an optimization algorithm. There are several
algorithms that can be used. After a detailed study on some of those algorithms, presented in
previous chapter two, it was decided that the most reasonable algorithm is the evolutionary
strategies in its plus version. This algorithm permit to identify a population of models once the
convergence criterion is achieved. A Matlab® version of this algorithm already exists and was
adapted for this methodology [29]. The respective algorithm (es.m) is presented in Appendix
A of this thesis.

4.6.2. Errors

Errors play a major role in model identification. They may arise from many sources, being the
most significant the measurement and modeling errors. Measurement errors can result from
equipment as well as on-site installation faults. Some authors like Banan et al. [11, 12]

studied the effect of measurement errors by using simulation algorithms.

Sanayei et al. [163] studied the effect of measurement and modelling errors in parameter
estimation. For these authors measurement error typically has zero mean and its magnitude
depends on experimental equipment, test environment, and data processing procedure.

Modeling error, however, is a bias error as it produces a shifted response.

The purpose of an assessment procedure is the comparison between measured and
modeling data. Accordingly, this procedure is limited by the combination of these two sources
of errors. Numerical models are then updated until a certain limit (threshold value), defined
by the contribution of these two components, is attained. However, understanding errors is
essential to compute this limit value. Therefore, it is further indicated how these two sources

of errors may be computed and combined.
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4.6.2.1. Measurement

Measurement error (Ueyp) is the difference between real and measured quantities in a single
measurement. It usually results from equipment and on-site installation faults. There are
some authors which tried to quantify this error. Restivo and Sousa [154] evaluated the
measurement uncertainty with an example of a material Young modulus test. They used the
law of propagation of uncertainty, indicated at GUM (Guide to the expression of Uncertainty
in Measurement) [37, 38], to combine all different contributions (e.g. sensor characteristics,

equipment resolution and repeatability of used procedure).

An interesting work about measurement uncertainties is the work of Cabral [21]. Within this
report it is indicated the concept of maximum admissible error of a transducer which is the
product of its linearity by its full scale. This author differentiates type-A uncertainties which
are determined from several and repeated measures of the same measurand
(e.g. measurement stability) from type-B uncertainties which may be given in bibliography
(e.g. equipment resolution). Different sources of uncertainties, indicated at Table 4.1, are

respectively introduced.

Table 4.1. Measurement errors: causes and quantification (adapted from Cabral [21]).

Sources Causes Quantification method

Measurement equipment to

. Resolution; measurement stability; etc. Manufacturer (last certification)
calibrate

Transducer equipment Calibration; separation from “ideal pattern”; etc.] = Operator (calibration history)

Suitability of the method for the final purpose;

Measurement technique approximation introduced in the model; etc.

Operator (computing error)

Operator Experience; training; etc. Average from multiple samples

Environmental conditions Temperature; humidity; etc. Manufacturer (last certification)

The measurement error may be also divided in the following contributions [67]: (1) sensor
accuracy, value reported by the manufacturer; (2) stability (e.g. fatigue, ambient vibrations
and its attenuation); (3) robustness (e.g. environmental effects due to temperature, humidity,
etc.); (4) load positioning; and (5) load intensity. Table 4.2 presents an example of a general

division of measurement errors and attributed values.

This example concerns a pinned-pinned supported reinforced concrete beam which is loaded
up to failure in laboratory. The applied load is monitored through a load cell positioned inside
the actuator. The beam deflection is monitored with a linear variable differential transformer

(LVDT). The sensor accuracy value is recommended to be twice the manufacturer value
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(0.05%) in order to consider cable and acquisition equipment losses [67]. An explanation of

how other uncertainty sources are determined is given in Table 4.2.

Table 4.2. Measurement errors in a reinforced concrete beam example.

Value
Sources Quantification method
(%]
Sensor accuracy Manufacturer (mgludes cable and acquisition 0.10 (LVDT)
equipment losses)
Stability Static load test (no fatigue or vibration problems —,0.00
detected)
Robustness Short term test (environmental effects neglected) — 0.00
Load positioning Test assembly perfectly controlled — 0.00
Load intensity Manufacturer (mgludes cable and acquisition 0.10 (load cell)
equipment losses)

A sensor is a converter that measures a physical quantity (input, X) and converts it into a
signal (output, Y) which can be read by an observer or by an electronic device. The sensor
sensitivity is defined as the slope of the output characteristic curve (AY/AX in Figure 4.5a) or
the minimum input of physical parameter that will create a detectable change in the output. In
some sensors, the sensitivity is defined as the input parameter change required to produce a
standardized output change. In others, it is defined as an output voltage change for a given
change in input parameter. The sensitivity error (dotted curve in Figure 4.5a) is a departure

from the ideal slope of the characteristic curve.

The linearity of the transducer is an expression of the extent to which the actual measured
curve of a sensor departs from ideal curve. Figure 4.5b shows a somewhat exaggerated
relationship between the ideal and the calibration line. Linearity is often specified in terms of

percentage, which is defined as, (4.5),

Linearity—Din (max) [%] 4.5
————="
N (4.5)
where linearity (%) is the percentage of linearity, D;, (max) is the maximum input deviation
(absolute maximum error), IN¢s is the maximum full-scale input. Transducers are usually
classified by linearity classes. Both linearity and sensitivity values are important to

characterize the sensor accuracy component of measurement error.
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Figure 4.5. Transducer properties: a) sensitivity; b) linearity.

A detailed study of such transducer properties is developed for LVDT, Figure 4.6a. These are
widely used in civil engineer applications, mainly in load tests. LVDT is a linear displacement
transducer that works on the principle of mutual inductance, producing an electrical signal
that is proportional to the position of a separate moving core (Figure 4.6b). The transducer
relates inductance to displacement by modifying the spatial distribution of an alternating
magnetic field. A more detail description of this transducer is given in fib [55].

A rigorous study of different LVDT was developed. Chosen transducers vary according to
their measuring field, manufacturer linearity and sensitivity. Table 4.3 indicates the
characteristics of the studied equipment. It is important to note that the transducer sensitivity
increases as the measuring field decreases and that linearity is an independent property
(ranging around 0.10%). The following effects were studied: (1) cable length (10, 35 and
105 m); (2) wrapping cable, which introduce a magnetic field; and (2) calibration procedures.

For each situation, both linearity and sensitivity values were determined.
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Figure 4.6. Linear variable differential transformer (LVDT): a) image; b) operating principle.
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Table 4.3. Displacement transducers (characteristics).

Transducers
Measuring field Linearity Sensitivity
LVDT Type nglf(é(rj:;(/:e Series number
[mm] [%0] [MmV/V/m]
1 RDP GTX5000 40351 +5.00 0.17 118.71
2 RDP GTX5000 65050 +5.00 0.22 114.71
3 RDP D6/05000A 83043 +5.00 0.10 142.09
4 RDP ACT500A 2987 +12.50 0.08 54.72
5 RDP ACT500A 2990 +12.50 0.06 54.17
6 RDP ACT500A 2934 +12.50 0.10 56.22
7 RDP ACT1000A 3468 +25.00 0.08 33.84
8 RDP ACT1000A 19906 +25.00 0.07 32.78
9 RDP ACT1000A 82804 +25.00 0.10 34.00

Table 4.4 indicates the obtained results for LVDTs with a measurement field of £ 5.00 mm.
The following conclusions are obtained: (1) the manufacturer linearity values are higher than
those determined at laboratory for LVDT 1 and 2; (2) the manufacturer linearity value is close
to that obtained at laboratory for LVDT 3; (3) the manufacturer sensitivity values are lower
than those determined at laboratory; (4) it is verified an increase in linearity value with an
increase in cable length; (5) the sensitivity value does not change with cable length; (6) the
linearity and sensitivity values increases with wrapping for LVDT 1 and 3; (7) the linearity and
sensitivity values remains unaffected with wrapping for LVDT 2; (8) the calibration procedure
reduces the linearity values; (9) the sensitivity value decreases with the calibration
procedure, especially for long cables; (10) the cable length effect in linearity value is reduced
with the calibration procedure; (11) the wrapping effect in linearity value is minimized with the

calibration procedure for LVDT 1 and 3.

A summary of obtained results for LVDTs with a measurement field of + 5.00 mm is provided
in Figure 4.7. Accordingly, it is verified an increase in linearity value with an increase in cable
length. This variation is higher when calibration is not developed. This confirms the
importance of calibrating the system transducer and cable before performing any test.
Additionally the obtained linearity value with a cable length of 105 m is five times higher than

the manufacturer value. Therefore, considering this value twice the recommended by
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manufacturers, to take into account cable losses [67], may be not conservative when long

cables are used.

Table 4.4. Results LVDT (+ 5.00 mm).

Cable length Linearity Sensitivity
LVDT Test type Value I Mean Value Mean
o] [%] [mVIVImm]

1 0.13 190.50

2 5 calibrated 0.18 0.14 189.14 | 190.05

3 0.12 190.50

1 1.82 193.29

2 10 not calibrated 1.22 1.54 186.83 | 191.14

3 1.60 193.29

1 3.87 190.67

2 35 not calibrated 1.47 2.92 187.00 | 189.45

3 3.42 190.67

1 13.41 202.46

2 105 not calibrated and wrapped 4.21 9.82 192.30 | 199.07

3 11.84 202.46

1 4.81 195.09

2 105 not calibrated and stretched 4.25 6.63 193.42 | 195.44

3 10.84 197.83

1 0.17 189.56

2 10 calibrated 0.17 0.18 187.75 | 188.25

3 0.19 187.43

1 0.17 189.50

2 35 calibrated 0.17 0.31 187.10 | 187.93

3 0.60 187.20

1 0.18 194.11

2 105 calibrated and wrapped 0.19 0.59 187.75 | 190.33

3 1.40 189.14

1 0.21 189.43

2 105 calibrated and stretched 0.26 0.71 188.28 | 190.55

3 1.67 193.94

Table 4.5 indicates the obtained results for LVDTs with a measurement field of £ 12.50 mm.
The following conclusions are obtained: (1) the manufacturer linearity value is lower than that
determined at laboratory for LVDT 4; (2) the manufacturer linearity values are close to that
obtained at laboratory for LVDT 5 and 6; (3) the manufacturer sensitivity values are lower
than those determined at laboratory; (4) it is verified an increase in linearity value with an
increase in cable length; (5) the sensitivity value does not change with cable length; (6) the

linearity and sensitivity values remains unaffected with wrapping; (7) the calibration
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procedure reduces the linearity values; (8) the sensitivity value remains unchanged with the
calibration procedure; (9) the cable length effect in linearity value is reduced with the

calibration procedure.

Table 4.5. Results LVDT (x 12.50 mm).

Cable length Linearity Sensitivity
LVDT Test type Value ‘ Mean Value Mean
o] [%] [mVIVImm]

4 0.18 78.87

5 5 calibrated 0.08 0.12 78.47 78.65

6 0.11 78.60

4 0.22 77.86

5 10 not calibrated 0.41 0.42 76.75 77.20

6 0.62 76.99

4 1.75 76.47

5 35 not calibrated 1.77 1.89 76.22 76.28

6 2.15 76.16

4 6.16 75.64

5 105 not calibrated and wrapped 5.93 6.29 75.43 76.54

6 6.78 78.54

4 6.30 75.84

5 105 not calibrated and stretched 6.27 6.38 75.58 76.68

6 6.58 78.64

4 0.09 78.80

5 10 calibrated 0.09 0.10 76.85 77.53

6 0.11 76.96

4 0.13 78.13

5 35 calibrated 0.11 0.12 76.74 77.25

6 0.12 76.86

4 0.56 79.49

5 105 calibrated and wrapped 0.28 0.35 76.35 77.56

6 0.21 76.83

4 0.30 77.10

5 105 calibrated and stretched 0.27 0.26 76.49 76.82

6 0.20 76.87

Figure 4.8 provides a summary of obtained results for LVDTs with a measurement field of
+12.50 mm. In this situation it is verified an increase in linearity value with an increase in
cable length. This variation is higher when the system is not calibrated, confirming the
importance of calibrating the system transducer and cable before performing any test.
Moreover, a linearity value which is three times higher the manufacturer value is obtained

when a cable length of 105 m is used. Therefore, considering this value twice the

79



Chapter 4. Probabilistic Assessment of Structures

recommended by manufacturers, to take into account cable losses [67], may be not

conservative when long cables are used.
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Figure 4.7. LVDT (+ 5.00 mm): a) linearity calibrated; b) linearity not calibrated; c) sensitivity

calibrated; d) sensitivity not calibrated.

Table 4.6 indicates the obtained results for LVDTs with a measurement field of £ 25.00 mm.
The following conclusions are obtained: (1) the manufacturer linearity values are close to that
obtained at laboratory for LVDT 7 and 8; (2) the manufacturer linearity value is lower than
that determined at laboratory for LVDT 9; (3) the manufacturer sensitivity values are lower
than those obtained at laboratory; (4) it is verified an increase in linearity value with an
increase in cable length; (5) the sensitivity value does not change with cable length; (6) the
linearity value remains unaffected with wrapping for LVDT 7 and 8; (7) the linearity value
increases with wrapping for LVDT 9; (8) the sensitivity value remains unaffected with
wrapping; (9) the calibration procedure reduces the linearity values; (10) the sensitivity value
remains unchanged with the calibration procedure; (11) the cable length effect in linearity
value is reduced with the calibration procedure; (12) the wrapping effect in linearity value is

eliminated with the calibration procedure for LVDT 9.

A summary of obtained results for LVDTs with £ 25.00 mm of measurement field is given in

Figure 4.9. An increase in linearity value is verified with an increase in cable length. This
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variation is higher in the situation of no calibration. This confirms the necessity of developing
the calibration of the system transducer and cable before performing any test. A linearity
value which is three times higher the manufacturer value is obtained when a cable length of
105 m is used. Therefore, considering this value twice the recommended by manufacturers,

to take into account cable losses [67], may be not conservative when long cables are used.

Table 4.6. Results LVDT (x 25.00 mm).

Cable length Linearity Sensitivity
LVDT Test type Value ‘ Mean Value Mean
o] [%] [mVIVImm]

7 0.06 39.57

8 5 calibrated 0.07 0.21 39.65 39.78

9 0.49 40.12

7 0.18 39.19

8 10 not calibrated 0.20 0.48 39.21 38.98

9 1.05 38.55

7 0.69 39.19

8 35 not calibrated 1.01 1.02 39.08 38.91

9 1.35 38.45

7 3.20 39.23

8 105 not calibrated and wrapped 3.96 3.84 40.18 39.97

9 4.37 40.51

7 2.99 39.18

8 105 not calibrated and stretched 3.42 3.05 39.34 39.67

9 2.75 40.49

7 0.06 39.18

8 10 calibrated 0.08 0.09 38.62 39.16

9 0.13 39.69

7 0.24 39.23

8 35 calibrated 0.20 0.21 38.59 39.14

9 0.18 39.60

7 0.54 39.20

8 105 calibrated and wrapped 0.46 0.49 39.36 39.38

9 0.46 39.58

7 0.33 39.93

8 105 calibrated and stretched 0.44 0.40 39.35 39.64

9 0.43 39.63

Commonly the values provided by manufacturers for sensitivity are lower than those
determined at laboratory. This is explained by the fact that this property is determined by

manufacturers in special site conditions that are practically impossible to reproduce at
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laboratory. Additionally, some of these transducers already have years of use and this has

an impact in determined sensitivity values.
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Figure 4.8. LVDT (x 12.50 mm): a) linearity calibrated; b) linearity not calibrated; c) sensitivity

calibrated; d) sensitivity not calibrated.

Figure 4.10 indicate a summary of all results obtained with different LVDTSs, respectively, for
measurement fields of + 5.00 mm (light), £ 12.50 mm (medium) and * 25.00 mm (dark),
which characteristics are provided in Table 4.3. The main conclusions are that: (1) linearity
increases substantially with cable length being this value unaffordable when long cables are
used; (2) the variation in linearity is higher when no calibration procedures are taken;
(3) calibration reduces linearity values and so it is recommended to always calibrate the
system transducer and cable previously to any application; (4) sensitivity is independent of
both cable length and calibration procedures; (5) sensitivity is a property of used transducers

as it only varies with measurement field.

Within this analysis it is verified that the sensor accuracy component of measurement error is
only dependent on linearity, being sensitivity an intrinsic property of used sensor. However, it
is also shown that the consideration of this component as twice the linearity value given by
manufacturers, to take into account cable and acquisition equipment losses [67], may be not

conservative when long cables are used. Therefore, the linearity value should be detailed
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evaluated in these situations. Other measures are also suggested: (1) not to use long cables
in monitoring systems; (2) always calibrate the system transducer with cable; and (3) avoid

wrapping cables, as it may increase the linearity value.

0.50 4.00 4
y = 0.0026x + 0.1266 y = 0.0275x + 0.1399
3.50 4
0.40 4
3.00 4
z z ]
- 0.30 4 F 250
& &
: 5 2.0
2 2
5 0.20 4 3 1.50 4
1.00 1
0.10 4
0.50 4
0.00 T T T - - J 0.00 T T T T - 4
o 20 40 60 80 100 120 o 20 40 60 80 100 120
Lenght (m) Lenght (m)
a) b)
45.00 1 45.00 q
y = 0.0017x + 39.363 y = 0.008x + 38.784
43.00 43.00 4
41.00 41.00

woo] ¢ —8——"

39.00 1

Sensitivity (my/V/mm)
Sensitivity (mVy/v/mm)

37.00 4 37.00 4

T T T T T J 35.00 T T T T T J
20 40 60 80 100 120 o 20 40 60 80 100 120
Lenght (m) Lenght (m)

35.00

c) d)

Figure 4.9. LVDT (x 25.00 mm): a) linearity calibrated; b) linearity not calibrated; c) sensitivity

calibrated; d) sensitivity not calibrated.

According to Table 4.2, other sources of measurement error exist. In the examples of this
thesis developed tests were performed in short term, which eliminates the environmental
conditions effect (robustness), and loads were applied in a static way, which eliminates
vibration and fatigue problems (stability) [67]. Therefore, these components are not detailed
study in this thesis. In respect to applied load intensity and positioning, it is first important to
identify if the test is developed at laboratory or not. In laboratory, the applied load is perfectly
controlled and load positioning error may be neglected. In this situation the load intensity
error is determined in a similar way as the sensor accuracy, but now considering a load cell.
If in field, then load positioning is more difficult and some measures should be taken to
minimize this error: (1) introduce lines in the pavement in specific coordinates for each load
case; (2) measure the distance between vehicle axles. In this situation, load intensity may

also be measured by weighting each vehicle. Once these different sources are identified it is
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then necessary to compute the measurement error (Uep) through the law of propagation of

uncertainties [37, 38].
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Figure 4.10. LVDT (light: £ 5.00 mm; medium: = 12.50 mm; dark: £ 25.00 mm): a) linearity

calibrated; b) linearity not calibrated; c) sensitivity calibrated; d) sensitivity not calibrated.
4.6.2.2. Modeling

Modeling error (unum) is the difference between the response of a given model and that of an
ideal model that accurately represents the structural behavior. Figure 4.11 presents the
respective propagation. It is possible to divide this error in three main components [152]:
(a) uy is due to discrepancy between the behavior of a mathematical model and that from the
real structure; (b) u, is introduced during numerical computation of the solution of partial
differential equations (e.g. finite element method, mesh quality, etc.); and (c) us arises from
inaccurate assumptions made during simulation (e.g. boundary condition such as support
characteristics, applied load steps, etc.). Component u; is extremely difficult to quantify, it is
problem dependent and it can be minimized using modeling expertise [12]. Ravindram et al.

[152] proposes to consider this component as null when an ideal situation is assumed.
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b T TR A e

Figure 4.11. Modeling errors u;, U, and uz (adapted from Ravindram et al. [152]).

On its preliminary study, Goulet et al. [69] present the estimation of modeling errors in model
identification and its consequences. For these authors, modeling errors are classified in two
classes, respectively: epistemic and aleatoric. The former arise from lack of knowledge about
structural behavior, use of simplified hypothesis or modeling assumptions. Aleatoric errors
describe uncertainties that are related to parameter values. These authors, on their analyses,

only consider the epistemic uncertainties.

For Goulet et al. [67] the modeling uncertainties are divided in the following sources: (a) finite
element method (u,); (b) mesh discretization accuracy (uy); () uncertainties in geometry of
analyzed structure (us); (4) other assumptions (e.g. bearing devices assumed to be point
loads) (us). These authors only consider the component u, and uz, neglecting thus the

component u; [152]. Table 4.7 summarizes these sources.

Table 4.7. Modelling errors: causes and quantification.

Sources Causes Quantification method

Modelling experience and Discrepancy between the real structure

Finite element method judgment and the mathematical model (u1)

Numerical computation of the solution of

Mesh discretization Numerical analysis partial differential equations (us)

. Dimensions taken from the “as-| Inaccurate assumptions made during
Model exactitude

built” structure simulation (us)
Other assumptions (e.g. linear elastic
behavior, bearing devices and truck Linear superposition, other Inaccurate assumptions made during
wheels represented by point loads, validating models simulation (us)

etc.)

The finite element method and mesh discretization component errors are computed by
comparing the obtained results from the numerical model, used in model identification
procedure, with a reference model. This comparison is established through the following

expression (4.6),
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yrm — yi”“"‘°|/max(y”””‘°) /n[%] (4.6)

numO numl

in which y indicate the registered value from the reference model, y is the obtained
value from the numerical model, used in model identification, and n the number of comparing

points.

An example of a pinned-pinned supported reinforced concrete beam which was loaded up to
failure in laboratory (Figure 4.12a), identical to that used to explain the measurement errors
(Table 4.2), is presented to indicate typical modeling errors. In this situation the studied beam

is modeled with an accurate finite element mesh (Figure 4.12b).
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Figure 4.12. Modelling errors in a reinforced concrete beam example: a) scheme; b) finite
element mesh [116, 117].

In this case, the component u; of modeling error, due to the use of a finite element method, is
neglected as it is supposed an ideal situation of modeling procedures [152]. However, other
components, due to mesh discretization (u,) and to inaccurate assumptions (uz), are
considered. Table 4.8 provides each component value. By comparing with results from
Table 4.2 it is possible to conclude that modeling errors are much higher than measurement
errors. This is common in laboratory controlled environments in which the measurement

errors are very low.

In this situation model exactitude is neglected as it is assumed that the developed model
represents geometry as accurate as possible. Other hypotheses, such as the representation
of bearing devices as point loads, are also neglected in this case once a global structural
analysis is developed [67, 69]. The mesh discretization and inaccurate assumptions are
computed through expression (4.6). Once these different sources are identified it is then
necessary to compute the modeling error (Unm) through the law of propagation of
uncertainties [90, 91, 92].
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Table 4.8. Modelling errors in a reinforced concrete beam example.

Value
Sources Quantification method
[%]
Finite element method It is minimized through modelling experience — 0.00
Mesh discretization Based on prellmlnary study (by comparing to a 6.74
refined mesh model)
Model exactitude Model “as built” — 0.00
Inaccurate assumptions Based on prgllmlnary study (by comparing to a 3.79
model with a smaller load step length)
Considered hypotheses Other hypothesis are negligible — 0.00

4.6.3. Convergence criterion

There are several possibilities of applying the fithess function convergence criterion of model
identification (Figure 4.3). A procedure is presented by Goulet et al. [67, 69], in which the
numerical models that present a fitness function value lower than a pre-specified threshold
value are considered as candidate models. Ravindram et al. [152] proposes a formulation for
fitness function which helps to understand the importance of each component error on the
convergence criterion proposed by Goulet et al. [67, 69]. Considering y as the real behavior

num

of a quantity, y** the measured and y™" the numerical value, the following relationships are

thus obtained through expression (4.7),

y=y&P +uexp 4.7
and (4.8),
y=y™ U, =y + (U, +u, +uy) (4.8)

Model identification procedure intends to minimize the absolute value of the difference
between y™™ and y*® known as residual (q). Rearranging the terms in previous expressions
(4.7) and (4.8), it follows the expression (4.9),

num =lu -u

num exp

q=|y™ -y™*|=

:|(u1+u2 +u,)-u

(4.9)

exp

Considering that both u,,m and ue, might be positive or negative, it is possible to conclude
that, (4.10),
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num
+

<[] +

<o+ Juy| + Jus[ +

qsly ye® (4.10)

num uexp uexp

Being the fitness function directly dependent of computed residual f(q). Considering
expression (4.10), the proposed convergence criterion by Goulet et al. [67, 69] may be

reduced to expression (4.11),
fa)<u (4.11)

being u the global uncertainty. This value establishes a superior limit for the fitness function.
In this situation, the convergence criterion defines that the improvement in fithess function
value (Af), from two models separated of a pre-specified gap (n), should be lower than or
equal to a threshold value (¢), indicated at Figure 4.3. Accordingly, by considering expression
(4.4), itis possible to conclude that, (4.12),

Af <

fion = 6| <[fin] +[f] (4.12)

being f; and f..,,, respectively, the fithess function values for generation i and i+n. Therefore,
and according to the methodology proposed by Ravindram et al. [152], the convergence

criterion may be reduced to (4.13),

AF <I[f, | +[f] < un] +|u] (4.13)

being u; and u., the global uncertainty, computed for generation i and i+n. This value

establishes a superior limit for the improvement in fitness function.

In order to compute the global uncertainty (u) it will be necessary to combine both
measurement and modeling errors through the law of propagation of uncertainty, indicated at
JCGM [90, 91, 92], (4.14),

n

S (0f/ox ) wix 2 205 3" (0 /x, ) rfof/ox, )7 m(x,) w(x, ) F (x,,x, ) (4.14)

i=1 i=L j=i+l

u2

where u(x) is the uncertainty related to each item x, of/dx is the partial derivative of the fithess
function in order to item X, and r(x;X; the correlation coefficient. The following expression
(4.15) is obtained when a null correlation coefficient is considered,

u? = (0t /ox, )’ (e, (4.15)

i=1

The fitness function, presented in expression (4.2), is composed by two terms, respectively,
a numerical and an experimental. The partial derivative, in relation to each term, can be

determined through a sensitivity analysis. This analysis is developed by sequentially
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changing each term and, at same time, studying the fithess function response. The patrtial

derivative values, obtained from this analysis, are given by expression (4.16),

(of/ay™) =y/max(y) (4.16)
and (4.17),
(o /oy ) =y/max(y7) (4.17)

In order to apply expression (4.15) to determine the global uncertainty value it will be
necessary to separately compute both measurement and modeling errors, and then to use

the partial derivative values given by expression (4.16) and (4.17).

In some situations it is measured more than a structure property and/or in more than a
location. Additionally, there are some cases in which there is more than a tested structure, in
identical conditions, and/or more than a load case. The fitness function, in this situation, is
given by expression (4.3). Accordingly, in this situation, the uncertainty related to each
measured property in a specific location of the tested structure and for the studied load case
is computed. Further, the expression (4.15) is applied to obtain the global uncertainty. In this

case the partial derivatives of/df;j, are unitary.

According to expression (4.13), the threshold value (¢ is computed by taking into
consideration the sum of global uncertainties from two generations (u; and u..,) as a superior
limit. These uncertainties are computed through expression (4.15). In this situation, the
partial derivatives dAf/dui., and dAf/du; are unitary. Obtained value is then introduced in the

optimization algorithm of the model identification procedure.
4.6.4. Engineering judgment procedure

Global optimization algorithms, as the evolutionary strategies in its plus version [29], when
incorporated in model identification, usually provide a population of models. A family of
numerical models is thus extracted when an algorithm criteria is accomplished (Figure 4.3).
At the same time, it is recommended to run each algorithm more than once with different
initial points. Therefore, several models are obtained from model identification, being

important to decide about the most adequate model.

The selection of these models may be based in experience [67] or eventually in more robust
algorithms. However, even in this latter situation an engineer judgment criterion is always
necessary. In this situation, an algorithm based in the probability of occurrence of each
model is developed to select the most adequate model. This algorithm is based in the

principle that the most suitable model is that which assessed parameter values are close to
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initial mean values, unless some accidental situation is detected. Therefore, the following

expression (4.18) might be used,

£, =1f(x) (4.18)

=1

where X4 is the value of the assessed parameter i, and f(x) is the PDF value for this
parameter, assuming a PDF from bibliography [93] or based in experience. Figure 4.13

illustrates how the PDF value is obtained.

f(x) /

f(xe)

|
|
|
I
|
| =
Xid X

Figure 4.13. Engineering judgment procedure.

Then the product of all PDF values, for all assessed parameters, and for all extracted
models, is computed (fy). The updated model, from proposed model identification procedure,
is that which presents the highest value. An engineer judgment criterion is intrinsic to the
developed algorithm, when assuming the principle of the probability of occurrence of each

model.
4.7. Probabilistic analysis

In a second step, and according to Figure 4.1, the proposed probabilistic assessment
methodology performs the reliability analysis of the assessed structure in order to evaluate,
from a probabilistic point of view, its behavior. Therefore, the previous updated numerical
model is converted into a probabilistic model by introducing randomness in its model

parameters.

This randomness represents the physic uncertainty source. The aleatoric variation in
material, geometric and physic structure properties is therefore considered. Accordingly,
each parameter is represented by a PDF. A correlation matrix, composed by correlation
coefficients (0;), is also used. This coefficient is a measure of strength of linear dependence
between two parameters. It is computed through the Pearson coefficient, which is defined as

the covariance of two parameters divided by the product of their standard deviations [33,
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123]. This value varies between -1 and 1. The closer the coefficient is to either -1 or 1, the

stronger is the correlation between the parameters.

The statistical uncertainty is incorporated into the probabilistic model when establishing each
parameter PDF (e.g. when defining the mean and the standard deviation value). This
uncertainty source is reduced when more information regarding the parameter PDF is
obtained (e.g. complementary data). A Bayesian inference algorithm is then used to

incorporate such information into developed probabilistic model.

A sampling procedure is therefore implemented to randomly generate the model parameter
values. For each set of generated parameter values, the updated numerical model is
analyzed with nonlinear structural analysis software, being the obtained results statistically

processed.

Two procedures may be developed to evaluate the structure behavior. Each procedure gives
an appropriate structural performance index. In the first procedure the structure behavior is
analyzed by a comparison with acquired experimental data. An evaluation index is
introduced to interpret the reliability of obtained probabilistic model. In the second procedure
the structure resistance is compared with loading. In this situation a reliability index,

necessary to evaluate the structural safety, is computed.

