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Abstract 

The quantity of civil engineering infrastructures increased in a substantial manner within the 

last few decades. As a result of this, countries become responsible for an enormous set of 

infrastructures to be maintained during its whole life. However, and according to OECD 

(Organization for Economic Co-operation and Development), the dispended budget in this 

field is still lower than the recommended one. 

Accordingly, it becomes necessary to develop advanced tools that, with the support of data 

from diverse observation systems, would permit to obtain a real image of the analysed 

structure. This way, some researchers produced, in the last few years, different structural 

assessment frameworks. While some introduced the model identification techniques, others 

presented the probabilistic assessment algorithms with Bayesian inference updating. 

Within this thesis an advanced probabilistic assessment algorithm, that comprises both these 

techniques of model identification and Bayesian inference, is developed. A two-step updating 

procedure is then established. The developed algorithm is combined with commercial 

nonlinear structural analysis software (ATENA®). This will allow the structure evaluation both 

in service and failure region. 

Additionally, it is intended to incorporate within this algorithm all different uncertainty sources 

that coexist in a structural assessment procedure. Some of these sources are introduced 

during the identification process, while others are incorporated during the probabilistic 

analysis. The final purpose is to obtain a reliability index, based in the comparison between 

loading and resistance curves, which provides a real measure of structural safety. 

The developed algorithm is, posteriorly, validated with different sets of laboratory tested 

structures which were loaded up to failure. These sets include both reinforced concrete and 

composite beams. Furthermore it is tested on a composite bridge submitted to a load test 

(Sousa River Bridge). Obtained results permit, in some situations, to identify an additional 

structural capacity which was not known at beginning. 
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Resumo 

O número de infraestruturas cresceu substancialmente nas últimas décadas, fruto de um 

crescimento económico desmedido. Como resultado deste fenómeno, os países ficaram 

detentores de um vasto parque de infraestruturas, a manter durante o seu ciclo de vida. 

Contudo, e de acordo com a OCDE (Organização para a Cooperação e Desenvolvimento 

Económico), o valor despendido nesta matéria encontra-se, ainda, muito aquém do 

recomendado. 

Desta forma foi necessário desenvolver ferramentas que, com o apoio dos dados 

provenientes dos diversos sistemas de observação, permitissem a obtenção de uma 

imagem real da estrutura em análise. Neste sentido, vários investigadores desenvolveram, 

nos últimos anos, diversos algoritmos de avaliação estrutural. Alguns incidiram sobre 

técnicas de identificação, enquanto outros focaram as análises probabilísticas com 

atualização inferencial. 

Nesta tese, desenvolveu-se uma ferramenta de avaliação probabilística da segurança das 

estruturas que combina ambas as técnicas de identificação e inferência Bayesiana. Esta 

ferramenta é, posteriormente, implementada num programa comercial de análise não linear 

de estruturas (ATENA®), possibilitando, deste modo, a sua avaliação quer em serviço quer 

em rotura. 

Em paralelo, pretende-se, com este algoritmo, a incorporação das diferentes fontes de 

incerteza existentes num processo de avaliação estrutural. Enquanto algumas são 

introduzidas durante o processo de identificação estrutural, outras são incorporadas durante 

a própria análise probabilística. O objetivo final será a obtenção de um índice de fiabilidade, 

baseado numa comparação entre curvas de resistência e de carga, que forneça uma 

informação fidedigna da segurança estrutural. 

O algoritmo é, posteriormente, validado através de uma aplicação a um conjunto de 

estruturas ensaiadas até à rotura em laboratório. Este conjunto incorpora vigas em betão 

armado e mistas aço-betão. Seguidamente, será testado com uma ponte mista aço-betão 

submetida a um ensaio de carga (Ponte sobre Rio Sousa). Os resultados obtidos permitem, 

em algumas situações, a identificação de uma capacidade estrutural adicional não prevista 

em projeto. 
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1 Introduction 

1.1. Introduction and motivation 

The investment in infrastructure assets increased in the second half of the 20th century due 

to an excessive economic growth. As a result, developed countries become responsible for 

the maintenance and replacement, due to service and safety issues, of a set of 

infrastructures, namely for transport, health, energy and water resources, which are now 

ageing [141]. However, maintaining current infrastructure quality is not expected to be 

economically sustainable. 

According to the Organization for Economic Co-operation and Development (OECD) the 

need for maintenance and replacement of public infrastructure represents, annually, 3.5% of 

each country gross domestic product (GDP). Figure 1.1a indicates the average GDP 

percentage of OECD countries dedicated to infrastructure since the year 1980 [142]. This 

reflects a general global trend of rarefaction of resources dedicated to infrastructure. 

Figure 1.1b reports the result of a recent study on the maturity of the market in infrastructure 

in several countries [140]. The respective rating is based in the country risk (including legal 

and regulatory risk along with political economic and financial risk) together with the value of 

completed deals in the last 24 months as a percentage of GDP (reflecting a country’s 

experience with private involvement in infrastructure projects). It shows that most western 

countries have infrastructure in advanced stage of maturity. 
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The OECD noted that by 2030 “... a larger effort will need to be directed towards 

maintenance and upgrading of existing infrastructure and to getting infrastructure to work 

more efficiently” [32]. Therefore, it is extremely important for countries to prioritize their 

budget expenditures and investments in this topic by improving the way structures are 

currently being evaluated. Accordingly, several researchers developed structural assessment 

frameworks that will provide an accurate image of analyzed structure [6, 41, 52, 165]. 

 
 

a) b) 

Figure 1.1. OECD report results: a) average infrastructure investments in OECD countries 

(adapted from [142]); b) world infrastructure market maturity (adapted from [140]). 

Some of these researchers introduced model identification techniques [6, 70, 152, 165], 

based in both static and dynamic data. The objective of these frameworks is to obtain an 

accurate representation of evaluated structure. Several optimization algorithms are thus 

implemented in order to obtain this model. The effectiveness of model identification will 

depend of considered optimization algorithm. 

Recently, some researchers have developed identification algorithms that consider both 

modeling and measured data errors [6, 70, 152]. However, different ways of introducing such 

errors exist. Some authors incorporate them as a bias in model parameter values [6]. Others 

introduced them in an optimization algorithm criterion [70, 152]. 

The use of full probabilistic structural assessment algorithms is also recent [14, 41, 43, 52]. 

Although promising, as they permit to incorporate randomness into structural models, these 

algorithms were constantly avoided due to their high computational cost. This is due to the 

fact of being supported in sampling techniques, which obliges to compute, for several times, 

a specific numerical model. Fortunately, the evolution of computers in the last decades 

overcomes this important obstacle. 

The use of permanent monitoring systems in critical infrastructures increased in the last few 

years [14, 43]. Moreover, on non-critical structures, it is recommended, due to durability 
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problems, to carry out scheduled nondestructive evaluations. Obtained data is so important 

to describe the real structural behavior. A Bayesian inference algorithm [15] may be used to 

update probabilistic numerical models through the use of such data [41, 52]. 

All these structural assessment algorithms will allow combining, at different stages, different 

uncertainty sources. However, there still exist many doubts regarding the correct moment an 

identification algorithm should be applied or a probabilistic model should be used, what 

errors should be considered within an analysis, etc. The algorithm which is developed within 

this thesis, described in Figure 1.2, combines different uncertainty sources. In order to 

validate it, the algorithm is tested on two laboratory tested beams and on a real bridge. 

 

Figure 1.2. Organization chart of developed algorithm. 

Traditionally, structural assessment is developed according to existent codes in which 

conservative or even probabilistic models are provided. However, there are some situations 

in which the studied structure presents a higher capacity reserve. This fact becomes more 

evident in existent structures. Accordingly, in those situations, site monitoring becomes 

important in order to obtain real data from the evaluated structure. This data is then used to 

predict the structural parameters, through the application of a model identification algorithm. 

The same models may be used to evaluate the structural performance but, now, considering 

the assessed parameters. 
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However, in some cases, the structural performance is still considered to be inadequate. In 

those situations, full probabilistic assessment algorithms are recommended as they allow to 

introduce randomness in model parameters and to evaluate the structural performance from 

a probabilistic point of view. Sometimes, additional tests are important to characterize, in a 

more realistic way, some parameters. In such situations it is recommended to automatically 

update the developed model through the use of a Bayesian inference procedure. 

The structural performance evaluation may be so developed in an automatic basis. 

Therefore, within this thesis, a two-step updating algorithm is developed, which can be used 

with success to evaluate the structural performance, see Figure 1.2. The developed 

algorithm is then validated with reinforcement and composite steel-concrete structures. 

This thesis focuses on the development of an advanced probabilistic assessment algorithm. 

The main result of this application, both in service and failure region, is an updated 

resistance curve for the assessed structure. The decision regarding the most adequate 

intervention and its cost is a topic that will be held for future developments. 

1.2. Objectives 

The main objective of this thesis is to present an advanced probabilistic structural 

assessment framework, which considers both model identification and Bayesian inference 

algorithms. Such framework will be applied with existent reinforced concrete and composite 

structures. Accordingly, it is first necessary to study existing procedures for structural 

assessment and find out their advantages and drawbacks. 

The proposed methodology aims to incorporate all uncertainty sources within the analysis. 

This is important as most of the algorithms do not take them into account. Therefore, a 

detailed description of those uncertainty sources and of how they can be considered within 

the analysis becomes necessary. These sources include both modeling and measurement 

errors as also randomness in model parameters. 

It is also planned to implement the developed algorithm with a nonlinear structural analysis 

software. This will allow the evaluation of the structural behavior both under service and 

failure loads. Obtained results from the analysis under service loads, which is typical from 

structure load tests, are further extrapolated for an analysis up to the structure collapse. 

Finally, it becomes necessary to validate the proposed probabilistic assessment algorithm. 

This will be done with both laboratory and real structures. 

Thus, it is possible to identify the following objectives to attain within this thesis: (1) develop a 

probabilistic based algorithm for structural assessment, which can be automatic updated with 
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obtained data; (2) implement the developed structural assessment algorithm with a nonlinear 

structural analysis framework, which will allow more accurate predictions of structural 

behavior under both service and failure loads; (3) incorporate different uncertainty sources 

within the structural assessment algorithm, giving a special attention to measurement and 

modeling errors; (4) validate the developed structural assessment algorithm with both 

reinforced concrete and composite beams loaded up to failure in laboratory controlled 

conditions; (5) apply the developed structural assessment algorithm with a real case of a 

composite bridge, submitted to a load test; (6) help operators to better characterize the real 

state of their infrastructure and, especially, on the decision regarding the more appropriate 

maintenance strategy; (7) contribute to the success of investment of countries in 

maintenance and replacement of their infrastructure. 

1.3. Outline of thesis 

This thesis is composed by eight chapters which are complementary. The organization chart 

of this thesis is schematized at Figure 1.3. 

 

Figure 1.3. Outline of developed thesis. 

The first chapter presents the scope and main motivations of this thesis. It specifically 

focuses the OECD needs in maintenance and replacement infrastructure investments and 

contrasts it with the financial support that countries actually provide. As a result, it indicates 

the needs of more efficient assessment algorithms, in order to obtain a reliable image of the 

studied infrastructure. It also presents the main objectives of this thesis. 

In the second chapter, various optimization algorithms that might be used with an 

identification methodology are presented. Both local and global algorithms, as well as, the 
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advantages and drawbacks of each, are presented. These algorithms are firstly tested with 

traditional optimization problems. Secondly, they are tested with a problem in which the 

numerical model parameters of a reinforced concrete beam are adjusted in order that 

obtained results best fit experimental data. Obtained results are then compared in terms of 

computational cost and improvement in fitness function. 

Chapter three describes the Bayesian inference method. This procedure is important to 

update probabilistic models with acquired data. Its mathematical formulation as also some 

simple and useful applications, are presented. These examples cover the inference of 

Normal, Lognormal and Weibull probability density functions (PDF) which include most 

significant input parameters. This method is relevant as it allows to control and eventually to 

reduce the statistical uncertainty. 

Chapter four presents the developed algorithm for probabilistic assessment of structures. It 

begins with a description of structural assessment algorithms indicated in the literature and of 

most important uncertainty sources. Then, a description of the developed model identification 

algorithm is presented. Special attention is given to modeling and measurement errors. The 

probabilistic framework, which includes a sampling algorithm, is then introduced. Finally, a 

review of how reliability indexes are computed and of proposed target indexes, by different 

authors, is provided. 

In chapter five the proposed algorithm for probabilistic structural assessment is validated and 

tested with a set of reinforced concrete beams that were loaded up to failure in laboratory. A 

description of developed tests, numerical model and obtained results is provided. 

In chapter six, the algorithm is tested with a set of composite beams. These structures 

present a higher degree of uncertainty due to the difficulty in characterizing the steel-

concrete connection. The methodology is then validated, being presented the developed 

tests, the numerical model and obtained results. 

A final application of this methodology with a case study of a composite bridge is provided in 

chapter seven. The load test, the developed numerical model and obtained results from 

assessment algorithm are discussed in detail. This will allow to validate the algorithm and 

also to confirm the real condition of the evaluated structure. 

A summary of obtained results from the application of developed probabilistic structural 

assessment algorithm with reinforced concrete and composite structures, both in laboratory 

and in-situ, is presented at chapter eight. It is also indicated the future developments of this 

research. 
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2 Optimization Algorithms 

2.1. Introduction 

In civil engineer field, when the need to interpret the behavior of any particular structure 

arises, numerical models are commonly used. In an initial phase, such models are only a 

simple representation of the real structure. The experimental data, despite the related errors, 

is at such phase, more accurate. Then, these models may be updated within a procedure in 

which the numerical results are adjusted to existent experimental data. Such procedure is 

usually designated by model identification [6, 7]. 

This process is generally based in a mathematical optimization algorithm. The selection of 

such algorithm is recognized as a very important step. It is verified that the majority of 

structural numerical models are multi-parametric, as they depend on more than one 

parameter, and nonlinear, due to the structural nonlinear behavior. Due to these factors, the 

objective function might present several minima, becoming the process of finding the global 

optimum more complex. 

The optimization algorithms can be divided in local and global procedures (Figure 2.1) [184]. 

The former do not always find the global minimum of the objective function, that is, the 

minimum of all local minima of the function. This minimum is very useful to identify in many 

practical applications but it is usually a hard task to perform it. Also, it is very difficult to know 

beforehand if the objective function contains besides global minima, also local minima, since 

this requires the knowledge of the overall shape of the function. 
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On the other hand, the global minima, as several local minima, may not be from a physical 

point of view the value we are seeking for. In fact, the determined global minimum is only a 

pure mathematic value. An engineering judgment is so necessary to evaluate if obtained 

minima presents any logic from an engineer point of view. Sometimes the value we are 

searching for may be a local and not a global minimum. Consequently, the use of any 

optimization search procedure does not dispense an engineer evaluation of obtained results. 

Local algorithms start from one initial point, generating in an iterative way a sequence of 

improved estimates until the solution is reached. These procedures are generally based in 

the gradient of the objective function. Although very popular, as they are very fast, these 

methods do not guarantee to find the global minimum since they can be easily trapped into a 

local solution. Global algorithms are more robust, as the choice of the starting point has little 

influence on the final result, and are more likely to detect a global minimum. The main 

drawback of such algorithms is the fact of requiring a large number of function evaluations, 

since they are based on probabilistic searching without the use of any gradient information. 

 

Figure 2.1. Local and global minimum. 

The first model identification procedures were developed by using local search optimization 

algorithms [107], as the sequential quadratic programming (SQP) [56, 65, 132, 150]. These 

techniques were applied with static [11, 12, 78, 161, 199] or dynamic [63, 88, 89, 112, 162] 

measurements for model parameter estimation and, sometimes, in damage detection. Some 

authors developed an improved formulation based on both measurement types [74, 143]. 

Global search algorithms were later used in model identification. Different techniques were 

developed within the last decades. From those techniques it is important to mention the ant 

system (ASO), introduced in 1991 by Dorigo [34, 35, 36], and the particle swarm (PSO), 

presented in 1995 by Kennedy and Eberhart [39, 95]. These are population based algorithms 

that mimic the social behavior of animals in a flock. Raphael and Smith [151] Robert-Nicoud 

et al. [156, 157, 158] and Smith and Saitta [169] present a multiple-model identification 

algorithm, designated as probabilistic global search Lausanne (PGSL). An improvement of 
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PGSL, designated as candidate model search for system identification (CMS4SI), was 

developed by Goulet et al. [70, 72] and Goulet and Smith [71]. 

Others significant global search algorithms are the simulated annealing (SA), the genetic 

algorithms (GA) and the evolutionary strategies (ES). The first was conceived by 

Kirkpatrick et al. [96, 191] and is based in an analogy between the annealing of solids and 

the problem of solving optimization problems. The second one was first introduced by 

Holland [79] and is defined by an algorithm that acts in a population of search points and 

generates new populations using randomized operators that mimic those of natural evolution 

as the selection, crossover and mutation. Several applications of GA in model identification 

can be found in existent bibliography [27, 81, 82, 83, 168, 198]. The third algorithm, 

presented first by Rechenberg [153] and later by Schwefel [167], is also a search procedure 

that mimics the evolution of species in natural systems. Franco [57, 58] presents an 

application of ES for model identification. Both GA and ES are considered as evolutionary 

algorithms (EA) as they are based on Darwin’s theory of evolution. However, ES works 

directly with real representations of decision variables being the defined transition rules, in 

particular the ones related with selection, deterministic [9, 16]. 

The coupled local minimizers (CLM), is a hybrid method proposed by Suykens et al. 

[178, 179]. In this method, a cooperative search mechanism is set up by performing a 

number of local optimization runs simultaneously coupled by information exchange. The 

global search process is directed by the gradients in each search point. In this way, CLM 

combines the advantage of local with global algorithms. Teughels [184] uses such algorithm 

for dynamic model identification. Other hybrid algorithms were developed by different 

authors. Koh et al. [98] used a GA framework coupled to a suitable local search method for 

identification of structural parameters of large structural systems. Lagaros et al. [100] 

investigate the efficiency of various hybrids EA as GA-SQP and ES-SQP when applied to 

large-scale structural problems. 

This chapter describes different local and global optimization algorithms with the main 

objective of identifying the most suitable for civil engineering model identification. In these 

procedures, the used objective functions are nonlinear and dependent of several variables. 

In a first step, optimization algorithms are applied to analytical optimization problems, being 

further used in a real application, a reinforced concrete beam which was submitted to a 

laboratory test up to failure. The computational cost, the number of function evaluations and 

the obtained fitness value are compared. 
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2.2. Optimization algorithms 

Optimization algorithms are used to find a set of optimal parameters x. In simple cases, this 

might be the minimization or maximization of some system that is dependent on x. In a more 

advanced formulation, the objective function f(x) to be minimized or maximized might be 

subjected to constraints. A general optimization problem may be stated as, (2.1), 

minx f(x) (2.1)

subjected to (2.2), 

gi(x) = 0, i = 1,…,me (2.2)

and to (2.3), 

gi(x) ≤ 0, i = me+1,…,m (2.3)

where x is the design parameters vector, f(x) is the objective function which returns a scalar 

value, and gi(x) a vector function containing the values of equality and inequality constraints. 

An efficient and accurate solution to this problem depends, not only on the size of the 

problem, in terms of the number of constraints and design variables, but also on 

characteristics of the objective function and constraints. 

2.3. Local optimization methods 

2.3.1. Sequential quadratic programming 

The sequential quadratic programming (SQP) is a local direct search method where 

constraints are handled explicitly during the whole procedure. Within this method, the 

solution is found by solving a sequence of quadratic programming (QP) problems [184]. SQP 

can be considered as a generalization of Newton method for unconstrained optimization 

[18, 75, 146, 147] as it finds a step away from the current point by minimizing a quadratic 

model of the problem. Given the general problem described in expressions (2.1) to (2.3), the 

main concept of SQP method is the formulation of a QP problem based on a quadratic 

approximation of the following Lagrangian function (2.4), 

���, λ� = ���� +	λ
 ∙ �



��

��� (2.4)

being λi the Lagrange multiplier. The QP problem is thus obtained by linearizing the nonlinear 

constraints, (2.5), 
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�����∈��	 12 ������� + ������� �� (2.5)

subjected to (2.6), 

∇�
������� + �
���� = 0, � = 1,… ,�# (2.6)

and to (2.7), 

∇�
������� + �
���� ≤ 0, � = �# + 1,…	,� (2.7)

being dk the search direction vector and Hk the Hessian matrix of the Lagrangian function. 

This problem can be solved by using a QP algorithm. Therefore, the SQP implementation 

consists of three main stages: (1) updating the Hessian matrix; (2) quadratic programming 

solution; (3) line search and objective function. 

2.3.1.1. Updating the Hessian matrix 

A positive definite quasi-Newton approximation of the Hessian of the Lagrangian 

function (2.4) is computed each iteration (2.8), 

��%� = �� + &�&��&��'� −���'��'���'����'�  (2.8)

where sk = xk+1 - xk, and qk is obtained by expression (2.9). 

&� = )�����%�� +	λ
��
���%��


��

* − )������ +	λ
��
����


��

* (2.9)

Powell [146, 147] recommends keeping the Hessian positive definite within the whole 

procedure, although it might be positive indefinite at solution points. A positive definite 

Hessian is maintained providing that qk
Tsk is positive at each update and that Hk is initialized 

with a positive definite matrix. When qk
Tsk is not positive, qk is modified on an element-by-

element basis so that qk
Tsk > 0. The aim of this modification is to distort the elements of qk, 

which contribute to a positive definite update, as little as possible. Therefore, in an initial 

phase of the modification, the most negative element of qk
Tsk is repeatedly halved. This 

procedure is continued until qk
Tsk is greater than or equal to a small negative tolerance. If, 

after this procedure, qk
Tsk is still not positive, qk is modified by adding a vector v multiplied by 

a constant scalar w, that is, qk = qk + w v. Vector v is computed through expression (2.10). 

+
 = ��
���%���
���%�� − ��
�����
���� (2.10)

if (qk)i w < 0 and (qk)i (sk)i < 0, for i = 1, …, m, otherwise vi = 0. This value is increased 

systematically until qk
Tsk becomes positive. 
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2.3.1.2. Quadratic programming solution 

A QP problem of the following form, obtained from expressions (2.5) to (2.7), is solved each 

iteration, (2.11), 

�����∈�� &���� = 12������ + ,��� (2.11)

subjected to (2.12), 

Aidk = bi, i = 1, …,me (2.12)

and (2.13), 

Aidk ≤ bi, i = me+1,…,m (2.13)

where Ai refers to the i-th row of the m-by-n matrix A. An active strategy method may be used 

to solve this problem [65]. This procedure involves two phases. The first one comprises the 

computation of a feasible point, while the second corresponds to the generation of an 

iterative sequence of feasible points that converges to the solution. In this method an active 

set Āk, that is an estimate of the active constraints at solution point, is maintained. The active 

set is updated each iteration k and this is used to form a basis for the search direction dk. The 

search direction dk is computed and minimizes the objective function, while remaining on any 

active constraint boundaries. 

The feasible subspace for dk is formed from a basis Zk whose columns are orthogonal to the 

estimate of the active set Āk. Thus a search direction, which is formed from a linear 

summation of any combination of the columns of Zk, is guaranteed to remain on the 

boundaries of the active constraints. The matrix Zk is formed from the last m - l columns of 

the decomposition of the matrix Āk
T, where l is the number of active constraints or those 

which are on the constraint boundaries. Once Zk is found, a new search direction dk is sought 

that minimizes q(d), where dk is in the null space of the active constraints. Therefore dk is a 

linear combination of the columns of Zk: dk = Zk p, for some vector p. Then by viewing 

expression (2.11) as a function of p, it results in expression (2.14). 

&�-� = 12-�.���.�- + ,�.�- (2.14)

Differentiating this with respect to p yields expression (2.15). 

∇&�-� = .���.�- + .��, (2.15)

In which this differentiation is referred to as the projected gradient of the quadratic function 

because it is the gradient projected in the subspace defined by Zk. Assuming the Hessian 

matrix to be positive definite, then the minimum of the function q(p), in the subspace defined 
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by Zk, occurs when the projected gradient is null, which corresponds to the solution of the 

following system of linear equations (2.16). 

.���.�- = −.��, (2.16)

A step is then taken of the form xk+1 = xk + α dk. At each iteration, due to the quadratic nature 

of the objective function, there are only two choices of step length (α).A step of unity along dk 

is the exact step to the minimum of the function, restricted to the null space of Āk. If such a 

step can be taken, without violation of the constraints, then this is the problem solution. 

Otherwise, the step along dk to the nearest constraint is less than unity and a new constraint 

is included in the active set at the next iteration. The distance to the constraint boundaries in 

any direction dk is given by (2.17), 

/	 = ���
∈0�,…,
1 2−�3
�� − 4
�3
�� 5 (2.17)

which is defined for constraints not in the active set. When n independent constraints are 

included in the active set, without location of the minimum, the Lagrange multipliers (λk) are 

computed in order to satisfy the nonsingular set of linear equations (2.18). 

3��6666λ7 = c (2.18)

If all elements of λk are positive, than xk is the optimal solution of the QP problem. However, 

if any component of λk is negative, and the component does not correspond to an equality 

constraint, then the corresponding element is deleted from the active set and a new iterate is 

sought. 

2.3.1.3. Line search and objective function 

The solution to the QP problem produces a vector dk which is used to form a new 

iterate, (2.19). 

xk+1 = xk + α dk (2.19)

The step length parameter αk is determined in order to produce a sufficient decrease in the 

objective function. The objective function used by Han [75] and Powell [146, 147] presents 

the following form, (2.20), 

9��� = ���� +	:
�
���

;


��
+ 	 :
�<�=0, �
���>



�
;%�
 (2.20)

being ri the penalty parameter obtained by expression (2.21). 
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:
 = ���%��
 = �<�
 2?
, ����
 + ?
2 5 , � = 1,… ,� (2.21)

This allows positive contribution from constraints that are inactive in the QP solution but were 

recently active. 

Although similar to other traditional active-set algorithms [184], SQP presents some 

differences as: (1) strict feasibility with respect to bounds. The SQP algorithm takes every 

step in the region constrained by bounds; (2) robustness. During iterations the SQP 

algorithm can attempt to take a step that fails. In this situation the algorithm attempts to take 

a smaller step; (3) refactored linear algebra routines. The SQP algorithm uses a different set 

of linear algebra routines to solve QP problems. These routines are more efficient in both 

memory usage and speed than traditional active-set routines; (4) reformulated feasibility 

routines. SQP algorithm has two new approaches to the solution when constraints are not 

satisfied: (a) the SQP algorithm combines the objective and constraint functions into an 

objective function. This modified problem can lead to a feasible solution. This approach has 

more variables than the original problem and this can slow the solution of the QP problem 

[172, 186]; (b) the SQP considers an attempt step that causes the constraint violation to 

grow. The SQP algorithm attempts to obtain feasibility using a second-order approximation to 

the constraints. This technique can slow the solution by requiring more evaluations of the 

nonlinear constraint functions. 

2.4. Global optimization methods 

2.4.1. Simulated annealing 

Simulated annealing (SA) is a global search method, based in the annealing process of 

heating up a solid and then cooling it down slowly until it crystallizes. The atoms in material 

have high energies at high temperature and have more freedom to arrange them. As the 

temperature is reduced, the atomic energy decreases. A crystal with regular structure is 

obtained at the state where the system has minimum energy. If the cooling is carried out very 

quickly, known as rapid quenching, widespread irregularities and defects can be found in the 

crystal structure. The system does not reach the minimum energy state and ends in a 

polycrystalline state which has a higher energy. 

The analogy between the annealing process and optimization is as follows. The state of 

physical substance corresponds to the value of the design vector in optimization, the physical 

energy is represented by the objective function, the temperature is introduced as a control 

parameter and finding the lowest energy state corresponds to find the global minimum. The 
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same way atoms find their way to build a perfect crystal structure through random 

movements, global minimum is reached through a search within randomly generated 

candidates for the design vector. 

The algorithm starts from an initial point and generates in an iterative process consecutive 

points. At each iteration, a new random point is generated in the neighborhood of the current 

point according to a neighborhood function. If the new candidate has a smaller objective 

function value (downhill move), this point is accepted and replaces the old one. However, in 

the opposite case (uphill move), the candidate may either be rejected or accepted depending 

on the control parameter, defined in terms of the Metropolis criterion [124]. If ∆f = f(xnew) - 

f(xcurrent) ≤ 0, in which f is the objective function, then accept the new point unconditionally. 

Otherwise, accept the new point with a probability of, (2.22), 

-@	#AB�∆�� = DE∆F�� (2.22)

where k is the Boltzmann constant and T is the control parameter or temperature. 

When this algorithm is implemented, attention must be paid to the following choices: 

(1) representation of solutions; (2) definition of the objective function; (3) definition of the 

generation mechanism for the neighbors; (4) designing a cooling schedule. In designing the 

cooling schedule for a simulated annealing algorithm, four parameters should be specified. 

These are initial temperature, temperature updating rule, number of iterations to be 

performed at each temperature step and a stopping criterion for the search. 

The SA process starts at a high temperature T0. A sequence of iterates is then generated 

until the equilibrium is reached, that is when the average value of f remains stable as the 

number of iterations increase. The temperature T is then reduced by a cooling schedule and 

a new sequence of moves is made until again thermal equilibrium is obtained. The process is 

repeated until a sufficiently low temperature is reached, at which very few new moves are 

accepted. The algorithm flowchart is present in Figure 2.2a. The probability of accepting 

uphill moves is higher at initial stages of optimization, due to the initial higher temperatures, 

and is reduced later on, according to decreasing temperatures. Furthermore, the temperature 

is reduced slowly so as not to get trapped into a local minimum. 

Various implementations of SA exist, based on different neighborhood functions and cooling 

schedules. A selection of four neighborhood functions is given by Levin and Lieven [103]. In 

the line adjustment, random moves are made along each coordinate direction xi. The new 

coordinate values are uniformly distributed within the coordinate’s valid range. In the fixed 

radius adjustment, a new point xnew is generated on a hyper sphere that is a fixed radius from 

the current point xcurrent. This approach requires an extra parameter, the radius. 
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a) b) 

Figure 2.2. Optimization algorithm: a) simulated annealing; b) genetic algorithm. 

Several cooling schedules have been studied in literature [73, 96, 191]. Levin and Lieven 

[103] describes a standard cooling schedule for SA that simply reduces the current 

temperature by a factor ρ (0 < ρ < 1). The choice of initial temperature T0 depends on both 

objective and neighborhood function. An appropriate choice of T0 can be made based on 

initial acceptance ratio, which is the ratio between the accepted moves over the total moves 

made. If the ratio is high, a significant part of the SA will be spent in the molten state implying 

unnecessary wasted effort. If this value is too low, then the risk of getting trapped in a local 

minimum increases. The success of SA relies on occasional acceptance of uphill moves 

avoid getting stuck in a local minimum. 

2.4.2. Genetic algorithm 

The basic genetic algorithm (GA) is a global search method, based on Darwin’s natural 

evolution and the concept of survival of the fittest. In natural evolution, members of a 

population compete with each other to survive and reproduce successfully. If the genetic 

makeup of an individual member of a population gives that individual an advantage over its 

rivals, then it is more likely to breed successfully. The combination of genes that confer this 

advantage is likely to spread across the population. This is a natural optimization process 

that may also be simulated. 
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In GA the design vectors are represented as strings of binary digits, 0 and 1 [31, 125]. If each 

design variable xi, i=1,…,n is coded in a string of length nb, a design vector is represented 

with a string of total length n x nb. In the standard binary encoding, a binary number given by 

bnb-1 … b2b1b0 where bi = 0 or 1, denotes a decimal number x (integer), (2.23). 

� = 	 2
4

GHE�

�I

 (2.23)

Several bits are so needed to represent a real valued search variable. The used number of 

bits depends on the number range and needed precision. The sum of all bits, which 

represent a search variable, is called “gen”. The sum of all “genes” collected in a binary 

vector is called “chromosome”. The binary code leads to very long vectors combined with 

large search spaces when coding high precision variables in high dimensional problems. 

However, it is possible to apply real coding. In this situation, the search variable (“gene”) is 

saved as real number and subsequently collected in vectors (“chromosomes”). The 

disadvantage of this coding is that the classical procedure of crossover cannot be performed. 

The mathematic optimization method acts on a population of “chromosomes”. Each 

“chromosome” is a representation of a design vector and its fitness value is given by the 

objective function. GA consists in generating a new population of “chromosomes” from the 

old population using three randomized operators that mimic those of natural evolution: 

selection, crossover and mutation. The nature of these operators is such that each 

subsequent generation tends to have an average fitness level higher than the previous one. 

A flowchart of GA is given in Figure 2.2b. 

There exist two methods to define the initial solution of GA. The first consists of randomly 

producing solutions based in a uniform probability density function (PDF) within the given 

bounds. This method is preferable when no prior knowledge exists. The second method uses 

prior knowledge in such a way a set of requirements is obtained, and solutions which satisfy 

those requirements are collected to form an initial population. So, the GA starts the 

optimization with a set of approximately known solutions converging to an optimal solution in 

less time than the previous method. 

Selection is a process in which the “chromosomes” are selected based on their fitness values 

relatives to that of population. During this process, each individual “chromosome” is assigned 

a probability of being selected (ps) for copying as (2.24), 

-J ∝ �
∑ �MAM��  (2.24)
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where fj is the objective function value of the j-th “chromosome” and t is the population size. 

The fittest “chromosomes” may typically be selected two or three times for mating and 

subsequent genetic action. This process reflects the principle of the survival of the fittest. 

Two selection procedures [195] can be used: (1) proportional; (2) ranking-based. 

Proportional is usually called as “roulette wheel” due to the fact of the mechanism being 

reminiscent from the operation of a roulette wheel. Fitness values of individuals represent the 

widths of slots on the wheel. After a random spinning of the wheel, to select an individual for 

next generation, individuals in slots with large widths, representing higher fitness values, will 

have a higher chance to be selected. In ranking-based production procedure, each individual 

generates an expected number of offspring based on the rank of its fitness value [10]. 