Within the probabilistic analysis, some Matlab® routines [25, 129] were implemented. These

routines are provided in Appendix B, respectively:

(1) run.m: run the probabilistic analysis. It defines the number of generated samples, each
parameter PDF type and the correlation matrix. Additionally, it statistically processes the

obtained numerical results and computes the performance indexes;

(2) lhs_iman_n.m [173]: generate random samples according to the Latin Hypercube
sampling (LHS) algorithm, by guaranteeing the correlation coefficient values between these

parameters through the application of the Iman and Conover algorithm [85];

(3) mchol.m [173]: induce data with correlation by performing the Cholesky decomposition;
(4) latin_hs.m [173]: generate data according to the LHS algorithm;

(5) ranking.m [173]: perform the ranking of a vector within the LHS algorithm;

(6) parameter.m: define each model parameter value;

(7) data.m: generate the data file which will be read and then processed in structural analysis

software;
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(8) processment.m: process the generated data file and convert the obtained results into
Matlab® [25, 129];

(9) matrix_num.m: convert the obtained results from the structural analysis software into the

same unities of experimental data, in order to be compared,;

(10) test_num.m: divide the numerical results into specific steps in order to guarantee that

the same points of experimental data are compared;
(11) run_exp.m: read experimental data and convert it into Matlab® [25, 129];

(12) matrix_exp.m: convert the experimental data into the same unities of numerical results,

in order to be compared;

(13) test_exp.m: divide the experimental data into specific steps in order to guarantee that

the same points of numerical results are compared;
(14) plot.m: program used to plot both experimental and numerical results.

Additionally the nonlinear structural analysis software ATENA® [24] is used, being
incorporated the respective executable files: (1) atenaconsole.exe: run the developed
nonlinear numerical model using the finite element methodology; (2) gawk.exe [3]: convert

obtained results from ATENA® into readable data for Matlab® processing.
4.7.1. Randomness

Randomness is introduced in numerical model by representing its parameters through
appropriate PDF. The dependence between such parameters is given by adequate
correlation coefficients. The majority of structural parameters present well defined PDF.
However, there are some parameters for which the PDF is not defined in bibliography. In
such situations an engineering judgment procedure is necessary. The correlation between
structural parameters presents a high variability. In fact, these coefficients vary a lot with

developed characterization tests being very difficult to quantify.

The PDF for current materials, such as concrete and steel, and for typical geometric
elements (e.g. section dimensions and concrete cover) is defined in bibliography [77, 93,
134, 164, 196]. These PDFs may be adopted in both reinforced concrete and composite
structures and they are important to determine the structure resistance capacity. Wisniewski
[196] also indicates some reference values for pre-cast concrete structures. For these
structures the standard deviation is lower than for cast-in-situ structures, as the quality

control is higher.
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4.7.1.1. Material

Concrete and steel are commonly used in civil engineer structures. Steel can be applied in
reinforced concrete structures, as a reinforcing bar embedded in concrete, and in metallic or
composite structures. There is a huge variety of concrete materials. A kind of concrete
materials, whose application increased in the last years, is the lightweight concrete.

Figure 4.14 permit to identify used parameters to describe each material behavior.

Concrete is a high heterogeneous material, defined by a strong nonlinear behavior
(Figure 4.14a). The variability of its mechanical properties depends on the following factors:
(1) component properties (e.g. cement type); (2) concrete composition (e.g. water-cement
ratio); (3) execution (e.g. curing process); (4) testing procedure (e.g. velocity of applied load);
(5) concrete being in the structure rather than in control specimens; (6) maintenance,

material degradation, etc.
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Figure 4.14. Material behavior: (a) concrete; (b) steel (e.g. reinforcing steel).

The most investigated parameter is the compressive strength (f;) as it serves to control the
concrete quality during execution and is used to define the acceptance criteria. Other
properties are also evaluated but due to a high correlation with concrete compressive

strength they are usually defined via empirical relations.

According to JCSS [93] the concrete strength at any specific location i, in a given structure j,

as a function of its standard strength f., is given by the following expression (4.19),
fc,ij :a(tlr)fc/:),inlj (419)
The respective standard strength is given by (4.20),

fooi = exp(Uij 2 +Mj) (4.20)
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being fe; a Lognormal variable, independent of Yy, with PDF mean (M;) and standard
deviation (2;) parameters at job j, Y;; a Lognormal variable representing additional variations
due to placing, curing and hardening conditions of in-situ concrete at job j, U; a standard
Normal variable representing variability within a structure, A a Lognormal variable with mean
0.96 and CV 0.005 and a(t,7) a deterministic function which takes into account the concrete

age at loading time t [days] and the duration of loading 7 [days].

The remaining concrete properties as tensile strength (f), elasticity modulus (E.) and ultimate

strain in compression (&) are given by (4.21),

f; =0.3f2°%Y,, (4.21)
and (4.22),
E., =105Y, (1+ B4t.7)) (4.22)
and (4.23),
£, =600°1°%, (1+ B ¢t.7)) (4.23)

being ¢ the creep coefficient, B4 the total load which depends of the structure type and
reflecting the variables Yy, Y3 and Yy, variations due to factors not well accounted for by
concrete compressive strength. Table 4.9 indicates the recommended PDF parameters for

those variables.

Table 4.9. PDF for variables Y;; [93].

Parameter Variable PDF Mean value b

(%]

Compression (fc) Y Lognormal 1.00 6.00
Tension (fy) Yo Lognormal 1.00 30.00
Elasticity Modulus (Ec) Y3 Lognormal 1.00 15.00
Ultimate Strain (&) Y4 Lognormal 1.00 15.00

The PDF indicated at JCSS [93] is a result of several studies, developed by different
researchers. A summary of part of these research studies is presented in Wisniewski [196].
This author also compared precast and cast in-situ concrete material properties. Accordingly,
the model of Bartlett and MacGregor [13] is recommended to define the concrete

compressive strength. This model is given by equation (4.24),
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f(:,real = F1F2fc,n0minal (424)

being f...a the real concrete compressive strength in the structure, f.nomina the nominal
concrete compressive strength, F; a random variable relating cylinder to nominal
compressive strength, F, a random variable relating in-situ to cylinder strength, and by

equation (4.25),

Vc,real :VFf +VF22 (425)

where V. a iS the real CV of concrete compressive strength, and Vg; and Vg, the CV of,

respectively, F; and F.

For Wisniewski [196], a Normal or Lognormal PDF is used for these properties. The following
statistical properties for concrete compressive strength are respectively indicated: (1) cast in-
Situ: ferea = 1.00 * f¢ nominai, CONSidering F; = 1.20 and F, = 0.85; V. ea = 12%, considering Vg,
= 7% and Vg, = 10%; (2) precast: fcrea = 1.00 * . nominai, CONSidering F; = 1.10 and F, = 0.90;
Verea = 9%, considering Vg, = 5% and Vg, = 8%. Regarding probabilistic models for other
concrete properties, Wisniewski [196] proposes to model the tensile strength (f) by a Normal
or Lognormal PDF with CV of 20%, while the elasticity modulus (E;) can be modeled by a
Normal PDF with CV of 8%.

A parameter that is frequently used in numerical models but for which there is few
information regarding its PDF is the fracture energy (Gy). This parameter may be defined by a
Weibull PDF with a CV of 20% [174, 176]. In respect to correlation matrices for concrete
properties, Strauss et al. [174, 176] propose the coefficients indicated at Table 4.10. These
values are purely indicative as there are no normalized values for them due to its high

variability.

Although, there are several probabilistic models for traditional concrete material, the
information regarding the lightweight concrete material is still scarce, being thus very difficult
to establish appropriate PDF. Some information about this material is given in EuroLightCon
[51] and in Nowak et al. [135]. The former provides the main results of a European research
project that focused a lightweight aggregate concrete. The second reference provide results
of a research funded by the Portland Cement Association and presents PDF for several kind
of concrete materials, including lightweight aggregate concrete. According to these authors it
is recommended to use Normal PDF for all properties. A CV of 10% is proposed for
compressive strength (f;) and for elasticity modulus (E.), while a value of 20% is indicated for
tensile strength (f;). By analyzing the obtained results by Valente [188] a value of 10% may

be considered for all parameters, including the fracture energy (Gy).
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Table 4.10. Correlation of concrete parameters (adapted from Strauss et al. [174, 176]).

Ec fi fe Gt
Ec 1.00 0.70 0.90 0.50
fi 0.70 1.00 0.80 0.90
fc 0.90 0.80 1.00 0.60
Gt 0.50 0.90 0.60 1.00

The variability of steel parameters is generally lower than the variability of concrete
parameters (Figure 4.14b). This is due to the higher quality control implemented during its
production. According to Sobrifio [170] the main factors that might cause the variation of
reinforcing steel bars are: (1) variability of material strength; (2) variability of bar geometry;
(3) material degradation (e.g. corrosion); (4) load history (e.g. fatigue); (5) used method for

strength parameters determination (e.g. velocity of applied load).

The probabilistic model code defines two independent models for reinforcing steel bars and
laminated steel profiles. Therefore, the JCSS [93] proposes, for reinforcing steel, the
definition of the steel bar yield strength (oy) as the sum of three independent Gaussian
variables, (4.26),

X, (d) =X, + X, + X (4.26)

being X;; = N(u11(d),011) the variations in the global mean of different mills, X;, = N(0,01,) the
batch to batch variation, X;3 = N(0,013) the variation within a single batch and d the nominal
bar diameter. Accordingly, for a steel production of good quality the following standard
deviation values can be used: (1) 01; = 19 MPa; (2) 01, = 22 MPa; and (3) 013 = 8 MPa. This
results in an overall standard deviation o = 30 MPa. The yield strength mean value (u = p1,)

is thus defined through equation (4.27),
H=Syn +20 (4.27)

being S.om the nominal value. In Table 4.11 it is indicated the PDF parameter values for
reinforcing steel. For these variables Normal PDF can be adopted. Table 4.12 presents

values for correlation coefficients between those parameters.

The JCSS [93] proposal is a conclusion of numerous research studies, developed worldwide
by different authors. A summary of some of these works is indicated in Wisniewski [196].
This author proposes the following statistical parameters for reinforcing steel properties, in
which A is the bias factor or the ratio between the mean and the nominal value: (1) yield
strength (oy): for older steels A = 1.20 and CV = 10%, and for modern steels A = 1.15 and CV
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= 5%; (2) ultimate strength (o,): consider a value 15 - 20% higher than yield strength, and CV
= 10% and 5%, respectively, for older and modern steels. These properties can be modeled
by Normal or Lognormal PDF. Limit strain (&m,) can be modeled by Normal or Lognormal
PDF with mean value of 10% and CV = 15%. Steel elasticity modulus (Es) can be modeled
by Normal PDF with mean value 202 GPa and CV = 4%. Reinforcing steel area (A;) can be

also modeled by a Normal PDF with CV = 2% and the mean value equal to its nominal value.

Table 4.11. PDF for reinforcing steel parameters [93].

Parameter Mean value Standard deviation b
(%]
Bar area (As) As nom - 2.0
Yield strength (oy) Oy,nom + 20 30 MPa
Ultimate strength (ou) - 40 MPa
Ultimate strain (&im) - - 9.0
Table 4.12. Correlation between reinforcing steel parameters [93].
As oy Oy &lim
As 1.00 0.50 0.35 0.00
Oy 0.50 1.00 0.85 -0.50
Ou 0.35 0.85 1.00 -0.55
im 0.00 -0.85 -0.55 1.00

The probabilistic model code indicates a different PDF for steel material in laminated steel
profiles. Table 4.13 present the PDF parameter values for steel parameters according to
JCSS [93]. These values are based on European studies developed from 1970 onwards. A
Lognormal PDF is recommended for those parameters. Table 4.14 presents the correlation

coefficient values between those variables.

Respectively, the suffix (sp) is used for the code nominal value, a is a spatial position factor
(a = 1.05, for webs of hot rolled sections, and a = 1.00, otherwise), u is a factor related to the
fractile of used PDF to describe the distance between the code nominal value and the mean
value (u is found to be in the range of -1.5 to -2.0 for steel produced in accordance with
relevant EN standards), C is a constant reducing the yield strength as obtained from usual

mill tests to static yield strength (a value of 20 MPa is recommended) and parameter B = 1.5
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for structural carbon steel, B = 1.4 for low alloy steel and B = 1.1 for quenched and tempered

steel.
Table 4.13. PDF for steel profile parameters [93].
cv
Parameter Mean value

(%]

Yield strength (oy) Oysp*a*exp(-u*CV)-C 0.07

Ultimate strength (ou) B * E[ou] 0.04
Elasticity modulus (Es) Es,sp 0.03
Ultimate strain (&im) &iim,sp 0.06

Table 4.14. Correlation between steel profile parameters [93].

Oy Ou Es &im
Oy 1.00 0.75 0.00 -0.45
gy 0.75 1.00 0.00 -0.60
Es 0.00 0.00 1.00 0.00
Sim -0.45 -0.60 0.00 1.00

Connectors, used in composite structures, to establish the connection between concrete slab
and laminated steel profile, are traditionally in steel material. The Nelson headed studs [131]
is a connector type, commonly used in composite structures. These connectors are executed
in a similar manner to laminated steel profile. Accordingly, identical parameter PDF (e.g. for

ultimate strength) are recommended.

4.7.1.2. Geometry

Geometric imperfections are due to deviations from specified values of the cross-sectional
shape, the reinforcement position, the horizontality and verticality of concrete lines, and the
alignment of columns, beams and surfaces of constructed structure [128]. Geometrical
imperfections are related to quality control, during execution, and to permitted tolerances by
codes. The following factors may affect the distribution of these imperfections: (1) structure
type (e.g. slab bridge); (2) construction process and applied technology (e.g. precast); (3)

execution quality (e.g. workmen).
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According to the probabilistic model code [93] the deviations of a dimension X can be
described by the statistical characteristics of its deviations Y from its nominal value X;om,
(4.28),

Y =X - X,om (4.28)

Accordingly, the deviations of the external dimensions of precast and cast in-situ concrete
components, for nominal dimensions (Xnom) Up to 1000 mm, can be modeled by a Normal

PDF with mean and standard deviation value defined by (4.29),

0< 4, =0.003X,,,, <3[mm] (4.29)
and (4.30),
g, =4+0.006X,,, <10[mm] (4.30)

Additionally, the deviations of concrete cover in reinforced concrete elements can be

modeled by a Normal PDF with mean and standard deviation defined in Table 4.15.

The JCSS [93] proposal is a result of various studies, developed by several authors. Some of
these studies are summarized in Wisniewski [196]. This author also compares precast and
cast in-situ concrete geometric properties. In this situation, the absolute dimensions are
studied, instead of deviation values. For Wisniewski [196], the precast concrete bridge
girders and slabs height may be modeled by a Normal PDF with mean 0.5% higher than the
nominal value and a standard deviation o = 5 mm. The section width can be modeled by a
Normal PDF with bias factor A = 1.00 and standard deviation o = 5 mm. Thickness may be
assumed as normally distributed with bias factor A = 1.05 and standard deviation o = 10 mm.
The cast in-situ reinforced concrete slabs height may be modeled by a Normal PDF with bias

factor A = 1.00 and standard deviation o = 10 - 15 mm.

Table 4.15. PDF for concrete cover [93].

Mean value Standard deviation
Parameter
[mm] [mm]
Column and wall 0-5 5-10
Slab bottom steel 0-10 5-10
Beam bottom steel -10-0 5-10
Slab and beam top steel 0-10 10- 15

In respect to steel section dimensions the probabilistic model given in JCSS [93] is based on

the study of Fajkus et al. [54]. These authors presented some data on geometric deviations
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of cross-sections of rolled products, according to expression (4.28). Preliminary results
obtained for | profile (IPE 80 to 200) indicate that the mean and standard deviation of Y for

basic dimensions (height, width and thickness) are less than 1 mm, (4.31),

-1.0mm< 4 < +Imm (4.31)
and (4.32),
g, <1.0mm (4.32)

For cross-section area it has been found that independently on the profile height, the mean
value differs from the nominal value insignificantly. Accordingly, the obtained CV is about

3.20 %. The Normal PDF seems to be a fully satisfactory model for this property.

It has been found that external dimensions of concrete and steel sections are only dependent
on production mode. No significant correlation has been established between vertical and
horizontal dimensions. Furthermore, no data is available concerning the correlation of

internal (e.g. concrete cover) and external dimensions.

Some of the geometric parameters, such as the steel profile top flange width and the
connector geometry (e.g. stud shank diameter) are used to compute the interface
parameters [50]. In this situation, it is recommended to use for the connector geometry a

PDF identical to that indicated for the steel profile due to their similar execution process.
4.7.1.3. Physic

The physic properties incorporate all the model parameters which are not included in
material and geometry properties. In this situation, the spring stiffness and the interface
connection parameters are considered as physic properties. These parameters are more

difficult to quantify as the existent information about them is scarce.

The spring stiffness is introduced to simulate the structural support behavior. Horizontal
springs are used to represent the complex system bearing, column and foundation. In this
situation, the PDF is defined by an engineering judgment procedure. However, once the
information about this parameter is scarce, which makes the engineering judgment
procedure very hard, another procedure is recommended. Accordingly, it is recommended to
use in the probabilistic analysis the assessed value from model identification, instead of a
PDF.

The interface connection parameters are introduced to simulate the steel-concrete
connection in composite structures. Unfortunately, the information about these parameters is

still scarce. An interesting work is that of Zona et al. [200] who proposed a methodology for
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probabilistic nonlinear structural analysis of continuous steel-concrete composite girders.

These authors presented PDF for various interface parameters.

Interface is characterized by normal and shear stresses. Figure 4.15 indicate these two
models. The parameter PDF values for these models are computed through previous
identified PDF for concrete and steel connector material, for steel profile and connector
geometry and also for the interaction between these two materials [50]. However, while for
material and geometric properties there are several sources of PDF values, for the
interaction properties the existent information is scarce. This is especially due to the fact that
these parameters are dependent on several factors, such as the connector type, used
materials and geometry. A study which provided some information about this is that of Roik
et al. [159]. This study presents the results of push-out tests with headed studs and different
concrete materials. Accordingly, a Normal PDF with a CV of 30% is recommended for
connection stiffness (k). The obtained results by Valente [188] within its study of headed stud
connectors with light weight aggregate concrete indicate a Normal PDF with a CV of 20% for

this property.
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Figure 4.15. Interface parameters: a) normal; b) shear stresses.
4.7.2. Bayesian inference

Bayesian inference is a framework that can be used to update the PDF when additional data
is available. The objective is to reduce the statistical uncertainty. This procedure was detailed
described at chapter three. Bayesian inference is incorporated in the probabilistic
assessment algorithm. Therefore some Matlab® routines were developed, according to

Figure 4.2b [25, 129]. These routines are provided in Appendix C, namely:

(1) run.m: run the Bayesian inference algorithm considering data.txt file, which contains
measured values (likelihood), and winbugs_data.txt file, that provides some of WinBugs®

model parameters [111] such as: (a) number of unknown parameters (mean, standard
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deviation or both); (b) application of logarithmic conversion; (c) application of Weibull PDF;
(d) number of samplings; (e) considered prior PDF (Jeffrey’s or conjugate PDF); (f) prior PDF

parameters (in case of an informative PDF) and respective weight (number of samplings);

(2) read.m: read data.txt file and winbugs_data.txt file and convert these values into legible
Matlab® parameters [25, 129];

(3) test.m: validate the generated WinBugs® [111] model parameters;
(4) winbugs.m: run WinBugs® [111] for Normal or Lognormal PDF;

(5) convert.m: convert WinBugs® model parameters from Matlab® [25, 129] to WinBugs®
[111];

(6) calcbugs.m: compute both likelihood mean and standard deviation values;

(7) winbugsmu.m, winbugssigma.m, winbugsmusigma.m: develop the Bayesian inference for
the mean, the standard deviation or for both parameters. In each situation, the appropriate

Bayesian model, written in BUGS language [111], is read;

(8) matbugs.m (by Kevin Murphy and Maryam Mahdaviani, August 2005:
http://code.google.com/p/matbugs/): establish an interface between Matlab® [25, 129] and
WinBugs® [111];

(9) calcbugsmu.m, calcbugssigma.m, calcbugsmusigma.m: process WinBugs® [111] results

and compute the posterior PDF for each parameter and for the population;

(10) plotbugsmu.m, plotbugssigma.m, plotbugsmusigma.m: plot the prior, the likelihood and

the posterior PDF for each parameter and for the population.

Additional Matlab® [25, 129] routines were developed to perform the Bayesian inference

when a Weibull PDF is adopted. These routines, also indicated in Appendix C, are:
(1) weibull.m: run WinBugs® [111] when a Weibull PDF is chosen;

(2) matrix_in.m: read prior Weibull PDF parameter values;

(3) wbl.m: compute Weibull PDF parameters for measured values (likelihood);

(4) matrix_up.m: compute posterior PDF parameter values assuming a Weibull PDF;
(5) plotbugswbl.m: plot the prior, the likelihood and the posterior Weibull PDF.

Furthermore it is used the WinBugs® software [111], namely the executable file
winbugsl14.exe, which is a framework for constructing and analysing Bayesian full probability
models through the Gibbs sampling (BUGS project). WinBugs® [111] processes the model

specification and constructs an object-oriented representation of it. These models are
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analysed by using Markov Chain Monte Carlo (MCMC) techniques. Developed models in
WinBugs® [111], given at Appendix D, are: (1) unknown mean (u) and known variance (0%) —
mu.txt; (2) unknown mean (u) and variance (0% with Jeffrey’s prior — mu_tau_jeff.txt;

(3) unknown mean (u) and variance (o%) with conjugate prior — mu_tau_conj.txt.
4.7.3. Simulation algorithms

Once the PDF is known and updated for all aleatoric variables of a structural problem, the
use of simulation algorithms will permit to generate values for those variables, to compute
the structural response and to evaluate each limit function when necessary. The failure
probability (pr) is the output of any limit function evaluation procedure. It may be described by
the following integral (4.33),

po= | 1[g(x)=0]m, (x)dx (4.33)

g(x)<0

in which f,(X) is the PDF of variable X and | [g(X)<0] is an indicator function, defined by
(4.34),

- {1 ; g(X) =0 (Failure) (4.34)

10 ; g(X)>0 (safety)

Discrete integration techniques may be used within the sampling procedure to convert
expression (4.33) into (4.35),

p, Of =N Dzl [9(x?)<0] (4.35)

being N the number of samples and X the vector of random variables for simulation i.
Obtained results from sampling may be fitted to a cumulative distribution function, such as

represented in Figure 4.16.
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Figure 4.16. Curve fitting of cumulative distribution function.
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The analysis of this figure permit to conclude that as the failure probability decreases, it also
decreases the number of possible observations in interest region g(X)<0, which means that
the majority of observations will occur in safety region presenting thus no practical use. A
way of increasing the number of simulations in such zone is by increasing the total number of
samples. If the number of samples is infinite, obtained results from this method would be
exact, (4.36),

p =P[g(X)<0]=lim w (4.36)

N - o

Simulation algorithms have been widely used to assess the condition and safety of
structures. They are especially important when complex analytic formulas are used. This is
what happens in the majority of analyzed civil engineer structures. A technique that is
worldwide used is the Monte Carlo (MC) simulation [33, 77, 134, 166]. The MC method is
generally used to solve high complex problems in which computation is costly. This method
involve the generation of samples according to a defined PDF and the use of obtained data

to approach the interest function.

Accordingly, when applying MC techniques to determine the failure probability the following
methodology should be used: (1) generate values for input parameters according to its PDF;
(2) estimate the function g(X) with sampled values, through a deterministic approach;
(3) verify if the limit state g(X)<O0 is attained; (4) count the number of simulations in which this

limit is overpassed; (5) estimate the failure probability, through equation (4.35).

Simulation techniques as MC are computationally expensive due to the high number of
simulations. Variance reduction techniques were thus introduced in order to diminish the
number of samples. These techniques permit to significantly reduce the necessary
simulations to compute a specific variance value or, in other words, they permit to reduce the

variance values for a specific number of simulations.

One of these techniques is the importance sampling. Within this methodology the sampling
values are concentrated in failure region. Therefore the sampling center is moved from its
origin to the most probable failure point, which is located over the limit state region [42].
Enright and Frangopol [43] used an adaptive importance sampling algorithm to compute the

failure probability.

The stratified sampling techniques are also variance reduction techniques. In such
techniques, the integration region is divided into subregions in order to increase the number
of simulations in subregions that present a high contribute to the failure probability. The most

used stratified sampling algorithm is the LHS [77, 134, 144]. The main idea of this method is
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to divide each input parameter domain X; in equiprobable disjunctive intervals X, as

presented in Figure 4.17a.

f(x) /

® : 1 Simulation |

a) b)

Figure 4.17. Latin hypercube sampling (LHS): a) division in equal probability intervals;

b) sampling scheme.

Each interval is characterized by a sample, defined according to the PDF. This method
restricts the total number of samples, N, to the number of intervals which are considered in
the division of the sampling region, k. These intervals are chosen in an aleatoric way,
according to Figure 4.17b. The current practice is to directly choose samples by inverse
transformation of the cumulative distribution function in the middle of k™ interval, through

expression (4.37),

‘) =Fi_1(k —0.5J (4.37)

N

being x;x the K sample of the i" variable X, and F* the inverse cumulative distribution

function for variable X;. Figure 4.18 illustrates the sampling procedure.

The LHS method is thus summarized in the following steps: (1) divide the domain of each
aleatoric variable X; into k equiprobable disjunctive regions; (2) generate k samples of each
aleatoric variable, a sample per region; (3) generate k simulations with previous sampled
values, being each value only used once and all the samples should be used; (4) evaluate
the limit state function g(X), for each simulation, and register the number of times in which it

is exceed; (5) Estimate the failure probability through expression (4.35).

The advantage of this method is that the number of simulations may be reduced maintaining

the same numerical precision. It is verified that an acceptable precision is obtained if the
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number of simulations is identical to the number of aleatoric variables, N=X;, but very good

results are obtained if N=2*X;.
Fi(x) fi(x) A
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Figure 4.18. lllustration of sampling from marginal.

When sampling, the correlation structure should be maintained according to the target
correlation matrix. There are generally two difficulties related to statistical correlation:
(1) during sampling an undesired correlation may be introduced between random variables. It
can happen, especially in the case of a very small number of simulations, where the number
of combined intervals is limited; (2) introduce the prescribed statistical correlation between

random variables, defined by the correlation matrix.

A technique for generation of correlated random variables has been proposed by Iman and
Conover [85]. An application of this technique in a simple example is developed by
Mildenhall [126]. This technique is simple to use, is distribution free, preserves the exact form
of the marginal PDF in input variables, and may be used with any type of sampling scheme

for which the correlation between input variables is a meaningful concept.

This technique is based on the iterative updating of the sampled matrix, through the
Cholesky decomposition of the correlation matrix [85]. As a measure of statistical correlation,
the Spearman correlation coefficient (T;) between the variables i and j, T € [-1;1] [33, 123] is
used, (4.38),

6 EE(RM ~Ry )2

KR e )

being R the matrix containing a permutation of the rank numbers in each column. The
ranking numbers in each column of matrix R are then rearranged to have the same ordering
as the numbers in each column of the target correlation matrix. The technique can be applied
iteratively and can result in a very low correlation coefficient if uncorrelated random variables

are generated. However, Huntington and Lyrintzis [84] found that the approach tends to
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converge to an ordering which still gives significant correlation errors between some

variables.

The described scheme is linked to the Spearman correlation measure which is very robust in
cases of non-Gaussian PDF. Additionally, it only uses ranks, instead of sampled values. Its
limitation is related to the fact of the necessary number of simulations being higher than the
number of random variables to achieve a positive definite correlation matrix. It can be
understood as a serious drawback in cases where a very high number of variables exist and

a limited number of simulations are possible.

These obstacles stimulated the work of Huntington and Lyrintzis [84] who proposed the
single-switch-optimized ordering scheme. This approach consists in the imposition of a target
correlation structure by matrix manipulations only. However, this imposition may be
understood as an optimization problem for which the difference between prescribed and
generated correlation matrices should be as small as possible. Vorechovsky and Novak [192,
193, 194] propose a new efficient technique to impose the statistical correlation when using
LHS algorithms. This technique is based in a stochastic optimization method called simulated
annealing. It is robust, efficient, fast and performs well with a large number of variables. An

application of this technique is given in Bergmeister et al. [14].

Within this probabilistic assessment a LHS algorithm is used to sample numerical models
according to updated model parameter PDF. This algorithm was implemented in Matlab® by
Stein [173] and presented at Appendix B. In this situation, it will be generated 500 samples,
which is higher than twice the number of aleatoric variables. The correlation coefficients,
introduced by means of a correlation matrix, are kept during simulation through the
application of the Iman and Conover [85] algorithm. This algorithm is also provided at

Appendix B.
4.8. Structural performance indexes

During probabilistic assessment algorithm, values are generated for input parameters, and,
accordingly, for each sample, the model is analyzed and obtained results are statistically
processed, being obtained a numerical PDF. Performance indexes are then used to evaluate
the structural behavior. In this situation, they are classified in evaluation and safety
assessment indexes. While the former is related to the evaluation of the structural behavior,
both in service and failure region, through a comparison with obtained experimental data, the

latter is related to the failure limit state, through a comparison with loading PDF.
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4.8.1. Evaluation assessment

The evaluation indexes are mostly used when it is necessary to verify if the structural
behavior is, or not, within the expectable during a performance test. In this situation, it is
introduced an index-i, used to evaluate the analyzed structure behavior within the whole test,
and an index-p [118, 119, 120, 122], that permits to probabilistically evaluate such behavior

in a time frame of the test.

The index-i consists in evaluating if the measured value during a test falls into the computed

95% confidence interval for an output parameter, and according to Figure 4.19a, (4.39),
index-i =n /n, [%)] (4.39)

being n; the number of measured values that falls into it and n, the total number of registered
values. This value increases with the number of experimental registers that fall into predicted

numerical confidence interval.

The index-p evaluates the approximation of experimental data to computed numerical PDF,

through equation (4.40),
index-p = [1— (abs[ P (X <F.,,)-05]/0.5) [q:vnum][%] (4.40)

being Fe, the measured data, P,.m the obtained numerical PDF, X < F,, indicates the
probability of X being lower than or equal to Fe, considering the numerical PDF, 0.5 is the
obtained probability when F,, is equal to the mean value of the numerical PDF, and CVn is
the coefficient of variation of numerical PDF. These parameters are given at Figure 4.19b.

The highest value of index-p corresponds to the most reliable numerical PDF.
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Figure 4.19. Evaluation assessment: a) index-i; b) index-p.
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4.8.2. Safety assessment

The reliability index is a performance index, used to quantify the structure safety. It is more
objective and explicitly than traditional visual-inspection based indexes. Therefore, it is a
more impartial mean to assess the structure performance, and thus it is recommended to be

used in maintenance and management procedures [59].

In safety assessment, a comparison between resistance (R) and loading (S) PDF is
performed [33, 134]. According to Figure 4.20a, the failure probability (ps) is proportional to
the intersection area of these PDF, which corresponds to the case in which the structural

resistance is lower than the applied load, (4.41),

p, =P(R<S) (4.41)
Or in other words, (4.42),

p, =P(R-S<0) (4.42)

In this situation the indicator function g(X) is the limit function (Z(R,S) = R — S). Therefore, it
is possible to express (4.41) through (4.43),

p =P(Z(RS)<0) (4.43)

In this situation, the failure probability is computed, and according to expression (4.35),
through (4.44),

N[Z(R,S)<0] n,
i N no

[%] (4.44)

being n; the number of sampled models which fall into failure region and n, the total number

of sampled models. The reliability index (8) is then given by expression (4.45),
B=-0"(P) (4.45)

being @' the inverse cumulative distribution function for a standard Normal PDF.

Figure 4.20b presents the limit function PDF and its relation to the reliability index.

The structural safety assessment [93, 134, 166] consists in computing the obtained reliability
index and comparing it to a target reliability index (Buge). The target reliability values have to
be established based on the reliability analysis of many structures. Therefore, the nominal
target values have to take into account several factors as the failure type, associated risk and

costs, etc.
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Z2<0 2<0
(Failure) (Safety)

us TR RS pz " z-R-s
a) b)
Figure 4.20. Safety assessment: a) resistance and loading; b) failure probability.

It is important to divide these indexes into those that are used in a structural element analysis
and those that are used in a global structure analysis. As target reliabilities for member level
it is proposed the values of AASHTO LRFD [1] and LRFR [2], of EN-1990 [46], of ISO 13822
[86], of JCSS [93], and of Schneider [166].

In respect to 1ISO 13822 [86], the target reliability level used for verification of an existing
structure can be determined based on calibration with current code, the concept of minimum
total expected cost, and/or the comparison with other social risks. The requirements should
also reflect the type and importance of the structure, possible failure consequences and

socio-economic criteria.

Although the performance requirements on safety and serviceability for the assessment of
existing structures are in principle the same as for the design of new structures, there are
some fundamental differences between these two activities affecting the differentiation in
structural reliability, namely: (1) economic considerations: the incremental cost between
acceptance and upgrading the existing structure can be very large, whereas the incremental
cost of increasing the safety of a structural design is generally very small; (2) social
considerations: this include disruption of occupants and activities, considerations that do not
affect the structural design of new structures; (3) sustainability considerations: reduction of

waste and recycling, which are less important considerations in the design of new structures.

The remaining working life determined at the assessment is considered as a reference
period for an existing structure for serviceability, while the design working life is often
considered as a reference period for a new structure. The target reliability indexes may be
chosen in accordance with current codes, if provided, otherwise the values given in

Table 4.16 are intended as illustrations for the assessment of existing structures.

Since Eurocodes are legal codes in most of European countries, the reliability levels stated
there, especially in EN-1990 [46], could give some idea of required safety of bridges in

Europe. Two sets of indexes are presented for different reference periods (1 and 50 years).
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The reliability classes used for ultimate limit state are RC-1, RC-2 and RC-3 corresponding to
low, medium and high failure consequences, related to loss of human life and economic,
social and environmental costs. These values might be over conservative for existing

structures as they are mainly proposed for bridge design. Table 4.17 indicates those values.

Table 4.16. Target reliability indexes (Barger) for structures [86].

Limit states Target reliability index Reference period
Serviceability
Reversible 0.00 Intended remaining working life
Irreversible 1.50 Intended remaining working life
Ultimate
Very low consequences of failure 2.30 Ls years *
Low consequences of failure 3.10 Ls years *
Medium consequences of failure 3.80 Ls years *
High consequences of failure 4.30 Ls years *

* Ls is the minimum safety standard period (e.g. 50 years).

Table 4.17. Target reliability indexes (Barger) fOr structures [46].

Reference period 1 year Reference period 50 years
Limit state
RC-1 RC-2 RC-3 RC-1 RC-2 RC-3
Ultimate 4.20 4.70 5.20 3.30 3.80 4.30
Serviceability - 2.90 - - 1.50 -

In respect to JCSS [93] the target reliability values for ultimate limit states are based on cost
benefit analysis and are compatible with calibration studies and statistical observations. The
values proposed by JCSS [93] are indicated at Table 4.18.

The consequence class classification is based in the ratio p between total costs
(i.e. construction costs and failure costs) and construction costs. Accordingly, there are:
(1) class 1: minor consequences, p is less than 2 (risk to life, given a failure, is small to
negligible and economic consequences are small or negligible; e.g. agricultural structures,
silos, masts, etc.); (2) class 2: moderate consequences, p is between 2 and 5 (risk to life,
given a failure, is medium or economic consequences are considerable; e.g. office buildings,
industrial buildings, apartment buildings, etc.); (3) class 3: large consequences, p is between

5 and 10 (risk to life, given a failure, is high or economic consequences are significant;
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e.g. main bridges, theaters, hospitals, high rise buildings, etc.). Failure consequences also
depend on failure type, which can be classified according to: (1) ductile failure with reserve
strength capacity, resulting from strain hardening; (2) ductile failure with no reserve capacity;
(3) brittle failure.

Table 4.18. Target reliability indexes (Biarger) for structures [93].

Ultimate limit state
Relative cost of . e
safety measure | Minor consequences Moderate Large Serviceability limit state
. consequences of consequences of
of failure - .
failure failure

Large 3.10 (pr = 10 3.30 (pr = 510 3.70 (pr= 10 1.30 (ps= 10™)

Normal 3.70 (pr = 10 4.20 (pr=10) 4.40 (pr=5*10°) 1.70 (ps=5 * 109

Small 4.20 (pr = 10) 4.40 (pr=5*10°) 4.70 (pr = 10°°) 2.30 (pr= 103

The minimum reliability index, Biuget = 3.50, required for the design of bridges in USA, defined
at AASHTO LRFD [1], is based on average reliability index values computed from a sample
of past design. This value corresponds to the reliability of an individual member and strength
limit states. It was computed considering specific probabilistic models for loads, geometry
and mechanical properties of materials. Therefore, if different probabilistic models were
used, different target reliability would be obtained for the same sample of past design. The
code AASHTO LRFR [2] proposes a value of target reliability index for the strength
assessment of bridge members, Biger = 2.50. This value is lower than the previous due to

the fact that evaluation is performed for a much shorter exposure period.

Schneider [166] proposes the following Table 4.19 as a rough indication of the order of
magnitude of reliability indexes per year. Reliability indexes concerning lifetime are smaller
because acceptable failure probabilities are roughly annual failure probabilities times the
expected lifetime of the structure. Reliability requirements regarding the structure

serviceability are less severe than those related to structural safety.

The consequences of a possible failure as well as the type of failure must be considered.
Therefore, the following consequences are provided: (1) class 1: almost no consequences,
small transient disturbances for users, serviceability affected during short periods;
(2) class 2: minor consequences, no hazards to life and limb, economic consequences of
failure are low; (3) class 3: moderate consequences, hazards to life and limb are low,
economic consequences of failure are considerable; (4) class 4: large consequences,
hazards to life and limb are medium, economic consequences of failure are considerable; (5)

class 5: extreme consequences, hazards to life and limb are high, economic consequences
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of failure are very high. Moreover, the following failure types are given: (1) type A:
serviceability failure, structure almost in elastic domain; (2) type B: ductile failure of
redundant systems with reserve strength; (3) type C: ductile failure, but almost no reserve

strength; (3) type D: brittle failure of non-redundant systems.

Table 4.19. Target reliability indexes (Biarger) for structures [166].

Type of failure
Type A Type B Type C Type D

Class 1 1.00 1.50 2.00 2.50
é Class 2 1.50 2.00 2.50 3.00
%— Class 3 2.00 2.50 3.50 4.00
(2]
§ Class 4 2.50 3.00 4.50 5.00

Class 5 3.00 4.00 5.00 6.00

In respect to target reliabilities for system level it is proposed the models of fib [55] and of
Tabsh and Nowak [180]. According to JCSS [93] the previous values, given in Table 4.18,
relate to the dominant failure mode of the structural system or to the structural component
dominating system failure. Therefore, a structure with multiple and equally important failure

modes should be designed for a higher level of reliability.

Therefore, the reliability of a bridge, when considered as a structural system, is usually
higher than the reliability of its members. According to Tabsh and Nowak [180] the difference
between common values for those indexes in USA bridges is about 2, i.e., instead of using
B=3-4, for bridge member, for the whole system a value of B=5-6 is recommended.
Traditional design or assessment methods did not consider this additional structural capacity
in a quantitative manner, but it is known that this additional over-strength exists and that

member requirements can be chosen in a less conservative manner.

Nowadays the assessment can be performed at both member and system level. Therefore,
and in order to introduce consistency between these two levels, target reliability indexes for
system level should be higher than those for member level. So far, and unfortunately, there is
no code or guideline that clearly defines target reliability indexes for assessment of structures
at system level. Many codes are member orientated and the effort in last decades is to
develop target safety for design and evaluation of structural members without accounting for
redundancy and system effect. Two important works in this respect are from Ghosn and
Moses [64] and from Liu et al. [108]. Other interesting work is that indicated at fib [55]. These
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authors proposed five bridge reliability states. Table 4.20 indicate these states and related

reliability indexes.

Table 4.20. Bridge reliability states [55].

Reliability states

5 4 3 2 1

Reliability index

B 29.00 9.00 > 8 = 8.00 8.00 > 8 = 6.00 6.00 > 8 = 4.60 4.60> B

Attribute for reliability

Excellent Very good Good Fair Unacceptable

4.9. Conclusions

A methodology for probabilistic assessment of structures is presented in this chapter. This
methodology permits to evaluate the structural safety and condition. It is composed by a two
main steps. In a first step the numerical model is updated through a model identification
procedure. Further, the updated deterministic model is transformed into a probabilistic model
and a probabilistic analysis is developed. Finally, each parameter PDF may be updated with

complementary data, through a Bayesian inference algorithm.

This methodology contemplates all sources of uncertainty. Modeling and measurement
errors are introduced when computing the model identification tolerance criterion. Physical
uncertainties are incorporated into model parameter PDF. Statistical uncertainty may be
reduced with the application of the Bayesian inference algorithm. Human errors may be

identified during the probabilistic assessment procedure.

The developed algorithm presents a high computational cost. In order to minimize it, a
sensitivity analysis, in which the most important parameters are selected, should be applied.
The implemented procedures of such analysis are introduced. This procedure is highly
dependent on the defined target importance measure value. If any parameter presents a

value that is higher than this value, then it should be considered as critical.

A study is developed to evaluate measurement errors, specifically in LVDT. Accordingly, the
linearity and sensitivity of different transducers, with different cable lengths, is evaluated.
This study permits to conclude that the system transducer and cable should be always
calibrated before being implemented in a monitoring system, as it reduces in large scale the

linearity value and so the measurement error. Additionally, it is verified that long cables are
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not recommended as its linearity value increases in a way that makes the assessment

procedure inaccurate.

Modeling errors, and the way they are computed, are also indicated. Additionally it is shown
how these errors should be combined with measurement errors, in order to obtain the model
identification fitness function tolerance criterion. Once a pool of models is obtained from
model identification, then an engineering judgment procedure, based in the probability of

occurrence of each model, is performed to select the most suitable model.

Important PDF for material, geometry and physic properties are further defined. Some of
these parameters are well defined in bibliography, but others, as those related to lightweight
concrete or to steel-concrete interface, are not. Therefore, in this situation, the PDF definition
is based in experience. When defining the PDF parameters (e.g. mean and standard
deviation), a statistical uncertainty is introduced. Accordingly, this uncertainty can be reduced
with the acquisition of new data. Bayesian methods are thus applied to include information

from complementary data into these models.

It is also presented some simulation algorithms, necessary to sample the numerical models
which will be analyzed within the probabilistic assessment. A special emphasis is given to the
LHS method and to Iman and Conover [85] algorithm, necessary to implement the correlation
matrix. Performance indexes that provide information about the structure behavior are also
provided. Two of these indexes are related to the evaluation of the structural behavior, both
in service and failure region, while the other, the reliability index, gives information on

structural safety. Some target values for this latter index are also given.
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5.1. Introduction

This chapter presents the probabilistic study on the behavior of two sets of reinforced
concrete beams, a pinned-pinned and other pinned-fixed supported, which were tested in
laboratory up to failure. The purpose of such analysis is to probabilistically assess the
behavior of reinforced concrete structures, by taking into consideration all sources of

uncertainty.

In a first step, a nonlinear deterministic numerical model was developed and simplified, by
reducing both the finite elements and load step increment. Further, a sensitivity analysis was
performed, in order to study the influence of each variable on the structural behavior. The
most relevant parameters were then selected for further analysis. These procedures are
important as they reduce the computational cost of a further probabilistic analysis.

In a second step, model identification was executed. The deterministic numerical model is
therefore updated with obtained experimental data by using a robust optimization technique
and taking into account both measurement and modeling errors. Parameters as material,
geometry and physic ones were respectively assessed. For pinned-fixed beams, the spring
constant, used to simulate the fixed support, was also assessed. This procedure is important
as it permit to obtain an updated deterministic numerical model of evaluated structure, to be

used in a further probabilistic analysis.
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In a third step, a nonlinear probabilistic analysis was developed. Therefore, it was necessary
to define, according to bibliography, each input parameter probability density function (PDF).
For pinned-fixed beams those PDF were later updated through a Bayesian inference
approach, by considering the results from laboratory characterization tests. Such tests were
developed to characterize both material and geometry properties. An updated resistance

PDF is then obtained, necessary for a safety assessment procedure.

Different resistance PDF of reinforced concrete beams were then computed for different
levels of updating, specifically, considering or not model identification and Bayesian
inference procedures. Obtained results were then compared to measured data. The
influence of both model identification and Bayesian inference procedures is pointed out on a

safety assessment example.
5.2. Experimental tests
5.2.1. Pinned-pinned beams

The first set of tested structures is composed by two pinned-pinned supported beams. Such
beams, with a rectangular section of 75 x 150 mm? and 1.50 m span length, were concreted
at once. The scheme of these tests is presented in Figure 5.1a. Loads were applied by an
actuator with 150 kN capacity and were positioned at 1/3 and 2/3 of the span length. Each
beam was supported in two elements, placed symmetrically in relation to their symmetric
axle. While one of those elements restricts only the vertical displacement, the other restricts
both vertical and horizontal one [114, 115, 116, 117].

Tested beams present the same concrete class (C25/30) and longitudinal steel
reinforcement type (S500B), according to EN 1992-1-1 [48]. A longitudinal reinforcement of
396 (As = 0.85 cm?) and a transversal reinforcement of @0.10 (As/s = 2.51 cm?/m) was

used. The concrete cover was considered to be 10 mm in all sides.

The laboratory test was developed with displacement control, by using a displacement
transducer positioned inside the actuator. The applied load was registered through a load cell
positioned inside the actuator. The middle span displacement was monitored through a
displacement transducer (LVDT), with a measurement field of £ 25.00 mm, a sensitivity of
34.00 mV/V/Imm and an accuracy of 0.10%. The repeatability was reached by using the
same materials and providing identical laboratory conditions during the developed tests.

Figure 5.1b presents an image of those tests.
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Figure 5.1. Test: a) scheme; b) laboratory (top right: actuator; bottom right: LVDT).

The collapse mechanism, presented in Figure 5.2a, is characterized by a plastic hinge
located at middle span. Figure 5.2b shows the collapse mechanism. Obtained experimental
results are given in Figure 5.3. The structural behavior is divided in three steps: (1) Pre-
cracking phase, before concrete cracking, in which steel did not reach the yield strength, and
concrete did not reach both tensile and compressive strength; (2) Post-cracking phase in
which the concrete, submitted to tensile stresses, already reached the tensile strength, but
both steel and concrete did not reach their yield and compressive strength; (3) A final phase
in which the concrete, in compression, and the steel, in tension, already reached the
compressive and yield strength. A bending failure mode with concrete crushing and yielding
of longitudinal steel reinforcement was obtained. The failure load (Fg) is of 24.61 kN
(beam 1) and of 24.97 kN (beam 2).
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Figure 5.2. Collapse mechanism: a) scheme b) image.
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Figure 5.3. Experimental data.
5.2.2. Pinned-fixed beams

The second set comprises two tested pinned-fixed supported beams. Those beams, with a
rectangular section of 75 x 150 mm? and a free span of 1.50 m, were concreted at once.
Figure 5.4a presents a scheme of developed laboratory tests. Loads were applied by an
actuator with 150 kN capacity, and were positioned at 1/3 and 2/3 of the span length. Those
beams were supported in two elements, a pinned and a fixed support. While one of those
elements restricts only the vertical displacement, the other restricts both the vertical and the
horizontal one and, also, the bending moment. In this case there is ho symmetry and the
structure is one degree hyperstatic [115, 116, 117, 119, 121, 122].

Tested beams present the same concrete class (C25/30) and longitudinal steel
reinforcement type (S500B), according to EN 1992-1-1 [48]. It was respectively considered a
superior and an inferior longitudinal reinforcement of 2¢8 (As = 1.01 cm? and of 3¢6
(As = 0.85 cm?). It was adopted a transversal reinforcement of @4@0.03 (As/S = 8.38 cm?/m),
in supports region, and of @0.08 (As/s = 3.14 cm?m), at middle span. The concrete cover

was considered to be 20 mm in all sides.

The laboratory test was developed with displacement control, using a displacement
transducer positioned inside the actuator. The applied load was registered through a load cell
positioned inside the actuator. The middle span displacement was controlled by a
displacement transducer (LVDT), with a measurement field of £ 25.00 mm, a sensitivity of
33.84 mV/V/Imm and an accuracy of 0.10%. The pinned support reaction was registered
through a load cell with 200 kN of capacity and 0.10% of accuracy. The repeatability was
achieved, by using the same materials and providing the same laboratory conditions during

the developed tests. Figure 5.4b shows those tests.

Due to the fact of being one degree hyperstatic the collapse mechanism is characterized by

two plastic hinges, Figure 5.5a, located at fixed support and beside the point load that is
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close to the pinned support. Figure 5.5b shows the collapse mechanism. As the applied load
and the pinned support reaction were measured, it was possible to obtain, in an indirect way,

the bending moment at fixed support, by using the static equilibrium equations.

1.50 m

a) b)

Figure 5.4. Test: a) scheme; b) laboratory (top right: actuator; center right: load cell; bottom

right: LVDT).
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a) b)
Figure 5.5. Collapse mechanism: a) scheme b) image.

Obtained experimental results are given in Figure 5.6. The structural behavior is divided into
five steps: (1) Pre-cracking phase, before concrete cracking, in which steel did not reach the
yield strength, and concrete did not reach both tensile and compressive strength and in
which a partial restraint is verified at fixed support; (2) Post-cracking phase in which the
concrete, submitted to tensile stresses, already reached the tensile strength; (3) Post-
cracking phase in which a full restraint is observed at fixed support; (4) First hinge phase in
which the concrete, in compression, and the steel, in tension, respectively reached the

compressive and yield strength at fixed support; (5) Second hinge phase in which the
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concrete, in compression, and the steel, in tension, respectively reached the compressive
and yield strength in the section beside the point load that is close to the pinned support.
Obtained failure mode was of bending with concrete crushing and yielding of longitudinal
steel reinforcement. It is also verified that the fixed support does not work as a full clamp
since the beginning of loading, due to concrete accommodation. The failure load (Fg) and
maximum bending moment (Mg, ) is of 30.52 kN and 7.38 kN.m (beam 1) and of 28.26 kN
and 6.43 kN.m (beam 2).
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Figure 5.6. Experimental data.
5.3. Numerical analysis

Tested reinforced concrete beams were numerically studied through a nonlinear finite
element model developed with software ATENA® [23, 24]. Used materials, concrete and

steel, were defined by a set of parameters that define the respective constitutive law.

The stress-strain law for concrete is presented in Figure 5.7a. This law is defined by some
parameters as: (1) elasticity modulus (E.); (2) compressive strength (f.); (3) compressive
strain at compressive strength (g.); and (4) tensile strength (f). This material presents a
different behavior when submitted to compressive and tensile stresses. In compression it is
characterized by an initial parabolic phase until compressive strength and then by a linear
phase (softening). The critical displacement parameter (wq) is used to define the softening
phase. When submitted to tension stresses, the material behavior is characterized by an
initial linear phase until tensile strength and then by an exponential phase. The fracture

energy (Gy) is proportional to the area of this diagram.

The uniaxial stress-strain law for steel is presented in Figure 5.7b. This law is defined by
some parameters as: (1) elasticity modulus (Es); (2) yield strength (oy); (3) limit strain (&m);
and (4) limit strength (o,). This material presents a bi-linear behavior, characterized by an

initial phase in which the material presents a typical elastic behavior and a second phase
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from material yielding until failure (hardening). A similar behavior is obtained in compression

and in tension.
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Figure 5.7. Material stress-strain law: a) concrete; b) reinforcement steel.
Those materials, concrete and steel, were modeled by using, respectively, an SBETA
material and a bilinear with hardening Von Mises model, which are constitutive models of the
ATENA?® library [23, 24]. A biaxial stress failure criterion and a Von Mises vyield criterion are

respectively established. The parameter values were taken from EN 1992-1-1 [48]. Table 5.1

and 5.2 indicate those values.

Table 5.1. Material properties (concrete).

Parameter Value

Elasticity modulus (Ec) [GPa] 31.00

Tensile strength (f) [MPa] 2.60

Compressive strength (fc) [MPa] 33.00

Fracture energy (Gy) [24] [N/m] 65.00

Compressive strain at compressive strength (&) [%0] 2.00
Critical compressive displacement (wg) [24] [m] 5.00 * 10

Table 5.2. Material properties (steel).

Parameter Value

Elasticity modulus (Es) [GPa] 200.00

Yield strength (oy) [MPa] 500.00
Limit strength (oy) [MPa] 540.00 (k = 1.08)

Limit strain (&im) [%o] 50.00
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5.3.1. Pinned-pinned beams

The analyzed beams present a rectangular section of 75 x 150 mm? and a span length of
1.50m. Such beams are simply supported. While one of the supports restricts only the
vertical displacement, the other restricts both the vertical and the horizontal one. A uniform
mesh of quadrilateral elements was considered. Reinforcing steel bar elements were

considered to be embedded in concrete.

In order to correctly simulate the developed laboratory test a displacement control numerical
test was used. Two different load cases were adopted, respectively, one representing the
real supports and other the applied displacement. One of the used supports restraint both

horizontal and vertical displacements, while the other only restraint the vertical ones.

Two point loads were introduced at 1/3 and at 2/3 of the span length. An identical increment
was considered for the applied displacement in each point load, equal to 1.00 * 10* m
(downward). In order to avoid high local stresses in both support and load points, a steel
plate was placed in such positions. A Newton-Raphson nonlinear search algorithm was used.
Considered parameters are given in Table 5.3. The middle span displacement and applied

load were monitored during the analysis [114, 116, 117].

Table 5.3. Solution parameters (Newton-Raphson).

Solution method Newton-Raphson
Stiffness / Update Tangent / Each iteration
Iterations number limit 100
Error tolerance 1.00 * 102
Line search With iterations

When performing several analysis of the same numerical model, as in model identification or
within a probabilistic analysis, the issue of computational cost becomes very important. In
order to overcome it, the developed numerical model was simplified. Therefore, both finite
element and load step numbers were minimized. Accordingly, three mesh types (with 708,
432 and 325 elements) and two different load steps (175 steps of factor 1 and 30 steps of

factor 5) were studied. Figure 5.8a presents a finite element mesh with 432 elements.

In a further analysis, the performance of each model was evaluated. In order to assure
identical computational conditions, the same computer was used. The computational time
and the related error were determined for each analysis. The applied load error was

computed through equation (5.1),
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N =(F -F) /R [%] (5.1)

in which F,'is the applied load for a specific step i of evaluated numerical model and Fy' is
the applied load for the same step i of the reference numerical model. The reference model
is the one that presents the most refined mesh and higher number of load steps. Afterwards,
the maximum and minimum A-values are determined and the sum of their absolute values is
computed. Finally, the applied load error (6) is computed by dividing this value per two.
Table 5.4 shows the obtained results. It is possible to conclude that the most suitable model,
for a further analysis, is the number 3. In fact, by comparing with other models, it is possible
to conclude that this model presents a lower error (=5%) and, at same time, by comparing

with reference model (number 0) it reduces the computational cost in almost 90%.

Table 5.4. Simplification results.

Numerical model | Finite element number | Step number | Computational time [s] | Applied load error - 6 [%)]
0 708 175 151.07
1 708 30 40.16 2.49
2 432 175 126.49 5.05
3 432 30 18.71 5.06
4 325 175 94.46 8.36
5 325 30 15.88 10.03

Figure 5.8b presents the deformation, crack pattern and horizontal strain of the analyzed
beam for chosen numerical model. In this case the collapse mechanism is characterized by
the presence of a plastic hinge at the beam middle span. A bending failure mode, with
concrete crushing and yielding of longitudinal steel reinforcement, is obtained. The numerical

behavior was similar to the experimental one, validating the developed model.

a) b)

Figure 5.8. Numerical model: a) finite element mesh; b) failure mechanism.
5.3.2. Pinned-fixed beams

These beams present a rectangular section of 75 x 150 mm?® and a span length of 1.50 m.

They are supported in two points, a pinned and a fixed one. While one of those elements
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restricts only the vertical displacement, the other restricts both the vertical and the horizontal
one along a line. Vertical spring elements were introduced along the support line, in this latter
case, to study the related restraint to this degree of freedom. Such springs would only work
for vertical displacements and when in compression. In order to avoid high local stresses, a
steel plate was placed between the structure and both structural supports. A uniform mesh of
guadrilateral elements was considered. Reinforcing steel bar elements were considered to

be embedded in concrete.

In order to correctly simulate the laboratory test, some considerations were taken. A
displacement control numerical test was adopted. Three load cases were considered, one
representing the real supports with spring elements placed at fixed support, other
representing real supports with a vertical displacement restraint at fixed support and other
representing the applied displacement. The load is applied at middle span of a steel profile
which will load the beam in two points, respectively, at 1/3 and at 2/3 of the span length. An
identical increment was considered for the applied displacement in each point load, equal to
1.00 * 10" m (downward). A Newton-Raphson nonlinear search algorithm was used.
Considered parameters are given in Table 5.3. The middle span displacement, the applied
load and the pinned support reaction were monitored during the analysis. The bending
moment at fixed support was computed through static equilibrium equations [116, 117, 119,
121, 122].

When performing several analysis of the same numerical model, as in model identification or
within a probabilistic analysis, the issue of computational cost becomes very important. In
order to overcome it, the developed numerical model was simplified. Therefore, both finite
element and load step numbers were minimized. Accordingly, three mesh types (with 3983,
1333 and 427 elements) and two different load steps (210 steps of factor 0.50 and 60 steps

of factor 2) were studied. Figure 5.9a presents a finite element mesh with 1333 elements.

In a further analysis, the performance of each model was evaluated. In order to assure
identical computational conditions, the same computer was used. The computational time
and the related error were determined for each analysis. The applied load error was

computed through equation (5.2),
A =(F -F)/F[%] (5.2)

in which F,' is the applied load for a specific step i of evaluated numerical model and Fy' is
the applied load for the same step i of the reference numerical model. The reference model
is the one that presents the most refined mesh and higher number of load steps. Then, the

maximum and minimum Ag-values are determined and the sum of their absolute values is
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computed. Finally, the applied load error (6¢) is computed by dividing this value per two. The

pinned support reaction error was computed through equation (5.3),
A, = (R -Ry ) /Ry [%] (5.3)

in which R,' is the obtained reaction value for a specific step i of evaluated numerical model
and Ry is the obtained reaction value for the same step i of the reference numerical model.
The reference model is the same as the one used to determine the applied load error. Then,
the maximum and minimum Ag-values are determined and the sum of their absolute values
is computed. The reaction error (6r) is then computed by dividing this value per two.
Table 5.5 gives the obtained results. It is possible to conclude that the most suitable model,
for a further analysis, is the number 3. In fact, by comparing with other models, it is possible
to conclude that this model presents a lower error (=6%) and, at same time, by comparing

with reference model (number 0) it reduces the computational cost in almost 90%.

Table 5.5. Simplification results.

Numerical model Finite element Step number Com_putational Applied load | Reaction error -

number time [s] error - B¢ [%)] 6r [%]

0 3983 210 966.26

1 3983 60 756.41 2.14 3.80

2 1333 210 211.38 4.80 4.58

3 1333 60 141.01 6.00 5.82

4 427 210 79.15 9.16 9.32

5 427 60 41.56 9.23 12.57

A first step calibration procedure was developed, taking into consideration the chosen
numerical model, to determine the most suitable spring stiffness value (k = 149.13 kN/m).
Such procedure consisted in identifying the value that optimizes the distance between
numerical and experimental data. In order to develop this analysis, an evolutionary strategies
optimization algorithm in its plus version [29] was used. During this procedure the other
parameter values were fixed. It is verified that the fixed support is not working as a full clamp
since the beginning of loading, as the obtained stiffness value is low. This parameter intends

to represent the concrete accommodation in fixed support during the initial phase.

The vertical displacement restraint is only assured in a more advanced phase of the test, in
which the spring elements are replaced by pinned supports. During the same optimization

procedure it was identified this instant, which occurs for load step 30. Accordingly, the load
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cases were divided into 30 steps with a factor of 2 in the presence of spring supports, and 30
steps with a factor of 2 with pinned supports. During this last phase the fixed support works

as a full clamp, totally restraining the beam rotation.

The collapse mechanism is characterized by two plastic hinges, the first at fixed support and
the second beside the point load, which is close to the pinned support. A bending failure
mode, with concrete crushing and yielding of longitudinal steel reinforcement, is obtained.
The numerical behavior of analyzed reinforced concrete beams was similar to the one
obtained in experimental tests. Obtained results validate the numerical model. Figure 5.9b

presents the deformation, crack pattern and horizontal strain of tested beam.

a) b)

Figure 5.9. Numerical model: a) finite element mesh; b) failure mechanism.
5.4. Model identification

The basis of a model identification methodology is to rearrange a set of numerical
parameters in such a way that the numerical response best fits the existent experimental
data. This fact converts this kind of analysis into a typical optimization problem. In this case,
the optimization function is based in an approximation between numerical and experimental
data, and the objective is to obtain the curve that best adapts to existent experimental data.