Crossover is the operator that generates descendants based on proved individuals from last 

generation. The crossover operator mixes genetic information amongst the population and is 

implemented in two steps. First, the “chromosomes” are randomly paired together. Next, a 

crossover point is randomly selected along the string length of each pair of “chromosomes” 

and the binary digits following the crossover point are swapped between both 

“chromosomes”. This recombination can be performed according to different crossover 

schemes (single-, point-, multipoint-, and shuffle-crossover). The crossover operator is 

applied with a specific probability (pc). This operator has the potential of joining successful 

genetic fragments together to form fitter individuals. 

The mutation operator randomly reverses the individuals bit values, according to a specific 

rate. Unlike crossover, this is an operator in which each child string is produced from a single 

parent string. The main objective is to find a new region of the search space and to avoid the 

convergence to a suboptimum. In real coding each “gene” is mutated according to a uniform 

PDF. The mutation operator has the potential to reintroduce genetic information that has 

been lost from the population. After crossover has occurred, each binary digit of each 

“chromosome” has a small probability of mutating (pm ≈ 0.01 – 0.001). A binary digit that 

mutates is simply inverted. 

The population size is generally kept constant. Therefore it is necessary to decide which 

individuals should survive or substituted for next generation. There are different substitution 

schemes (substitution of complete generation, elitism, slight elitism, cancelation of n worst 

individuals, and many others). A direct method is to reprobate all invalid solutions with the 

disadvantage of increased computational time. An alternative is the implementation of the so-

called “penalty functions”. 
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Important control parameters include the population size, crossover and mutation rate. A 

large population size means the simultaneous handling of many solutions and increases the 

computational time. However, since many samples from the search space are used, the 

probability of convergence to a global optimum is higher. The crossover rate determines the 

frequency of crossover operation. It is useful at the start of optimization to discover a 

promising region. A low value decreases the speed of convergence to such an area. If this 

value is too high, it may lead to saturation around a solution. The mutation operator is 

controlled by the mutation rate. A higher value introduces high diversity in population and 

might cause instability. On the other hand, it becomes very difficult to find a global optimal 

solution with a too low value. 

The capability of finding the global minimum, mainly due to the simultaneous search by a 

whole population of search points using randomized operators, such that the search space is 

widely explored, is an advantage of using GA. Moreover, the information exchange between 

selected pairs, directs the process towards the optimal point. The major drawback is that it 

requires a huge number of function evaluations. 

2.4.3. Evolutionary strategies 

Evolutionary strategies (ES) is a global search algorithm based on Darwin’s natural evolution 

and in the concept of survival of the fittest. It consists in selecting a set of µ candidates for 

the optimization problem solution and applying the rules of evolution until an optimal solution 

is obtained. A typical candidate or an individual consists of a pair of vectors, one containing 

the parametric solution of the system (x) and other containing a vector of standard 

deviations (σ) which controls the evolution of the individual in subsequent steps. From these 

µ solutions, a batch of λ offspring’s are generated according to the mechanisms of 

recombination and mutation. Then, these are evaluated according to the objective function 

value or optimizations criterion and they are ranked from best to worst. The best are then 

chosen, following a selection method to form the next parent population and the process is 

iterated. 

2.4.3.1. Initial parent population 

The first step of this algorithm is to define the initial parent population. This is carried out by 

picking µ individuals at random from the search space. The initial population ak = (x,σ)k 

(k=1, …, µ) is defined by (2.25), 

�
� = �

G,
 + N
�0,1� ∙ ��
OP,
 − �

G,
� (2.25)

and (2.26), 
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 + �
OP,
 − �

G,
2 TR ∙ 1√� (2.26)

where Ui(0,1) denotes a random number following an uniform PDF in interval [0,1] and n is 

the problem dimension . The initialization of the standard deviation is obtained by using 

expression σi = ∆xi / √n where ∆xi denotes the estimated parametric distance to the optimum. 

The values of these deviations will evolve during the optimization process, making the choice 

of their initial values not of critical importance. However, such a choice must be reasonable 

as a too large value might make the algorithm diverge for a long time. Analogously, too small 

values will slow down the process until the deviations become large enough to make 

significant improvements in fitness. 

2.4.3.2. Recombinant operator 

Schwefel [167] has reported a remarkable acceleration in the search process, as well as, the 

facilitation of self-adaptation of parameters by introducing a recombination operator. 

Basically, it consists on recombining a set of chosen parents to find a new solution. A given 

number ρ of parents (1 ≤ ρ ≤ µ) are randomly chosen for recombination. Thus, the 

nomenclature for ES can now be extended to (µ/ρ+λ)-ES or (µ/ρ,λ)-ES, where ρ represents 

the number of parents involved in the procreation of an offspring. These parameters (µ, ρ 

and λ) are designated by “exogenous strategy parameters” as they are kept constant during 

the evolution run. 

This operation will distinguish ES from standard technique of GA. Unlike standard crossover 

in GA where two parents produces two offspring, the application of standard ES 

recombination operator to a parent family of size ρ produces only an offspring. Two 

recombination types exist: (1) intermediate; (2) discrete. The former consists in taking an 

individual from the parent population and holding it fixed while other parents are chosen to 

recombine with it. For each parameter, one mating individual is picked at random from the 

parent population. The parameters of the fixed and the mating parent are then weighed with 

a random factor from the interval [0,1] so that new offspring’s parameter might be at any 

intermediate point between its parent’s parameter values. This process is mathematically 

explained by (2.27), 

�
V = ��,
 + N
�0,1� ∙ ��W,
 − ��,
� (2.27)

and (2.28), 

Q
V = Q�,
 + N
�0,1� ∙ �QW,
 − Q�,
� (2.28)
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where an apostrophe denotes the result of applying the genetic operator. Q and R denote the 

fixed and the mating parent. Discrete recombination means that each component of the 

offspring is chosen from one of the ρ parents at random. 

2.4.3.3. Mutation operator 

In order to introduce new information into the population pool, the mutation operator is used. 

It consists in slightly perturbing the parameters of the offspring individuals after they have 

been generated by the recombination procedure. During the search, the step sizes for 

mutation are adapted. Several self-adaptation schemes are possible. A possibility is to 

update the standard deviation σi for each decision variable. Expressed in mathematical 

terms, the mutation operator (Gaussian mutation) for the i-th parameter is defined by (2.29), 

Q
V = Q
D�-=XVY�0,1� + XY
�0,1�> (2.29)

and (2.30), 

�
V = �
 + Q
VY
�0,1� (2.30)

where N(0,1) denotes a random sample from a Normal PDF with zero mean and a unitary 

standard deviation. The values of  τ and τ’ appear to be rather robust and they can be picked 

as (2.31), 

X ∝ Z[2√�\E� (2.31)

and (2.32), 

X′ ∝ ^√2�_E� (2.32)

where the proportional constants are usually unitary. To guarantee a minimum variation in 

the mutation of the parameters, all σi are required to remain above a certain threshold value. 

As suggested by Schwefel [167], this minimum deviation should be expressed as a 

percentage of the parameter value, (2.33). 

Q
 ≥ %|�
| (2.33)

The standard deviations σi are updated using the 1/5 success rule. This rule can be 

formulated in the following manner: “from time to time, during the optimum search, obtain the 

frequency of successes or the ratio of the number of successes to the total number of trials. 

If the ratio is greater than 1/5, increase the variance, if it is less than 1/5, decrease the 

variance”. Assuming this rule to be applied periodically, for each p generations, it can be 

expressed as, (2.34), 
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��� ← i:Jjg�-� > 15

Q
��� ← i:Jjg�-� = 15
 (2.34)

where Prsuc(p) is the success rate during the last p generations and cdec < 1 and cinc > 1 are 

the decreasing and increasing factors of the standard deviations σi. Mutation is an internal 

parameter which is self-adapted, and optimized, during the evolution, together with other 

parameters. This intrinsic characteristic differentiates ES from standard GA in which the 

mutation rate is a fixed external parameter [29, 30]. 

2.4.3.4. Selection operator 

The selection operator in ES is deterministic, contrasting with some selection mechanisms 

often used in GA. Mainly, it is necessary to distinguish between elitist and non-elitist 

selection operators. Elitism, or (µ+λ)-ES, dictates that the old parent individuals will be 

pooled together with the new-offspring individuals and then the ranking of all µ+λ individuals 

will be performed according to their fitness value. The best fitted µ individuals, selected from 

the pool, will substitute the old parent population. This technique guarantees survival of the 

best adapted individuals but also hinders evolution if these apparently well-adapted 

individuals approach a local optimum instead of the global one. In contrast, non-elitism, or 

(µ,λ)-ES, dictates the ranking to be performed only on the offspring population of λ 

individuals and the best µ of these will substitute the old parent population. Thus, this 

selection procedure might lose well adapted parent individuals but it provides also the power 

to leave local optima in search for the global optimum. 

More refined selection methods have been introduced, out of which, the fitness-based-

reinsertion combined with the elitist selection is recommended. In this method, the λ 

offspring’s are ranked in terms of their fitness and the best µ-γ  (γ < µ) are selected to 

become part of the next parent generation. The remaining γ slots in the parent population to 

complete the µ individuals are filled by the best parents of the older generation. This 

technique represents an intermediate scenario between elitist and non-elitist selection and it 

aims to capture the best of both methods. Figure 2.3a illustrates the (µ+λ)-ES while 

Figure 2.3b presents the (µ,λ)-ES selection procedure. 
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a) b) 

Figure 2.3. Evolutionary strategies: a) (µ+λ); b) (µ,λ). 

2.4.3.5. Tolerance criteria 

In order to halt the process and accepts the best found individual as the solution to the 

optimization problem, one or several criteria have to be established. As tolerance criteria we 

may have: (1) maximum number of generations; (2) maximum computational time; 

(3) convergence in the space of fitness value; (4) convergence in object parameter; 

(5) convergence in strategy parameter. In respect to objective function, this algorithm 

evaluates its minimum value for generation i (fi) and i+n (fi+n), and determines its 

improvement (∆f). A threshold value (ε), commonly designated by algorithm precision, is then 

defined for this criterion through expression (2.35). 

∆� � |�
%G ( �
| $ n → �
%G $ �
 p n (2.35)

The gap between generations is computed by the product of the maximum number of 

generations (MaxGen) by a tolerance value (see Figure 2.4). 

 

Figure 2.4. Objective function criterion. 
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2.5. Example 

The previous presented optimization algorithms were tested with three analytical functions by 

assuming four different starting points or starting point sets. For each initial point or set, five 

runs were developed. An average fitness value, the number of function evaluations and the 

required computational time is then determined. Regarding ES both (+) and (,) selection 

operators were considered. Table 2.1 presents the algorithm parameters. 

Table 2.1. Algorithm parameters. 

Parameters SQP SA GA ES (+) ES (,) 

Maximum number of function evaluations 1000 1000 * * * 

Maximum number of iterations 1000 1000 * * * 

Maximum number of generations * * 1000 1000 1000 

Initial temperature (T0) * 100 * * * 

Mutation probability (pm) * * 1.00*10-3 * * 

Crossover probability (pc) * * 0.80 * * 

Parent population (µ) (number of individuals) * * 10 10 10 

Parent for recombination (ρ) (number of individuals) * * * 10 10 

Offspring population (λ) (number of Individuals) * * * 50 50 

* Not applicable. 

2.5.1. Function 1 

The first test function is a 2D well-shaped function with a clear global minimum defined 

as, (2.36), 

����, �q� = 0.01 ∙ 	 s��
 + 0.5�t − 30 ∙ �
q − 20 ∙ �
v
��,q
 (2.36)

with -5 ≤ xi ≤ 5 (i = 1, 2). This function is presented in Figure 2.5a. The global minimum of this 

function f is at x* = (3.29; 3.29) and is represented in contour plot in Figure 2.5b. The 

obtained value for this point is of -3.68. 
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a) b) 

Figure 2.5. Function 1: a) 3D plot; b) contour plot. 

The average of results obtained for each algorithm is presented in Table 2.2. The second 

column shows the gap (∆f) between the fitness and the real value. Figure 2.6 indicates 

obtained results, for each initial point or set x0(i), represented by a plot bar graphic. 

Table 2.2. Obtained results. 

Optimization algorithm ∆f [%] 
Number of function 

evaluations [-] 
Computational time [s] 

SQP 100.00 30 0.17 

SA 98.71 193 0.06 

GA 100.00 1020 0.08 

ES (+) 100.00 1010 0.17 

ES (,) 100.00 1010 0.18 

Obtained results indicate that all the four algorithms reached the global minimum. In respect 

to required computational time, it is verified that local search techniques present a higher 

value due to the need to compute the numerical derivatives of objective function in each 

step. Identically, ES presents a high value as they perform the search in a wider range of 

pool of points. SA is the algorithm that requires less computing time as it is based in a more 

guided search procedure. 
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a) b) 

Figure 2.6. Function 1: a) fitness value gap (%); b) computational time (s). 

2.5.2. Function 2 

The second test function is a 2D polar coordinate composite function with several local 

minima and a clear global minimum. This function is described by (2.37), 

����, �q� � ����� ∙ w��q� (2.37)

when g(x1) and h(x2) are respectively described by (2.38) and (2.39), 

����� � �sin �� ( sin2�� 2⁄ � sin3�� 3 ( sin4�� 4⁄ � 4⁄ � ∙ ��q ��� � 1�⁄  (2.38)

w��q� � 2 � cos �q � �cos 2�q ( 1 2⁄ � 2⁄  (2.39)

with -20 ≤ xi ≤ 20 (i = 1, 2). This function is plotted in Figure 2.7a. The global minimum of 

function g is obtained for x1 = 0, with a value of 0, while function h presents two local minima, 

one of them, global. The global minimum of function f, indicated at contour plot in 

Figure 2.7b, is at x* = (0; 0) with a value of 0. 

  

a) b) 

Figure 2.7. Function 2: a) 3D plot; b) contour plot. 
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Table 2.3 presents obtained average results for each algorithm. The second column shows 

the gap (∆f), between the fitness and the real value. Figure 2.8 indicates the results, 

determined for each initial point or set x0(i), and illustrated as a plot bar graphic. 

Table 2.3. Obtained results. 

Optimization algorithm ∆f [%] 
Number of function 

evaluations [-] 
Computational time [s] 

SQP 84.87 78 0.17 

SA 98.86 217 0.07 

GA 100.00 1024 0.08 

ES (+) 99.99 1010 0.18 

ES (,) 99.96 1010 0.17 

From a first analysis it is possible to indicate that all global search algorithms present very 

good results. The performance of used local search technique was not as good as the others 

as, in some situations, a local minimum is identified. Additionally, this algorithm is too much 

dependent of considered starting point. In terms of computational time all the analyzed 

algorithms present identical values. SA is the one that involves less computing time due to a 

direct search procedure. 

  

a) b) 

Figure 2.8. Function 2: a) fitness value gap (%); b) computational time (s). 

2.5.3. Function 3 

The third function to be analyzed is a 2D function commonly designated as Rastrigin’s 

Function [187]. This function has several local minima and one global. It is described by the 

following expression, (2.40), 

����, �q� � 20 � 	 s�
q ( 10 ∙ �cos 2~�
�v

��,q

 (2.40)
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with -5 ≤ xi ≤ 5 (i = 1, 2). This function is plotted in Figure 2.9a. The global minimum of 

function f, indicated in the contour plot in Figure 2.9b, is at x* = (0; 0) with a value of 0. 

 
 

a) b) 

Figure 2.9. Function 3: a) 3D plot; b) contour plot. 

Table 2.4 presents obtained average results for each algorithm. The second column shows 

the gap (∆f), between the fitness and the real value. Figure 2.10 indicates the results, 

determined for each initial point or set x0(i), and illustrated as a plot bar graphic. 

Table 2.4. Obtained results. 

Optimization algorithm ∆f [%] 
Number of function 

evaluations [-] 
Computational time [s] 

SQP 84.08 50 0.19 

SA 91.21 199 0.06 

GA 99.00 1030 0.08 

ES (+) 99.05 1010 0.19 

ES (,) 99.05 1010 0.19 

The results pointed out the main limitation of local search techniques, as, for the analyzed 

function, the SQP converges to the solution close to the starting basin. Therefore, the 

performance of this algorithm is directly dependent of the chosen starting point. SA did not 

find the global minimum either but it presents better results. In fact the pool of points in which 

SA performs it search is not as large as it should be. However, SA presents a reduced 

computational cost. All the EA present very good results as they all found the global 

optimum. In respect to computing costs, GA presents a lower value. For global search 

techniques, the obtained results are independent of considered starting point. 
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a) b) 

Figure 2.10. Function 3: a) fitness value gap (%); b) computational time (s). 

2.6. Real application 

In order to study the applicability of these algorithms to structural problems, an example, a 

reinforced concrete beam loaded up to failure in laboratory is presented [114, 115, 116, 117]. 

In this example, the optimization algorithms are used to minimize the difference between 

numerical and experimental results, as (2.41), 

( ) [ ]exp exp

1

max 1 %
n

num
i i

i

f y y y n
=

= − ⋅∑  (2.41)

where ynum and yexp are the numerical and experimental values and n the number of 

evaluated points. Such minimization procedure, usually designated as model identification 

[6, 7], is developed by continuously changing the model critical parameters, the ones that 

present a higher influence in the structural behavior. This behavior is highly nonlinear due to 

the constitutive materials. In this situation the optimization function f is multi-parametric and 

nonlinear. Used algorithm parameters are indicated at Table 2.1. Each algorithm was 

processed for 10 times, being represented the obtained best result from the whole population 

of models. 