A detailed description of this function is given in chapter four.

The optimization algorithm that was used in this analysis was the evolutionary strategy in its
plus version [29]. It begins with an initial population of critical parameter values, generated
randomly, and then, using the evolutionary operators, new populations are generated. A final
population is extracted for each run. A detailed description of this algorithm is given at
chapter two. This algorithm is processed with different starting points. An engineer judgment
procedure, based in the probability of occurrence of each individual, is developed to
determine the most suitable individual, from those previously extracted. This procedure is

detailed described in chapter four.

When using this procedure, multiple runs of the same numerical model are necessary. In
each run, the fitness function value, which characterizes the approximation between
experimental and numerical curves, is computed. The identification stops when one of the
algorithm stopping criteria is attained. One of these criteria consists in establishing that the

improvement on minimum fitness function value, obtained from two generations separated of
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a pre-specified gap, should be less than or equal to a threshold value. This value is
computed through the law of propagation of uncertainty [90, 91, 92], detailed described at
chapter four. It may be interpreted as the methodology precision, once obtained results

become more accurate with its decrease.

It is known that one of the main disadvantages of model identification, the computational
cost, increases with the number of variables to be optimized. Therefore, it is first important to
select those which are critical. This can be done by performing a sensitivity analysis. This
analysis consists in studying the fitness function variation with each input parameter. An
importance measure (by) was then obtained for each evaluated parameter. A detailed
description of this measure is given in chapter four. In this case, if this value is equal or

higher than 10% (b;,) then the parameter will be considered as critical.

In this case, model identification was performed for both service and failure region. The
analysis in service phase identified different combinations of values for critical parameters
that lead to very good results. However, the majority of these combinations lead to bad
results in an analysis until failure load. This is important to highlight as model identification is
typically performed with data from load test, and the majority of load tests are developed in
service phase. Therefore, although a good approximation of registered data is obtained, this
does not mean that the structure behavior until failure load is perfectly characterized. In order
to overcome this, other complementary tests such as nondestructive tests (NDT), laboratory

characterization tests and visual inspections should be executed.
5.4.1. Pinned-pinned beams

Two sensitivity analyses were developed in this case, one for service phase and other until
failure load. The evaluated parameters are those related to materials, concrete and steel,
and to geometry. It was respectively varied one standard deviation (o) from each parameter
mean value. In order to compute each standard deviation (o), the following coefficient of
variations (CV) were established [93]: (1) concrete elasticity modulus (E.): 10%; (2) concrete
tensile strength (f): 20%; (3) concrete compressive strength (f.): 10%; (4) concrete fracture
energy (Gy): 10%; (5) concrete compressive strain at compressive strength (g.): 10%; (6)
concrete critical displacement (wy): 10%; (7) reinforcing steel elasticity modulus (Es): 5%; (8)
reinforcing steel yield strength (oy): 5%; (9) reinforcing steel limit strength (o,): 5%; (10)
reinforcing steel limit strain (&,): 15%; (11) reinforcing steel area (As): 2%; (12) inferior
concrete cover (Cin): 20%; (13) superior concrete cover (Csyp): 20%; (14) beam width (b):
10%; and (15) beam height (h): 10%. Figure 5.10 and 5.11 gives the obtained results.
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Figure 5.10. Importance measure (service).

The analysis developed in service phase pointed out for the importance of concrete elasticity
modulus (E,), tensile strength (f) and fracture energy (Gy), of longitudinal steel reinforcement
elasticity modulus (Es) and area (As), and of section width (b) and height (h). In fact, it is
reasonable to admit that when submitted to low stresses the beam response is only
dependent of concrete elasticity modulus and fracture energy, and of steel elasticity
modulus. In this situation the concrete, in tension, reached their tensile strength and started
to crack. Therefore, tensile strength is also an important parameter. By developing this
analysis, from 15 initial possible parameters, only 7 of them were considered critical,

reducing so the computational cost.
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Figure 5.11. Importance measure (failure).

The analysis performed until failure load revealed a decrease on the importance of concrete
parameters, with exception of compressive strength (f.) that increases. In respect to
longitudinal steel reinforcement it is important to point out an increase on the importance of
the yield strength (¢). In fact, it is verified for higher loads that steel reached this strength

and started the hardening phase. In respect to geometry parameters, it is important to refer
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the increase on the importance measure of inferior concrete cover (cyy). Other critical
parameters, previously identified during the sensitivity analysis in service phase, are still
considered. Therefore, from 15 initial parameters, only 9 of them were considered, reducing

so the computational cost.

Once the numerical model and critical parameters, to be optimized, are identified, the further
step is the application of proposed model identification methodology. In this case, the middle
span displacement was measured during the laboratory test. This measurement is expressed
by the graphic that plots the applied load (F) against the measured displacement (). In this
situation the fitness function characterizes the approximation between numerical and
experimental values for applied loads. One of used tolerance criteria is related to the
convergence in the space of fithess value, defined by the threshold value (¢). In order to
obtain this value, a division between uncertainty types, respectively, experimental and

numerical, is developed.

From experimental uncertainties, it is possible to select: (1) Sensor accuracy (0.10%), which
includes not only the displacement transducer precision but also the cable and acquisition
equipment losses [68, 154]; (2) Load positioning, which, in this case is considered to be zero
as it was perfectly controlled within the developed test; (3) Load intensity (0.10%), that
includes not only the load cell resolution but also the cable and the acquisition equipment
losses [68, 154]; (4) Environmental effects, which can be neglected due to the fact of being a
short term test and so the variations in temperature and humidity are very small to be
considered; (5) Vibration noise, that can also be ignored as the test is performed in a static

way.

In this case, only the load intensity component will be considered when computing the
experimental uncertainty. This component presents a uniform PDF (Type B) and so,
according to JCGM [90, 91, 92], it should be divided by V3, obtaining then the result of
5.77*107 %. In order to compute the experimental uncertainty it will be necessary to
determine the experimental data derivative in respect to this component (dy**/ox = 1.00 kN).
This uncertainty is obtained through equation (5.4) [90, 91, 92],

uZ, =1.00° f5.77 10?/100)" =3.33(107 - u,,, =5.77 107 kN (5.4)

exp

From numerical uncertainties, it is possible to select: (1) Finite element method
accuracy (3.79%), determined by comparing the developed numerical model with other
which presents a higher number of load steps [69]; (2) Mesh refinement (6.74%), determined
by comparing the developed numerical model with other which presents a more refined mesh

[69]; (3) Model exactitude, that can be neglected as the numerical model is developed
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according to the experimental test; (4) Considered hypothesis, that are also neglected as all
model simplifications (e.g. consideration of supports as point loads) are validated within a

global structural analysis.

When computing the numerical uncertainty, both finite element method and mesh refinement
components will be considered. These components are represented by a uniform PDF
(Type B) and so, according to JCGM [90, 91, 92], they should be divided by V3, obtaining
then the result of 2.19 % and of 3.89 %, respectively. In order to determine the numerical
uncertainty, the partial derivative of the numerical results in respect to these two components
should be computed (ay™™/dx = 1.00 kN). This uncertainty is obtained through equation (5.5)
[90, 91, 92],

u?,, =1.00? [{3.89/100)" +1.00? ({2.19/100)° =1.9910° - u,, =4.46 102 kN (5.5)

num

Once the experimental and numerical uncertainties are computed, it will be possible to
determine the fitness function uncertainty. In order to obtain this value, it is necessary to
compute the partial derivative of the fitness function in respect to both experimental and
numerical data. These values vary with tested beam as they are proportional to maximum
applied load (8fi/oy™™ = of/oy®™® = 1/max(y,*®) = 4.10 * 10% kN*, for beam 1, and
Aflay™™ = of,/oy*™® = 1/max(y.*®) = 4.00 * 10° kN*, for beam 2). The fitness function
uncertainty is respectively computed, for each tested beam, through equations (5.6) and
(5.7) [90, 91, 92],

u? =(4.10007) f5.7710%) +(4.10007) {4.4610) =3.29010°  u, =1.82[10° (5.6)

u? =(4.000107) {5.7710)" +(4.00010%)" {4.46 10?) =3.20010° - u, =1.79010° (5.7)

The global fitness function value is obtained through the square root of the sum of the square
of these components. In order to determine the global uncertainty, the partial derivative of the
fitness function in respect to each component should be computed (of/of, = of/of, = 1.00).
This uncertainty is obtained through equation (5.8) [90, 91, 92],

uf =1.00° [{1.820107 )2 +1.00° [{1.79010° )2 =6.49010° _ u, =2.550107 (5.8)

The improvement on global fitness value (Af) from two generations, separated of a specified
gap (n), is given in chapter four. In order to determine its uncertainty, the partial derivative of
the improvement in respect to each component needs to be computed
(eAflof.., = dAflof; = 1.00). This uncertainty is obtained through equation (5.9) [90, 91, 92],
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uy? =1.00° (f2.5510)" +1.00? {2.5510°)° =1.30 (10 - u,, =3.60 (10" (5.9)

As all uncertainty sources are of Type B, a coverage factor (k) of 2 should be adopted [90,
91, 92]. The fitness value criterion establishes that the respective improvement (4Af) should
be less than or equal to the threshold value (¢). This value is obtained by multiplying the
value from expression (5.9) by factor k. The obtained threshold value for the analysis in

service phase is determined in a similar way. These values are further indicated, (5.10),

(5.10)

Service - £=7.15M107° =0.72%
Failure - £=7.211107° =0.72%

This means that, for instance, for model identification until failure load, if the improvement in
minimum fitness value of a population from two generations separated of a specified gap (n)
is, respectively, less than or equal to 0.72%, the algorithm stops, as the fitness function
tolerance criterion is reached. This shows that it is not meaningful to improve the fitness

function of a value that is less than or equal to the precision itself.

The evolutionary strategy algorithm in its plus version [29] is further executed. In this case, a
parent population (u) and a parent for recombination (o) of 10 individuals, and an offspring
population (A) of 50 individuals were defined. The algorithm will run until one of the
established criteria is reached. Other stopping criteria, as the maximum generation’s
number (1000), were considered. The generation gap (n), used for the fitness function
tolerance criterion, is proportional to this number. It was established that this value is 10% of
the specified maximum generation’s number. Therefore, the improvement on minimum
fitness value is evaluated from a gap of 100 generations. Once the algorithm stops, a

population, constituted by different individuals, is obtained.

The respective algorithm is processed with different starting points. An engineer judgment
procedure is developed to determine the most suitable individual, from those previously
extracted. This individual is constituted by a set of values, a value for each critical parameter.
Table 5.6 presents the nominal values, and individuals obtained from model identification in
service phase and until failure load. In the same table, between brackets, the bias factor,
which represents the ratio between the identified and the nominal value for each variable, is
also presented. When applying this methodology in service phase, not only the critical
parameters, as already identified during the sensitivity analysis, but also their optimal values,

may differ from the application until failure load.

From a first analysis of Table 5.6., it is possible to realize that: (1) Obtained value of some

parameters, as the concrete tensile (f) and compressive strength (f.), the section width (b)
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and height (h) and the inferior concrete cover (Cix), is lower than the nominal one; (2) The

longitudinal steel reinforcement elasticity modulus (Es) value, obtained from this
methodology, when applied until failure load, is lower than the nominal one and, both these
values are lower than the one from the application of the methodology in service phase;
(3) The concrete elasticity modulus (E;) value, obtained from this methodology, when applied
until failure load, is higher than the nominal one and, both these values are higher than the
one obtained from the application of the methodology in service phase; (4) Obtained value of
some parameters, as the concrete fracture energy (Gy) and the longitudinal steel

reinforcement yield strength (oy) and area (As), is higher than the nominal one.

Table 5.6. Model identification results.

. Model identification
. Nominal
Numerical model value
Service * Failure *
Ec [GPa] 31.00 24.80 (0.80) 31.44 (1.01)
fe [MPa] 2.60 2.09 (0.80) 2.54 (0.98)
Concrete
fe [MPa] 33.00 33.00 (-) 29.87 (0.91)
Material Gt [N/m] 65.00 74.50 (1.15) 65.00 (-)
é Es [GPa] 200.00 233.27 (1.17) | 186.73(0.93)
S o
5 Longitudinal steel| [MPa] | 500.00 500.00 (-) 535.83 (1.07)
o reinforcement
As [cm?] 0.85 1.02 (1.20) 0.91 (1.07)
Cinf [cm] 1.00 1.00 () 0.99 (0.99)
Geometry b [em] 7.50 6.53 (0.87) 7.27 (0.97)
h [cm] 15.00 14.52 (0.97) 14.28 (0.95)

* Bias factor is presented between brackets.

Both analyses indicated that concrete material presents a worse quality than the expected.
The main reasons for that are the difficulties related to the concreting process of small
structural elements. However, the analysis performed until failure load indicated a higher
elasticity modulus than the predicted. When evaluating the steel reinforcement, obtained
results indicated a better quality material. However, the analysis performed until failure load
indicated a lower elasticity modulus than the predicted. Both analyses indicated a higher
steel area. Obtained value from the analysis in service phase is far from the others. In
respect to geometry parameters, obtained values for inferior concrete cover are close to
nominal ones. Additionally, obtained beam dimensions are smaller than the predicted.

Obtained results from the analysis until failure load are the closest to nominal values.

134



Uncertainty Evaluation of Reinforced Concrete and Composite Structures Behavior

It is also important to mention that the same collapse mechanism and failure mode was
obtained in experimental and numerical tested beams. Figure 5.12 presents the applied
load (kN) plotted against the middle span displacement (m) for measured experimental data
and for numerical results, obtained by considering the nominal values, and those from model
identification in service phase and until failure load. From the analysis it is possible to
conclude that the results from model identification until failure load are those that best fit the
experimental curve. The numerical results considering nominal values present a higher
cracking load and post-cracking stiffness and a lower failure load, while the results obtained
by using model identification in service phase, are very similar to experimental data, within

the service region, presenting then a higher post-cracking stiffness and failure load.
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Figure 5.12. Numerical results.

Table 5.7 presents the minimum fitness function values obtained by considering the nominal
values and those from model identification in service phase and until failure load. A first
analysis permit to conclude that the fitness function value obtained in service phase is lower
than that determined until failure load. This is due to the fact that in service region the
numerical results are close to experimental data than in failure region. It is also verified, for
both cases, an improvement of this value with model identification. However, it is also
verified that this improvement is higher in service region (92.97%) than in failure
region (75.90%). The structural behavior in failure region presents a higher nonlinearity.

Therefore, for this region, optimization becomes harder and obtained results are not as good.

Table 5.8 presents the obtained failure load (Fg) by considering the nominal values and
those from model identification in service phase and until failure load. Obtained error from
model identification until failure load is considerably lower than that given by nominal values
and by model identification in service phase. In fact, during this later analysis the model
identification is only realized in service phase. Therefore, it becomes difficult to predict the

failure load. Hence, model identification in service phase, itself, does not give good results.
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Additional complementary testes are thus recommended. In respect to model identification

until failure load, obtained error is less than 1% which is very good.

Table 5.7. Minimum fitness function values.

Numerical model

Fitness function

Service

Failure

Value [%] Improvement [%] Value [%] Improvement [%]
Nominal values 3.38 - 7.70 -
Model identification 0.24 92.97 1.86 75.90

Table 5.8. Failure load (Fg).

Numerical model

Failure load

Value [kN] Error [%] *
Nominal values 23.28 6.13
Model Service 26.42 6.53
identification Failure 24.84 0.16

* Comparing with the real failure load.

5.4.2. Pinned-fixed

Two sensitivity analyses were developed, one for service phase and other until failure load

[122]. It were evaluated the same parameters as for pinned-pinned beams. Figure 5.13 and

beams

5.14 presents, respectively, the results from the former and from the latter analysis.
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Figure 5.13. Importance measure (service).
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The analysis developed in service phase pointed out for the importance of concrete elasticity
modulus (E.), tensile strength (f) and fracture energy (Gy), of inferior longitudinal
reinforcement steel elasticity modulus (Es) and area (As) and of section width (b) and height
(h). Therefore, from 15 possible parameters, only 7 of them were considered critical,

reducing thus the computational cost.

100.00%

75.00%

50.00%

25.00%

0.00%
Figure 5.14. Importance measure (failure).

The analysis performed until failure load revealed that the critical parameters, previously
identified with the analysis in service phase, still present an important influence in the
structural behavior. On the other hand the influence of concrete compressive strength (f), of
inferior longitudinal reinforcement yield strength (g), and of inferior concrete cover (Cin),
increases, as expected, and should be also considered. Hence, from 15 possible initial

parameters, only 10 of them were considered, reducing then the computational cost.

Two additional physic parameters that have a large influence on the overall structural
behavior, namely, the spring stiffness and the instant in which the fixed support starts to work
as a full clamp, were also considered during the analysis. Accordingly, 9 and 12 parameters

will be, respectively, evaluated in the analysis for service phase and until failure load.

Once the numerical model is validated and the critical parameters selected, the further step
consists in applying the model identification methodology. In this case, during the laboratory
test, both the middle span displacement and the pinned support reaction were measured.
These measurements are expressed by two graphics, respectively, one that plots the applied
load (F) against the measured displacement (6) and, other that plots the measured
reaction (R) against the bending moment at fixed support (M). In this situation the fitness
function characterizes the approximation between numerical and experimental values for

both applied load and measured reaction.
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One of used tolerance criteria is related to the convergence in the space of fitness value,
defined by the threshold value (). In order to obtain this value, the uncertainty of each fitness
function component will be studied in separate. The global uncertainty is then computed
through their combination. Therefore, and for each component, it is necessary to identify both

experimental and numerical uncertainty sources.

From experimental uncertainties, it is possible to select: (1) Sensor accuracy (0.10% -
displacement transducer; 0.10% - load cell), which includes also the cable and acquisition
equipment losses [68, 154]; (2) Load intensity (0.10%) that includes not only the load cell
resolution but also the cable and acquisition equipment losses [68, 154]; (3) Load
positioning, environmental effects and vibration noise which effects can be neglected in this

case.

From numerical uncertainties, it is possible to select: (1) Finite element method accuracy
(5.91%, 6-F; 6.16%, M-R), determined by comparing the developed numerical model with
other which presents a higher number of load steps [69]; (2) Mesh refinement (11.42%, 6-F;
11.75%, M-R), determined by comparing the developed numerical model with other which
presents a more refined mesh [69]; (3) Model exactitude and considered hypothesis

(e.g. consideration of supports as point loads) that can be neglected in this situation.

The following step consists in determining the uncertainty of the fitness function applied load
component. In this case, the experimental uncertainty is only dependent on the load intensity
component. This component presents a uniform PDF (Type B) and so, according to JCGM
[90, 91, 92], it should be divided by V3, obtaining then the result of 5.77*10° %. The
experimental data is linearly dependent of this component (@y**/ox = 1.00 kN). The

experimental uncertainty is computed through equation (5.11) [90, 91, 92],

u2, =100 [{5.77107/100) =3.330107 . u,

&XP 5-r

=577 [10™ kN (5.11)

P 5

The same procedure is used to determine the numerical uncertainty. For this case, both finite
element method and mesh refinement effects will be considered. These errors are
represented by a uniform PDF (Type B) and so, according to JCGM [90, 91, 92], they should
be divided by V3, obtaining then the result of 3.41% and 6.59%, respectively. The numerical
results are linearly dependent of these components (dy™"/ox = 1.00 kN). The numerical

uncertainty is then computed through equation (5.12) [90, 91, 92],

u?,,  =1.00%[{3.45100)" +1.00% ({6.59/100)" - u,

num 5_g

=7.42010kN (5.12)

um -,

Once the experimental and numerical uncertainties are computed, it will be possible to

determine the uncertainty of the fitness function applied load component. In order to obtain
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this value, it is necessary to compute the partial derivative of this component in respect to
both experimental and numerical data. These values vary with tested beam as they are
proportional to maximum applied load (8fs.r1/dy™™ = dfs.r/dy*® = 1/max(y,*®) = 3.30*10°kN™,
for beam 1, and dfs.e/dy™™ = Ofs.raly™® = 1/max(y.>®) = 3.60 * 102 kN, for beam 2). The
uncertainty of the fitness function applied load component is then obtained, for each beam,
through equations (5.13) and (5.14) [90, 91, 92],

uZ, =(3.30002) [f5.77000) +(3.300102)" [{7.42107)" =5.9210°° - v, =2.43(10° (5.13)

uz, =(3.60007) f5.7710) +(3.600107)" {7.4210?)" =6.90110° — u, . =2.63(10° (5.14)

The fitness function applied load component is obtained through the square root of the sum
of the square of each beam component. In order to determine its uncertainty, the partial
derivative of the fitness function applied load component in respect to each beam component
should be computed (ofsr/dfsr1 = dfselofs» = 1.00). This uncertainty is obtained through
equation (5.15) [90, 91, 92],

uz, =1.00° (f2.43010°) +1.00° (f2.6310°) =1.28[10°° — u, . =3.58[10° (5.15)

In a second step, the uncertainty of the fitness function measured reaction component is
determined. In this case, the experimental uncertainty is only dependent on the sensor
accuracy component. As this component presents a uniform PDF (Type B), and according to
JCGM [90, 91, 92], it should be divided by V3, obtaining then the result of 5.77*10% %. The
experimental data is linearly dependent of this component (dy**/ox = 1.00 kN). The

experimental uncertainty is given by equation (5.16) [90, 91, 92],

w2, =100°[f5.77(102/100) =3.331107 . u,

exp M-R

=5.77010 kN (5.16)

P,

An identical procedure is used to determine the numerical uncertainty. For this case, both
finite element method and mesh refinement effects are considered. These errors are
represented by a uniform PDF (Type B) and so, according to JCGM [90, 91, 92], they should
be divided by V3, obtaining then the result of 3.56% and 6.78%, respectively. The numerical
results are linearly dependent of these components (dy™"/ox = 1.00 kN). The numerical

uncertainty is then computed through equation (5.17) [90, 91, 92],

uZ,. =1.00?[{3.56/100)" +1.00° ({6.78/100)" - u

numy _g

=7.66[107kN (5.17)

num

Then, it is necessary to determine the uncertainty of the fithess function measured reaction
component. The partial derivatives of such component, in respect to both experimental and

numerical data, differ from beam to beam as they are proportional to maximum measured

139



Chapter 5. Reinforced Concrete Beams

reaction (dfyr/Oy™™ = Ofur/Oy™® = lmax(y:*®) = 1.36 * 10" kN?, for beam 1, and
Ofw ral OY™™ = Ofyral Y = Limax(y,”®) = 1.56 * 10™ kN, for beam 2). The uncertainty of the
fitness function measured reaction component is then computed, for each beam, through
equations (5.18) and (5.19) [90, 91, 92],

uz . =(1.3600%) 5.7710)" +(1.36107)  {7.66 10)" =1.08110 - u,,_, =1.04[10° (5.18)

uZ_, =(1.56007%) f5.7710*)" +(1.56 10*) {7.66 102)" =1.42010  u,,_, =1.19007 (5.19)

The fitness function measured reaction component is obtained through the square root of the
sum of the square of each beam component. In order to determine its uncertainty, the partial
derivative of the fitness function measured reaction component in respect to each beam
component should be computed (dfur/dfurs = ofurldfur2 = 1.00). This uncertainty is
obtained through equation (5.20) [90, 91, 92],

U3, =1.00? [{1.041102)" +1.00? {1.1910)" =2.50 10" - u,,_, =1.58 (107 (5.20)

The global fitness value is the square root of the sum of the square of each component,
respectively, for applied load and measured reaction. In this situation the global fithess
function is linearly dependent of these components (of/dfsr = of/ofyr = 1.00). The global
uncertainty is computed through equation (5.21) [90, 91, 92],

u? =1.00° {3.5810°)" +1.00° {1.58 10?)" =2.62[10" - u, =1.62[10° (5.21)

The improvement on global fitness value (Af) from two generations, separated of a specified
gap (n), is given in chapter four. In order to determine its uncertainty, the partial derivative of
the improvement in respect to each component needs to be computed
(0Aflofi., = 0Aflof; = 1.00). This uncertainty is obtained through equation (5.22) [90, 91, 92],

uy? =1.00° {1.62[102)° +1.00? 1.62102)" =5.25 10 - u,, =2.29[107 (5.22)

As all uncertainty sources are of Type B, a coverage factor (k) of 2 should be adopted [90,
91, 92]. The fitness function criterion establishes that the respective improvement (4f) should
be less than or equal to the threshold value (¢). This value is obtained by multiplying the
value from expression (5.22) by factor k. The obtained threshold value for the analysis in

service phase is determined in a similar way. These values are further indicated, (5.23),

Service - £€=4.17102%=4.17%
(5.23)

Failure - £ =4.58 107 =4.58%
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This means that, for instance, for model identification until failure load, if the improvement in
minimum fitness function value of a population from two generations separated of a specified
gap (n) is, respectively, less than or equal to 4.58% then the algorithm stops, as the fitness
function convergence criteria is attained. This shows that it is not meaningful to improve the
fitness function of a value less than or equal to the precision itself. These values are higher
than those obtained for pinned-pinned beams. In fact, the threshold value increases with the

number of necessary points to compute the fitness function.

The evolutionary strategy algorithm in its plus version [29] is further executed. In this case, it
was considered a parent population (1) and a parent for recombination (o) of 10 individuals,
and an offspring population (A) of 50 individuals. The algorithm is executed until one of the
established criteria is attained. Other stopping criteria, as the maximum number of
generations (1000), were considered. The generation gap (n), used for the fitness function
tolerance criterion, is proportional to this number. It was established that this value is 10% of
the specified maximum number of generations. Therefore, the improvement on minimum
fitness function value is evaluated from a gap of 100 generations. Once the algorithm stops,

a population, constituted by different individuals, is obtained.

The respective algorithm is executed with different starting points. An engineer judgment
procedure is developed to determine the most suitable individual, from those previously
extracted. This individual is constituted by a set of values, a value for each critical parameter.
Table 5.9 presents the nominal values, and individuals obtained from model identification in
service phase and until failure load [119, 121]. In the same table, between brackets, the bias
factor, which represents the ratio between the identified and the nominal value for each

variable, is also presented.

From a first analysis of Table 5.9., it is possible to realize that: (1) Obtained value of some
parameters, as the concrete elasticity modulus (E.) and compressive strength (f.), the section
width (b) and height (h) and the load step, is lower than nominal one; (2) The inferior
longitudinal steel reinforcement elasticity modulus (Es) and spring stiffness (k) values,
obtained from this methodology, when applied until failure load, are lower than the nominal
ones, being both these values lower than the ones obtained from the application of the
methodology in service phase; (3) The concrete tensile strength (f) and fracture energy (Gy)
values, obtained from this methodology, when applied until failure load, are higher than the
nominal ones and, both these values are higher than the ones obtained from the application
of the methodology in service phase; (4) Obtained value of some parameters, like the inferior
longitudinal steel reinforcement yield strength (oy) and area (As) and the inferior concrete

cover (Cing), is higher than nominal one.
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Table 5.9. Model identification results.

. Model identification
. Nominal
Numerical model value
Service * Failure *
Ec [GPa] 31.00 30.34 (0.98) 29.07 (0.94)
fi [MPa] 2.60 2.45 (0.94) 2.63 (1.01)
Concrete
fe [MPa] 33.00 33.00 () 30.74 (0.93)
Material Gt [N/m] 65.00 63.40 (0.98) 67.00 (1.03)
Es [GPa] 200.00 244.58 (1.22) 180.96 (0.90)
o Inferior
% longitudinal steel | gy [MPa] 500.00 500.00 (-) 548.28 (1.10)
= reinforcement
é_% As [cm?] 0.85 1.02 (1.20) 0.89 (1.05)
Cinf [em] 2.00 2.00 (-) 2.04 (1.02)
Geometry b [cm] 7.50 7.04 (0.94) 7.15 (0.95)
h [cm] 15.00 12.16 (0.81) 13.59 (0.91)
k [kN/m] 149.13 164.21 112.75
Physic
step [-] 30 26 25

* Bias factor is presented between brackets.

Both analyses indicated that concrete material presents a worse quality than the expected.
When evaluating the steel reinforcement, obtained results indicated a better quality material.
Both analyses indicated a higher steel area. Obtained value from the analyses in service
phase is far from the others. In respect to geometry parameters, obtained values for inferior
concrete cover are close to nominal ones. Additionally, obtained beam dimensions are
smaller than the predicted. Considering physic parameters, a lower spring stiffness value is
given by the analysis until failure load. Obtained results from the analysis until failure load

are the closest to nominal values.

Comparing these results with those obtained from pinned-pinned beams, and taking into
consideration that the used steel is of same quality, that concrete material is of same class,
and that geometry and production procedures are identical, the following conclusions are
attained: (1) Obtained results for pinned-fixed beams are closer to nominal values than for
pinned-pinned beams; (2) The concrete quality is slightly inferior than the predicted; (3) The
steel reinforcement quality is higher than the predicted; (4) The steel reinforcement elasticity
modulus, obtained from the analysis until failure load, is lower than the nominal value; (5) For

both analysis, the steel area is higher than the nominal value; (6) Beam dimensions are, for
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both analysis, smaller than the predicted; (7) Obtained inferior concrete cover, for both

analysis, is close to the nominal value.

It is also important to mention that the same collapse mechanism and failure mode was
obtained in experimental and numerical tested beams. In Figure 5.15a the applied load (kN)
is plotted against the middle span displacement (m), and in Figure 5.15b the reaction at
pinned support (kN) is plotted against the bending moment at fixed support (kN.m), for
measured data and for numerical results, obtained by considering the nominal values and
those from model identification in service phase and until failure load. From the analysis it is
possible to conclude that the results from model identification until failure load are those that
best fit the experimental curve. The numerical results considering nominal values present a
higher cracking load and post-cracking stiffness. Obtained results from model identification in
service phase are similar to experimental data, in service region, presenting then a higher

post-cracking stiffness and a lower failure load and bending moment at fixed support.
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Figure 5.15. Numerical results.

Table 5.10 presents the minimum fitness function values obtained by considering the
nominal values and those from model identification in service phase and until failure load. It
is verified that the obtained fithess function value in service phase is lower than that
determined until failure load. This is due to the fact that in service region the numerical
results are close to experimental data than in failure region. Even so, for both situations, the
developed methodology revealed a considerable improvement on this value. This updating
procedure is more efficient in the service region (55.26%) than in failure region (28.69%).
The fitness function value obtained in this situation is higher, and the respective improvement
lower, than that for the pinned-pinned beams. This is due to an increase in the number of
critical parameters and of necessary points to compute the fitness function, from a situation
to another.