2.6.1. Experimental test 

A set of two pinned-pinned reinforced concrete beams, characterized by a longitudinal 

reinforcement of 3φ6 (As = 0.848 cm2) and a transversal reinforcement of φ4@0.10 

(Asw/s = 2.513 cm2/m), were loaded in laboratory up to failure. In design phase, C25/30 

concrete and S500B steel reinforcement were specified, according to EN 1992-1-1 [48]. The 

tested beams present a rectangular section of 75 x 150 mm2 and a 1.50 m span length (see 

Figure 2.11a). The concrete cover was considered to be 10 mm in all sides. Applied loads 

were located at 1/3 and 2/3 of the span length. 
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a) b) 

Figure 2.11. Real application: a) scheme; b) collapse mechanism (top: experimental; 

bottom: numerical). 

Each beam was supported in two points. While one of those elements restricts only the 

vertical displacement, the other restricts both vertical and horizontal one. The laboratory test 

was developed with displacement control. During the test the applied load and the middle 

span displacement were monitored. A bending failure mode with concrete crushing and 

yielding of longitudinal steel reinforcement was obtained. The collapse mechanism, 

presented in Figure 2.11b, is characterized by a plastic hinge located at middle span. An 

average value of 24.79 kN is obtained for failure load (FR). 

2.6.2. Numerical model 

A nonlinear numerical model of the tested beams was developed in ATENA® [22, 23]. A 

uniform finite element mesh, composed by quadrilateral elements, was used. The steel 

reinforcement was considered to be completely embedded in concrete elements. Two 

different load cases were considered, one in which the supports were inserted and other in 

which the applied load is represented. A steel plate was introduced in both supports and 

applied load points, to avoid concentration of stresses. The middle span displacement and 

the applied load were measured during the analysis. 

2.6.3. Obtained results 

Obtained results from running those different optimization algorithms are presented further. 

The collapse mechanism is, for all algorithms, characterized by a plastic hinge at beam 

middle span (see Figure 2.11b). A bending failure mode, with concrete crushing and yielding 

of longitudinal steel reinforcement, is obtained. In Figure 2.12 the applied load is plotted 

against the middle span displacement for experimental and numerical results, considering 

each optimization algorithm. The objective of these algorithms is to give the curve that best 

fits the experimental data. In order to do so, they start with an initial vector, equal for all 
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algorithms, which correspond to the values considered in design (nominal values), and 

iteratively change these values. The optimal vector, obtained from each algorithm, and also 

the initial one are given in Table 2.5. In the same table, between brackets, the bias factor, 

which represents the ratio between the identified and the nominal value for each variable, is 

also presented. 

In this situation the identified model parameters are: (1) concrete elasticity modulus (Ec); 

(2) concrete tensile strength (ft); (3) concrete compressive strength (fc); (4) reinforcing steel 

elasticity modulus (Es); (5) reinforcing steel yield strength (σy); (6) reinforcing steel area (As); 

(7) section width (b); (8) section height (h); (9) inferior concrete cover (cinf). 

Table 2.5. Model parameters. 

Numerical model Nominal 
value 

Optimization algorithm 

SQP * SA * GA * ES (,) * ES (+) * 

P
ar

am
et

er
 

Material 

Concrete 

Ec [GPa] 31.00 30.97 
(1.00) 

29.10 
(0.94) 

30.42 
(0.98) 

31.54 
(1.02) 

31.44 
(1.01) 

ft [MPa] 2.60 2.60 
(1.00) 

2.53 
(0.97) 

2.44 
(0.94) 

2.64 
(1.02) 

2.54 
(0.98) 

fc [MPa] 33.00 32.95 
(1.00) 

34.36 
(1.04) 

33.98 
(1.03) 

31.09 
(0.94) 

29.87 
(0.91) 

Longitudinal 
steel 

reinforcement 

Es [GPa] 200.00 197.78 
(0.99) 

156.99 
(0.78) 

172.56 
(0.86) 

174.70 
(0.87) 

186.73 
(0.93) 

σy [MPa] 500.00 
499.71 
(1.00) 

486.92 
(0.97) 

529.91 
(1.06) 

520.32 
(1.04) 

535.83 
(1.07) 

As [cm2] 0.85 0.85 
(1.00) 

0.93 
(1.09) 

0.87 
(1.02) 

0.90 
(1.06) 

0.91 
(1.07) 

Geometry 

cinf [cm] 1.00 1.00 
(1.00) 

1.04 
(1.04) 

0.97 
(0.97) 

1.02 
(1.02) 

0.99 
(0.99) 

b [cm] 7.50 
7.49 

(1.00) 
7.14 

(0.95) 
7.11 

(0.95) 
6.90 

(0.92) 
7.27 

(0.97) 

h [cm] 15.00 14.96 
(1.00) 

15.23 
(1.02) 

14.87 
(0.99) 

14.70 
(0.98) 

14.28 
(0.95) 

* Bias factor is presented between brackets. 

In a first analysis it is possible to conclude that global search techniques give better results 

than the local one. In fact, the latter provides a result that does not differentiate from the 

starting point. By analyzing the results from Table 2.5 it is important to identify the following: 

(1) concrete parameter values are close to each other and to the nominal ones; 

(2) reinforcing steel elasticity modulus (Es) is always inferior to the nominal value; 

(3) reinforcing steel yield strength (σy) is, in general, higher than the nominal value; 
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(4) reinforcing steel area (As) is always higher than the nominal value; (5) section dimensions 

are, in general, inferior to nominal values; (6) inferior concrete cover (cinf) values are close to 

each other and to the nominal one. 

 

Figure 2.12. Obtained results. 

Two bar graphics, one representing the improvement in fitness value (∆f), according to 

expression (2.41), and other the computational time, are respectively presented in 

Figure 2.13a and 2.13b. The fitness value, obtained from the application of each algorithm, 

and the respective improvement are indicated in Table 2.6. 

Table 2.6. Obtained results. 

Numerical model 
Fitness function 

Value [%] Improvement [%] 

Nominal values 7.70 - 

Optimization 
algorithm 

SQP 7.54 2.06 

SA 4.34 43.66 

GA 2.47 67.92 

ES (,) 2.01 73.91 

ES (+) 1.86 75.90 

From the analysis of obtained results it is possible to conclude that: (1) local search 

techniques fail to find global minimum. Therefore, these techniques cannot be used in 

nonlinear multi-parametric models; (2) SA gives poor results but presents a very low 

computational time. This algorithm, although belonging to the global search techniques, is 

based in a directional search procedure reducing so the number of searching points; (3) It is 



Uncertainty Evaluation of Reinforced Concrete and Composite Structures Behavior

 

 
33

 

verified that the performance of EA is extremely good for nonlinear multi-parameter 

optimization algorithms, being, the best results obtained with ES (+) algorithm; (4) GA 

present a high computational cost reducing so the respective efficiency for this kind of 

problems. It is important to note that by applying EA, an improvement of around 70% is 

achieved for the fitness value. Table 2.7 indicates the failure load (FR) obtained from the 

application of different optimization algorithms. EA provide the most suitable results, being, 

the best results obtained with ES (+) algorithm. 

  

a) b) 

Figure 2.13. Obtained results: a) fitness value improvement (%); b) computational time (s). 

Table 2.7. Failure load (FR). 

Numerical model 
Failure Load 

Value [kN] Error [%] * 

Nominal values 23.28 6.13 

Optimization 
algorithm 

SQP 23.22 6.37 

SA 25.03 0.93 

GA 24.84 0.16 

ES (,) 24.89 0.36 

ES (+) 24.84 0.16 

* Comparing with the real failure load. 

2.7. Conclusions 

The use of optimization algorithms in structural engineering analysis grew within the last 

years, especially in the model identification field. Within this procedure, an objective function 

is minimized in order to obtain a numerical curve that best fits the acquired experimental 

data. In order to do so, model input parameters are iteratively changed so that an optimum 
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combination of values is identified. Once this global minimum is identified, engineers become 

able to interpret the structural behavior in a more reliable way. 

However, this objective function is usually nonlinear and multi-parametric, which makes 

model identification a complex problem. Therefore, the identification of an appropriate 

optimization algorithm is the core issue of a correct model identification procedure. These 

algorithms can be classified into local or global ones. The former usually requires the 

computation of the objective function derivative to determine its minimum, while the latter are 

stochastically based and only dependent of the fitness value. 

Within this chapter it is studied the sequential quadratic programming (SQP), which belongs 

to the local search algorithms. From the set of global search algorithms, the simulated 

annealing (SA), the genetic algorithms (GA) and the evolutionary strategies (ES) are 

analyzed. It is also evaluated the performance of two ES selection procedures, respectively, 

the ES (+) and the ES (,) algorithms. 

These algorithms are then tested with three simple analytical functions in order to point out 

their advantages and disadvantages. As the objective of this chapter is to analyze the 

applicability of each algorithm in a structural model identification problem, a real application, 

a reinforced concrete beam loaded up to failure in laboratory, is respectively introduced. 

Obtained results revealed that global search methods are, in general, more robust than local 

ones, as the choice of the starting position has little influence on the final result, and they can 

find the global solution with a high probability. Accordingly, in these methods the risk of being 

trapped into local minima is reduced. For typical optimization problems the computational 

effort of global search techniques is higher, which makes local search techniques more 

appropriate when time is an important concern. However, this is not true when the number of 

parameters to optimize and the objective function nonlinearity increase. In such situations the 

number of necessary derivatives in local search methods increases and, consequently, the 

respective computational time. 

In civil engineer applications, specially, in structural model identification, in which the 

objective function depends from several parameters and is highly nonlinear, global search 

techniques are so more suitable. From those algorithms SA is the one that involves less 

computing time but, at same time, it might not find the global minimum due to the reduced 

pool of points in which performs its search. ES are the most efficient algorithms in terms of 

computational cost. This is confirmed with the results obtained by Costa and Oliveira 

[29, 30]. In this real application the best results are obtained with ES (+) algorithm. 
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3 Bayesian Inference 

3.1. Introduction 

The data analysis principles and methodologies that derive from subjective uncertainty 

sources are often mentioned as Bayesian statistics and they were studied in the last decades 

by several authors [15, 19, 28, 145]. These authors present the Bayesian inference of 

several probabilistic distributions and examples of its application. One of these examples is 

in the updating of probabilistic numerical models. This may be further incorporated into 

structural assessment algorithms, in which data acquired from permanent monitoring 

systems is used to update numerical models [80, 149, 175]. 

Two interesting works were developed in Portugal in this field. One of them was developed 

by Miranda [127], who presented a Bayesian framework for updating geomechanical 

parameters. This framework is applied to the deformability modulus updating of large 

underground structures. The second is the work of Jacinto [87], who used Bayesian 

inference techniques to reduce the statistical uncertainty of structural assessment algorithms. 

For this author, although statistic uncertainty may be reduced with additional collected data, it 

is always important to evaluate its impact in structural assessment in order to study if 

collecting such data will change results at all. 

The Bayesian perspective of probability is different from the frequentist one. While the latter 

takes the perspective that probability is an objective concept, the former indicates that 

probability is the individual degree of belief that a given event will occur. Frequentist 
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interprets each parameter as a fixed but unknown quantity, while Bayesian regards it as a 

distribution of possible values. For the latter, the probability function reflects the degree of 

belief on where the true parameters may be. If this distribution is narrow then the confidence 

about the parameter location is high. 

The frequentist data analysis methodologies are computationally simpler and this is why its 

use is more widespread. However, Bayesian techniques allow the update of random 

parameters in a sequential way, when new data is available. This process is divided in [33]: 

(1) setting up a joint probability distribution for all parameters, consistent with knowledge; 

(2) computing the conditional posterior distribution of relevant parameters, given new 

observed data; (3) evaluating the model fit to such data, analysing if conclusions are 

reasonable and how sensitive they are to modelling assumptions. The obtained posterior 

distribution is a compromise between prior information and the one contained in new data. 

This compromise is controlled by the data sample size. The posterior is thus the updated 

random parameter distribution. 

In a probabilistic numerical model the material, geometric and physic parameters are usually 

characterized by random distributions. These distributions are introduced to represent 

physical uncertainties. In Bayesian approach, and unlike the frequentist one, the distribution 

parameters are also considered to be unknown, being represented by random distributions 

too [127]. Those distributions reflect the statistical uncertainty or, in other words, the degree 

of belief of each distribution parameter. Therefore, they can be updated given the data and 

used to infer each probabilistic numerical model parameter distribution. 

Figure 3.1 presents a general scheme concerning the stages where an updating procedure 

can be applied to revaluate any structural parameter. In this case, the procedure is 

particularly applied to the concrete compressive strength (fc). In the initial stages, this 

parameter can be evaluated based on preliminary research (fc1). During construction more 

information may be gathered from laboratory tests which can be used to update the 

prediction (fc actual stage). This parameter can be incorporated in probabilistic numerical model, 

at any time, for structural assessment purposes. During exploitation phase new information 

concerning this parameter can be obtained from several sources (e.g. monitoring systems). 

This information may be used in a dynamic process that improves such parameter prediction 

(fci) as the quantity of data increases (fc actual stage). Therefore, the probabilistic numerical 

model and obtained results from structural assessment are continuously updated. 

A general Bayesian framework for updating numerical model parameters is further 

presented. This framework is applied to update the initial prediction on lightweight concrete 

compressive strength (fc). This updating procedure is based in data obtained from laboratory 
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characterization tests. In this approach, this parameter is considered as a random variable 

with a Normal or Lognormal distribution. Different levels of initial information, uncertainty 

levels and degree of belief in initial assumptions were considered, being the obtained results 

compared to evaluate its sensitivity to prior concerns. In order to overcome the problem of 

choosing a given probability distribution function, an alternative Bayesian methodology that 

uses a Weibull distribution, is also presented. 

 

Figure 3.1. Updating procedure for structure compressive strength (fc) (random distributions 

are merely indicative). 

3.2. Bayes theorem 

Bayesian methods provide tools to incorporate external information into data analysis 

process [15]. This process starts with a given distribution, designated as prior, whose 

parameters may be chosen or estimated based on bibliography, experience or from previous 

experimental results. This distribution represents the uncertainty of a given variable. As more 

data is collected, Bayesian analysis is used to update the prior distribution into a posterior 

distribution. The Bayes theorem, which weights the prior information with evidence provided 

by new data, is the basic tool for the updating procedure. This process is shown in 

Figure 3.2. 
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Figure 3.2. Updating procedure scheme, adapted from Faber [53]. 

The discrete version of Bayes theorem is given in expression (3.1). This is only possible 

when the prior distribution of parameter Θ with n possible outcomes is discrete, and the new 

information x comes from a discrete model too, 

( ) ( ) ( )

( ) ( )
1

ii
n

ii
i

P x P
P x

P x P

θ θ
θ

θ θ
=

⋅
=

⋅∑
 

(3.1)

where P(Θ) is the prior distribution, which indicates the prior beliefs about the parameter 

values, P(x|Θ) is the conditional probability or likelihood of data given Θ and P(Θ|x) is the 

posterior distribution of Θ given observed data x. 

The more usual form of this theorem, in terms of continuous variables, is indicated at 

expression (3.2). In this situation, the prior and the posterior distributions of Θ are 

represented by density functions, respectively, p(Θ) and p(Θ|x). 

( ) ( ) ( )
( ) ( )
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p x p

p x
p x p d

θ

θ θ
θ θ

θ θ θ
⋅

= ∈ Θ
⋅∫

 (3.2)

The joint probability distribution of the data and the parameter is given by p(x|Θ), which is 

called the likelihood, L(Θ), and is defined by expression (3.3), 

( ) ( ) ( )|i
i

p x L p xθ θ θ= = ∏  (3.3)

being assumed that all observations xi are independent. The integral of expression (3.2) is a 

normalizing constant. Therefore, this expression can be written as (3.4), 

( ) ( ) ( )| |p x p x pθ θ θ∝ ⋅  (3.4)
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Accordingly, the Bayes theorem consists in multiplying the prior and the likelihood and then 

normalizing it in order to get the posterior distribution. 

3.3. Prior distributions 

One of the main issues of the Bayesian approach and part of the modeling process is the 

choice of a prior distribution. Several alternatives exist for the prior distribution, but it is 

important to verify the impact this choice in the stability of the posterior distribution. If the 

posterior distribution is highly dependent on the prior, then acquired data may not contain 

sufficient information. On the other hand, if it is relatively stable over a choice of priors, it 

means that data contains significant information. The prior should reflect [53]: (1) known 

observations of random variables, from which parameter estimates of prior distribution can 

be computed; (2) subjective knowledge on parameters distribution. 