Table 5.11 indicates the failure load (Fg) and maximum bending moment at fixed support

values by considering the nominal values and those from model identification in service
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phase and until failure load. Obtained error from model identification until failure load is lower
than that given by nominal values and by model identification in service phase. In fact, it is
possible to verify that, when applying the methodology in service phase, the model
identification is performed for this region, being not possible to guarantee the curve fitting for
the failure region. Obtained error for the situation of model identification until failure load is
less than 10% which is reasonable. Comparing the results from this analysis with those
obtained for pinned-pinned beams it is possible to conclude that, again, this analysis

revealed to be less precise.

Table 5.10. Minimum fitness function values.

Fitness function
Numerical model Service Failure
Value [%)] Improvement [%] Value [%)] Improvement [%]
Nominal values 15.09 - 21.73
Model identification 6.75 55.26 15.50 28.69

Table 5.11. Failure load (Fgr) and maximum bending moment (Mgy).

Failure load Maximum bending moment
Numerical model
Value [kN] Error [%] * Value [kN.m] Error [%] *
Nominal values 29.01 1.29 6.04 12.46
Service 25.51 13.20 5.56 19.42
Model identification
Failure 29.17 0.75 6.26 9.28

* Comparing with the real failure load and maximum bending moment.

5.5. Characterization tests
5.5.1. Concrete material

Used concrete on pinned-fixed beams was of class C25/30 [48]. The stress-strain law
parameters were determined by uniaxial compression tests in six cylindrical specimens [136]
and by fracture energy tests in six beam specimens [155]. Each cylinder was tested at
28 days, presenting 300 mm of height and 150 mm of diameter, Figure 5.16a. Each beam
was tested at 28 days, and presents 850 mm length by 100 mm height and 100 mm width. A
notch with 25 mm depth and 5 mm thickness was executed in each specimen. These beams

were submitted to a point load at middle span until failure, Figure 5.16b.
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a) b)

Figure 5.16. Laboratory tests: a) uniaxial compression test; b) fracture energy test.

From the uniaxial compression tests it was possible to determine the concrete elasticity
modulus (E.), the compressive strain at compressive strength (&), and the compressive
strength (f.). The fracture energy tests gave the concrete tensile strength (f)) and the fracture
energy (Gy). A statistical analysis was developed for each parameter. Both mean and
standard deviation were determined. Table 5.12 gives those values. A bias value, which
represents the ratio between the experimental and the nominal value, is also presented for

each variable.

Table 5.12. Concrete parameters.

Parameter Nominal value Mean value (u) * Standard deviation (o)
Elasticity modulus (Ec) [GPa] 31.00 28.01 (0.90) 1.73
Tensile strength (fy) [MPa] 2.60 2.67 (1.03) 0.22
Compressive strength (fc) [MPa] 33.00 30.77 (0.93) 0.78
Fracture energy (Gr) [N/m] 65.00 103.91 (1.60) 9.93
Cofﬁgr‘g;‘;svsg";rztr’]zit?] "’(‘LC) [%q] 2.00 2.79 (1.40) 0.13

* Bias factor is presented between brackets.

Some bias values are close to one, which means that obtained data is close to the nominal
value. However, this is not verified for some parameters as the compressive strain at
compressive strength (¢;) and the fracture energy (Gy). An important conclusion is that used
concrete presents a lower quality than what was initially expected as bias values of more
significant parameters, specifically elasticity modulus (E.;) and compressive strength (f;), are
lower than one. This confirms the obtained model identification results. Coefficients of
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variation are all less than 10% which indicates that the variability of such parameters is small.
Obtained correlation coefficient (o;) values for measured parameters are presented in
Table 5.13.

Table 5.13. Correlation coefficients (o;) in concrete.

Ec fi fe Gt &
Ec 1.00 * 0.67 * 0.99
fi * 1.00 * 0.75 *
fe 0.67 1.00 * 0.19
Gt * 0.75 * 1.00 *
& 0.99 * 0.19 * 1.00

* These parameters present no correlation as they were determined by different laboratory tests.
5.5.2. Steel material

Used steel on pinned-fixed beams was classified as S500B, according to EN 1992-1-1 [48].
Longitudinal steel reinforcement bars of $6 and ¢8 were used. In respect to transversal
reinforcement the used diameter is ¢4. Such steel was not classified before and so this
analysis constitutes it first characterization. Six specimens were considered for each
reinforcement diameter. The uniaxial tensile tests were executed according to the norm
NP ENV 10002-1 [139] (Figure 5.17a). Each specimen presents a length of 500 mm
(Figure 5.17hb).

After collecting data from tested specimens, a statistical analysis was developed for each
parameter and the respective mean and standard deviation value were obtained. A bias
value, which represents the ratio between the experimental and the nominal value, is also
presented for each variable. Such value was not determined for ¢4 reinforcement as there
was no information from the producer about this steel. Results are presented on Table 5.14
and 5.15.
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a) b)

Figure 5.17. Laboratory tests: a) uniaxial tension test; b) reinforcing steel specimen.

Table 5.14. Steel parameters (transversal reinforcement).

Parameter Mean value () Standard deviation (o)
Elasticity modulus (Es) [GPa] 195.39 38.67
Yield strength (oy) [MPa] 356.56 16.47
Limit strength (ou) [MPa] 483.86 6.21
Limit strain (&im) [%0] 143.62 6.38

Table 5.15. Steel parameters (longitudinal reinforcement).

Parameter Nominal value Mean value (u) * Standard deviation (o)
Elasticity modulus (Es) [GPa] 200.00 205.31 (1.03) 20.22
Yield strength (o) [MPa] 500.00 582.94 (1.16) 22.46
Limit strength (oy) [MPa] 540.00 692.61 (1.28) 13.54
Limit strain (&im) [%o] 50.00 134.99 (2.70) 24.52

* Bias factor is presented between brackets.

The transversal reinforcement was identified to be of lower quality than S400B steel. For this
situation the CV of elasticity modulus (Es) presents a higher value. This is essentially due to
the fact of being difficult to tie these bars during the test due to their small diameters.

For longitudinal reinforcement obtained bias values are all higher than one, which indicates
that the steel quality is higher than what was initially expected. This confirms the obtained
results from model identification. Coefficients of variation are, in a general way, less

than 10% which indicates that the variability of such parameters is small. This is not verified
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for limit strain (&m) as obtained standard deviations indicates a high dispersion. The
correlation coefficients (o;) between measured parameters were also determined. Obtained

results are presented on Table 5.16 and 5.17.

Table 5.16. Correlation coefficients (o;) in steel (transversal reinforcement).

Es Oy Ou Elim
Es 1.00 0.10 0.43 0.19
Oy 0.10 1.00 0.83 0.43
Ou 0.43 0.83 1.00 0.58
Elim 0.19 0.43 0.58 1.00

Table 5.17. Correlation coefficients (o;) in steel (longitudinal reinforcement).

Es Oy Ou Elim
Es 1.00 0.23 0.33 0.18
oy 0.23 1.00 0.49 0.59
Oy 0.33 0.49 1.00 0.48
Eiim 0.18 0.59 0.48 1.00

5.5.3. Concrete cover

The concrete cover was evaluated for pinned-fixed beams, by cutting in two parts the tested
beams, after each test, and measuring the distance from the longitudinal reinforcement to the
top (Csup) and bottom (cir) beam surfaces. Cuts were developed in the location of plastic

hinges.

A statistical analysis was developed for both superior and inferior concrete cover. The mean
and standard deviation values were determined through this analysis. Obtained results are
presented in Table 5.18. A bias value, which represents the ratio between the experimental

and the nominal value, is also presented.

Table 5.18. Concrete cover.

Parameter Nominal value Mean value (p) * Standard deviation (0)
Inferior concrete cover (Cinf) [mm] 20.00 23.00 (1.15) 2.24
Superior concrete cover (Csup) | [mMm] 20.00 24.94 (1.25) 4.17

* Bias factor is presented between brackets.
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Bias values indicate that obtained concrete cover values are close to the nominal ones. This
confirms the results obtained from model identification. The superior longitudinal
reinforcement presents a higher concrete cover (cs,,). Moreover, a higher standard deviation
is obtained in this situation. This is due to the fact that it is more difficult to control this cover

during concreting. The correlation coefficient (o;) between these two parameters is 0.50.
5.6. Probabilistic analysis

Once the numerical model is developed and calibrated according to obtained experimental
data, the next step consists in determining a reliable PDF for resistance. Such curve can be
used in a further safety analysis, in which it will be compared to a specific loading PDF [33,
123]. This analysis will be important to help engineers in any decision regarding structural

safety.

The resistance of reinforced concrete beams is dependent on material (concrete and steel),
geometry (section dimensions and concrete cover) and physic parameters. Physic
properties, as spring stiffness, previously determined by an optimization procedure, are
considered to be deterministic due to the fact of being inherent to the studied structure. In
order to obtain the resistance PDF it is important to consider the randomness in such

parameters.

Model parameters are thus characterized by a PDF. The most used PDF are the Normal
ones. In some situations, for which the parameters cannot assume negative values, a
Lognormal PDF should be used instead. Those curves are defined by a mean (u) and
standard deviation (o) value. In this case, these values are obtained from bibliography [26,
93, 148, 181, 182].

In some situations, when there is complementary data due to visual inspection, non-
destructive tests (NDT), or even from installed monitoring systems, a Bayesian inference [15]
approach can be used. This approach is detailed described in chapter three. In the situation
of pinned-fixed beams, the updating procedure is based in collected data from material
(concrete and steel) and geometry (concrete cover) tests. The Bayesian inference was
developed by considering both informative and non-informative (Jeffrey’s) prior. Considered

posterior PDF is the one that presents the lowest standard deviation.

Once each critical parameter PDF is defined, the next step consists in random generation of
these parameter values to be used in a further probabilistic numerical analysis. This
procedure is based in a random sampling technique designated by Latin Hypercube

sampling (LHS) [144]. This procedure is detailed described at chapter four.
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A set of values are respectively obtained from the probabilistic analysis. These values are
then statistically processed and fitted to a Normal PDF. Two indexes, index-i and index-p,
presented in chapter four, are introduced. While the former is used to evaluate each beam
behavior within the whole test, the latter is used to evaluate the accuracy of obtained

resistance PDF.
5.6.1. Pinned-pinned beams

In this case, Normal and Lognormal PDF were considered for material and geometry
parameters [114, 116, 117]. It was considered as mean value, the nominal values and those
from model identification in service phase and until failure load. The adopted coefficients of
variation were the same of previous sensitivity analysis. These values are indicated at Table

5.19. Table 5.20 presents the considered correlations between these parameters.

Table 5.19. Parameter values.

Nominal value Model ider_1tification Model id_entification
Parameter (service) (failure)
u o H o u o

Ec [GPa] 31.00 3.10 24.80 2.48 31.44 3.14
fi [MPa] 2.60 0.52 2.09 0.42 2.54 0.51

fe [MPa] 33.00 3.30 33.00 3.30 29.87 2.99
Gi [N/m] 65.00 6.50 74.50 7.45 65.00 6.50
Es [GPa] 200.00 10.00 233.27 11.66 186.73 9.34
oy [MPa] 500.00 25.00 500.00 25.00 535.83 26.79
As [cm?] 0.85 0.02 1.02 0.02 0.91 0.02
Cinf [em] 1.00 0.20 1.00 0.20 0.99 0.20
b [em] 7.50 0.75 6.53 0.65 7.27 0.73

h [ecm] 15.00 1.50 14.52 1.45 14.28 1.43

The applied load is obtained during the probabilistic analysis for each measured and
computed displacement. Figure 5.18 shows the obtained results for the situation of nominal
values. It is verified that the experimental data is within the 95% confidence interval for the
majority of evaluated points. Obtained index-i presents a value of 94.25% for beam 1 and of
93.73% for beam 2.
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Table 5.20. Correlation coefficients (o;).

Ec ft fc Gf ES @ AS Cinf b h
Ec 1.00 0.70 0.90 0.50 0.00 0.00 0.00 0.00 0.00 0.00
fi 0.70 1.00 0.80 0.90 0.00 0.00 0.00 0.00 0.00 0.00
fe 0.90 0.80 1.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00
Gt 0.50 0.90 0.60 1.00 0.00 0.00 0.00 0.00 0.00 0.00
Es 0.00 0.00 0.00 0.00 1.00 0.80 0.50 0.00 0.00 0.00
o 0.00 0.00 0.00 0.00 0.80 1.00 0.50 0.00 0.00 0.00
As 0.00 0.00 0.00 0.00 0.50 0.50 1.00 0.00 0.00 0.00
Cinf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.10 0.60
b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00 0.10
h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.10 1.00
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Figure 5.18. Nominal values.

Figure 5.19a displays the results for the situation of model identification in service phase. For
this situation the experimental data is within the bounds defined by the 95% confidence
interval for the majority of analysed points. The index-i is of 92.94% for beam 1 and of
93.52% for beam 2.

Figure 5.19b presents the results obtained by model identification until failure load. For this
situation the experimental data is within the bounds defined by the 95% confidence interval
for almost evaluated points. It is important to verify that, in this case, the experimental data
curve is in the middle of these two bounds. Obtained index-i is of 98.85% for beam 1 and of
98.68% for beam 2.

In this case, a set of failure load (Fg) values is obtained. A Normal PDF, which represents the

structural resistance, is then adjusted to this set. Obtained resistance PDF parameter values
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are indicated in Table 5.21. On the same table it is also given the obtained index-p for each

tested beam and for each numerical model.
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Figure 5.19. Model identification: a) service; b) failure.

From the analysis of these results it is important to conclude that: (1) Obtained mean and
standard deviation with nominal values are lower than the ones obtained with values from
model identification; (2) A high index-p is obtained for all situations. Therefore, an accurate
resistance PDF is obtained for all cases; (3) Obtained index-p with nominal values is closer
to the one obtained with values from model identification in service phase. This means that
model identification in service phase does not increase the accuracy of resistance PDF;
(4) Obtained index-p with values from model identification until failure load is the highest.
This means that the use of model identification until failure load increases the accuracy of

resistance PDF.

Figure 5.20 presents the resistance PDF that result from the parameter values (standard
deviation and mean) indicated in Table 5.21. It is possible to identify that the obtained
resistance PDF with values from model identification until failure load is located among the
others. The obtained resistance PDF with values from model identification in service phase
gives the highest mean. This will lead to a non-conservative safety analysis. The obtained
resistance PDF with nominal values is close to the one obtained with values from model

identification until failure load.

Table 5.21. Failure load (FRg).

Index-p [%0]
Numerical model M [kN] o [kN]
Beam 1 Beam 2
Nominal values 23.27 2.97 95.56 94.47
Model identification (service) 26.37 3.34 94.91 95.89
Model identification (failure) 24.67 3.19 99.80 99.02
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Figure 5.20. Failure load (FRg).
5.6.2. Pinned-fixed beams

Normal and Lognormal PDF were considered for material and geometry properties of pinned-
fixed beams [116, 117, 119, 121, 122]. The PDF mean values were considered to be the
nominal values and those from model identification in service phase and until failure load.
The adopted coefficients of variation were the same of previous sensitivity analysis. These

values are indicated at Table 5.22.

Table 5.22 present, between brackets, the results from a Bayesian inference analysis [119,
121, 122]. In this situation, the materials (concrete and steel) and geometry (concrete cover)
parameters were updated. In respect to concrete material, obtained mean values are close to
previous ones. However, for concrete fracture energy (Gy) this is not verified. The Bayesian
inference reduced the standard deviation value for concrete compressive strength (f;) and
tensile strength (f). In respect to reinforcing steel elasticity modulus (Es), obtained mean
values are close to previous ones. However, for the reinforcing steel yield strength (o) this is
not verified. In respect to inferior concrete cover (ciy), obtained mean value increased with

Bayesian inference.

The Jeffrey’s prior is used, during this procedure, to update the concrete compressive
strength (f;), except for data values due to model identification until failure load, and fracture
energy (Gy). It was also used to update the reinforcing steel yield strength (oy) and the inferior
concrete cover (cir), except for the situation of model identification until failure load. In the

other situations an informative prior was used as it provides a lower standard deviation value.

Table 5.23 indicates the used correlation values. Inside brackets it is indicated the real
values from complementary tests. These values are used when considering the updated

PDF. It is verified, in a general way, that real correlations are not as strong as predicted.
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Table 5.22. Parameter values.

Nominal value * Model identification (service) * | Model identification (failure) *
Parameter
u o) H o u o
E. | [GPa] | 31.00(30.10) | 3.10 (4.79) | 30.34 (29.68) | 3.03 (4.51) | 29.07 (28.76) | 2.91 (3.36)
fo | [MPa] | 2.60(2.62) | 0.52(0.31) | 2.45(2.68) | 0.49(0.34) | 2.63(2.64) 0.53 (0.31)
fe [MPa] | 33.00(30.79) | 3.30(1.38) | 33.00(30.79) | 3.30(1.38) | 30.74 (30.69) 3.07 (1.16)
Gt | [N/m] | 65.00 (104.61) | 6.50 (15.83) | 63.41 (104.61) | 6.34 (15.83) | 66.95 (104.61) | 6.70 (15.83)
Es | [GPa] |200.00 (202.48) (10.00 (11.69)| 244.58 (223.98) |12.23 (14.20)| 180.96 (192.84) | 9.05 (12.09)
g, | [MPa] |500.00 (579.59) |25.00 (27.85)| 500.00 (579.59) |25.00 (27.85)| 548.28 (579.59) | 27.41 (27.85)
As [sz] 0.85 0.02 1.02 0.02 0.89 0.02
cnt | [cm] 2.00 (2.14) | 0.40(0.48) | 2.00(2.14) | 0.40(0.48) | 2.04 (2.16) 0.41 (0.46)
b [cm] 7.50 0.75 7.04 0.70 7.15 0.72
h [cm] 15.00 1.50 12.16 1.22 13.59 1.36
* Bayesian inference values are presented between brackets.
Table 5.23. Correlation coefficients (o;).
Ec fi fe Gt Es o As |[cnf| b | h
Ec 1.00 0.70 0.90 (0.67) * 0.50 0.00 0.00 0.00 |{0.00{0.00|0.00
fi 0.70 1.00 0.80 0.90 (0.75) * 0.00 0.00 0.00 |0.00{0.00{0.00
fc |0.90 (0.67) * 0.80 1.00 0.60 0.00 0.00 0.00 |0.00{0.00{0.00
Gs 0.50 0.90 (0.75) * 0.60 1.00 0.00 0.00 0.00 |0.00{0.00{0.00
Es 0.00 0.00 0.00 0.00 1.00 0.80 (0.23) *| 0.50 {0.00{0.00{0.00
o 0.00 0.00 0.00 0.00 0.80 (0.23) * 1.00 0.50 (0.00{0.00{0.00
As 0.00 0.00 0.00 0.00 0.50 0.50 1.00 |0.00(0.00(0.00
Cinf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (1.00{0.10{0.60
b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |0.10{1.00{0.10
h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 |{0.60{0.10|1.00

* Real values are presented between brackets.

During the probabilistic analysis it was evaluated the applied load and the bending moment
at fixed support, respectively, for each measured and computed displacement and pinned

support reaction. Figure 5.21 shows the obtained results for the situation of nominal values. It
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is verified that the experimental data is within the 95% confidence interval for the majority of
evaluated points. Obtained index-i presents a value of 91.34% (beam 1) and
92.03% (beam 2), for applied load, and of 93.90% (beam 1) and 92.30% (beam 2), for
bending moment at fixed support [122]. The most accurate model is, in this case, the

bending moment at fixed support one.

When applying the Bayesian inference to nominal values it is obtained the results given by
Figure 5.22. In this case the index-i is of 89.54% (beam 1) and 89.81% (beam 2), for applied
load, and of 88.99% (beam 1) and 87.89% (beam 2), for bending moment at fixed
support [122]. This indicates that the Bayesian inference did not improve the accuracy of

both numerical models. The most accurate model is, in this case, the applied load one.

Figure 5.23 gives the obtained results with values from model identification in service phase.
In this case the index-i is of 91.99% (beam 1) and 91.98% (beam 2) for applied load, and of
92.55% (beam 1) and 92.62% (beam 2), for bending moment at fixed support. By comparing
with models obtained for nominal values, it is possible to conclude that there is not any
increase on the accuracy of both numerical models. The most accurate model is still the

bending moment at fixed support one.

501 20r
40 ~15
= <
£30 - <
3 e S10 o T
820/ = 3
o (9]
s 4 5k
10r s:”” . I i
---Experimental Data ---Experimental Data
0 ‘ ‘ —Confidence Interval ‘ ‘ ‘ — Confidence Interval
0 0.002 0.004 0.006 0.008 0.01 O0 1 2 3 4 5 6
Displacement (m) Bending moment (kN.m)
a) b)
Figure 5.21. Nominal values without Bayesian Inference.
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Figure 5.22. Nominal values with Bayesian Inference.
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Figure 5.23. Model identification (service) without Bayesian Inference.

When applying the Bayesian inference to obtained values from model identification in service
phase it is obtained the results given by Figure 5.24. Obtained index-i presents a value of
96.11% (beam 1) and 96.25% (beam 2), for applied load, and of 95.46% (beam 1) and
94.52% (beam 2), for bending moment at fixed support. The Bayesian inference improved, in

this situation, the accuracy of both numerical models. The applied load model becomes the
most accurate one.
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Figure 5.24. Model identification (service) with Bayesian Inference.

Figure 5.25 indicates the obtained results with values from model identification until failure
load. In this case, the index-i is of 95.19% (beam 1) and 94.88% (beam 2), for applied load,
and of 94.49% (beam 1) and 93.11% (beam 2), for bending moment at fixed support. It was
verified that both models gave, in this situation, excellent results. There was an improvement
on both the applied load and bending moment model, comparing with nominal values and
those from model identification in service phase. The most accurate model is, in this case,
the applied load one.
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Figure 5.25. Model identification (failure) without Bayesian Inference.

6

When applying the Bayesian inference to obtained values from model identification until
failure load, it is obtained the results given by Figure 5.26. Obtained index-i presents a value
of 96.04% (beam 1) and 95.91% (beam 2), for applied load, and of 92.91% (beam 1) and
90.94% (beam 2), for bending moment at fixed support. The Bayesian inference only

improved the applied load model. The most accurate model is still the applied load one.
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Figure 5.26. Model identification (failure) with Bayesian Inference.

In this case, a set of failure load (Fg) values is obtained. A Normal PDF, which represents the
structural resistance, is then adjusted to this set. Obtained resistance PDF parameter values
are indicated in Table 5.24. On the same table it is also given the obtained index-p for each

tested beam and for each numerical model [119, 122].

From the analysis of these results, it is possible to conclude that: (1) Obtained mean and
standard deviation with nominal values and with values from model identification until failure
load are higher than the ones obtained with values from model identification in service
phase; (2) The Bayesian inference approach increased the mean and standard deviation of
obtained resistance PDF; (3) Obtained index-p value for beam 2 is, in most cases, higher
than the one obtained for beam 1; (4) In majority of situations, the Bayesian inference

approach increased the index-p value. Obtained index-p values are very good, being, several
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times, higher than 90%, which indicates accurate resistance PDF curves. Obtained
resistance PDF with values from model identification until failure load, considering the
Bayesian inference, presents the highest index-p values, considering both tested beams.

Results from model identification in service phase are the poorer ones.

Table 5.24. Failure load (FRg).

Index-p [%0]
Numerical model M [kN] o [kN]
Beam 1 Beam 2
Nominal values 28.49 3.79 94.58 99.35
Nominal values + 31.69 4.19 97.09 92.24
Bayesian inference
Model identification 25.12 3.37 88.06 91.31
(service)
Model identification
(service) + Bayesian 27.82 3.66 92.90 98.73
inference
Model identification 27.79 371 92.82 98.66
(failure)
Model identification
(failure) + Bayesian 29.07 3.84 96.12 97.79
inference

Figure 5.27 indicates the resistance PDF, whose parameter values (mean and standard
deviation) are presented in Table 5.24. Obtained resistance curves with nominal values and
with values from model identification until failure load data are almost identical. The
resistance PDF due to model identification in service phase presents a lower mean and
standard deviation. An important conclusion is that the resistance PDF mean and standard

deviation increased with the use of Bayesian inference.

In this case, a set of maximum bending moment at fixed support (Mg, ) values is obtained. A
Normal PDF, which represents the structural resistance, is then adjusted to this set.
Obtained resistance PDF parameter values are indicated in Table 5.25. On the same table it
is also given the obtained index-p for each tested beam and for each numerical model [119,
122].
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Figure 5.27. Failure load (Fg).
Table 5.25. Maximum bending moment (Mgy).
Index-p [%0]
Numerical model M [KN.m] o [kN.m]
Beam 1 Beam 2
Nominal values 5.81 0.90 85.76 92.11
Nominal values + 6.16 0.94 87.69 96.54
Bayesian inference
Model identification 5.23 071 86.47 87.69
(service)
Model identification
(service) + Bayesian 5.49 0.66 87.97 89.81
inference
Model identification 5.49 0.73 86.82 89.34
(failure)
Model identification
(failure) + Bayesian 5.80 0.77 87.23 92.24
inference

From the analysis of these results it is important to conclude that: (1) Obtained mean and
standard deviation with nominal values are higher than the ones obtained with values from
model identification; (2) The Bayesian inference increased the mean of obtained
resistance PDF; (3) In majority of situations, the Bayesian inference increased the standard
deviation of resistance PDF; (4) Obtained index-p value for beam 2 is higher than the one
obtained for beam 1; (5) The Bayesian inference approach increased the index-p value.
Obtained index-p values are good, being, in some situations, higher than 90%, which

indicates accurate resistance PDF. Obtained resistance PDF with nominal values,
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considering the Bayesian inference, presents the highest index-p values, considering both

tested beams. Results from model identification in service phase are the poorer ones.

Figure 5.28 presents the resistance PDF, whose parameter values (mean and standard
deviation), are indicated at Table 5.25. It is possible to identify that the obtained
resistance PDF with values from model identification until failure load is located among the
others. Obtained resistance PDF with nominal values, considering or not the Bayesian
inference, are the ones that give the highest mean. The Bayesian inference approach
increased the mean and standard deviation of maximum bending moment at fixed support,
except for model identification in service phase.
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Figure 5.28. Maximum bending moment (Mg1).
5.7. Safety assessment

Obtained resistance model is then used in a simple example of safety assessment. This
example consists in assessing the studied beam safety in a residential building. Two
analyses were developed, respectively one for pinned-pinned (Figure 5.29a) and other for
pinned-fixed beams (Figure 5.29b).

In this situation, loading is divided into self-weight and live load. All the other permanent

loads were neglected. Self-weigh (w) is computed through equation (5.24),
W= yconc |}conc + ysteel |}Steel (524)

being yonc and e the concrete and reinforcing steel specific weight, and Acone and Ageel the
concrete and reinforcing steel area. These parameters present a Normal PDF, according to
JCSS [93]. Therefore, self-weight presents a Normal PDF.
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Live loads are divided into: (1) sustained or long-term (qy), defined by a Gamma PDF [93];
and (2) intermittent or short term (qs;), defined by an exponential PDF [93]. The applied load
(p) is the sum of self-weight with both long and short-term live load component multiplied by
the influence length of the beam (L), which is, in this situation, 6.0 m. This value is given by

equation (5.25). Table 5.26 provides the mean and standard deviation of each PDF.
p=w+ qlt |:I]'inf + qst |:I]'inf (525)

Table 5.26. Probabilistic models.

Parameter PDF M o
Jeonc [kN/m®] Normal 24.00 0.96
Jeteel [kN/m®] Normal 77.00 0.77
Qe [kN/m?] Gamma 0.30 0.45
Ot [KN/m?] Exponential 0.30 0.57

5.7.1. Pinned-pinned beams

In this case, the resistance model is given by the failure load model (Fr), whose parameters
are provided at Table 5.21. A model is obtained for each analysis, respectively, considering
the nominal values and those from model identification in service phase and until failure load.
In order to compare resistance and loading curves it is necessary to transform this model into

a model for maximum bending moment at middle span (Mg), through equation (5.26),
Mg = (F [2)/20/2 (5.26)

This model depends on the beam span (L) which is, in this situation, 1.50 m. A Normal PDF
is obtained for resistance. The further step consists in computing the maximum bending

moment (Ms), through equation (5.27),
M =(pd?)/8 (5.27)

A Lognormal PDF is then adjusted to obtained data. A limit state function (Z), which
compares resistance and loading curves, is then defined through equation (5.28),

Z =M, M (5.28)

The limit state is exceeded when loading is higher than resistance. The further step consists

in generating values for each curve, according to each PDF parameters, and to register the
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number of values in which this limit state is exceeded in relation to the total number of

evaluated points. The failure probability (Py) is determined through equation (5.29),
P =P(Z<0) (5.29)

The reliability index (B) is then obtained, considering this value. A detailed description of how
this index is computed is given in chapter four. Table 5.27 presents both failure probabilities

and reliability indexes for all models.

a) b)

Figure 5.29. Residential building: a) pinned-pinned beams; b) pinned-fixed beams [121].

Through the analysis of this table, it is possible to conclude that obtained B-value considering
the values from model identification until failure load is identical to the one considering
nominal values. An increase on B-value is verified when considering the values from model
identification in service phase. However, and according to Table 5.21, this model presents a
low reliability. Accordingly, the most accurate result is the one considering the values from

model identification until failure load.

In this example, the building is of class 2 (apartment building — risk to life, given a failure, is
medium or economic consequences are considerable) and of class B (normal cost of safety
measure), according to JCSS [93]. Therefore, a target reliability index (Biamge:) Of 3.3 is

recommended. This will permit to conclude that the assessed beam is safe.

Table 5.27. Safety assessment.

Numerical model P+ B
Nominal values 2.55*10™ 3.48
Model identification (service) 1.00*10™ 3.72

Model identification (failure) 1.72*10* 3.51
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5.7.2. Pinned-fixed beams

In this situation, due to the fact of being one degree hyperstatic, the collapse mechanism is
characterized by two plastic hinges, located at fixed support and beside the point load that is
close to the pinned support. Therefore, the limit state function (Z) is composed by two
equations, one for each plastic hinge. In this case, the resistance and loading model for

maximum bending moment are respectively compared in each equation.

In this case, the resistance model is given by the failure load model (Fr), whose parameters
are provided at Table 5.24, and by the maximum bending moment at fixed support
model (Mg,), whose parameters are given at Table 5.25. A model is obtained for each
analysis, respectively, considering the nominal values and those from model identification in

service phase and until failure load, considering or not the Bayesian inference.