It is possible to choose a prior distribution that presents a range of situations from high (small 

standard deviation) to reduced knowledge (large standard deviation) and even no 

knowledge. In this latter situation, the prior is designated as non-informative, as it does not 

have any impact on the parameter posterior distribution. In this case it can be represented by 

a constant, as expression (3.5), 

( ) 1
p c for a b

b a
θ θ= = < <

−
 (3.5)

assuming a, b and c as any value from the real space. In this situation, and considering 

expression (3.4), the posterior is just one constant times the likelihood, (3.6), 

( ) ( )|p x Lθ θ∝  (3.6)

The use of a non-informative prior is often useful but it is always necessary to check if the 

obtained posterior distribution is proper [145]. A distribution is proper if it integrates to unity. It 

is verified that traditional non-informative priors are improper, (3.7), 

( )p dθ θ = ∞∫  (3.7)

An improper prior may, or not, result in an improper posterior. Thus it is always important to 

check if the posterior presents a finite integral. A common non-informative prior is the 

Jeffrey’s prior. In order to define this function it is important to define first the Fisher 

information, I(Θ), through expression (3.8), 

( ) ( )2

2

LogL
I E

θ
θ

θ
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 (3.8)
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This is the negative expectation of the second derivative of the log-likelihood, LogL(Θ), and 

measures the curvature of the likelihood function. The flatter the likelihood is, the less 

information it provides about parameter values. Jeffrey’s prior is then defined by 

expression (3.9). 

( ) ( )p Iθ θ∝  (3.9)

The Jeffrey’s rule allows finding prior distributions which are invariant under 

reparametrizations. Additionally, in most situations, although these priors are improper, 

computed posterior distributions are proper. 

When there is any information regarding the interest parameter, an informative prior may be 

used instead. This prior is not dominated by the likelihood and has an impact on posterior 

distribution. However, this prior should be specified with caution. 

The property that the posterior distribution follows the same parametric form as the prior 

distribution is called conjugacy. Conjugate families are mathematical convenient as the 

posterior distribution follows a known parametric form. Obtained results are easy to 

understand and can be often represented in its analytical form. However, a more realistic 

prior may be used if there is information that contradicts the conjugate family [145]. 

3.4. Bayesian inference 

The Bayesian inference procedure involves passing from a prior to a posterior distribution 

using the likelihood data function. Considering a Normal likelihood has the advantage of 

either conjugate or non-informative priors resulting in proper posteriors [33]. Within the 

Bayesian approach, interest parameters are assumed to follow certain probability 

distributions. Such distributions are defined by one or more unknown parameters. These 

parameters are also considered to have given distributions. They are further updated given 

the data and will be used to infer each interest parameter. 

The simplest model is the consideration of mean as an unknown random variable with known 

deterministic variance. A more complex approach involves the consideration of both mean 

and variance as unknown. Accordingly, the following cases will be further analyzed: 

(1) Normal data with unknown mean (µ) and known variance (σ2): Jeffrey’s prior; (2) Normal 

data with unknown mean (µ) and known variance (σ2): conjugate prior; (3) Normal data with 

unknown mean (µ) and variance (σ2): Jeffrey’s prior; (4) Normal data with unknown mean (µ) 

and variance (σ2): conjugate prior. 



Uncertainty Evaluation of Reinforced Concrete and Composite Structures Behavior

 

 
41

 

3.4.1. Normal data with unknown mean (µ) and known variance (σ2): Jeffrey’s prior 

The Jeffrey’s prior for mean parameter is an improper uniform distribution over the real 

space [15], (3.10), 

( ) ,p cµ µ= − ∞ < < ∞  (3.10)

being c an arbitrary constant. Obtained posterior distribution is proper. Considering that data 

x follows a Normal distribution, and after dropping all constants, it can be given 

by [15], (3.11), 

( ) ( )2

2
| exp

2
n

p x xµ µ
σ

 ∝ − ⋅ − ⋅ 
 (3.11)

where n is the number of samples and x  the data set mean value. The posterior distribution 

of the mean, given the data x, is thus a Normal with mean x  (µ1) and variance σ2/n (σ1
2). 

The posterior population follows a Normal distribution with mean µ1 (µpop), and 

variance (σpop
2), given by (3.12), 

2 21
pop

n
n

σ σ+ = ⋅ 
 

 (3.12)

3.4.2. Normal data with unknown mean (µ) and known variance (σ2): conjugate prior 

The conjugate prior for the mean, an informative prior, follows a Normal distribution with 

known initial mean (µ0) and variance (σ0
2) [15], (3.13), 

( ) ( )2

02
0

1
exp

2
p µ µ µ

σ
 

∝ − ⋅ − ⋅ 
 (3.13)

Therefore, the posterior is also a Normal distribution with mean (µ1) and variance (σ1
2) 

computed according to prior and likelihood values [15], (3.14), 

( ) ( )2

12
1

1
exp

2
p µ µ µ

σ
 

∝ − ⋅ − ⋅ 
 (3.14)

The updated mean is then analytically determined through (3.15), 
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⋅ + ⋅
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+
 (3.15)

Precision is the inverse of variance. Hence, the posterior mean is the weighted average of 

prior and data set mean, with weights proportional to precision. The variance is computed 

according to (3.16), 

2 2 2
1 0

1 1 n
σ σ σ

= +  (3.16)

The posterior population follows a Normal distribution with mean µ1 (µpop), and 

variance (σpop
2), given by (3.17), 

2 2
2 1

2 2
1

1 1

1 1pop

σ σσ

σ σ

+
=

⋅
 (3.17)

3.4.3. Normal data with unknown mean (µ) and variance (σ2): Jeffrey’s prior 

In this situation, the simplest joint prior is obtained by assuming that mean and variance can 

be estimated independently and that a vague prior distribution may be used for each. A 

common pair of vague priors for the Normal model is given by [15], (3.18), 

( ) ,p cµ µ∝ − ∞ < < ∞  (3.18)

and by (3.19), 

( )2 2
2

1
, 0p σ σ

σ
∝ >  (3.19)

which is equivalent to the joint Jeffrey’s improper prior for (µ,σ2), (3.20), 

( )2 2
2

1
, , , 0p µ σ µ σ

σ
∝ − ∞ < < ∞ >  (3.20)

In order to infer the unknown parameters it becomes necessary to derive the posterior 

distribution from Bayes theorem, given all observations x. The respective posterior is a 

proper distribution that takes the following form [15], (3.21), 
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( )
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 (3.21)

being S=Σ(xi- x ). The form of p(µ,σ2|x) indicates that the conditional posterior distribution of 

µ conditional on σ2 is a Normal distribution with mean x  and variance σ2/n, (3.22), 

2
2| , ,X N x

n
σµ σ

 
→  

 
 (3.22)

Being the marginal posterior distribution of 1/σ2 an inverse χ2 distribution, (3.23), 

( ) 2
2

12

1
n

n s
χ

σ −

− ⋅
→  (3.23)

where s=Σ(xi- x )2/(n-1) is the sample variance. As σ2 appears in conditional distribution 

µ|σ2 (3.22) this means that µ and σ2 are necessarily interdependent. In this case the main 

parameter distributions can be obtained by simulation, through the application of expressions 

(3.22) and (3.23), or by analytical solutions [15]. Therefore, the mean value of the distribution 

mean (µ1) is equal to the sample mean ( x ), being its variance (σ(µ1)
2) computed through 

(3.24), 

( )2

1

1
3

3
s n

n
σ µ = ⋅ >

−
 (3.24)

The precision distribution mean (1/σ1
2) is given by (3.25), 

2
1

1 1n
n sσ

−=
⋅

 (3.25)

while its variance (σ(1/σ1
2)) is given by (3.26), 

( )2

2 2 2
1

2 11 n

n s
σ

σ
⋅ − 

=  ⋅ 
 (3.26)

The standard deviation distribution mean (σ1) and variance (σ(σ1)
2) is then computed through 

expressions (3.25) and (3.26) [15]. The posterior population mean is equal to µ1 (µpop), while 

its variance (σpop
2) is obtained through (3.27), 

2 1
, 3

3pop

n
s n

n
σ += ⋅ >

−
 (3.27)
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3.4.4. Normal data with unknown mean (µ) and variance (σ2): conjugate prior 

When both mean and variance are unknown, the natural conjugate prior has the 

form [15], (3.28), 

( ) ( )
01 2 2 1

22 0 0 0
02 2 2 2

1
, exp exp

2 2

n n S
p

ν

µ σ µ µ
σ σ σ σ

+
      ∝ ⋅ − ⋅ − ⋅ ⋅ −      ⋅ ⋅      

(3.28)

where n0 is the initial sample size and S0 is the prior value of S. The prior is a Normal-

Gamma distribution or, in other words, the product of an inverted Gamma distribution, with 

argument σ2, and ν0 (ν0=n0-1) degrees of freedom, by a Normal distribution with argument µ, 

being the variance proportional to σ2. The conditional prior distribution of µ conditional on σ2 

is thus a Normal with mean µ0 and variance σ2/n0 (σ(µ0)
2), (3.29), 

2
2

0
0

| ,N
n
σµ σ µ

 
→  

 
 (3.29)

Being the prior distribution of 1/σ2 a Gamma with parameters ν0/2 and S0/2, (3.30), 

0 0
2

1
,

2 2

S
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ν
σ

 →  
 

 (3.30)

The conditional posterior distribution of µ conditional on σ2 is a Normal distribution with 

mean µ1 and variance σ2/n1 (σ(µ1)
2) [15], (3.31), 

2
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1
1

| ,N
n
σµ σ µ

 
→  

 
 (3.31)

Being the marginal posterior distribution of 1/σ2 a Gamma, (3.32), 

1 1
2

1
| ,

2 2
S
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σ
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 (3.32)

being, (3.33), 

1 0 nν ν= +  (3.33)

and, (3.34), 

( )22 0
1 0 0

0

n n
S S n s x

n n
µ⋅

= + ⋅ + ⋅ −
+

 (3.34)

Accordingly, the posterior sum of squares (S1) combines the prior (S0) and the sample (s) 

sums, with the additional uncertainty given by the difference between the sample and the 
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prior mean. As σ2 appears in conditional distribution µ|σ2 (3.31) this means that µ and σ2 are 

necessarily interdependent. In this case, the main parameter distributions can be obtained by 

simulation, through the application of expressions (3.31) and (3.32), or by analytical 

solutions [15]. Thus, the posterior mean µ1 is computed through a weighted average of 

prior (µ0) and sample data ( x ) mean values, with weights determined by the relative 

precision of two pieces of information, (3.35), 

0
1 0

1 1

n n
x

n n
µ µ= ⋅ + ⋅  (3.35)

being, (3.36), 

1 0n n n= +  (3.36)

The posterior distribution parameters combines thus prior information with the one contained 

in new data. The mean distribution variance (σ(µ1)
2) is given by (3.37), 

( ) ( ) ( )
2 1

1 1
0 1

1
, 2

2
S

n n
σ µ ν

ν
= ⋅ >

+ −
 (3.37)

The precision distribution mean (1/σ1
2) is given by (3.38), 

1
2

11

1
S
ν

σ
=  (3.38)

while its variance (σ(1/σ1
2)) is given by (3.39), 
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1
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21
S

νσ
σ
  ⋅= 
 

 (3.39)

The standard deviation distribution mean (σ1) and variance (σ(σ1)
2) is then computed through 

expressions (3.38) and (3.39) [15]. The posterior population mean is equal to µ1 (µpop), while 

its variance (σpop
2) is obtained through (3.40), 
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( ) ( )
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3.5. Posterior simulation 

The main objective of Bayesian inference analysis is to obtain the posterior distribution. In 

several situations, it is enough to obtain point estimates that summarize the overall 

information (e.g. mean and variance parameters). Sometimes, this can be performed by 
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using analytical closed form solutions, especially if prior distributions are properly chosen. 

One other alternative is to infer it from simulated distributions. 

There are several algorithms to simulate the posterior distribution. One of these algorithms is 

the Markov Chain Monte Carlo (MCMC), introduced by Metropolis et al. [124]. MCMC is a 

general method based on a sequential draw of sampled values with the distribution of 

sampled draw only dependent on the last value. It is thus a sequence of random variables or 

samples, θ1,…,θn, for which, at any instant t, the distribution θt is only dependent of θt-1. 

Hastings [76] presents a detailed description of this algorithm and Tierney [185] introduced 

several MCMC techniques for sampling posterior distributions. 

One of those sampling procedures, implemented in WinBugs® [111], is the Gibbs sampler. 

Other technique is the Metropolis algorithm [185]. The Gibbs sampler is the most popular 

and is normally chosen for simulation in conditionally conjugate models. Gelfand et al. [62] 

presents the Gibbs sampler as a method for computing the Bayesian marginal posterior 

distribution. The Metropolis is generally used in models which are not conditionally 

conjugate. In this situation, the Gibbs sampler is recommended because standard forms are 

used for posterior distributions. 

The following example is used to better explain this algorithm. Within this example, two 

parameters θ1 and θ2, with known conditional distributions p(θ1|θ2) and p(θ2|θ1), are 

considered. In this situation it is necessary to compute one or both marginal distributions, 

p(θ1) or p(θ2). This sampler starts with an initial value of θ2
t-1 and obtains θ1

t from the 

conditional distribution p(θ1|θ2=θ2
t-1). Then the sampler uses θ1

t to generate a new value θ2
t 

computed from the conditional distribution p(θ2|θ1=θ1
t). Accordingly, the samplers are taken 

from those two conditional distributions through the following sequence, by considering 

(3.41), 

( )1
1 1 2 2|t tpθ θ θ θ −→ =  (3.41)

and (3.42), 

( )2 2 1 1|t tpθ θ θ θ→ =  (3.42)

This sequence is a Markov chain as the values from step t are only dependent of values from 

step t-1. If this sequence is long enough, the distribution of current values converges to the 

simulated distribution. 

In the situation of the Normal model with conjugate prior for unknown mean and variance, a 

simulation procedure, based in MCMC and in Gibbs sampler, is recommended. Therefore, it 

becomes necessary to obtain draws from the marginal posterior distribution of precision, 
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expression (3.32), and then to simulate the mean value from the conditional posterior 

distribution of the mean given the variance, expression (3.31). 

Accordingly, in this situation, the sampler starts with an initial value of ν0 and S0, and obtains 

1/σ2 from the marginal posterior distribution (3.43), 

( )
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| ,

2 2
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x gamma
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σ

 →  
 

 (3.43)

Then the sampler uses the 1/σ2 value to generate a new µ value, computed from the 

conditional posterior distribution of the mean, given the variance (3.44), 
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The samplers are then taken from those two conditional distributions through the following 

sequence (3.45), 
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and (3.46), 
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where √t-1, St-1, µt-1 and nt-1 are respectively computed through expressions (3.33), (3.34), 

(3.35) and (3.36). This process finishes when convergence is reached. At the end of it, a final 

point estimate for mean and variance is obtained. 

3.6. An application of Bayesian inference framework 

The developed Bayesian framework is applied to infer the compressive strength value (flc) of 

lightweight concrete material (LC 50/55) [48], used in a composite beam that was tested in 

laboratory up to failure. This parameter is then introduced in the developed probabilistic 

numerical model [118, 120, 121]. The first information for this parameter is gathered from 

bibliography [93, 188]. In this situation, complementary characterization tests (e.g. uniaxial 

compressive strength tests) were executed at laboratory [188], Figure 3.3. This data is used 

to update the respective parameter distribution. 
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Figure 3.3. Compressive strength test and numerical model updating procedure. 

The studied parameter is considered as a random variable. The initial distribution of the 

population is not known. Typically, in probabilistic approaches the concrete compressive 

strength follows a Normal or Lognormal distribution. Accordingly, both distributions were 

considered in order to evaluate its impact on final results. The Normal distribution presents 

some drawbacks as the possibility of considering negative parameter values which, in this 

particular situation, is physically impossible. However, this distribution is computationally 

convenient and good results are usually obtained with it. 

When using a Lognormal distribution, three steps are considered [127]: (1) Proceed to the 

logarithmic transformation of data and compute the distribution parameters (mean and 

standard deviation); (2) Apply the Bayesian inference formula for Normal distribution, to 

update such parameters; (3) Transform the updated parameters (Y) into their equivalent 

ones on the Lognormal distribution (X) by using expression (3.47), 

2

exp
2
Y

X Y

σµ µ
 

= + 
 

 (3.47)

and(3.48), 

( ) ( )( )2 2 2exp 2 exp 1X Y Y Yσ µ σ σ= + ⋅ −  (3.48)

Bayesian updating is developed in this example by considering several situations of initial 

information, uncertainty levels and degree of belief in initial assumptions. The scope of this 

study is to represent what is happening in reality. Therefore, two different uncertainty levels 

are considered: (i) unknown mean and known variance; (ii) unknown mean and variance. For 

each case, both non-informative (Jeffrey’s prior) and informative (conjugate prior) priors were 

considered. 

Accordingly, eight computations, outlined in Figure 3.4, were developed and compared, 

being chosen the one that provides the highest degree of belief. The posterior is obtained for 

all these analysis by simulation, through the use of WinBugs® [111]. In all these analysis, the 
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mean, standard deviation and 95% confidence interval of each posterior distribution will be 

computed [15]. 

 

Figure 3.4. Scheme of performed computation for Bayesian inference. 

3.6.1. Statistical analysis of data 

The conjugate prior distribution is defined from bibliography [93, 188]. According to 

JCSS [93], a Normal distribution with mean 58.00 MPa and standard deviation 5.80 MPa is 

recommended. A Lognormal distribution, with mean 4.056 MPa and standard deviation 

0.101 MPa, is therefore adjusted to this distribution. 

In this situation, experimental data is obtained from uniaxial compressive tests [188]. 10 tests 

were performed, resulting in the histogram presented at Figure 3.5a. Figure 3.5b indicates 

the histogram of the logarithmic transformation (to be used in the Lognormal case). The 

mean and standard deviation values for these two situations are indicated at Table 3.1. 