Therefore, it is necessary to transform these models into a model for maximum bending
moment at fixed support (Mg;) and beside the point load that is close to the pinned
support (Mg,). Consequently, the maximum bending moment at fixed support (Mg;') is
computed for each generated value of failure load model (Fgr), according to the static

equilibrium equations, (5.30),
M5, =0.125[F, [L (5.30)

If Mg, is lower than Mg;, then Mgy = Mg, and Mg, is computed through the static
equilibrium equations. If Mg, is higher than Mg;, then Mg; = Mg, . In this case, the load

intensity (Fry), Necessary to obtain Mg, , is computed through equation (5.31),
M;, =0.125 F,, [L - Fy, =8.0M,, /L (5.31)
In this case, Mg is obtained in other way, (5.32),

Mg, =0.250 [{F; —Fg, )L +0.1875F,, [L =

Mg, =0.250 [{F, —8.0 (Mg, /L)L +0.1875 (B.0 M, = (5.32)
M., =0.250 [F, [L —0.5M,

Both Mg; and Mg, models depend on the beam span (L) which is, in this situation, 1.50 m.
These models are represented by a Normal PDF. The further step consists in computing the

maximum bending moment at fixed support (Ms;) through the static equilibrium

equations, (5.33),

M, =(p°)/8 (5.33)
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In this situation the maximum bending moment beside the point load that is close to the
pinned support (Ms,) is computed through the static equilibrium equations. However, if Ms; is
higher than Mg;, Ms; needs to be computed in other way. In this case, the load intensity (p,),

necessary to obtain Mg;, is computed through equation (5.34),
Mg, =(p,01%)/8 - p, =8 Mg, / L’ (5.34)
In this case, Ms; is obtained through equation (5.35),

Mg, =((p - p,) 1%) /8 +0.0625 Op, 1% -
M, =((p ~8 My, /1?)11) /8+0.0625 B M,, /L* 1° - (5.35)
Mg, =p?/8-0.5M,

A Lognormal PDF is then adjusted to obtained data. A limit state function (Z), which
compares resistance and loading curves, is then defined through equation (5.36),

7 _{MRI_MSI

=M =M (5.36)

Rz~ WVis2

The limit state is exceeded when loading is higher than resistance. The further step consists
in generating values for each curve, according to each PDF parameters, and to register the
number of values in which this limit state is exceeded in relation to the total number of

evaluated points. The failure probability (Py) is determined through equation (5.37),
P =P(Z<0) (5.37)

The reliability index (B) is then obtained, considering this value. A detailed description of how
this index is computed is given in chapter four. Table 5.28 presents both failure probabilities

and reliability indexes for all models [121].

Table 5.28. Safety assessment.

Numerical model P+ B
Nominal values 1.40 *10° 4.20
Nominal values + Bayesian inference 5.00 * 10° 4.42
Model identification (service) 4.22*10° 3.93
Model identification (service) + Bayesian inference 1.65*10® 4.15
Model identification (failure) 1.97 *10° 411
Model identification (failure) + Bayesian inference 1.30*10° 4.21
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Through the analysis of this table, it is possible to conclude that obtained 3-value considering
the values from model identification until failure load is lower than the one considering
nominal values. A decrease on B-value is verified when considering the values from model
identification in service phase. An increase on B-value is verified with Bayesian inference. In
this case, and according to Table 5.24 and 5.25, the most accurate result is the one

considering nominal values and Bayesian inference.

In this example, the building is of class 2 (apartment building — risk to life, given a failure, is
medium or economic consequences are considerable) and of class B (normal cost of safety
measure), according to JCSS [93]. Therefore, a target reliability index (Biarger) Of 3.30 is

recommended. This will permit to conclude that assessed beam is safe.
5.8. Conclusions

This chapter describes the probabilistic assessment of two different sets of reinforced
concrete beams, a pinned-pinned and other pinned-fixed supported, which were tested in
laboratory up to failure. In order to do so, a nonlinear numerical model was developed and
further simplified, without changing too much its accuracy. A sensitivity analysis was further
developed in order to identify the critical parameters, from material, geometry or physic

source. Some of these parameters were detailed characterized at laboratory.

A model identification procedure was then executed to update the numerical model with
measured data. To perform that an optimization technique, based in the evolutionary
strategies algorithm in its plus version, was used. Both modelling and measurement errors
were considered in an optimization algorithm stopping criteria. This process was developed

for both service and failure region.

A nonlinear probabilistic analysis was then executed. In order to do so a PDF was defined for
each critical parameter. Some of these PDF were then updated with results from laboratory
characterization tests, through a Bayesian inference approach. In some cases, the statistical
uncertainty was reduced with this process. A probabilistic analysis, based in a LHS

procedure, was further executed.

From the probabilistic analysis it was obtained an updated resistance PDF for applied load,
in the situation of pinned-pinned beams, and also for maximum bending moment at fixed
support, for the case of pinned-fixed beams. It was then possible to probabilistically evaluate
the experimental behavior of each tested beam by comparing those curves with obtained
experimental data. These resistance PDF models are then used in a safety assessment

example.
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Some conclusions were obtained from probabilistic assessment: (1) model identification until
failure load gives very good results (errors less than 10%); (2) model identification in service
phase gives good results only for service region. Obtained results for failure region are bad.
Complementary tests are thus recommended in this situation; (3) the most accurate models
from a probabilistic analysis are those with values from model identification until failure load.
Therefore the application of model identification before any probabilistic analysis is
recommended; (4) Bayesian inference also increases the accuracy of probabilistic models.
Therefore it is recommended the use of this procedure when complementary data is

available.
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6.1. Introduction

The probabilistic assessment of two composite beams that were tested at laboratory, up to
failure, is presented in this chapter. The purpose of such analysis is to probabilistically
assess the behavior of composite structures, by taking into consideration all sources of
uncertainty. In order to perform this, it was necessary to develop first a nonlinear numerical

model.

This model was then simplified by reducing both the finite element mesh size and load step
increment. Simplification is an important step as computational cost is a relevant issue on the
use of such methodology. With the same purpose, a sensitivity analysis was executed too.
The objective of such study is to evaluate the influence of each parameter on the overall
structural behavior. The most important parameters were then identified.

Afterwards, model identification was developed. During this procedure, material (concrete
and steel), geometry and physic (steel-concrete interaction) parameters are adjusted in an
automatic way, so that numerical results best fit obtained experimental data. A robust
optimization technique is then incorporated. Both modeling and measurement errors were
introduced in this analysis. This procedure is important as it permit to obtain an updated

deterministic numerical model of evaluated structure.

A nonlinear probabilistic analysis was developed. Therefore, it was necessary to define,

according to bibliography, each input parameter probability density function (PDF). Those
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PDF were then updated through a Bayesian inference procedure and taking into
consideration results from laboratory characterization tests. Such tests were executed to
determine some properties of used materials and of steel-concrete interface. An updated

resistance PDF is then obtained, necessary for a safety assessment procedure.

Different resistance PDF of composite beams was then computed for different levels of
updating, specifically, considering or not model identification and Bayesian inference
procedures. Obtained results were then compared to measured data. The influence of both
model identification and Bayesian inference procedures is pointed out on a safety

assessment example.
6.2. Experimental tests

Tested composite beams are made up of a laminated steel profile connected to a solid
lightweight concrete slab through headed stud steel connectors [118, 120, 121, 188, 189],
according to Figure 6.1a. These beams, with a span length of 4.50 m (L), are pinned-pinned

supported, according to Figure 6.1b.

The lightweight concrete slab is designed to resist to compressive stresses when the beam is
submitted to bending moments. A lightweight concrete, classified as LC 50/55 according to
EN 1992-1-1 [48], was used. The concrete slab presents a width of 350 mm (bg.,) and a

thickness of 60 mm (hgap)-

Two layers of reinforcing steel wires spaced of 10 cm (4¢3.80), classified as S500B
according to EN 1992-1-1 [48], were used in lightweight concrete slab, according to Figure
6.1a. This corresponds to a total steel area (As;) of 0.91 cm?. The concrete inferior (ciy) and

superior (Csyp) cover is of 10 mm.

An IPE 120 laminated steel profile, in S275 steel according to EN 1993-1-1 [49], was chosen
to guarantee that the composite cross section is of class 1, according to EN 1994-1-1 [50],
and that the neutral axis is positioned at concrete slab when the beam is submitted to
bending moments. The top surface of steel beam is greased with concrete mould releasing

agent in order to eliminate adherence between steel and concrete.

The steel-concrete connection is provided by headed stud steel connectors. They are
fabricated with steel type St-37-3-K according to regulation DIN 17 100 [159], which
corresponds to S235J2G3+C450 according to EN 10025 [44, 131]. These connectors are
welded to the steel beam and then concreted inside the lightweight concrete slab in order to

guarantee that it works as a unique element.
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One of the tested beams is designed for total connection, designated by beam 1, as the
cross section ultimate strength does not depend on connection resistance [118, 120, 121,
188, 189]. In order to do that, shear studs are uniformly disposed along the beam span,
guaranteeing a full shear connection. The adopted distribution is of 8 studs in half beam
span. The considered distance between studs, and according to Figure 6.1b (top), is of
0.29 m (dy) and 0.17 m (d,). This means that failure occurs on a composite element, before

the connection failure happens. This beam was tested with 31 days of concrete age.

The other tested beam, labeled as beam 2, presents a distribution of 4 studs in half beam
span [188, 189]. The shear connection, in this situation, is only partial. The distance between
studs is, and in agreement with Figure 6.1b (bottom), of 6.25 * 10" m (d,) and 3.25 * 10" m
(dp). For this situation, a connection failure is expected. This beam was tested with 35 days

of concrete age.

These beams were submitted to a short-term static load with two closely spaced
concentrated loads (F) on beam middle span region, according to Figure 6.1b (L = 0.15 m),
approaching to a single concentrate load [118, 120, 121, 188, 189]. Loads were applied by a
hydraulic actuator positioned at beam middle span. This actuator is connected to a load cell
with a resolution of 0.05%. A steel plate was used to divide the load cell into two equal loads.
This division intends to avoid stress concentration on beam middle span and the possibility of
concrete crushing. The supports, placed symmetrically, are materialized with two hinges
which allow the support rotation. A Teflon sheet is placed in a hinge to permit the sliding in

horizontal direction. The vertical displacement is restricted in both hinges.
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Figure 6.1. Scheme of tested beam, adapted from Valente [188]: a) transversal;

b) longitudinal (half span).
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Developed test is divided in four steps [188]: (1) load control: cyclic loading varying 25 times
between 2 and 15 kN, with a rate of 0.50 kN/s; (2) load control: constant increasing load
from 2 to 20 kN; (3) displacement control: linear increase of displacement at beam middle
span, with a rate of 0.02 mm/s, until a total displacement of 70 mm; (4) displacement control:

taking the beam up to failure, with a rate of 0.05 mm/s.

During laboratory test it was measured the applied load, by a load cell located inside the
actuator, and the quarter and middle span vertical displacement, by different displacement
transducers (LVDT) [118, 120, 121, 188, 189]. Used displacement transducers present a
measurement field of + 25.00 mm (quarter span) and of + 50.00 mm (middle span), a
sensitivity of 33.00 mV/V/mm (quarter span) and of 28.00 mV/V/mm (middle span) and an
accuracy of 0.10 %. Figure 6.2 presents an image of the developed test.

Both beams present an identical collapse mechanism, characterized by a plastic hinge
located in the region between applied loads (Figure 6.3a). In respect to obtained failure
modes, beam 1 suffered a bending failure. Concrete crushes near the point load, with a
longitudinal crack at middle height of concrete section, growing towards the beam middle
span. The steel reinforcement near the crushing zone shows some local buckling. Beam 2
suffered a bending failure associated to a shear connection failure. Concrete crushes near
the point load and, at final stages of test, stud failure takes place. For this beam, tensile
cracks appear at bottom face of concrete slab. Additionally, a horizontal slip between steel
profile and concrete slab is visible. Figure 6.3b and 6.3c, respectively, presents an image of

obtained failure mode for beam 1 and 2.

Figure 6.2. Experimental test [188].
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Figure 6.3. Collapse mechanism [188]: a) scheme; b) beam 1; ¢) beam 2.

Obtained experimental results are presented in Figure 6.4 and 6.5, respectively, for beam 1
and 2. From the analysis of these results, an elastic behavior is observable at initial phase of
the test, as there is an approximate linear relation between applied load and deflection value.
This is expected as all materials present an initial elastic behavior too and a total
compatibility between steel and concrete materials is verified for lower loads. A loss of
stiffness is then verified as the increase in applied load is smaller while deformation keeps
the same growing rate. Both beams present a ductile behavior due to a significant vertical
deformation while the maximum applied load is kept almost constant.

For beam 1, with total connection design, failure is conditioned by concrete. In this situation it
is verified that: (1) bending failure occurs before shear connection failure; (2) the connection
behavior is rigid; and (3) the connection presents an ability to develop higher slip
deformations when failure happens.
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Figure 6.4. Experimental data (beam 1): a) quarter span displacement; b) middle span

displacement.
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Figure 6.5. Experimental data (beam 2): a) quarter span displacement; b) middle span

displacement.

Beam 2 shows a lower stiffness as it presents larger deformation for the same load level.
This aspect is more or less observable since the beginning of the test and was expected
because less shear studs has the consequence of more load being applied to each
connector, which results in higher deformation at the steel to concrete interface. In this
situation, the beam load capacity is conditioned by the connection load capacity. It was also
verified that shear connector failure occurs almost simultaneously with concrete slab

crushing.

In experimental tests it was verified that slip values for partial connection (beam 2) are
significantly higher than those for total connection (beam 1) [188]. In fact, partial connection
design keeps bending failure from occurring previously to shear failure and, therefore, high
values of slip develop before failure. Additionally, vertical deflection is influenced by
connection deformability as a high vertical deflection is attained for partial connection. Ductile
behavior of composite beams results not only from ductile behavior of steel acting together

with lightweight concrete but also of shear connection ductile behavior.

The connection deformability also changes the longitudinal shear flow. The connectors
positioned near supports become more loaded than those at beam middle span. As only
small friction forces are developed between concrete slab and steel beam, due to applied
mould releasing agent, all shear forces are transmitted through connectors. For partial
connection, the connection deformability has an important influence on reducing the shear
flow value. When connection behavior is no longer elastic, shear flow is reduced and an
important loss of composite action takes place. Consequently, the composite beams flexural

stiffness is affected by the loss of composite action between steel profile and concrete slab.

For both beams, the yielding of steel section lower fibbers should occur before concrete

cracking on slab lower fibbers. The connection deformability and the loss of composite action
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induce a redistribution of stress within the cross section, which results in successive changes
of the neutral axis position. The yield of steel section results in a higher neutral axis. As the
neutral axis initial position is supposed to be close to the concrete slab, it is probable that if it
changes its position, tensile stresses will appear at concrete slab lower fibbers, leading it to
crack. Table 6.1 presents, for each tested beam, the failure load (Fr) and the corresponding

vertical displacement (0g).

Table 6.1. Failure load (Fr) and corresponding vertical displacement (dg) [188].

Beam Failure load [kN] Displacement [mm]
1 23.86 129.80
2 21.20 239.50

6.3. Numerical analysis

A nonlinear finite element model developed with software ATENA® [23, 24], that considers
both shear connection and materials nonlinear behavior, was used to analyze the behavior of
tested composite beams [118, 120, 121, 188, 189]. The defined geometry is previously
presented in Figure 6.1, in accordance with experimental specimens. Used materials,

concrete and steel, and also the interface law were defined by a set of parameters.

The existence of a curvature ratio between both flanges and the web of the IPE 120
laminated steel profile makes the numerical representation more difficult. In order to
overpass it, a simplification is developed in order to take into account such curvature. Such
simplification is made by equating the area and inertia of the real steel profile to an
equivalent one. Therefore, the web height (hyep) and flanges thickness (hgne and hqg,p) are
determined, maintaining the flange width (b and bgsy,) and the total height
(h =120.00 mm) of the real steel profile. Figure 6.6 represents the equivalent steel profile

with the computed dimensions.

Figure 6.7a presents the concrete material stress-strain law. In the tensile region, the
diagram is described by a linear initial step until tensile strength (f) is reached and then by a
decreasing exponential part. The fracture energy (Gy) is proportional to the area of this
region. In the compressive region, the behavior is characterized by an initial parabolic phase,
until compressive strength (fi.) is reached, and then by a decreasing linear part, designated
by softening. The concrete elasticity modulus (E), the compressive strain at compressive

strength (&) and the critical displacement (w,q) are parameters that define this region.

The same stress-strain law is used to simulate both reinforcement bars and laminated steel

profile, as indicated in Figure 6.7b and 6.7c. This material presents an identical behavior
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when in compression and tensile region. It is characterized by an initial linear phase in which
the material presents a typical elastic behavior, following a hardening region, from material
yielding until failure. The initial phase is characterized by an elasticity modulus (Es; and Es )
until the yield strength is reached (o,, and oy,). The second part is characterized in a
different way for reinforcement and for steel profile. In the former case, it is defined by a limit
strain (&m;) and strength (oy,) while, for the latter, it is only described by a hardening

modulus (Hp), presenting no failure criteria.

b ,sup N
'__—' — Biint = 64.00 mm
i byen = 4.40 mm
<— bwes bf,sup = 64.00 mm
{ . hyinf = 6.60 mm
s O hwer = 106.80 mm
'———' - hisup = 6.60 mm

Figure 6.6. Equivalent steel profile (nominal values).

ml————— =

: Emml £c) Ep
| L
I | Esi Es.p
G
| / i Ekc I Hp
—_— ey - -t ——0vp

~Wid L——"

a) b) C)
Figure 6.7. Stress-strain law: a) concrete; b) reinforcing steel; c) steel profile.

Used materials, concrete and steel, were modeled by an SBETA and a bilinear with
hardening Von Mises material model, which are constitutive models of the ATENA®
library [23, 24]. A biaxial stress failure criterion and a Von Mises yield criterion are
respectively established. The nominal values, considered in numerical model, were those
indicated at EN 1992-1-1 [48], for concrete and steel reinforcement, and in EN 1993-1-1 [49]

for steel profile. Table 6.2, 6.3 and 6.4 present those values.
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In respect to lightweight concrete material, its density (o) was estimated to be 1811.50 kg/m®
according to bibliography [188]. For this material, the elasticity modulus (E), the tensile
strength (fy) and the compressive strain at compressive strength (¢¢) can be determined
through the following equations (6.1), (6.2) and (6.3) [48],

E, =E, ). =37.0[0.68 = 25.09GPa (6.1)
f, =f [, =4.10(0.89 =3.67GPa (6.2)
&, = k0, /(1.05E, (. ) =1.00 (58.00/(1.05 [37.00 [0.68) = 2.20 %o (6.3)

being ne = (0/2200)* = 0.68, n, = 0.40 + 0.60 * p/2200 = 0.89 and k = 1.00 (lightweight
aggregate).

The connection between concrete slab and steel profile, provided by headed stud steel
connectors, is modeled with an interface material model [23, 24]. This model is based on a
Mohr-Coulomb criterion with tension cut-off. This law is given in terms of shear (7) and
normal stresses (0). According to Figure 6.8a, the initial failure corresponds to the moment
when cohesion (c) value is reached. After stress violates this condition, the relation between

these stresses is given by the dry friction (¢) that is considered to be very low.

For shear stresses, and for positive slip (Aur), this law is characterized by an initial shear
stiffness (Ktt), until the Mohr-Coulomb criterion is reached, and then it presents a minimum
shear stiffness (Krrmin) that is 1% of Ky (Figure 6.8b). This behavior tries to replicate the
relation between shear stress and slip at steel to concrete interface, measured in push-out
tests. For normal stresses, and for positive uplifts (Auy), it is defined by an initial normal
stiffness (Kyn) until the tensile strength (f;) is reached. Once attained, the normal stress is
reduced to 0, being this law defined by a minimum normal stiffness (Kyn min) that is 1% of Kyy
(Figure 6.8c).

Table 6.2. Material properties (concrete).

Parameter Value

Elasticity modulus (Eic) [GPa] 25.09

Tensile strength (fi) [MPa] 3.67

Compressive strength (fic) [MPa] 58.00

Fracture energy (Gy) [23, 24] [N/m] 91.75

Compressive strain at compressive strength (&) [%0] 2.20
Critical compressive displacement (wiq) [23, 24] [m] 1.50* 107
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Table 6.3. Material properties (reinforcing steel).

Parameter Value

Elasticity modulus (Es;) [GPa] 200.00

Yield strength (oy,) [MPa] 500.00
Limit strength (ou,) [MPa] 540.00 (k = 1.08)

Limit strain (&im,) [%0] 50.00

Table 6.4. Material properties (steel profile).

Parameter Value

Elasticity modulus (Esp) [GPa] 210.00

Yield strength (oy,p) [MPa] 275.00
Hardening modulus (Hp) [GPa] 1.04

The parameter values considered on this model are dependent on shear stud and concrete
material. Normal stiffness (Kyy) and tensile strength (f) values are obtained from stud
behavior in tension. Both these parameters are assumed to present high values in order to

guarantee that the connection is working when submitted to normal stresses.
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Figure 6.8. Interface law: a) normal and shear stress; b) shear stress and slip ¢) normal

stress and uplift.

The cohesion (c) or maximum stress at interface element, and shear stiffness (K1) values
are respectively determined through equations (6.7) and (6.10) [118, 120, 121, 188, 189].
These values are different from beam 1 to beam 2 as the number of studs change. The
cohesion value depends on the stud maximum load capacity (Pgrm). This value is determined
according to EN 1994-1-1 [50] by using the following equations (6.4), (6.5) and (6.6),
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P =0.80, 0d*/4 = 47.78kN (6.4)
P =0.29 & [®° O/f,, (E,, =53.19kN (6.5)
a=0.20{h,/d +1) =0.97 (6.6)

in which, d is the diameter of the stud shank equal to 13 mm, hg is the overall stud height
equal to 50 mm, f, is the ultimate tensile strength of stud material equal to 450 MPa, ais a
parameter that depends from the ratio hs. / d = 3.84, E, is the concrete elasticity modulus
(Table 6.2), fix the characteristic concrete compressive strength equal to 50 MPa. The
characteristic value of stud maximum load capacity (Prx = 47.78 kN) is the minimum value of
expression (6.4) and (6.5). The mean value (Prm = 53.09 kN) is then obtained by dividing this
value per 0.90, according to EN 1994-1-1 [50]. By considering this value it is then possible to
determine the cohesion nominal values for both situations of total (8 studs) and partial
connection (4 studs) through equations (6.7), (6.8) and (6.9),

_ (stud maximum load capacity Chumber of studs in half span)

c=
(width of the interface Chalf span length) (6.7)

_ (53.0908)
~ (6.400107 [2.25)

02.95MPa (6.8)

_ (53.09 ™)
~ (6.40107 (2.25)

01.47MPa (6.9)

A similar procedure is considered to determine the shear stiffness (Ky7). In order to obtain
such parameter it is necessary to compute the stud stiffness value. However, this value is
extremely difficult to quantify as it depends from several factors. Accordingly, it was defined a
value of 220 kN/mm based on bibliography [188, 189]. By taking this value into consideration
it is then possible to determine the shear stiffness for both situations of total (8 studs) and
partial connection (4 studs), through equations (6.10), (6.11) and (6.12). Table 6.5 presents

the considered values to define the interface model.

_ (stud stiffness Chumber of studs in half span)

™ (width of the interface Chalf span length) (6.10)
. (2200B) 012222.2(2) kN/m?/mm (6.11)
" (6.40m07 2.25) :
(220 ™) .
- 06111.1(1)kN/m?/mm (6.12)

- 6.40 107 [R.25
( )
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Table 6.5. Interface properties.

Value
Parameter
Beam 1 Beam 2
Normal stiffness (Knn) [MPa] 1.00 * 10’ 1.00 * 10’
Shear stiffness (Krr) [MPa] (per mm) 12.2(2) 6.1(1)
Tensile strength (f) [MPa] 1.00 * 10° 1.00 * 10
Cohesion (c) [MPa] 2.95 1.47

With the purpose of reducing the computational cost, only half of the beam was modeled,
taking advantage of existent symmetry (Figure 6.1b). In order to do that it was necessary to
introduce horizontal supports along the symmetry line. Additionally, a vertical support was
included in the model to simulate real supports. A uniform finite element mesh composed by
guadrilateral elements, for concrete slab and steel profile, by truss elements, embedded in
concrete slab, for reinforcing steel, and by interface elements, for steel-concrete connection,
was adopted [23, 24].

Additional considerations were taken when developing the numerical model, in order to
adequately simulate the laboratory test. A displacement control numerical test was used in
whole numerical analysis. Two different load cases were considered, respectively, one
representing the real supports and other the applied displacement. A downward increment of
1.00 * 10" m was considered for the applied displacement. In order to avoid high local
stresses in both support and load point, a steel plate was placed in such positions. A
Newton-Raphson nonlinear search algorithm was used. Adopted parameters are present on
Table 6.6. During the analysis, the quarter and the middle span displacements were

monitored, according to Figure 6.1b, and also the applied load.

Table 6.6. Solution parameters (Newton-Raphson).

Solution method Newton-Raphson
Stiffness / Update Tangent / Each iteration
Iterations number limit 50
Error tolerance 1.00 * 10
Line search With iterations

The computational cost issue becomes relevant in both model identification and probabilistic

analysis procedures, in which numerous analyses of the same numerical model are realized.
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In order to overcome this problem, the developed numerical model is simplified by reducing
the mesh size and increasing the step length. Therefore, three different meshes (18620,
4934 and 318 elements) and two load steps (270 steps with different factors and 700 steps
of factor 2.0) are considered. The 270 steps are respectively divided in: (1) 15 steps of
factor 20; (2) 10 steps of factor 15; (3) 10 steps of factor 10; (4) 45 steps of factor 5; and
(5) 190 steps of factor 3. Figure 6.9 present a mesh constituted by 4934 elements. The
performance of each model was studied with the same computer, in order to assure identical
computational conditions. In this situation, the applied load error was computed through

equation (6.13),
N =(F -F)/F[%] (6.13)

where F,' indicates the applied load in step i and Fo' is the applied load for the same step in
the reference numerical model. This model is considered to be that with a more refined mesh
and with a lower step length. The maximum and minimum A-values are then obtained and
the sum of their absolute values is computed. Finally, the applied load error (6) is determined

by dividing this value per two. Obtained results are indicated in Table 6.7.

The chosen model for subsequent analysis, and according to obtained results, is the
number 3. In fact, and by comparing with reference model number 0, models number 4 and 5
present a higher error. Moreover, model number 1 and 2 present a higher computational
cost. The numerical model for beam 2 is the same as for beam 1. The only difference is that
for beam 2 more load steps, respectively, 270 steps of factor 5, are added to those from

model 3 as the vertical deflection increases, rising the computational cost too.

Table 6.7. Simplification results.

Numerical model Finirt]irilsg:ent Step number Computational time [s] AppliedGFIo[z(;od] error-
0 18620 700 39334.94
1 18620 270 28096.33 0.20
2 4934 700 5444.82 0.30
3 4934 270 2493.79 0.44
4 318 700 952.38 4.14
5 318 270 440.24 4.38

Figure 6.10a (top) indicates the deformation, crack pattern in concrete slab and horizontal

strains of analyzed beam 1, for chosen numerical model and considering the nominal values.

179



Chapter 6. Composite Beams

In this case the collapse mechanism is characterized by the presence of a plastic hinge in
the middle span region. A bending failure mode, with concrete crushing and yielding of steel
profile is obtained. Figure 6.10b (top) indicates interface stresses between concrete slab and
steel profile. It is possible to observe that cohesion value (blue) is only reached in a small
region of the interface. Obtained behavior is similar to experimental one, validating the

developed numerical model.

Figure 6.10a (bottom) provides the deformation, crack pattern in concrete slab and horizontal
strains of analyzed beam 2, for chosen numerical model and considering the nominal values.
The collapse mechanism is described by a plastic hinge which appears in middle span
region. Figure 6.10b (bottom) indicates the interface stresses between concrete slab and
steel profile. The cohesion value (blue) is reached along the whole interface. Obtained failure
mode is bending with concrete crushing and yielding of steel profile, together with a lack of
capacity to redistribute more shear stress along the steel-concrete interface. Obtained

behavior is similar to experimental one, validating the developed numerical model.

Figure 6.9. Numerical model (finite element mesh).

Figure 6.10. Numerical model (top: beam 1; bottom: beam 2): a) failure mechanism;
b) interface stresses.

Both numerical models indicate that due to the existence of slip at steel to concrete interface
a redistribution of stresses is verified at interface [188, 189]. A higher failure load is obtained
for beam 1 (total connection). In this case, a total redistribution of stresses is verified. The
shear stresses redistribution along the beam is possible due to the high deformability of
connectors. Although, if such deformation capacity is not guaranteed, then connectors
positioned close to supports suffer failure right after the maximum stress is installed. This is

verified for beam 2 (partial connection).
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6.4. Model identification

The aim of a model identification methodology is to rearrange a set of numerical parameters
in such a way that the numerical response best fits the existent experimental data [118, 120,
121]. This fact converts this kind of analysis into a typical optimization problem. In this case,
the optimization function is based in an approximation between numerical and experimental
data, and the objective is to obtain the curve which best adapts to existent experimental data.

A detailed description of this function is given in chapter four.

The optimization algorithm that was used during this analysis was the evolutionary strategies
in its plus version [29]. It begins with an initial population of critical parameter values,
generated randomly, and then, using the evolutionary operators, new populations are
generated. A final population is extracted for each run. A detailed description of this algorithm
is given at chapter two. This algorithm is processed with different starting points. An engineer
judgment procedure, based in the probability of occurrence of each individual, is developed
to determine the most suitable individual, from those previously extracted. This procedure is

detailed described in chapter four.

When using this procedure, multiple runs of the same numerical model are necessary. In
each run, the fitness function value, which characterizes the approximation between
experimental and numerical curves, is computed. The identification stops when one of the
previously defined algorithm stopping criteria is achieved. One of these criteria consists in
establishing that the improvement on minimum fitness function value, obtained from two
generations separated of a pre-specified gap, should be less than or equal to a threshold
value. This value is computed through the law of propagation of uncertainty [90, 91, 92],
detailed described at chapter four. It may be interpreted as the methodology precision, once

obtained results become more accurate with its decrease.

Model identification computational cost depends on the number of parameters to be
optimized. A sensitivity analysis is performed to identify the critical parameters, or, in other
words, those that present a higher influence on the structural behavior [120]. This analysis
consists in studying the fitness function variation with each input parameter. An importance
measure (by) was then obtained for each evaluated parameter. A detailed description of this
measure is given in chapter four. If this value is equal or higher than 10% (b;.,), the

parameter will be considered as critical.