Obtained mean value from experimental tests [188] is close to the one from bibliography [93]. 

This validates the initial estimate. 

Table 3.1. Distribution parameters for experimental data. 

Parameter Normal distribution Lognormal distribution 

µ [MPa] 57.96 4.06 

σ [MPa] 4.64 0.08 

σ
2 [MPa2] 21.57 0.01 

The histograms of Figure 3.5 present a Normal trend for the data. Accordingly, and in order 

to evaluate it, the Shapiro-Wilk normality test was performed to test this hypothesis [33]. This 

test shows that for a confidence level of 95% both distributions may be considered as 

normally distributed. This observation is important for the inference procedure. 
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a) b) 

Figure 3.5. Obtained histograms for experimental data, considering: a) raw data; 

b) logarithmic transformation. 

3.6.2. Normal data with unknown mean (µ) and known variance (σ2) 

The first updating procedure corresponds to the situation of unknown mean and known 

variance, considering the Jeffrey’s prior. Obtained results for the posterior distribution of the 

mean are closer for both Normal and Lognormal distribution. By analyzing Figure 3.6a it can 

be observed that the Lognormal distribution presents a slightly lower mean value than the 

Normal distribution. The population simulated values are also identical, as shown in 

Figure 3.6b. For both cases the simulated standard deviation value is lower than the initial 

one, which means that uncertainty is reduced with inference. 

Table 3.2. Posterior estimates for the mean value, considering the Jeffrey’s prior. 

Parameter Normal distribution Lognormal distribution 

µ1 [MPa] 57.94 57.79 

σ1 [MPa] 1.46 1.45 

95% CI for the mean [MPa] 55.08 – 60.81 54.95 – 60.63 

µpop [MPa] 57.94 57.97 

σpop [MPa] 4.85 4.82 

95% CI for the population mean [MPa] 48.43 – 67.45 48.52 – 67.43 

In order to use the conjugate informative prior, it was necessary to define a standard 

deviation for the initial mean. The adopted procedure, both for Normal and Lognormal 

distribution, was to use the obtained value from a non-informative prior (Jeffrey’s prior). 

Table 3.3 provides the prior and posterior distributions. The posterior results are slightly 

different from those obtained using the Jeffrey’s prior. In fact, a diminishment on the standard 
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deviation is verified. This point out the impact that the information provided by the used 

conjugate prior has in posterior results. 

  

a) b) 

Figure 3.6. Posterior distribution, considering Jeffrey’s prior, for: a) mean value of flc; 

b) simulated values of flc. 

Table 3.3. Prior and posterior estimates for mean value, considering conjugate prior. 

Parameter Normal distribution Lognormal distribution 

µ0 [MPa] 58.00 57.76 

σ0 [MPa] 1.46 1.45 

µ1 [MPa] 57.98 57.76 

σ1 [MPa] 1.03 1.02 

95% CI for the mean [MPa] 55.95 – 60.00 55.76 – 59.77 

µpop [MPa] 57.98 57.95 

σpop [MPa] 4.76 4.73 

95% CI for the population mean [MPa] 48.65 – 67.30 48.68 – 67.21 

Figure 3.7a presents both prior and posterior distributions for the mean parameter. It can be 

observed the effect of experimental tests on obtained results. The uncertainty in mean value 

decreases since its standard deviation is reduced for both Normal and Lognormal case. 

Additionally, it can be observed that the Lognormal distribution presents a slightly lower 

mean value than the Normal distribution for both prior and posterior distributions. 

Figure 3.7b shows a plot of prior and posterior population distribution for the Normal case. It 

is possible to conclude that updating the parameter mean presents a higher influence on 

simulated population. In fact, the posterior distribution is steeper than the prior one which 

means a reduction in the uncertainty value. 
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a) b) 

Figure 3.7. Prior and posterior distribution, considering the conjugate prior, for: a) mean 

value of flc; b) simulated values of flc. 

Figure 3.8 compares the posterior distributions for the population considering different priors 

and both Normal and Lognormal distribution. Practically, it is verified that all these 

approaches lead to similar posterior distributions. 

 

Figure 3.8. Posterior distribution for simulated values of flc, considering different prior 

distributions. 

3.6.3. Normal data with unknown mean (µ) and variance (σ2) 

In this section, the parameter updating methodology, considering both mean and variance as 

unknown parameters, is presented. In a first step, a non-informative distribution, the Jeffrey’s 

prior, is considered. The main results are presented in Table 3.4. Obtained results for the 

posterior distribution of the mean are identical for both Normal and Lognormal case. 

Simulated population mean values are closer to previous ones and they do not differ from 

Normal to Lognormal approach. This can be observed at Figure 3.9a. 

The posterior values of the mean are closer to previous case, where variance is considered 

as a known parameter. In this situation the variance is only dependent from experimental 

tests, namely, from obtained variance and number of specimens. Therefore, due to the low 

number of specimens, obtained value is higher than the one obtained when variance is 

considered as a known parameter. 
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Table 3.4. Posterior estimate for mean value, considering the Jeffrey’s prior. 

Parameter Normal distribution Lognormal distribution 

µ1 [MPa] 57.97 57.83 

σ(µ1) [MPa] 1.74 1.76 

σ1 [MPa] 5.34 1.10 

σ(σ1) [MPa] 1.44 0.03 

95% CI for the mean [MPa] 57.29 – 58.65 57.15 – 58.51 

µpop [MPa] 57.97 58.10 

σpop [MPa] 5.82 5.90 

95% CI for the population mean [MPa] 55.71 – 60.23 55.81 – 60.39 

In the case of a conjugate prior, the initial distribution, obtained from bibliography [48, 188] is 

used to compute both mean and variance priors. In this case, the variance of the mean and 

of the variance is determined by applying first the inference considering a non-informative 

prior (Jeffrey’s prior). The conditional posterior distribution for the mean and the marginal 

posterior for the variance are then obtained through the Bayes theorem. The main results are 

indicated at Table 3.5. 

Table 3.5. Prior and posterior estimates for mean value, considering conjugate prior. 

Parameter Normal distribution Lognormal distribution 

µ0 [MPa] 58.00 57.76 

σ(µ0) [MPa] 1.46 1.45 

µ1 [MPa] 57.98 57.78 

σ(µ1) [MPa] 1.20 1.20 

σ1 [MPa] 5.28 1.10 

σ(σ1) [MPa] 1.07 0.02 

95% CI for the mean [MPa] 57.51 – 58.45 57.31 – 58.25 

µpop [MPa] 57.98 58.03 

σpop [MPa] 5.50 5.53 

95% CI for the population mean [MPa] 55.82 – 60.13 55.86 – 60.20 

An insignificant variation on the mean value from prior to posterior estimates can be 

observed. In fact, the initial mean value is already close to the results provided by 
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experimental tests. This confirms that prior assumptions provide a good estimate of the 

analyzed parameter. Obtained distributions for the mean parameter are presented in 

Figure 3.9b. A clearly uncertainty reduction can be observed with inference, due to the fact 

that experimental tests provide lower standard deviation than prior distribution. 

Using simulation, it is possible to infer the population parameter values. The updating 

procedure practically did not change the mean value. However, a reduction in uncertainty is 

verified due to a reduction in standard deviation value. This point out the impact that the 

information provided by the used conjugate prior has in posterior results. 

  

a) b) 

Figure 3.9. Obtained distributions for: a) simulated values of flc, considering Jeffrey’s prior; 

b) mean value of flc, considering conjugate prior. 

Figure 3.10a compares the posterior distribution for the mean value considering different 

priors. It is possible to observe that the conjugate prior provides a distribution with a lower 

uncertainty. Additionally, it is possible to observe that Normal distribution provides a higher 

mean value than the Lognormal distribution. Figure 3.10b compares the posterior distribution 

for the population, considering different priors. It is verified that the conjugate prior provides a 

distribution with a lower uncertainty. 

   

a) b) 

Figure 3.10. Posterior distribution, considering both priors, for: a) mean value of flc; 

b) simulated values of flc. 
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In this situation, while the number of experimental tests is known (10 values), the number of 

initial samples is adopted according to the degree of belief in initial assumptions. For 

instance, in the previous analysis 10 samples were considered in order to equilibrate the 

belief in prior distribution and in registered data from experimental tests. A study on the 

impact of different prior samples (n0) in posterior distribution is thus developed. Accordingly, 

and for this situation, this value varies from 1 (no belief in prior model) to 10’000 (total belief 

in prior model). Obtained results are presented at Table 3.6. 

Table 3.6. Posterior population distribution, considering different weights for initial 

assumptions. 

n0 
µpop σpop 95% CI for the population mean 

[MPa] [MPa] [MPa] 

1 57.96 5.61 55.76 – 60.16 

10 57.98 5.50 55.82 – 60.13 

100 58.00 5.39 55.88 – 60.11 

1000 58.00 5.37 55.89 – 60.10 

10’000 58.00 5.37 55.89 – 60.10 

Accordingly, as the number of prior samples increases, the posterior distribution mean 

converges from data sample to prior distribution mean value. At same time, the standard 

deviation decreases with this value. This is essentially due to the fact that as the prior sample 

increases, its weight in posterior distribution increases too and, at same time, the degree of 

belief on sampled data. Figure 3.11 shows these distributions. 

 

Figure 3.11. Simulated values of flc considering different weights for initial assumptions. 

Bayesian methods present an inherent flexibility due to the incorporation of multiple 

uncertainty levels, the ability to combine information from different sources and the possibility 

of considering different degrees of belief in initial assumptions. The major advantage of this 
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framework is to deal, in a rational way, with uncertainty. Accordingly, random variables are 

updated through this methodology as new data is acquired. 

The first approach considered the mean value as a random unknown variable and the 

variance known and deterministic. Good results were obtained for updating the mean 

parameter, providing the conjugate prior a higher reduction in uncertainty. In both situations, 

the population standard deviation values are lower than the initial ones. Obtained results also 

showed to be less sensitive to distribution type assumed for the data. The major drawback of 

this approach is related to the computation of each parameter characteristic value, necessary 

for design purposes. As the population variance is considered to be constant, the 

characteristic values are kept almost unchanged. 

The second approach considers both mean and variance as unknown variables, even 

computationally costly, allows overcoming this problem. In this situation, the population 

variance is also updated. This approach allows a more global treatment of uncertainty. 

Obtained probabilistic distributions are almost identical for both Normal and Lognormal case 

and for both priors. An important note is that the mean value practically did not change with 

conjugate prior, which means that sampled data and prior assumptions are closer. However, 

the new data led to a significant decrease in parameter uncertainty. 

Concluding, the unknown mean and known variance approach is simpler and can be used 

when the parameter of interest is the mean value. However, in structural parameters the prior 

information regarding the variance usually presents a high uncertainty and using it to define 

the deterministic variance may compromise the updating procedure. The more complex 

problem of considering both mean and variance as unknowns, allows overcoming this 

problem. It deals with uncertainty in a global way, reducing it in several dimensions. In both 

situations, posterior inferences showed stability to the choice of different priors. 

The Bayesian framework provides a consistent way of treating data from different sources, in 

order to increase the reliability of structural parameters. In this situation, this approach 

revealed to be little sensitive to distribution type assumed for the data. This is essentially due 

to the fact of not being obtained any negative value for this parameter and thus there is no 

need to truncate any value when using the Lognormal distribution. However, for parameters 

in which the probability of obtaining a negative value is higher, Lognormal distributions are 

recommended. 
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3.7. Alternative updating methodology using Weibull distribution 

Previous presented Bayesian framework showed good results in uncertainty treatment. 

However this approach might be sensitive to the distribution type assumed for the data. 

Therefore, Miranda [127] proposed a new methodology to overcome this problem. In this 

methodology, a two-parameter Weibull distribution is used to model both prior and likelihood. 

This distribution is, in fact, more flexible and easily adaptable to available data transforming it 

into a Normal or any other distribution according to its configuration. 

Since Weibull data is not conjugate with prior, there is no closed form solution to the problem 

as there is for Normal distribution [66, 94]. Thus, to avoid heavy computations which would 

make the method difficult to implement in a practical sense, some acceptable simplifications 

are considered. Accordingly, a heuristic approximation to produce a fast method of 

estimating Weibull parameters assuming that they are normally distributed is proposed by 

Miranda [127]. 

3.7.1. The Weibull distribution 

The Weibull distribution is one of the most widely distributions used in reliability engineering. 

The two-parameter Weibull distribution is characterized by a probability density function 

given by (3.49), 

( )
1

exp ; 0
x x

f x x
β ββ

α α α

−
   = − ≥   
   

 (3.49)

where β>0 is the shape parameter and α>0 is the scale parameter. The cumulative 

distribution function is given by (3.50), 

( ) 1 exp
x

F x
β

α
 = − − 
 

 (3.50)

The reliability of a distribution is one minus the cumulative distribution function, (3.51), 

( ) exp
x

R x
β

α
 = − 
 

 (3.51)

To obtain the value (x) corresponding to a certain reliability degree, expression (3.52) can be 

used, 

( ){ }1
lnx R x

β
α  = −    (3.52)

R(x) = 0.50 corresponds to the median value. The mean (µ) of a Weibull random variable is 

given by (3.53), 
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and the standard deviation (σ) is given by (3.54), 
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in which Г is a Gamma distribution defined by (3.55), 

( ) 1

0

x nn e x dx
∞ − −Γ = ∫  (3.55)

This distribution is very versatile and flexible since it adapts to the data and can easily mimic 

the behavior of other distribution types, based on the shape parameter value [33]. There are 

many methods to estimate Weibull parameters from a specific data set. One of the most 

appropriate methods is to perform the curve fitting to the histogram of data. 

A measure of good fitness of a statistical model is the AIC (Akaike Information Criteria) [4], 

defined by (3.56), 

( )2 2lnAIC k L= −  (3.56)

where k is the number of parameters in the statistical model and L is the maximized value of 

the likelihood function for the estimated model. Given a set of models, the most appropriate 

is the one which presents the lowest AIC value. 

3.7.2. The proposed methodology 

In the methodology proposed by Miranda [127], it is assumed that a prior distribution is 

already known. Accordingly, both prior and new data are modeled with Weibull distributions 

to take advantage of its flexibility. However, this may be very complex as prior parameters 

are not conjugate with data and thus there is no analytical formula for the posterior 

probability distribution of parameters [66, 94]. 

To overcome this problem a simple heuristic, in which the Weibull distribution parameters are 

considered to be random variables that follow a multivariate Normal distribution and can be 

analytically updated as such, is proposed. The main disadvantages of this method are that it 

does not use formal Bayesian procedures and assumes that parameter estimates are 

normally distributed [127]. 

Brennan and Kharroubi [20] considered identical simplifications in a similar Weibull 

approach. The accuracy of the method is context dependent. In fact, if the prior is weak (e.g. 
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based on little knowledge) and data is strong (e.g. large sample size), or in inverse case, the 

result can be almost equivalent to formal Bayesian updating, but, between these extremes, 

this simplification can lead to a reduced accuracy. 

The methodology starts with the computation of Weibull parameters from prior data. 

Accordingly, it is assumed that uncertainty in these parameters can be correctly 

characterized by a multivariate Normal distribution (Prior→N(µ0,σ0)). The standard deviation 

value was considered to be related to the 95% confidence interval of the Weibull analysis 

regression parameters. Therefore, it is computed as the distance between the mean and the 

upper or lower bound of the confidence interval. 

The same procedure is then applied to the data, considering a multivariate Normal 

distribution to characterize the parameters uncertainty (Data→N(µ,σ)). The Bayesian 

updating formula for multivariate Normal distribution is then used to compute the posterior 

parameter estimates, (3.57), 
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and, (3.58), 

2 2 2
1 0

1 1 1
σ σ σ

= +  (3.58)

A simulation procedure is then used to obtain the population distribution. Accordingly, 10’000 

samples of Weibull distribution parameters are generated from their Normal distributions. 

These values are then reused to generate Weibull random values which are again fitted to a 

Weibull distribution, considered to be the population distribution. With this distribution it is 

possible to obtain the respective parameters. Figure 3.12 presents a scheme of the proposed 

methodology. 

3.7.3. Obtained results 

This methodology is applied with the data samples obtained from experimental tests. 

Accordingly, a Weibull analysis is applied to initial data and to likelihood (LLH). The posterior 

is then computed through the application of a Bayesian framework. Table 3.7 indicates the 

obtained distribution parameter values. Additionally, it also provides the AIC values from 

curve fitting to such data. 
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The population values are then generated through simulation. The parameters of the Weibull 

fit to simulated data are indicated at Table 3.8. The AIC values indicate that the fitting 

procedure is excellent for all distributions. Obtained inference values for the posterior are 

closer to both prior and likelihood, as expected. 

 

Figure 3.12. Bayesian updating scheme using Weibull distribution, adapted from 

Miranda [127] (random distributions are merely indicative). 

Table 3.7. Mean and standard deviation of Weibull distribution parameters. 