Two sensitivity analyses were developed, one for service phase and other until failure load.
The analysis in service phase identified different combinations of values for critical

parameters that lead to very good results. However, the majority of these combinations lead
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to bad results in an analysis until failure load. This is important to highlight as model
identification is typically performed with data from load test, and the majority of load tests are
developed in service phase. Therefore, although a good approximation of registered data is
obtained, this does not mean that the structure behavior until failure load is perfectly
characterized. In order to overcome this, other complementary tests such as nondestructive

tests (NDT), laboratory characterization tests and visual inspections should be executed.

Studied variables are related to material, geometry and physic parameters. It was
respectively varied a standard deviation (o) from each parameter mean value. In order to
compute each standard deviation (o), the following coefficient of variations (CV) were
established [51, 93, 102, 135, 159, 190]: (1) concrete elasticity modulus (E.): 10%;
(2) concrete tensile strength (fy): 20%; (3) concrete compressive strength (fi.): 10%;
(4) concrete fracture energy (Gg): 10%; (5) concrete compressive strain at compressive
strength (g¢): 10%; (6) concrete critical displacement (w,g): 10%; (7) Steel profile elasticity
modulus (Esp): 5%; (8) steel profile yield strength (oy,): 5%; (9) steel profile hardening
modulus (Hp): 20%; (10) reinforcing steel elasticity modulus (Es)): 5%; (11) reinforcing steel
yield strength (oy,): 5%; (12) reinforcing steel limit strength (o,,): 5%; (13) reinforcing steel
limit strain (&im;): 15%; (14) interface shear stiffness (Kr): 10%; (15) interface
cohesion (c): 12.5%; (16) steel profile bottom flange width (by): 2%; (17) steel profile web
thickness (bweb): 2%; (18) steel profile top flange width (b su): 2%; (19) concrete slab
width (bgap): 10%; (20) reinforcing steel area (Ag)): 2%; (21) steel profile bottom flange
thickness (hyin): 2%; (22) steel profile web height (hyep): 2%; (23) steel profile top flange
thickness (hgsup): 2%; (24) concrete slab height (hgap): 10%; (25) inferior concrete
cover (Cinr): 20%; (26) superior concrete cover (Cs,p): 20%. Figure 6.11 and 6.12 gives the

obtained results for beam 1.

From the analysis of Figure 6.11, it is possible to identify as critical parameters, respectively,
those related to used materials, namely, concrete elasticity modulus (E.) and steel profile
elasticity modulus (Es;), and geometric ones, as slab width (bsa,) and height (hsap), the steel
profile web thickness (bweb) and height (hyep), the superior flange width (by su,) and the inferior
flange thickness (hgin). In fact, for lower intensity loadings, used materials, according to
Figure 6.7a, 6.7b and 6.7c, are working in elastic region, being their elastic properties the
most important ones. Accordingly, from 26 possible parameters, only 8 of them were

considered, reducing so the computational cost in the model identification procedure.

The analyzes of Figure 6.12 shows that critical parameters identified during the analysis for
service phase still present a significant influence in structural behavior until failure load. In

this evaluation all concrete parameters become critical. From all these parameters it is
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important to indicate those that describe its behavior in compression. These parameters
present a higher impact as a bending failure with concrete crushing is identified. The same
way, steel profile parameters, with exception of hardening modulus (H,), are critical as steel
material yields before concrete crushing. In respect to interface parameters, for higher loads,
the maximum stress at interface element is reached in some regions. Consequently, the
cohesion parameter (c) becomes an important parameter too. In a general way, the
geometric parameters related to concrete slab and laminated steel profile dimensions, with
exception of inferior flange width (bg;x), present a high influence on structural behavior. In
this situation, from 26 possible initial parameters, only 16 were considered in the study,

reducing then the computational cost.
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Figure 6.11. Importance factor (service).
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Figure 6.12. Importance factor (failure).

The sensitivity analysis performed for beam 2 is identical to that developed for beam 1. In
fact, both numerical model and evaluated parameters are the same for these beams. The
difference consists in some of the interface parameters, namely, shear stiffness (Kt) and

cohesion (c), for which the nominal values are different. The importance measures of these
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two parameters are then determined for beam 2. A value of 0.00 % and of 9.99 %, for the
analysis for service phase, and, of 13.62 % and of 4.04 %, for the analysis until failure load,
respectively, for cohesion and shear stiffness parameters were obtained. As expected, there
is an increase in shear stiffness importance measure in service region but not sufficient to be

considered as critical.

Once the numerical model and critical parameters, to be optimized, are identified, the further
step is the application of proposed model identification methodology. In this case, both
guarter and middle span displacements were measured during the laboratory test
(Figure 6.1b). The results from these two measurements are presented in two independent
graphics, namely, the applied load (F) plotted against the quarter span displacement (81/4)
and against the middle span displacement (81,,). The fitness function is, in this situation, a
combination of two different measurements. It is characterized by the approximation between
numerical and experimental values for applied loads. Before running the model identification
methodology, it is necessary to determine the threshold value (¢) that defines the fitness
function convergence criteria. In order to compute it, a division of uncertainty types, in

experimental and numerical ones is necessary.

The sources of experimental uncertainty are, in this situation: (1) Sensor accuracy (0.20%)
that includes the displacement transducer precision, and the cable and acquisition equipment
losses [68, 154]; (2) Load intensity (0.10%) which includes the load cell resolution and the
cable and acquisition equipment losses [68, 154]; (3) Load positioning, environmental effects

and vibration noise which effects may be neglected in this case.

In this case, only the load intensity component will be considered when computing the
experimental uncertainty for quarter span displacement. This component presents a uniform
PDF (Type B) and so, according to JCGM [90, 91, 92], it should be divided by V3, obtaining
then the result of 5.77*10° %. The experimental data is linearly dependent on this
component (dy®?/ox = 1.00 kN). The experimental uncertainty is then computed through
equation (6.14) [90, 91, 92],

u? =1.00° [{5.77 ELO’2/100)2 =3.33107 kN* ~ u,,,  =5.77010"* kN (6.14)

exp Ay4-F

An identical procedure is used for computing the experimental uncertainty for middle span

displacement. This value is given by equation (6.15) [90, 91, 92],

W, =100°[{5.77102/100) =3.330107 kN? - u,,
F Ay

&P g5y

_=57700" kN (6.15)

o

In respect to numerical uncertainty, it is indicated the following sources: (1) Finite element

method accuracy (0.34%, 614 — F; 0.74%, &1, - F), determined by comparing the previous
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numerical model with other with a higher number of load steps [69]; (2) Mesh refinement
(0.70%, 0y - F; 1.42%, 0./, - F), obtained by comparing the previous numerical model with
other with a more refined mesh [69]; (3) Model exactitude and considered hypothesis (e.g.

consideration of supports as point loads) may be neglected in this situation.

In this case, both finite element method and mesh refinement effects will be considered when
computing the numerical uncertainty for quarter span displacement. These components are
represented by a uniform PDF (Type B) and so, according to JCGM [90, 91, 92], they should
be divided by V3, obtaining then the result of 0.20% and of 0.40%, respectively. The effects
of both components on numerical results are linear (dy™"/dx = 1.00 kN). The numerical

uncertainty is then computed through equation (6.16) [90, 91, 92],

u? =1.00% [{0.20/200)° +1.00% [{0.40/100)° =2.02[10°° kN - Ung, . = 449107 kN (6.16)

numg, , ¢

An identical procedure is used to determine the numerical uncertainty for middle span

displacement. This value is given by equation (6.17) [90, 91, 92],

u? =1.00? [{0.43/100)" +1.00% [{0.82/100)° =8.5510° kN’ - Ungm,,_, =9-2510°kN (6.17)

num, ¢

Once the experimental and numerical uncertainties are computed, it will be possible to
determine the fitness function uncertainty. In order to obtain this value, it is necessary to
compute the partial derivative of the fitness function in respect to both experimental and
numerical data. These values vary with tested beam as they are proportional to maximum
applied load (8f/oy™™ = of/oy®™® = 1/max(y>*) =4.20*10kN™). The fitness function uncertainty
in respect to quarter span displacement is given by equation (6.18) [90, 91, 92],

w2, =(4.200102) f5.7710) +(4.20102) (f4.49110°) =3.6010°° — u

5 +=19000" (6.18)

61/4

The fitness function uncertainty in respect to middle span displacement is obtained through

an identical procedure. This value is given by equation (6.19) [90, 91, 92],

. =3.8810" (6.19)

w2 . =(4.2000?) f5.7710%) +(4.20m07?) ff9.26 10°)" =1.51107 — u, _

%y

The global fitness function value is obtained through the square root of the sum of the square
of these components. In order to determine the global uncertainty, the partial derivative of the
fitness function in respect to each component is computed (0f/6fs1/,.r = oflofsy4r = 1.00). This

value is then computed through equation (6.20) [90, 91, 92],

u,? =1.00” [{3.88 ELo"‘)2 +1.00” [f1.90 ELO"‘)2 =1.87107 - u, =4.32010™ (6.20)
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The improvement on global fithess function minimum value (Af) from two generations,
separated of a specified gap (n), is given in chapter four. Accordingly, and assuming that the
partial derivative of the improvement in respect to each component is unitary
(0Aflofi., = 0Aflof, = 1.00), it is possible to obtain the respective uncertainty value through
equation (6.21) [90, 91, 92],

u,® =1.00° {4.32 ELo“‘)2 +1.00” [{4.32 ELo“‘)2 =3.73007 - u, =6.11010™ (6.21)

As all uncertainty sources are from Type B a coverage factor (k) of 2 should be adopted [90,
91, 92]. The fitness value criterion establishes that the respective improvement (Af) should
be less than or equal to the threshold value (¢). Correspondingly, this value is obtained by
multiplying that determined from expression (6.21) by factor k. The obtained value from the

analysis in service phase is determined in a similar way.

For beam 2, the same laboratory equipment and numerical model that was adopted for
beam 1 is used. Consequently, the only difference on threshold values computation remains
on the derivative of fithess function in respect to experimental and numerical results, as the
maximum experimental load is different in this situation
(ofloy™™ = oflay®™® = 1/max(y>®) = 4.70 * 10" kN™). Obtained threshold values, for beam 1

and 2, are indicated in equation (6.22),

Service - £=8.0010™ =0.08%

beam 1: i
Failure - £€=1.20107 =0.12%

(6.22)
Service - £=9.0010" =0.09%

beam 2: )
Failure — £=2.50107° =0.25%

This means that, for instance, for beam 1, if the improvement in minimum fitness function
value, until failure load, of a population from two generations separated of a specified gap (n)
is, respectively, less than or equal to 0.12% than the algorithm stops, as the fitness function
convergence criteria is achieved. This means that it is not meaningful to improve the fitness

function of a value that is less than or equal to the precision itself.

The evolutionary strategies algorithm in its plus version [29] is further executed. In this case,
it was defined a parent population (u) and parent for recombination (p) of 10 and 20
individuals, and an offspring population (A) of 50 and 75 individuals, respectively, for service
and failure analysis. Other stopping criteria, like the maximum number of generations (1000),
were also considered. The generation gap (n) used for the fitness function criteria is
proportional to this number. It was established that this value is 10% of the specified

maximum generation’s number. Therefore, the improvement on minimum fitness value is
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evaluated from a gap of 100 generations. Once the algorithm stops, a population, constituted

by different individuals, is obtained.

The respective algorithm is processed with different starting points. An engineer judgment
procedure is developed to determine the most suitable individual, from those previously
extracted. This individual is constituted by a set of values, a value for each critical parameter.
Tables 6.9 and 6.10 present the nominal values and individuals obtained from model
identification in service phase and until failure load, respectively, for beam 1 and 2. In the
same table, between brackets, the bias factor, which represents the ratio between the
identified and the nominal value for each variable, is also presented. When applying this
methodology in service phase, not only the critical parameters, as already identified during
the sensitivity analysis, but also their optimal values, may differ from the application until

failure load.

By analyzing the results from Table 6.8 it is possible to conclude that: (1) Obtained value for
concrete parameters from model identification until failure load is close to the nominal one,
with exception of the compressive strain at compressive strength (g¢). A higher value is
obtained for compressive strength (f.) and for critical displacement (w,g). A lower value is
obtained for elasticity modulus (E,.), for tensile strength (f;) and for fracture energy (Gy). For
model identification in service phase the elasticity modulus (E,.) presents a higher value, far
from the nominal one; (2) Obtained value for reinforcing steel parameter from model
identification is slightly higher than the nominal one; (3) In respect to cohesion parameter,
obtained value from model identification until failure load is close, although slightly higher, to
the nominal one, (4) In respect to geometry parameters, obtained values from model
identification are close to nominal ones. Exceptions are found for the inferior flange
thickness (hq ), in situation of model identification in service phase, and for the web

thickness (byen), in the case of model identification until failure load.

While obtained values from model identification in service phase indicate a higher quality
concrete material, those obtained from model identification until failure load indicate that its
quality is close to the expected. In respect to steel material, the results revealed a higher
quality than expected. Initial prediction of steel-concrete interface model is confirmed by
model identification until failure load. Steel profile dimensions are close to those expected in
design for both model identification procedures and for the majority of assessed parameters.
The slab geometry is close to that predicted in design. Obtained values from model

identification until failure load are the closest to nominal ones.
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Table 6.8. Model identification results (beam 1).

. Model identification
. Nominal
Numerical model value
Service * Failure *
Eic [GPa] 25.09 30.00 (1.20) 23.71 (0.94)
fir [MPa] 3.67 3.67 () 3.56 (0.97)
fic [MPa] 58.00 58.00 () 59.19 (1.02)
Concrete
K G [N/m] 91.75 91.75 (-) 91.18 (0.99)
[}
s i [%o] 2.20 2.20 () 2.69 (1.22)
Wid [m] | 1.50*10° 1.50 * 107 (-) 1.51*107° (1.01)
Esp | [GPa] | 210.00 230.00 (1.10) 215.65 (1.03)
- Steel profile
S op | [MPa] | 275.00 275.00 (-) 297.98 (1.08)
IS
©
§ Physic c [MPa] 2.95 2.95 (-) 3.00 (1.02)
Bueb [mm] 4.40 4.20 (0.95) 5.22 (1.19)
bsip | [mm] 64.00 63.00 (0.98) 63.95 (1.00)
bsan | [mm] 350.00 348.63 (1.00) 353.83 (1.01)
Geometry hiint [mm] 6.60 7.60 (1.15) 6.64 (1.01)
hweb [mm] 106.80 106.04 (0.99) 106.89 (1.00)
hsup [mm] 6.60 6.60 (-) 7.21 (1.09)
hsiab [mm] 60.00 61.26 (1.02) 62.14 (1.04)

* Bias factor is presented between brackets.

By analyzing the results from Table 6.9 it is possible to conclude that: (1) Obtained value for
concrete parameters from model identification until failure load is close to the nominal one,
with exception of the tensile strength (fy), compressive strain at compressive strength (&)
and critical displacement (wyg). A higher value is obtained, with exception of the tensile
strength (f;). For model identification in service phase the elasticity modulus (E.) also
presents a higher value, far from the nominal one; (2) Obtained value for steel profile
elasticity modulus (Es) from model identification is close to the nominal one. Obtained steel
profile yield strength (oy,) from model identification until failure load is higher than the
nominal one; (3) In respect to cohesion parameter, obtained value from model identification
until failure load is close, although slightly higher, to the nominal one, (4) In respect to

geometry parameters, obtained values from model identification are close to the nominal
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ones. An exception is verified for the inferior flange thickness (hgi) When developing the

model identification in service phase.

Table 6.9. Model identification results (beam 2).

. Model identification
. Nominal
Numerical model value
Service * Failure *
Eic [GPa] 25.09 30.00 (1.20) 26.73 (1.07)
fir [MPa] 3.67 3.67 () 3.16 (0.86)
fic [MPa] 58.00 58.00 (-) 58.93 (1.02)
Concrete
K G [N/m] 91.75 91.75 (-) 91.67 (1.00)
[O]
s &1 [%o] 2.20 2.20 () 2.80 (1.27)
Wid [m] 1.50*10°% | 1.50*107°(-) 1.71 %107 (1.14)
Esp [GPa] 210.00 216.51 (1.03) 199.75 (0.95)
. Steel profile
£ Oyp [MPa] 275.00 275.00 (-) 350.00 (1.27)
IS
©
§ Physic c [MPa] 1.47 1.47 () 1.55 (1.05)
Dweb [mm] 4.40 4.80 (1.09) 4.79 (1.09)
b sup [mm] 64.00 63.74 (1.00) 63.81 (1.00)
Dsiab [mm] 350.00 354.91 (1.01) 349.56 (1.00)
Geometry i inf [mm] 6.60 7.60 (1.15) 6.50 (0.98)
hweb [mm] 106.80 106.92 (1.00) 106.86 (1.00)
hti,sup [mm] 6.60 6.60 (-) 6.60 (1.00)
Nslab [mm] 60.00 59.49 (0.99) 59.85 (1.00)

* Bias factor is presented between brackets.

Obtained values from model identification in service phase indicate a higher quality concrete
material. However, those obtained from model identification until failure load indicate that its
quality is close to the expected. Obtained values from model identification revealed a higher
quality steel material than expected. Initial estimate for steel-concrete interface is confirmed
by model identification until failure load. Steel profile dimensions are close to those expected
in design for both model identification procedures and for most of assessed parameters. The
slab geometry is close to that predicted in design. Obtained values from model identification

until failure load are the closest to nominal ones.
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Comparing both results, obtained for beam 1 and 2, it is possible to conclude the following:
(1) Obtained values from model identification for beam 1 are the closest to nominal ones;
(2) The concrete quality is close to initially predicted; (3) Reinforcing steel material presents a
higher quality than initially expected; (4) Initial estimate of steel-concrete interface is
confirmed; (5) Concrete slab dimensions are close to what was predicted in design; (6) Steel

profile geometry is close to what was expected in design.

In Figure 6.13 and 6.14 the applied load (kN) is plotted against the quarter and the middle
span displacement (m), respectively, for beam 1 and 2, for measured data and for numerical
results, considering the nominal values, and those from model identification in service phase
and until failure load. By studying both figures it is possible to conclude that model

identification until failure load presents the numerical curve that best fits the experimental

data.
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Figure 6.13. Numerical results (beam 1).

For beam 1, the obtained failure mode was identical in both experimental and numerical tests
corresponding to a bending failure with concrete crushing and vyielding of the steel profile.
This beam presents an initial elastic behavior. In this situation a good agreement between
experimental data and numerical results is obtained for all situations. A loss of stiffness is
then verified for load values higher than 0.50 Fg. This fact is visible as the increase in load
values is smaller while deformation keeps the same growing rate. For these ratios of load it is
verified in numerical model that the steel section low fibbers are close to yielding strain which
means that the first nonlinear behavior is conditioned by steel section. In respect to
numerical results, this is the point where they start to differ from each other. Considering the
experimental data to be the reference, the model which results first deviate from that ones, is
the one with nominal values, for a load equivalent to 0.50 Fg. For a load equivalent to 0.70 Fg
the first cracks appear at concrete slab. For this ratio, the obtained model from model

identification in service phase starts to diverge. Finally, the obtained model from model
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identification until failure load follows the experimental data until Fr. Consequently, the
numerical model that presents a failure load close to Fr is the one due to model identification
until failure load. The other two models present so lower loads, being the lowest failure load

the one due to numerical model considering the nominal values.
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Figure 6.14. Numerical results (beam 2).

For beam 2, in both experimental and numerical tests the obtained failure mode was
identical, respectively, a combination of a bending failure with concrete crushing and yielding
of the steel profile with a lack of capacity of redistributing more shear stresses along the steel
to concrete interface. When studying, in detail, its behavior, it is possible to conclude that it is
similar to the one of beam 1. However, a loss of stiffness is verified for a lower ratio. In fact,
the nonlinearity appears at ratios of around 0.45 F,.. For this situation, both the steel beam
yielding and the concrete cracking are not conditioning the nonlinear behavior of composite
beam, as the strain values for both materials are far from those limits. Therefore the
nonlinear behavior is due to steel to concrete connection. The rest of its behavior until failure
is identical to that described for beam 1. Nevertheless, this beam presents a lower failure
load which results from the fact that the connectors shear capacity is accomplished at the
whole interface, meaning that the beam has no more capacity to redistribute loads.

Additionally, this beam presents a higher ductility as all the connection capacity is achieved.

Table 6.10 indicates the minimum fitness function values obtained by considering the
nominal values and those from model identification in service phase and until failure load for
beam 1. It is verified that obtained value from model identification in service phase is lower
than that determined until failure. In fact, in service region, experimental and numerical
results are closer than for higher applied loads. Nevertheless, for these two situations the
applied methodology revealed an important improvement of this value. In fact, this

improvement is, for both situations, higher than 80% which is really impressive.
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Table 6.10. Minimum fitness function values (beam 1).

Fitness function
Numerical model Service Failure
Value [%)] Improvement [%] Value [%)] Improvement [%0]
Nominal values 4.65 - 19.35
Model identification 0.80 82.80 2.13 88.99

In Table 6.11 It is indicated the minimum fitness function values obtained by considering the
nominal values and those from model identification in service phase and until failure load for
beam 2. The improvement on fitness function value, obtained in this situation, is slightly
lower than that determined for beam 1. In this situation, as the number of parameters to
optimize is the same, this is due to an increase in the number of necessary points to

compute the fitness function.

Table 6.11. Minimum fitness function values (beam 2).

Fitness function
Numerical model Service Failure
Value [%)] Improvement [%] Value [%)] Improvement [%]
Nominal values 3.85 - 20.43
Model identification 0.95 75.33 5.82 71.51

Table 6.12 indicates failure load (Fr) and the corresponding displacement (6g), measured at
beam middle span for beam 1. Obtained values from model identification until failure load are
those that present a lower error. In fact, it is possible to verify that, when applying the
methodology in service phase, the model identification is performed for this region, being not
possible to guarantee the curve fitting for the failure region. Obtained error for the situation of

model identification until failure load is less than 10%, which is considered to be very good.

Table 6.13 indicates the values obtained for beam 2. By analyzing these results, it is possible
to conclude that model identification until failure load provides the most accurate failure
load (Fr). Moreover, a higher improvement is verified for displacement at failure load (r)
when developing model identification in service phase. However, when considering this
model, a smaller improvement on failure load is obtained. Therefore, the most accurate
model is that given by model identification until failure load. This confirms the obtained

results for beam 1.
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Table 6.12. Failure load (Fr) and corresponding vertical displacement (o) (beam 1).

Failure load Displacement
Numerical model
Value [kN] Error [%] * Value [mm] Error [%] *
Nominal values 19.99 16.22 122.66 5.50
Service 21.06 11.74 105.03 19.08
Model identification
Failure 23.26 2.51 119.79 7.71

* Comparing with the real failure load and correspondent displacement.

Table 6.13. Failure load (Fr) and corresponding vertical displacement (ég) (beam 2).

Failure load Displacement
Numerical model
Value [kN] Error [%] * Value [mm] Error [%] *
Nominal values 17.18 18.97 262.76 9.71
Service 17.41 17.88 244.06 1.90
Model identification
Failure 20.04 5.47 273.70 14.28

* Comparing with the real failure load and correspondent displacement.

6.5. Characterization tests
6.5.1. Concrete material

The concrete in composite beams is a lightweight LC50/55 [48]. Some parameters that
represent the stress-strain law curve were determined through characterization tests.
Respectively, the compressive strength (f) was obtained by uniaxial compression
tests [136], the elasticity modulus (E,) by specific compression tests [109], and both the
concrete tensile strength (f) and fracture energy (Gy) by fracture energy tests [155].
Additional tests were developed to determine the concrete over-dry density. It was obtained

a mean value of 1811.5 kg/m® which confirmed the initial estimation.

The concrete specimens were produced at same time of corresponding beam and later
tested at same date. The same mixture was used for every specimen but as casting was
developed in different dates, slight variations on concrete properties were expected. Each
cylinder from uniaxial compressive tests presents 300 mm of height and 150 mm of
diameter (Figure 6.15a). Identical dimensions were adopted for tested cylinders to determine
the elasticity modulus (Figure 6.15b). Each beam from fracture energy test present, as

dimensions, 850 mm of length by 100 mm of height and 100 mm of width. A notch with
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25 mm of depth and 5 mm of thickness was executed in each proof. These beams, with a

span of 800 mm were submitted to a middle span point load until failure (Figure 6.15c).

Figure 6.15. Laboratory tests [188]: a) uniaxial compression test; b) modulus of elasticity test;

c) fracture energy test.

Compressive tests on cylinders proved that the compressive strength evolution in time is not
significant, especially from 28 days. Two reasons explain this fact, respectively, the used
cement CEM | 52.5 R, which confers high initial strength to concrete, and a lightweight
aggregate characteristic referred by many authors [17]. Accordingly, it was considered on
this study all values obtained from concrete cylinders with 28 days or more. It were used for

such analysis the results from 203 different tests for compressive strength.

For elasticity modulus a similar conclusion was obtained. In fact, for the first days of concrete
age this value tends to grow faster but, after 28 days of age, it tends to stabilize, growing
slower. Accordingly, it was considered on this analysis all tests developed in concrete
cylinders with 28 days or more. However, in this situation, the number of developed tests is a
little lower. It was respectively considered the results from 186 tests.

Both tensile strength and fracture energy present a reduced evolution in time. This is
specially verified for concrete specimens with 28 days or more. Consequently, all tests
performed in specimens with an age equal or higher than 28 days were considered.
Accordingly, the results from 5 fracture energy tests were adopted on this analysis.

A statistical analysis was then developed for each parameter. Both mean and standard
deviation value were determined (Table 6.14). A bias value, which represents the ratio
between the experimental and the nominal value, is also presented for each variable.
Obtained values are close to one, which means that obtained data is close to nominal value.
However, this is not verified for fracture energy (Gy) as obtained values are lower than the

nominal ones. Coefficients of variation (CV) are all less than 10% which indicates that the
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variability of such parameters is small. The correlation coefficients (o;) between measured

parameters were also determined. Such values are presented in Table 6.15.

Table 6.14. Concrete parameters.

Parameter N\?;TLT' Mean value (u) * Standard deviation (o)
Elasticity modulus (Eic) [GPa] 25.09 24.81 (0.99) 2.23
Tensile strength (fi) [MPa] 3.67 3.78 (1.03) 0.16
Compressive strength (fic) [MPa] 58.00 58.32 (1.01) 4.97
Fracture energy (Gr) [N/m] 91.75 78.42 (0.86) 1.83

* Bias factor is presented between brackets.

Table 6.15. Correlation coefficients (o;) in concrete.

= fit fic Gir
Eic 1.00 * 0.70 *
fit * 1.00 * 0.79
fic 0.70 * 1.00 *
Gi * 0.79 * 1.00

* These parameters present no correlation as they were determined by different laboratory tests.

6.5.2. Steel material

In order to characterize used steel material in stud connectors, reinforcement bars and
laminated profile, uniaxial tensile tests were performed [139]. Tested specimens were
sampled from the same stud connectors, reinforcement bars and laminated steel profile,

used in push-out tests and in composite beams.

Due to the small size of headed studs (13 mm diameter), no experimental testing was done
for steel properties of this connecting devices. However, it was considered the obtained
values from tested studs with diameters of 19, 22 and 25 mm. The same occurred with
reinforcement bars. In fact the diameter of $3.80 was too small to be tested and, tests were
so developed with diameter of $5. 8 specimens of studs (Figure 6.16a), 3 of reinforcement

bars (Figure 6.16b), and 3 of laminated steel profile (Figure 6.16c) were tested.

Some parameters that represent the stress-strain law curve were determined through these
characterization tests. In respect to stud connectors, it is only present the results concerning
the ultimate strength. These values will characterize the tensile strength (f)) parameter used

in interface model. A statistical analysis was developed for each parameter and the
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respective mean and standard deviation were obtained. Results are presented on Table
6.16, 6.18 and 6.20. A bias value, which represents the ratio between the experimental and
the nominal value, is also presented. The correlation coefficients (o;) between measured

parameters were also determined. Results are given on Table 6.17 and 6.19.

a) b) c)
Figure 6.16. Laboratory tests [188]: a) stud; b) reinforcement; c) steel profile.

Obtained values indicate that bias factors are higher than one. This confirms that used
material is of better quality than expected in design. Obtained CV values are, in general,
lower than 5% which indicates a small variation of these properties. A higher CV of 12.50% is

obtained for steel profile hardening modulus.

Table 6.16. Steel parameters (laminated profile).

Parameter Nominal value Mean value (u) * Standard deviation (o)
Yield strength (oy,p) [MPa] 275.00 335.67 (1.22) 9.10
Hardening modulus (Hp) [GPa] 1.04 0.72 (0.69) 0.09

* Bias factor is presented between brackets.

Table 6.17. Correlation coefficients (o;) in steel (laminated profile).

Oy,p Hp
Oyp 1.00 0.63
Hp 0.63 1.00

Table 6.18. Steel parameters (reinforcement).

Parameter Nominal value Mean value (p) * Standard deviation (0)
Yield strength (oy,) [MPa] 500.00 583.41 (1.17) 8.02
Ultimate strength (oy,) [MPa] 540.00 606.06 (1.12) 8.32

* Bias factor is presented between brackets.
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Table 6.19. Correlation coefficients (o;) in steel (reinforcement).

Oy, Ou,l
Oy, 1.00 0.60
Ou,l 0.60 1.00

Table 6.20. Steel parameters (stud connectors).

Parameter Nominal value Mean value (p) * Standard deviation (o)

Tensile strength (f,) [MPa] 450.00 567.57 (1.26) 18.95

* Bias factor is presented between brackets.

6.5.3. Push-out tests

Several authors developed push-out tests with steel headed stud connectors in the past few
years [8, 60, 61]. These tests allows for a rigorous analysis on the shear connection behavior
by assessing the load-slip relation until failure and the respective failure mechanisms.
Obtained failure mode for stud connectors are by shear failure of used connector, by local

concrete crushing or by pull-out of a concrete cone.

Valente [188] developed push-out tests to study different connection types. This test tries to
simulate the transfer of shear forces at the steel to concrete interface of composite beams. At
this point it is only described and presented the results from standard push-out tests (POST)
on headed studs [50].