- 

α β 

AIC 
Mean Standard 

deviation 
Mean Standard 

deviation 

[MPa] [MPa] [MPa] [MPa] [-] 

Prior 60.62 0.01 10.61 0.01 6.43 * 106 

LLH 60.16 3.11 12.74 5.98 6.45 * 101 

Posterior 60.70 1.55 10.40 1.51 - 

Figure 3.13 presents the probability density functions for simulated prior, LLH and posterior 

populations, according to Table 3.8. A clear uncertainty reduction can be observed with 

inference. Additionally, a slightly increment of the population mean value is verified. 

The Weibull distribution allows using reliability concepts in parameter computations. 

Accordingly, it is possible to compute values with certain reliability levels for simulated 

distributions. The reliability of a certain value is interpreted as the probability that the 



Uncertainty Evaluation of Reinforced Concrete and Composite Structures Behavior

 

 
61

 

parameter true value has of being higher than it. Table 3.9 presents the obtained values for 

prior and posterior distributions considering different reliabilities. 

Table 3.8. Weibull fit parameters for simulated population values. 

- 
α β AIC 

[MPa] [MPa] [-] 

Prior 60.63 10.61 6.53 * 106 

LLH 60.16 12.73 6.17 * 106 

Posterior 61.89 11.09 5.89 * 106 

 

Figure 3.13. Weibull distributions for simulated values of flc. 

Table 3.9. Values of parameter flc for different reliability levels. 

Reliability 

flc 

[MPa] 

Prior Posterior 

0.010 39.28 40.86 

0.025 42.86 44.20 

0.050 45.81 46.93 

0.100 49.02 49.89 

0.500 58.56 58.56 

0.900 65.57 64.85 

0.950 67.22 66.31 

0.975 68.55 67.50 

0.990 70.00 68.78 

This alternative methodology tries to overcome the sensitivity of chosen distribution, through 

the use of a more flexible distribution that can easily adapt to available data. In this case the 
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two-parameter Weibull distribution is used to avoid more rigid Normal and Lognormal 

distributions. As it is not possible to find a conjugate prior for this distribution, some 

simplifications are considered. The methodology is based in a heuristic procedure, in which 

the model parameters are random variables that follow a Normal distribution. 

This methodology should be applied when there is little information regarding the most 

recommended distribution. However, it is suggested to process it with all parameters in order 

to evaluate if it provides a higher degree of belief than the other models. Hence, the model 

that provides the lowest uncertainty value should be chosen. 

3.8. Conclusions 

This chapter presents the Bayesian inference framework that is used to updated structural 

parameters with acquired experimental data. It begins with a brief presentation of the Bayes 

theorem and the relation between prior, likelihood and posterior probabilistic distributions. A 

detailed description of prior distributions is also provided. The choice of the prior distribution 

is discussed, as well as the advantages of using an informative prior. 

The Bayesian inference procedure is then clarified. Therefore, eight different inference 

situations are studied. These cases vary in considered probabilistic distribution for data, 

Normal or Lognormal, in the uncertain distribution parameters, mean (µ) and variance (σ2) or 

both, and in the chosen prior, Jeffrey’s or conjugate. For each case, it is indicated how the 

posterior distribution is obtained. Sometimes, it is necessary to use specific simulation 

algorithms to obtain such distributions. One of those algorithms is the Markov Chain Monte 

Carlo (MCMC), which is also described. 

These eight cases are then tested with a real example of the inference applied on the 

compressive strength of lightweight concrete (flc). Accordingly, the statistical analysis of data 

obtained in uniaxial compressive tests is first indicated. Some additional studies are made in 

order to evaluate the impact of different levels of initial information, uncertainty levels and 

degree of belief in initial assumptions. 

An alternative updating methodology for Weibull distributions, initially proposed by 

Miranda [127], is also provided. This tool is interesting, as this distribution type is very 

versatile and can be adopted for different numerical input parameters. Its formulation is 

presented, together with an application on the compressive strength (flc) of lightweight 

concrete that corresponds to the same example presented before. The reliability concept is 

also introduced. 
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4 Probabilistic Assessment of 
Structures 

4.1. Introduction 

The assessment of structures comprises all necessary activities to evaluate their condition 

for future use. A general flowchart of this procedure is provided in ISO 13822 [86]. A review 

of the philosophy, theoretical concepts and tools necessary to carry out this procedure is 

provided by Faber [52]. During structural assessment, several sources of uncertainty may be 

identified. In order to consider them, reliability algorithms are commonly used. It was verified 

that the use of these algorithms on the assessment of structures resulted in substantial cost 

savings [101]. 

Safety assessment is based on the established relation between the assessed structure 

resistance and the applied load. A reliability index is obtained from the probabilistic-based 

safety assessment [123, 134]. This index characterizes the failure probability of the assessed 

structure, through the comparison of both resistance and loading probability density functions 

(PDF). This index represents a more objective mean to assess the structural performance 

[59]. Several authors have been using probabilistic-based safety assessment procedures 

within the last few decades [41, 77, 113, 197]. 

Some authors proposed a probabilistic-based safety assessment method that considers both 

resistance and loading PDF as time-variant quantities [5, 40, 43, 130]. Recently, Bayesian 

inference was introduced to update the resistance PDF with collected data from real 
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structure [14, 80, 133]. Strauss et al. [175] proposed a methodology for continuous safety 

assessment that incorporates data from permanent monitoring systems, through a Bayesian 

inference algorithm. 

The use of nonlinear analysis software in structural assessment procedures, although 

computational costly, enables a realistic estimation of the structural response both in service 

and failure region. Bergmeister et al. [14] introduced a probabilistic-based safety assessment 

concept for concrete structures that integrates nonlinear finite element analysis software with 

reliability algorithms. 

Some authors used model identification techniques for parameter estimation of structures. A 

review of these procedures was provided in chapter two. However, the combination of these 

techniques with a probabilistic-based safety assessment framework is still scarce. More 

recently, Novák et al. [133] and Strauss et al. [174, 176, 177] developed a complex 

methodology for assessment of structures which combines structural analysis and reliability 

algorithms with new modules for model identification. 

A multilayered probabilistic-based structural assessment framework [118, 119, 121], 

composed by both model identification and reliability algorithms, is described in this chapter. 

This methodology aims to incorporate all the uncertainty sources inherent to a structural 

assessment procedure. This chapter begins so with a summary of these uncertainty sources. 

Then the developed framework is presented. It is given an emphasis to sensitivity analysis as 

a measure to reduce computational costs. 

A description of implemented model identification technique is further presented. Within this 

procedure, model parameters are adjusted in a way that obtained numerical results best fit 

the experimental data. A convergence criterion, based in a combination of measurement and 

modeling errors, is therefore established for incorporated optimization algorithms. An 

engineering judgment procedure is finally introduced to select the best model from a pool of 

optimal models. 

The probabilistic model is obtained by considering randomness in identified model 

parameters. A Bayesian inference algorithm, described in chapter three, is used to update 

each model parameter PDF with acquired data. Obtained results, from probabilistic analysis, 

are statistically processed. An updated resistance PDF is thus obtained. Structural 

performance is evaluated through specific indexes. Some of these indexes are especially 

important as they give an indication of the structure safety. At the end, some considerations 

are made from the proposed methodology. 
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4.2. Uncertainty sources 

Uncertainty is always present in structural assessment procedures. Accordingly, and from a 

pragmatic standpoint, it is useful to categorize it within this process in order to clarify which 

uncertainties have the potential of being reduced. Kiureghian and Ditlevsen [97] introduced 

categorization in probabilistic assessment of structures. It is shown that, for proper 

formulation of reliability, careful attention should be paid to the categorization of 

uncertainties. Failing to do so may result in underestimation or overestimation of failure 

probability. Uncertainties are generally characterized as epistemic, if the modeler sees a 

possibility to reduce them by gathering more data or by refining models, and as aleatoric, if 

the modeler does not foresee the possibility of reducing them. 

A more detailed classification procedure consists on the following [77]: (1) modeling errors, 

that result from theoretical approximations from the real behavior of materials and from 

simplifications considered in loading and on its effects; (2) physic uncertainty, due to 

randomness in structural parameters (material, geometry and physic sources) and loading; 

(3) statistic uncertainty, due to the uncertainty in estimating the PDF parameters through a 

finite number of proofs; (4) human errors, which results from human involvement during the 

whole procedure. The measurement errors, due to transducer precision, cable losses, and 

data acquisition and transmission equipment’s, is considered by some authors as an 

uncertainty source too [87]. 

4.3. Safety assessment levels 

Different levels of structural safety assessment can be defined according to the way the 

uncertainty sources are processed. The following division is established by different authors 

[77, 87, 196]: (1) level 0, purely deterministic analysis where all parameters present 

deterministic values and a global safety factor is used; (2) level 1, semi-probabilistic method 

as the randomness in resistance and loading parameters is considered through 

representative values (nominal and characteristic) and partial safety factors. The 

characteristic values are defined through the specified mean value, coefficient of variation 

(CV) and PDF; (3) level 2, probabilistic method as a PDF is established for each model 

parameter. Such PDF is defined by statistic measures that describe the central tendency 

(e.g. mean value) and dispersion (e.g. variance). A failure probability (reliability index) is 

therefore computed, considering these PDF and a correlation matrix; (4) level 3, full 

probabilistic method that considers the joint PDF of all parameters for computing the failure 

probability (reliability index). 
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Other structural safety assessment classifications are also presented in literature. Ryall [160] 

introduced several safety assessment levels. Some of these levels use reliability algorithms 

and others combine numerical and measured data. The concept of rating factor, which 

relates resistance and loading, is introduced. A more complex factor that combines the 

assessed and design reliability index is also present. Wisniewski et al. [197] suggests the 

use of simplified probabilistic-based safety assessment methods. Accordingly, the use of 

level 2 assessment techniques increased in the last years [14, 41, 43, 197]. Maljaars et al. 

[113] present a variant of this level, which incorporates additional measurements at critical 

parts of the structure for determining its safety. 

4.4. Probabilistic assessment 

The proposed probabilistic assessment methodology [118, 119, 121] is also a variant of level 

2 assessment technique, as it combines a simplified probabilistic-based approach with 

measured data. The main result of this methodology is an updated resistance PDF of the 

assessed structure. This updating procedure is executed within the structure lifetime, as data 

is collected from the structure. Once the updated resistance PDF is obtained, the safety 

assessment can be developed through a comparison with loading PDF. This methodology is 

divided into the following steps, indicated in Figure 4.1.: (1) step 1: model identification; 

(2) step 2: probabilistic analysis. 

The main objective of model identification is to obtain the most likely values of model 

parameters. Within this procedure the numerical results are fitted to collected data from real 

structure, by adjusting the model parameter values. Obtained results are then compared to 

measured data and the distance between these two values (or fitness function) is minimized 

with an optimization algorithm. The main result of this procedure is an updated deterministic 

numerical model. In order to compute the numerical model the nonlinear structural analysis 

software ATENA® [24] is used. A Matlab® algorithm [25, 129] is developed to: (1) automatic 

generate and compute the numerical models; (2) compute the distance between numerical 

and experimental data; (3) optimize this distance. This procedure presents a high 

computational cost. It is usually developed when the uncertainty about the evaluated 

structure is high and an in-depth assessment becomes necessary. Figure 4.2a indicates a 

flowchart of this algorithm. 

The main objective of probabilistic analysis is to include uncertainty in numerical model. 

Therefore, randomness is considered in model parameters through a PDF. Each prior PDF is 

then updated with complementary data (or likelihood) through a Bayesian inference 

procedure. The posterior PDF is therefore computed and an updated probabilistic numerical 
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model is obtained. The nonlinear structural analysis software ATENA® [24] is used to 

compute the numerical model. A Matlab® algorithm [25, 129] is developed to: (1) random 

generation of model parameter values based on Iman and Conover algorithm [85, 134]; 

(2) automatic compute the pool of generated numerical models; (3) process the obtained 

results through a statistical analysis. The Bayesian inference is performed with WinBugs® 

[111]. In this case, a Matlab® algorithm [25, 129] is developed to: (1) generate the prior PDF; 

(2) compute the posterior PDF. This procedure presents a low computational cost. Figure 

4.2b gives a flowchart of this algorithm. 

 

Figure 4.1. Probabilistic assessment algorithm [118, 119, 121]. 

The developed probabilistic assessment methodology considers all previous identified 

uncertainty sources. These uncertainties are: (1) measurement and modeling errors, that are 

introduced when defining the model identification convergence criterion; (2) physic 

uncertainty, that is incorporated when considering randomness in model parameters 

(material, geometric and physical); (3) statistical uncertainty, that is reduced with Bayesian 

inference as complementary data is obtained; (4) human errors, that are usually identified 

with model identification. 
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a) b) 

Figure 4.2. Implemented algorithm: a) model identification; b) probabilistic analysis. 

4.5. Sensitivity analysis 

The main drawback of the proposed methodology is its computational cost. This cost is 

proportional to the number of input parameters. Accordingly, before applying the respective 

methodology, it is recommended to perform a sensitivity analysis with the developed 

numerical model. 

The main objective of this analysis is to obtain the critical parameters. Critical parameters are 

those that present a higher influence on the overall structural response. In each sensitivity 

analysis it is possible to evaluate the influence of material (e.g. concrete strength), geometric 

(e.g. section dimensions) and physic (e.g. spring support stiffness) properties of analyzed 

structure. This analysis can be performed either in service or failure region. In fact, 

parameters that present a higher influence in service may not present an identical impact in 

failure. 
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Accordingly, the following procedure is recommended: (1) to develop the deterministic 

numerical model of analyzed structure using mean values for input parameters; (2) to divide 

the structural parameters by category (material, geometric, physic) and subcategory 

(concrete, steel, interface, support, …); (3) for each parameter, to determine the most 

suitable CV; (4) to vary each parameter by adding or subtracting a standard deviation value, 

keeping all the other parameters fixed; (5) for each set of parameter values, to proceed to the 

numerical analysis with a nonlinear structural analysis software; (6) to apply the following 

expression (4.1) [33], 

( ) ( ) [ ]
1

/ %
n

k k m ik im
i

b y y x x CV
=

= ∆ ∆ ⋅∑  (4.1)

being bk the importance measure of parameter k, ∆yk the variation in structural response due 

to a deviation of ∆xk in relation to the parameter mean value xm, ym the average response 

and n the number of generated parameters; (7) to determine the maximum importance 

measure value; (8) to normalize all values in relation to the maximum; (9) to plot the 

standardized importance measures in a bar plot; (10) to define a limit for the importance 

measure (blim). The critical parameters are those that present an importance measure higher 

than this value. 

4.6. Model identification 

In a first step, and according to Figure 4.1, the proposed probabilistic assessment 

methodology performs the model identification in order to obtain an updated deterministic 

numerical model. During this procedure, model parameters are assessed through an 

automatic adjustment procedure to measured data. The set of procedures necessary to 

determine an updated model are designated by model updating. The organization chart of 

the developed algorithm is indicated at Figure 4.3. 

 

Figure 4.3. Model identification procedure. 
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The algorithm runs the nonlinear numerical model, for each set of input parameters 

obtaining, from each run, the respective numerical results. At same time, experimental data 

is collected by specific instrumentation, from real structure. A comparison that consists in 

determining the cumulative difference between numerical and experimental data is 

performed for each monitoring point (Figure 4.4a). The objective function value, to be 

minimized, is then obtained. When there is a population of models, this value is computed for 

all models. However, for a matter of convergence criterion the considered value is the 

minimum. 

Accordingly, the basis of this methodology is an objective function, designated by fitness 

function (f), that describes the approximation between numerical results and experimental 

data, (4.2), 

( ) [ ]exp exp
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i i

i

f y y y n
=

= − ⋅∑  (4.2)

in which ynum and yexp are the numerical and experimental values and n is the number of 

evaluated points. Therefore, for each analyzed point, the ratio between the absolute 

difference of numerical and experimental results and obtained maximum measured value is 

computed. The sum of these values is then divided by the number of analyzed points. 

It is important to note that this function is normalized and so, it can be used with different 

transducers, placed in different regions of the structure, measuring different parameters. 

Additionally, it can be also applied when more than a structure is tested, in identical 

conditions, and/or when more than a load case is implemented. In this situation, the fitness 

function is obtained by using the following expression (4.3), 
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being fi,j,k,l the fitness function value computed from expression (4.2) for each measurement i 

in each position j at tested structure k for load case l. According to Figure 4.3, an established 

stop criteria for model identification algorithm is the fitness function convergence criterion, 

given by expression (4.4), 

i n if f f ε+∆ = − ≤  (4.4)

being f the fitness function for generation i and i + n, and n the defined gap between two 

generations. If the difference between these two values is less than or equal to a pre-
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specified threshold value (ε), than the algorithm stops and the population of models is 

extracted. However, if this criterion is not accomplished, the developed algorithm will 

rearrange the input parameters set and the procedure restart. The extracted models are then 

analyzed by an engineering judgment procedure, based in the probability of occurrence of 

each model. The most likely model is the updated model. 

When using a multi-parameter model identification methodology, there are two sources of 

errors, related to experimental measurements and to numerical analysis, which should be 

considered during the analysis. Consequently, when computing the difference between 

numerical and experimental data, according to fitness function (4.2), used points should not 

be considered as deterministic but as an interval of values, all of them with the same 

probability (uniform PDF). This is exemplified in Figure 4.4b. Therefore, the threshold 

value (ε) is a combination of both measurement and modeling errors. 