The geometry of tested specimens was the same. It was only considered specimens with
13 mm stud diameter as this is the diameter which is used in tested composite beams
(Figure 6.17a). The specimens, presented at Figure 6.18a, consists of two lightweight
concrete slabs held in vertical position, and of a steel HEB260 profile positioned between
them, with welded studs concreted inside the slab. The slabs present as dimensions
450 mm x 450 mm x 100 mm. Two layers of ¢5 reinforcement bars were embedded in

concrete slab. Figure 6.17b and c gives a scheme of tested specimens.

Shear failure on studs is identified on all tested specimens. The behavior until failure
between tested specimens is identical. It is characterized by an initial stiffer behavior,
followed by a plastic behavior, with a constant or slow increasing load capacity. The
maximum load values are very similar between developed tests. The lightweight concrete
slabs were observed for identification of crack pattern. There is spread cracking around the

stud position (Figure 6.18b). There is also some horizontal cracking between the two studs
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positioned at same horizontal level. Studs achieve important deformation before failure. No

cracking is observed at exterior face of concrete slab.

The first important result measured in these tests is the maximum applied load. This value,
divided by the number of similar connectors in each specimen, corresponds to the maximum
applied load (per connector) (Pma). Five different tests were respectively developed.
Obtained mean is of 56.74 kN and standard deviation of 1.73 kN. Then, different values of
this parameter are generated randomly, considering a Normal PDF and, by taking into

account equation (6.7), different cohesion values are also obtained.
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Figure 6.17. Push-out tests (mm) [188]: a) headed stud configuration; b) and c) specimen

geometry for POST tests.

a) b)
Figure 6.18. Laboratory tests [188]: a) testing frame; b) failure pattern on concrete slab.

The second important result is the connection stiffness (k) which is defined as a relation
between the percentage of maximum applied load (per connector) and the correspondent

slip value (s). These values are determined assuming an elastic behavior of connector until a
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percentage of maximum applied load (per connector) is reached (X is variable), through
equation (6.23) [188],

k ( X YR ) = PX%PmaX /SX%Pmax (6.23)

It is verified that all specimens present an elastic behavior until around 0.60 P In this
situation it was used 12 results for a % of maximum applied load between 0.40 and 0.65. A
mean of 196.01 kN/m and a standard deviation of 22.80 kN/m were obtained. Then, different
values of this parameter are generated randomly, considering a Normal PDF and, by taking

into account expression (6.10), different tangent stiffness values are also obtained.

Table 6.21 and 6.22 presents the results from this analysis for both beams, respectively, with
total (beam 1) and partial connection (beam 2). As the considered value of maximum applied
load (per connector) (Pmax) and of connection stiffness (k) is the same, the main difference

between both beams consists in the number of studs in half span.

Table 6.21. Interface parameters (beam 1).

Parameter N\c/);mneal Mean value (p) * Standard deviation (o)
Shear stiffness (K1) [MPa] (per mm) 12.2(2) 10.89 (0.89) 1.27
Cohesion (c) [MPa] 2.95 3.15 (1.07) 0.09

* Bias factor is presented between brackets.

Table 6.22. Interface parameters (beam 2).

Parameter Nominal value Mean value (p) * Standard deviation (o)
Shear stiffness (K1) [MPa] (per mm) 6.1(1) 5.44 (0.89) 0.63
Cohesion (c) [MPa] 1.47 1.58 (1.07) 0.05

* Bias factor is presented between brackets.

6.6. Probabilistic analysis

At this point a deterministic numerical model was developed and calibrated according to
obtained experimental data by using a model identification procedure. The next step of this
methodology consists in determining a reliable probabilistic numerical model that provides a
PDF for resistance [118, 120, 121]. This curve may be further used for structural safety
analysis, in which it is compared to a loading PDF [33, 123]. This analysis will be important to

help engineers in any decision regarding structural safety.
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The resistance curve of composite beams is obtained by considering the randomness of
some parameters, as those related to concrete slab (material and geometry), steel profile
(material and geometry) and interface between them. Used parameters were those
considered to be critical from previous sensitivity analysis. This uncertainty is introduced in
the probabilistic analysis by using a specific PDF for each parameter. The most used PDF
are the Normal ones. In some situations, for which the parameters cannot assume negative
values, a Lognormal PDF should be used instead. Those curves are defined by mean (u)
and standard deviation (o) value. In this case, these values are based either in experience,

when the information about the studied parameter is few, or in bibliography.

In respect to lightweight concrete parameters the existent information is few, since this
material is recently used in civil engineer structures. The work of Leming [102], of
Nowak et al. [135], of Valum and Nilsskog [190] and the results from the European Research
Project EuroLightCon [51] are important sources of the needed information. For steel
material, at laminated profile, and for slab and steel profile geometry the Probabilistic Model
Code [93] indicates the needed values. Finally, for the stud maximum load capacity the
present information is rare due to the fact of this capacity being dependent from used
concrete, from connector material and from developed welding procedures. Therefore, a
decision, based in experience, presents a very important role. Nevertheless, the work of
Roik et al. [159] is considered.

In some situations, when there is complementary data, the values of these parameters may
be updated through a Bayesian inference approach [15, 118, 120, 121]. This approach is
detailed described in chapter three. In this case, the updating procedure is based in collected
data from material (concrete and steel) and steel to concrete interface tests. The Bayesian
inference was developed by considering both informative and non-informative (Jeffrey’s)

prior. Considered posterior PDF is the one that presents the lowest standard deviation.

Once each critical parameter PDF is defined, the next step consists in random generation of
these parameter values to be used in a further probabilistic numerical analysis. This
procedure is based in a random sampling technique designated by Latin Hypercube
sampling (LHS) [144]. This procedure is detailed described at chapter four. Obtained results
are a set of computed values that can be statistically processed and adjusted to a Normal
PDF.

The beam behavior is strictly monitored during the whole analysis. Such procedure consists
in evaluating if each measured load for a specific displacement is within the numerical

95% confidence interval. An index-i is then used to study this. Another index, indicated as
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index-p, is used to evaluate the accuracy of obtained resistance PDF [118, 120]. A

description of these indexes is provided at chapter four.

A Normal and Lognormal PDF were considered for material, geometric and physic properties
of these beams. The mean values are the nominal ones or those obtained from model
identification in service phase and until failure load. The adopted coefficients of variation

were the same of previous sensitivity analysis. Those values are indicated on Table 6.23.

Table 6.23. Parameter values (beam 1).

Nominal value * Model identification (service) * Model identification (failure) *
Parameter
[ o) n o) 1l o)
Eic [GPa] 25.09 (24.81) | 2.51(2.20) | 30.00 (24.81) 3.00 (2.20) | 23.71(24.81) | 2.37(2.20)
fi [MPa] 3.67(3.78) | 0.73(0.28) 3.67 (3.78) 0.73 (0.28) 3.56 (3.78) 0.71 (0.28)
fie [MPa] 58.00 (58.31) | 5.80 (5.02) | 58.00 (58.31) 5.80 (5.02) | 59.19(58.31) | 5.92(5.02)
G [N/m] 91.75(78.33) | 9.18(7.13) | 91.75 (78.33) 9.18 (7.13) | 91.18(78.33) | 9.12(7.13)
i [%o] 2.20 0.22 2.20 0.22 2.69 0.27
Wig [m] 1.50*10 0.15*10° 1.50*10° 0.15*10° 1.51*10° 0.15*10°
Esp [GPa] 210.00 10.50 230.00 11.50 215.65 10.78
Gyp [MPa] |275.00 (337.61) |13.75 (37.75)| 275.00 (337.61) | 13.75 (37.75) | 297.98 (337.61) | 14.90 (37.75)
c [MPa] 2.95(3.12) | 0.37(0.10) 2.95 (3.12) 0.37 (0.10) 3.00 (3.08) 0.38 (0.10)
Buweb [mm] 4.40 0.09 4.20 0.08 5.22 0.10
brsup [mm] 64.00 1.28 63.00 1.26 63.95 1.28
Dsian [mm] 350.00 35.00 348.63 34.86 353.83 35.38
Nt [mm] 6.60 0.13 7.60 0.15 6.64 0.13
Nweb [mm] 106.80 2.14 106.04 2.12 106.89 2.14
hfi,sup [mm] 6.60 0.13 6.60 0.13 7.21 0.14
Nsiab [mm] 60.00 6.00 61.26 6.13 62.14 6.21

* Bayesian inference values are presented between brackets.

In such Table, and between brackets, it is presented the results from a Bayesian inference
procedure. In this situation, both materials (concrete and steel) and the interface parameter
cohesion were updated. In a general way, the Bayesian updating provided mean results
close to the nominal values and those from model identification. Exceptions are the concrete
fracture energy (Gy) and steel profile yield strength (oy,). Moreover, and with exception of

steel profile yield strength (oy,), for which obtained experimental data is far from numerical

201



Chapter 6. Composite Beams

results, the Bayesian inference procedure reduced the standard deviation values. The
Jeffrey’s prior is used in almost all situations, except for interface cohesion (c) in model

identification until failure.

Table 6.24 indicates the parameter values for beam 2, respectively, for material, geometric
and physic properties. A Normal and Lognormal PDF were considered for those parameters.
The mean values are the nominal ones or those from model identification in service phase
and until failure load. Considered coefficients of variation are the same as those used in
previous sensitivity analysis. In the same table, and between brackets, are indicated the
Bayesian inference values. In a general way, obtained results are similar to those for beam 1.
In this situation, the steel profile yield strength (oy,), from model identification until failure
load, is reduced with Bayesian inference. In this situation, the conjugate informative prior is

used. In the other cases the Jeffrey’s prior is used.

Table 6.24. Parameter values (beam 2).

Nominal value * Model identification (service) * Model identification (failure) *
Parameter
1l o 1l o 1l o
= [GPa] 25.09 (24.81) | 2.51(2.21) | 30.00 (24.81) | 3.00(2.21) | 26.73 (24.81) 2.67 (2.21)
fi [MPa] 3.67 (3.78) 0.73(0.28) | 3.67(3.78) 0.73 (0.28) 3.16 (3.78) 0.63 (0.28)
fie [MPa] 58.00 (58.31) | 5.80(5.02) | 58.00(58.31) | 5.80(5.02) | 58.93 (58.31) 5.89 (5.02)
G [N/m] 91.75(78.33) | 9.18(7.13) | 91.75(78.33) | 9.18(7.13) | 91.67 (78.33) 9.17 (7.13)
Eic [%o] 2.20 0.22 2.20 0.22 2.80 0.28
Wig [m] 1.50%10°® 0.15*10° 1.50%10°® 0.15*10° 1.71*10° 0.17%10°
Esp [GPa] 210.00 10.50 216.51 10.83 199.75 9.99
Gy [MPa] | 275.00 (337.61) |13.75 (37.75)| 275.00 (337.61) | 13.75 (37.75) | 350.00 (342.81) | 17.50 (24.63)
c [MPa] 1.47 (1.56) 0.18 (0.07) | 1.47 (1.56) 0.18 (0.07) 1.55 (1.56) 0.19 (0.07)
Buweb [mm] 4.40 0.09 4.80 0.10 4.79 0.10
brsup [mm] 64.00 1.28 63.74 1.27 63.81 1.28
Dsiab [mm] 350.00 35.00 354.91 35.49 349.56 34.96
Rt inf [mm] 6.60 0.13 7.60 0.15 6.50 0.13
Pweb [mm] 106.80 2.14 106.92 2.14 106.86 2.14
Nisup [mm] 6.60 0.13 6.60 0.13 6.60 0.13
Nsjan [mm] 60.00 6.00 59.49 5.95 59.85 5.99

* Bayesian inference values are presented between brackets.
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Table 6.25 indicates the used correlation values. Inside brackets are presented the real
values, obtained from characterization tests. These values are used in the analysis
considering the Bayesian inference. It is verified, in a general way, that real correlations are

not as strong as it was predicted in theory.

Table 6.25. Correlation coefficients (o;).

Erc fit fic Gt Esp Gyp

Eic 1.00 0.70 0.90 (0.70) * 0.50 0.00 0.00
fit 0.70 1.00 0.80 0.90 (0.79) * 0.00 0.00

fic 0.90 (0.70) * 0.80 1.00 0.60 0.00 0.00

Gy 0.50 0.90 (0.79) * 0.60 1.00 0.00 0.00
Esp 0.00 0.00 0.00 0.00 1.00 0.80
Fyp 0.00 0.00 0.00 0.00 0.80 1.00

* Real values are presented between brackets.

During the probabilistic analysis it was evaluated the applied load for each measured and
computed quarter and middle span displacement. In Figure 6.19 and 6.20 are presented the
results that correspond to a situation of nominal parameter values, respectively, for beam 1
and 2 models. Obtained index-i were, respectively, of 89.10% (beam 1) and
91.59% (beam 2), for quarter span, and of 89.75% (beam 1) and 92.65% (beam 2), for
middle span displacement. Obtained values are high which indicate that most of measured

points fall into computed confidence interval.
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Figure 6.19. Nominal values (beam 1) without Bayesian inference: a) quarter span; b) middle
span.

The application of a Bayesian inference procedure to nominal data values lead to the results
presented in Figure 6.21 and 6.22. In this situation obtained index-i were of 94.18% (beam 1)
and 96.07% (beam 2), for quarter span and, of 95.73% (beam 1) and 96.73% (beam 2), for
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middle span displacement. These values are higher than those presented before, which

indicates an increase on the accuracy of both models due to Bayesian inference.

In Figure 6.23 and 6.24 are presented the results with values from model identification in

service phase. It is important to mention that, for this situation, excellent results were

obtained for index-i, respectively, 94.31% (beam 1) and 94.74% (beam 2) for quarter span,

and of 94.56% (beam 1) and 94.28% (beam 2) for middle span displacement. By comparing

with obtained results with nominal parameter values it is possible to conclude that there is an

improvement on the accuracy of numerical model with model identification.

40;

(7]
o

N
L~

Load (kN)

10

Experimental Data
— Confidence Interval

0.05

0.1 0.15

Displacement (m)

a)

0.2

40r

Load (kN)
N w
CH

-
o
T

o

/

4
g

---Experimental Data
— Confidence Interval

0.05 0.1 0.15 0.2
Displacement (m)

b)

Figure 6.20. Nominal values (beam 2) without Bayesian inference: a) quarter span; b) middle
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Figure 6.21. Nominal values (beam 1) with Bayesian inference: a) quarter span; b) middle

span.
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Figure 6.22. Nominal values (beam 2) with Bayesian inference: a) quarter span; b) middle
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Figure 6.23. Model identification (service) (beam 1) without Bayesian inference: a) quarter

span; b) middle span.
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Figure 6.24. Model identification (service) (beam 2) without Bayesian inference: a) quarter
span; b) middle span.

Figure 6.25 and 6.26 indicate obtained results for the situation of data values obtained from
modal identification in service phase, but taking into consideration the Bayesian inference

procedure. Obtained index-i were of 95.73% (beam 1) and 94.76% (beam 2) for quarter
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span, and of 95.95% (beam 1) and 95.28% (beam 2) for middle span displacement. In this

situation the inference increased the accuracy of obtained models.

Figure 6.27 and 6.28 indicate the results obtained by considering data values from model
identification until failure load. The index-i were of 94.56% (beam 1) and 95.55% (beam 2),
for quarter span, and of 93.76% (beam 1) and 96.62% (beam 2), for middle span
displacement. It was verified that both models provided, in this situation, excellent results,
and, with exception of beam 1 for middle span displacement, an increase on its accuracy is

obtained with model identification.

The application of a Bayesian inference procedure to data values determined by model
identification until failure load provided the results presented in Figure 6.29 and 6.30. For this
situation the index-i were of 96.02% (beam 1) and 97.10% (beam 2), for quarter span, and of
96.74% (beam 1) and 97.59% (beam 2), for middle span displacement. An increase on its
accuracy is obtained with inference, for all analysed beams. Obtained models, and by

comparing with the others, are the most accurate ones.
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Figure 6.25. Model identification (service) (beam 1) with Bayesian inference: a) quarter span;

b) middle span.
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Figure 6.26. Model identification (service (beam 2) with Bayesian inference: a) quarter span;

b) middle span.
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Figure 6.27. Model identification (failure) (beam 1) without Bayesian inference: a) quarter

span; b) middle span.

40, 40r

30¢ 301
g <
5 20 ~ o0t ~ —
3 520 J—
i : /
- -

10r 100 f

Expe_rlmental Data ---Experimental Data
—Confidence Interval| _ X
0 e = Confidence Interval

0 0.05 01 0.15 0.2 0

4 0 0.05 0.1 0.15 0.2
Displacement (m) Displacement (m)

a) b)

Figure 6.28. Model identification (failure) (beam 2) without Bayesian inference: a) quarter
span; b) middle span.
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Figure 6.29. Model identification (failure) (beam 1) with Bayesian inference: a) quarter span;

b) middle span.
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Figure 6.30. Model identification (failure) (beam 2) with Bayesian inference: a) quarter span;

b) middle span.

In this case, a set of failure load (Fgr) values is obtained. A Normal PDF, which represents the
structural resistance, is then adjusted to this set. Obtained resistance PDF parameter values

for beam 1 are indicated in Table 6.26. On same table, the index-p values are also

presented.
Table 6.26. Failure load (Fg) (beam 1).
Numerical model M [KN] o [kN] Index-p [%]
Nominal values 19.00 2.21 89.60
Nominal values + Bayesian inference 22.76 2.50 96.63
Model identification (service) 20.47 1.76 92.04
Model identification (service) + Bayesian inference 23.87 2.28 97.84
Model identification (failure) 21.89 2.56 93.76
Model identification (failure) + Bayesian inference 24.42 2.49 99.60

From the analysis of obtained results, it is possible to conclude that: (1) The mean value
increases as model identification procedures are applied; (2) The Bayesian inference
approach increases the mean and standard deviation values of obtained resistance PDF,
with exception of model identification until failure load for which the standard deviation value
is decreased; (3) The index-p value is increased with the application of model identification
techniques; (4) The index-p value also increases with the application of Bayesian inference
procedure. It is possible to state that index-p presents very good results, being, several

times, higher than 90%, which indicates accurate resistance PDF. The resistance PDF
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obtained from model identification until failure load with Bayesian inference presents the

highest index-p values. Results from nominal data values are the poorer ones.

Table 6.27 indicates the obtained resistance PDF parameter values for beam 2. On same
table, the index-p values are also presented. From the analysis of obtained results, it is
possible to conclude that: (1) The mean value is increased with the application of model
identification; (2) The Bayesian inference approach increases the mean value, and
decreases the standard deviation; (3) The index-p value is increased with the application of
model identification; (4) Also, this parameter value is increased with the application of
Bayesian inference procedure. It is possible to say that index-p presents very good results,
being, several times, higher than 90%. This indicates that obtained resistance PDF are
accurate. The resistance PDF obtained from model identification until failure load with
Bayesian inference presents the highest index-p values. Results from nominal data values

are the poorer ones.

Table 6.27. Failure load (Fr) (beam 2).

Numerical model M [KN] o [kN] Index-p [%]
Nominal values 16.49 2.02 88.54
Nominal values + Bayesian inference 19.14 1.58 95.00
Model identification (service) 18.16 1.96 91.75
Model identification (service) + Bayesian inference 20.86 1.55 96.80
Model identification (failure) 19.35 2.54 95.49
Model identification (failure) + Bayesian inference 19.56 0.92 98.56

Figure 6.31 represents the resistance PDF (Fg), for beam 1, whose parameter values (mean
and standard deviation) are presented in Table 6.28. An important concern is that the use of
a Bayesian procedure increases the resistance PDF mean and standard deviation value for
nominal values and those from model identification until service. For model identification until
failure, only an increase on mean value is verified. The same way, model identification

revealed an increase on mean value.
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Figure 6.31. Failure load (Fgr) (beam 1).

Figure 6.32 indicates resistance PDF (Fg), for beam 2, whose parameter values (mean and
standard deviation) are presented in Table 6.28. An important concern is that the use of a
Bayesian procedure increases the resistance PDF mean and diminishes the standard
deviation value for both nominal values and those from model identification. The same way,

model identification revealed an increase on mean value.
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Figure 6.32. Failure load (Fg) (beam 2).
6.7. Safety assessment

Obtained resistance model is then used in a simple example of safety assessment [121].
This example consists in assessing the studied beam safety in a residential building,
Figure 6.33. In this case, the resistance model is given by the failure load model (Fr), whose

parameters are provided at Table 6.26 and 6.27, respectively, for beam 1 and 2. A model is
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obtained for each analysis, respectively, considering the nominal values and those from

model identification in service phase and until failure load.

Figure 6.33. Residential building.

In order to compare resistance and loading curves it is necessary to transform the obtained
resistance model into a model for maximum bending moment at middle span (Mg), through

equation (6.24),
M, = (F, 2)/20/2 (6.24)

This curve depends from the beam span (L) which is, in this situation, of 4.50 m. A Normal

PDF is obtained for resistance.

Then, it is necessary to determine the loading curve. In order to do that it is important to
determine the slab span. Such span will define the influence length of analysed beam (Lix)
which is, in this example, of 4.00 m. In this situation, loading is divided in self-weight and live
load. All the other permanent loads were neglected. The self-weigh (w) is then computed

through equation (6.25),

w = yconc |}‘conc + ysteel |}‘steel (625)

being yonc and Jee the concrete and laminated steel profile specific weight, and Agne and
Asicel the concrete and laminated profile area. These parameters present a Normal PDF,

according to JCSS [93]. Therefore, self-weight presents a Normal PDF.

Live loads are divided into sustained, or long-term (qy), and intermittent, or short term (qs),
according to JCSS [93]. These PDF are respectively defined by a Gamma and an
exponential PDF [93]. Table 6.28 provides the mean and standard deviation of each PDF.
The applied load (p) is the sum of self-weight with both long and short-term live load

component multiplied by the influence length of the beam, through equation (6.26),
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p =W+ qlt |:[Linf +qst |:I]‘inf (626)

Table 6.28. Probabilistic models.

Parameter PDF 1l o
Jeonc [kN/m®] Normal 17.17 0.69
Jeteel [kN/m®] Normal 77.00 0.77
Qe [kN/m?] Gamma 0.30 0.45
Ost [KN/m?] Exponential 0.30 0.57

The further step consists in computing the maximum bending moment (Ms), through

equation (6.27),
M =(p?)/8 (6.27)

Obtained values are then adjusted to a Lognormal PDF. In order to compare resistance and

loading curves a limit state function (2) is defined, through equation (6.28),
Z=Mg —Mq (6.28)

This limit state is exceeded when loading is higher than resistance. The further steps consist
in generating several values for each curve, according to each PDF parameters, and to
register the number of values in which this limit state is exceeded in relation to the total

number of evaluated points. The failure probability (P;) is determined through equation (6.29),
P =P(Z<0) (6.29)

The reliability index (B) is then obtained, considering this value. A detailed description of how
this index is computed is given in chapter four. On Table 6.29 and 6.30 are represented both

failure probabilities and reliability indexes for all models, considering beam 1 and 2.

In this example, the building is of class 2 (apartment building — risk to life, given a failure, is
medium or economic consequences are considerable) and of class B (normal cost of safety
measure), according to JCSS [93]. Therefore, a target reliability index (Biarger) Of 3.30 is

recommended.

The following conclusions are then obtained for beam 1: (1) when considering the nominal
values or those from model identification in service phase the beam is classified as unsafe;
(2) when the values from model identification until failure are taken into account, the beam is

considered to be safe; (3) obtained results for all models, considering a Bayesian inference
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approach, indicate that the beam is classified as safe. This means that the probabilistic

assessment revealed a capacity reserve which was not accounted in design.

Table 6.29. Safety assessment (beam 1).

Numerical model Pt B
Nominal values 1.05* 107 3.07
Nominal values + Bayesian inference 2.90*10™ 3.44
Model identification (service) 5.44*10™ 3.27
Model identification (service) + Bayesian inference 1.82*10* 3.57
Model identification (failure) 4.06 * 10™ 3.34
Model identification (failure) + Bayesian inference 1.57*10" 3.60

Table 6.30. Safety assessment (beam 2).

Numerical model pr B
Nominal values 2.53*10° 2.81
Nominal values + Bayesian inference 8.32*10* 3.15
Model identification (service) 1.31%10° 3.00
Model identification (service) + Bayesian inference 451*10" 3.31
Model identification (failure) 1.04 %107 3.08
Model identification (failure) + Bayesian inference 6.46 * 10 3.22

In respect to beam 2 the following conclusions are pointed out: (1) all the evaluated models
are considered to be unsafe; (2) the B-value increases with model identification; (3) this value
also increases with Bayesian inference; (4) the highest §-value is obtained when considering
the values from model identification in service phase with Bayesian inference. Both beams
present the same tendency. Two differences are respectively identified: (1) beam 2 presents

lower B-values; (2) the highest B-value is obtained for different models.
6.8. Conclusions

This chapter provides the probabilistic assessment of two composite beams which were
loaded at laboratory up to failure. The first beam presents a total connection while the other
is partially connected. All other properties are maintained. Consequently, while the former
presents a typical failure mode of bending with concrete crushing and yielding of steel profile,

the latter presents a combined failure mode of bending and connection.
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In this analysis, a nonlinear numerical model was developed and then simplified, without
changing too much its accuracy. A sensitivity analysis is further executed to identify the most
important properties, which can be due to material, geometric and physic source. Some of

these parameters were characterized with detail at laboratory.

The developed numerical model is then adjusted to experimental data, through a model
identification procedure. To perform that an optimization technique, based in the evolutionary
strategies algorithm in its plus version, was used. Both modelling and measurement errors
were considered in the algorithm stopping criteria. This procedure was developed for both

service and failure region.

Further, a nonlinear probabilistic analysis was executed. In order to do so it was defined a
PDF for each critical parameter. Such parameters are then updated with complementary
data from laboratory characterization tests, by using a Bayesian inference approach. In some
cases, the statistical uncertainty was reduced with this process. A probabilistic analysis,

based in a LHS procedure, was further executed.

From the probabilistic analysis it was obtained an updated resistance PDF for applied load,
for both analysed beams. It was then possible to probabilistically evaluate the experimental
behavior of each tested beam by comparing those curves with obtained experimental data.

These resistance PDF models are then used in a safety assessment example.

Some conclusions were obtained from probabilistic assessment: (1) model identification until
failure load gives very good results (errors less than 10% for failure load); (2) model
identification in service phase gives good results only for service region. Obtained results for
failure region are bad. Complementary tests are thus recommended in this situation; (3) the
most accurate models from a probabilistic analysis are those with values from model
identification until failure load. Therefore the application of model identification before any
probabilistic analysis is recommended; (4) Bayesian inference also increases the accuracy of
probabilistic models. Therefore it is recommended the use of this procedure when

complementary data is available.
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7.1. Introduction

The developed probabilistic assessment framework is now tested with a case study that
consists on a composite bridge submitted to a performance load test. Accordingly, within this
chapter some aspects of Sousa River Bridge, the chosen structure, are described. The
developed load test is also presented with reference to some important issues concerning
applied loads, introduced load cases, monitoring schemes, etc.

A numerical model is developed in order to evaluate the structural behavior, by comparing
obtained results with those from load test. This model is, in a first phase, calibrated with
measured data. The main concerns regarding the numerical model development, such as
used mesh, geometry definition, etc., are provided. A sensitivity analysis is then developed,
both in service and failure region, to identify the most important parameters.

Once the numerical model is calibrated, the next step consists in applying the probabilistic
assessment algorithm. This methodology, detailed described in chapter four, is divided in two
modules, the model identification and the probabilistic analysis. During the identification
procedure the numerical parameters are automatically adjusted in order that obtained results
best fit the experimental data. This updating procedure is performed until a certain limit,
given by the tolerance criterion, is attained. This value results from a weighted combination

of measurement and modeling errors.
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Once updated, a probabilistic numerical model is obtained by introducing randomness in
input parameters, from material, geometry and physic sources. The statistical analysis of
obtained results permits to determine the resistance probabilistic density function (PDF),
necessary for safety assessment purposes. A description of used loading PDF is also

provided.

Moreover, complementary tests are developed to increase the reliability of some input
parameters. A description of these tests and obtained results are also given. An updated
resistance PDF is computed through the use of a Bayesian inference procedure and
considering obtained data from these tests. Obtained results from this case study will also
enhance the advantages of using the probabilistic assessment framework.

7.2. Load test
7.2.1. Description

The Sousa river bridge was designed by Lisconcebe, S.A. [104, 105, 106] and constructed
by Teixeira Duarte, S.A. [183]. This bridge belongs to the highway A43, Gondomar to Aguiar
de Sousa (IC24), which is operated by BRISA, S.A. (Figure 7.1).

Figure 7.1. Sousa river bridge, overview [99].

This bridge presents a total length, between abutments, of 202.00 m — from 6+722.50 km to
6+924.50 km - corresponding to four spans of 44.00 m and an extreme span, near abutment
A2, of 26.00 m, as indicated in Figure 7.2.

202.00
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Figure 7.2. Sousa river bridge, side view (m) [105].
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This bridge consists in two adjacent and independent structures, with identical typology,
spaced of 3.00 m, each with a traffic flow, according to Figure 7.3. This figure also shows

that this bridge is located in a straight zone of the highway.
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Figure 7.3. Sousa river bridge, horizontal plan (m) [105].

The continuous deck is composed by a precast reinforced concrete slab supported in two
longitudinal metallic I-beams, as represented in Figure 7.4. The carriageway presents a
transversal dimension of 7.50 m, an interior shoulder of 1.00 m, an external shoulder of
3.00 m, sidewalks (including cornice) and safety guards of 1.60 m, which result in a total of

13.10 m.
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Figure 7.4. Sousa river bridge, transversal profile (m) [105].

The longitudinal girders present a constant height of 2.00 m, with exception to the extreme
span in which it varies with deck inclination. These beams are made of welded steel profiles,
constituted by individual plates. Top and bottom flange widths are constant within the whole
bridge with, respectively, 700 mm and 840 mm. The web and flange thickness varies
longitudinally in order to accomplish the relevant design criteria [105]. Therefore, the top
flange thickness varies between 20 mm and 100 mm, the bottom flange thickness varies
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between 25 mm and 110 mm, and the web thickness varies between 14 mm and 20 mm.

Figure 7.5 shows the fabricated metallic girders already assembled on site.

Figure 7.5. Metallic girders, overview (provided by Teixeira Duarte, S.A.).

Transversally, these girders are fixed by stringers, separated of 5.50 m in 44.00 m span, and
of 5.20 m in 26.00 m extreme span (Figure 7.6 and 7.7). The stringers are formed by
laminated steel profiles welded to half steel profiles of the same type (IPE600). These half
profiles are thus welded to the longitudinal girder flanges. The reinforced concrete slab, the

metallic girders and the stringers constitute a transversal and rigid framework.
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