  

a) b) 

Figure 4.4. Fitness function: a) definition; b) convergence criterion. 

A similar procedure is presented by Goulet et al. [67, 69]. For these authors, the fitness 

function is defined as the root-mean-square of the difference between measured values and 

model predictions. When this value is less than a certain threshold value, the model is 

classified as a candidate model. The threshold is evaluated by assuming reasonable values 

for modeling and measurement errors. Accordingly, a model involving the right set of 

assumptions and correct parameter values has a fitness function value that is less than or 

equal to this threshold. 

These authors introduce the concept of reliability in model identification. The identification 

presents 100% reliability when the following three conditions are met: (1) all possible models 

are considered in the set of models; (2) there are sufficient measurement data to filter out 

wrong models; and (3) all errors are zero. Although, it is almost impossible to completely 

fulfill these three conditions, it is possible to assume that the first two conditions are 
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commonly met. In fact, for many structures the use of a stochastic algorithm is enough to 

generate all possible models. Additionally, enough measurement data is available to filter out 

wrong models. 

During model identification procedure, human errors (e.g. due to bad concreting) are usually 

detected. This procedure is commonly used in: (1) assessment of existent structures in order 

to determine if those structures present any additional carrying capacity; (2) in forensic 

engineering, when it is necessary to determine any human error developed during 

construction (e.g. an inferior concrete cover). Therefore, model identification permits to 

identify this source of errors. 

Within the model identification procedure, some Matlab® routines were developed, as 

indicated at Figure 4.2a [25, 129]. These routines are provided in Appendix A, respectively: 

(1) backanalysis.m: run the model identification procedure. It defines the optimization 

algorithm parameters (e.g. threshold value of the convergence criterion) and also the lower 

and upper bound limits of each variable; 

(2) fobj.m: compute the fitness function of the model identification procedure; 

(3) es.m [29]: evolutionary strategies algorithm, used to compute the best model from the 

population of models. This algorithm was modified in order to give all the population of 

models, necessary for the engineering judgment procedure; 

(4) run_num.m: run the structural analysis software; 

(5) parameter.m: define each model parameter value; 

(6) data.m: generate the data file which will be read and then processed in structural analysis 

software; 

(7) processment.m: process the generated data file and convert the obtained results into 

Matlab® [25, 129]; 

(8) matrix_num.m: convert the obtained results from the structural analysis software into the 

same unities of experimental data, necessary to compute the fitness function value; 

(9) test_num.m: divide the numerical results into specific steps in order to guarantee that the 

same points of experimental data are compared in the fitness function (4.2); 

(10) run_exp.m: read experimental data and convert it into Matlab® [25, 129]; 

(11) matrix_exp.m: convert the experimental data into the same unities of numerical results, 

necessary to compute the fitness function value; 
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(12) test_exp.m: divide the experimental data into specific steps in order to guarantee that 

the same points of numerical results are compared in the fitness function (4.2); 

(13) constraint_value.m: introduce, when necessary, specific constraint values; 

(14) limit.m: determine limits for service and failure region evaluation. 

Additionally, the nonlinear structural analysis software ATENA® [24] is used in this situation. 

The following executable files are thus incorporated: (1) atenaconsole.exe: run the 

developed numerical model using the finite element methodology; (2) gawk.exe [3]: convert 

obtained results from ATENA® into readable data for Matlab® processing. 

4.6.1. Optimization algorithm 

In order to minimize the distance between measured and numerical data, given by the fitness 

function (4.2), it will be necessary to use an optimization algorithm. There are several 

algorithms that can be used. After a detailed study on some of those algorithms, presented in 

previous chapter two, it was decided that the most reasonable algorithm is the evolutionary 

strategies in its plus version. This algorithm permit to identify a population of models once the 

convergence criterion is achieved. A Matlab® version of this algorithm already exists and was 

adapted for this methodology [29]. The respective algorithm (es.m) is presented in Appendix 

A of this thesis. 

4.6.2. Errors 

Errors play a major role in model identification. They may arise from many sources, being the 

most significant the measurement and modeling errors. Measurement errors can result from 

equipment as well as on-site installation faults. Some authors like Banan et al. [11, 12] 

studied the effect of measurement errors by using simulation algorithms. 

Sanayei et al. [163] studied the effect of measurement and modelling errors in parameter 

estimation. For these authors measurement error typically has zero mean and its magnitude 

depends on experimental equipment, test environment, and data processing procedure. 

Modeling error, however, is a bias error as it produces a shifted response. 

The purpose of an assessment procedure is the comparison between measured and 

modeling data. Accordingly, this procedure is limited by the combination of these two sources 

of errors. Numerical models are then updated until a certain limit (threshold value), defined 

by the contribution of these two components, is attained. However, understanding errors is 

essential to compute this limit value. Therefore, it is further indicated how these two sources 

of errors may be computed and combined. 
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4.6.2.1. Measurement 

Measurement error (uexp) is the difference between real and measured quantities in a single 

measurement. It usually results from equipment and on-site installation faults. There are 

some authors which tried to quantify this error. Restivo and Sousa [154] evaluated the 

measurement uncertainty with an example of a material Young modulus test. They used the 

law of propagation of uncertainty, indicated at GUM (Guide to the expression of Uncertainty 

in Measurement) [37, 38], to combine all different contributions (e.g. sensor characteristics, 

equipment resolution and repeatability of used procedure). 

An interesting work about measurement uncertainties is the work of Cabral [21]. Within this 

report it is indicated the concept of maximum admissible error of a transducer which is the 

product of its linearity by its full scale. This author differentiates type-A uncertainties which 

are determined from several and repeated measures of the same measurand 

(e.g. measurement stability) from type-B uncertainties which may be given in bibliography 

(e.g. equipment resolution). Different sources of uncertainties, indicated at Table 4.1, are 

respectively introduced. 

Table 4.1. Measurement errors: causes and quantification (adapted from Cabral [21]). 

Sources Causes Quantification method 

Measurement equipment to 
calibrate Resolution; measurement stability; etc. Manufacturer (last certification) 

Transducer equipment Calibration; separation from “ideal pattern”; etc. Operator (calibration history) 

Measurement technique Suitability of the method for the final purpose; 
approximation introduced in the model; etc. Operator (computing error) 

Operator Experience; training; etc. Average from multiple samples 

Environmental conditions Temperature; humidity; etc. Manufacturer (last certification) 

The measurement error may be also divided in the following contributions [67]: (1) sensor 

accuracy, value reported by the manufacturer; (2) stability (e.g. fatigue, ambient vibrations 

and its attenuation); (3) robustness (e.g. environmental effects due to temperature, humidity, 

etc.); (4) load positioning; and (5) load intensity. Table 4.2 presents an example of a general 

division of measurement errors and attributed values. 

This example concerns a pinned-pinned supported reinforced concrete beam which is loaded 

up to failure in laboratory. The applied load is monitored through a load cell positioned inside 

the actuator. The beam deflection is monitored with a linear variable differential transformer 

(LVDT). The sensor accuracy value is recommended to be twice the manufacturer value 
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(0.05%) in order to consider cable and acquisition equipment losses [67]. An explanation of 

how other uncertainty sources are determined is given in Table 4.2. 

Table 4.2. Measurement errors in a reinforced concrete beam example. 

Sources Quantification method 

Value 

[%] 

Sensor accuracy Manufacturer (includes cable and acquisition 
equipment losses) 0.10 (LVDT) 

Stability Static load test (no fatigue or vibration problems 
detected) → 0.00 

Robustness Short term test (environmental effects neglected) → 0.00 

Load positioning Test assembly perfectly controlled → 0.00 

Load intensity Manufacturer (includes cable and acquisition 
equipment losses) 0.10 (load cell) 

A sensor is a converter that measures a physical quantity (input, X) and converts it into a 

signal (output, Y) which can be read by an observer or by an electronic device. The sensor 

sensitivity is defined as the slope of the output characteristic curve (∆Y/∆X in Figure 4.5a) or 

the minimum input of physical parameter that will create a detectable change in the output. In 

some sensors, the sensitivity is defined as the input parameter change required to produce a 

standardized output change. In others, it is defined as an output voltage change for a given 

change in input parameter. The sensitivity error (dotted curve in Figure 4.5a) is a departure 

from the ideal slope of the characteristic curve. 

The linearity of the transducer is an expression of the extent to which the actual measured 

curve of a sensor departs from ideal curve. Figure 4.5b shows a somewhat exaggerated 

relationship between the ideal and the calibration line. Linearity is often specified in terms of 

percentage, which is defined as, (4.5), 

( )
. .

max
[%]in

f s

D

IN
Linearity =  (4.5)

where linearity (%) is the percentage of linearity, Din (max) is the maximum input deviation 

(absolute maximum error), INf.s. is the maximum full-scale input. Transducers are usually 

classified by linearity classes. Both linearity and sensitivity values are important to 

characterize the sensor accuracy component of measurement error. 
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a) b) 

Figure 4.5. Transducer properties: a) sensitivity; b) linearity. 

A detailed study of such transducer properties is developed for LVDT, Figure 4.6a. These are 

widely used in civil engineer applications, mainly in load tests. LVDT is a linear displacement 

transducer that works on the principle of mutual inductance, producing an electrical signal 

that is proportional to the position of a separate moving core (Figure 4.6b). The transducer 

relates inductance to displacement by modifying the spatial distribution of an alternating 

magnetic field. A more detail description of this transducer is given in fib [55]. 

A rigorous study of different LVDT was developed. Chosen transducers vary according to 

their measuring field, manufacturer linearity and sensitivity. Table 4.3 indicates the 

characteristics of the studied equipment. It is important to note that the transducer sensitivity 

increases as the measuring field decreases and that linearity is an independent property 

(ranging around 0.10%). The following effects were studied: (1) cable length (10, 35 and 

105 m); (2) wrapping cable, which introduce a magnetic field; and (2) calibration procedures. 

For each situation, both linearity and sensitivity values were determined. 

 
 

a) b) 

Figure 4.6. Linear variable differential transformer (LVDT): a) image; b) operating principle. 
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Table 4.3. Displacement transducers (characteristics). 

Transducers 

LVDT Type Model / 
Reference Series number 

Measuring field Linearity Sensitivity 

[mm] [%] [mV/V/m] 

1 RDP GTX5000 40351 ± 5.00 0.17 118.71 

2 RDP GTX5000 65050 ±5.00 0.22 114.71 

3 RDP D6/05000A 83043 ± 5.00 0.10 142.09 

4 RDP ACT500A 2987 ±12.50 0.08 54.72 

5 RDP ACT500A 2990 ±12.50 0.06 54.17 

6 RDP ACT500A 2934 ±12.50 0.10 56.22 

7 RDP ACT1000A 3468 ±25.00 0.08 33.84 

8 RDP ACT1000A 19906 ±25.00 0.07 32.78 

9 RDP ACT1000A 82804 ±25.00 0.10 34.00 

Table 4.4 indicates the obtained results for LVDTs with a measurement field of ± 5.00 mm. 

The following conclusions are obtained: (1) the manufacturer linearity values are higher than 

those determined at laboratory for LVDT 1 and 2; (2) the manufacturer linearity value is close 

to that obtained at laboratory for LVDT 3; (3) the manufacturer sensitivity values are lower 

than those determined at laboratory; (4) it is verified an increase in linearity value with an 

increase in cable length; (5) the sensitivity value does not change with cable length; (6) the 

linearity and sensitivity values increases with wrapping for LVDT 1 and 3; (7) the linearity and 

sensitivity values remains unaffected with wrapping for LVDT 2; (8) the calibration procedure 

reduces the linearity values; (9) the sensitivity value decreases with the calibration 

procedure, especially for long cables; (10) the cable length effect in linearity value is reduced 

with the calibration procedure; (11) the wrapping effect in linearity value is minimized with the 

calibration procedure for LVDT 1 and 3. 

A summary of obtained results for LVDTs with a measurement field of ± 5.00 mm is provided 

in Figure 4.7. Accordingly, it is verified an increase in linearity value with an increase in cable 

length. This variation is higher when calibration is not developed. This confirms the 

importance of calibrating the system transducer and cable before performing any test. 

Additionally the obtained linearity value with a cable length of 105 m is five times higher than 

the manufacturer value. Therefore, considering this value twice the recommended by 
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manufacturers, to take into account cable losses [67], may be not conservative when long 

cables are used. 

Table 4.4. Results LVDT (± 5.00 mm). 

LVDT 

Cable length 

Test type 

Linearity Sensitivity 

[m] 
Value Mean Value Mean 

[%] [mV/V/mm] 

1 

5 calibrated 

0.13 

0.14 

190.50 

190.05 2 0.18 189.14 

3 0.12 190.50 

1 

10 not calibrated 

1.82 

1.54 

193.29 

191.14 2 1.22 186.83 

3 1.60 193.29 

1 

35 not calibrated 

3.87 

2.92 

190.67 

189.45 2 1.47 187.00 

3 3.42 190.67 

1 

105 not calibrated and wrapped 

13.41 

9.82 

202.46 

199.07 2 4.21 192.30 

3 11.84 202.46 

1 

105 not calibrated and stretched 

4.81 

6.63 

195.09 

195.44 2 4.25 193.42 

3 10.84 197.83 

1 

10 calibrated 

0.17 

0.18 

189.56 

188.25 2 0.17 187.75 

3 0.19 187.43 

1 

35 calibrated 

0.17 

0.31 

189.50 

187.93 2 0.17 187.10 

3 0.60 187.20 

1 

105 calibrated and wrapped 

0.18 

0.59 

194.11 

190.33 2 0.19 187.75 

3 1.40 189.14 

1 

105 calibrated and stretched 

0.21 

0.71 

189.43 

190.55 2 0.26 188.28 

3 1.67 193.94 

Table 4.5 indicates the obtained results for LVDTs with a measurement field of ± 12.50 mm. 

The following conclusions are obtained: (1) the manufacturer linearity value is lower than that 

determined at laboratory for LVDT 4; (2) the manufacturer linearity values are close to that 

obtained at laboratory for LVDT 5 and 6; (3) the manufacturer sensitivity values are lower 

than those determined at laboratory; (4) it is verified an increase in linearity value with an 

increase in cable length; (5) the sensitivity value does not change with cable length; (6) the 

linearity and sensitivity values remains unaffected with wrapping; (7) the calibration 
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procedure reduces the linearity values; (8) the sensitivity value remains unchanged with the 

calibration procedure; (9) the cable length effect in linearity value is reduced with the 

calibration procedure. 

Table 4.5. Results LVDT (± 12.50 mm). 

LVDT 

Cable length 

Test type 

Linearity Sensitivity 

[m] 
Value Mean Value Mean 

[%] [mV/V/mm] 

4 

5 calibrated 

0.18 

0.12 

78.87 

78.65 5 0.08 78.47 

6 0.11 78.60 

4 

10 not calibrated 

0.22 

0.42 

77.86 

77.20 5 0.41 76.75 

6 0.62 76.99 

4 

35 not calibrated 

1.75 

1.89 

76.47 

76.28 5 1.77 76.22 

6 2.15 76.16 

4 

105 not calibrated and wrapped 

6.16 

6.29 

75.64 

76.54 5 5.93 75.43 

6 6.78 78.54 

4 

105 not calibrated and stretched 

6.30 

6.38 

75.84 

76.68 5 6.27 75.58 

6 6.58 78.64 

4 

10 calibrated 

0.09 

0.10 

78.80 

77.53 5 0.09 76.85 

6 0.11 76.96 

4 

35 calibrated 

0.13 

0.12 

78.13 

77.25 5 0.11 76.74 

6 0.12 76.86 

4 

105 calibrated and wrapped 

0.56 

0.35 

79.49 

77.56 5 0.28 76.35 

6 0.21 76.83 

4 

105 calibrated and stretched 

0.30 

0.26 

77.10 

76.82 5 0.27 76.49 

6 0.20 76.87 

Figure 4.8 provides a summary of obtained results for LVDTs with a measurement field of 

± 12.50 mm. In this situation it is verified an increase in linearity value with an increase in 

cable length. This variation is higher when the system is not calibrated, confirming the 

importance of calibrating the system transducer and cable before performing any test. 

Moreover, a linearity value which is three times higher the manufacturer value is obtained 

when a cable length of 105 m is used. Therefore, considering this value twice the 
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recommended by manufacturers, to take into account cable losses [67], may be not 

conservative when long cables are used. 

  

a) b) 

  

c) d) 

Figure 4.7. LVDT (± 5.00 mm): a) linearity calibrated; b) linearity not calibrated; c) sensitivity 

calibrated; d) sensitivity not calibrated. 

Table 4.6 indicates the obtained results for LVDTs with a measurement field of ± 25.00 mm. 

The following conclusions are obtained: (1) the manufacturer linearity values are close to that 

obtained at laboratory for LVDT 7 and 8; (2) the manufacturer linearity value is lower than 

that determined at laboratory for LVDT 9; (3) the manufacturer sensitivity values are lower 

than those obtained at laboratory; (4) it is verified an increase in linearity value with an 

increase in cable length; (5) the sensitivity value does not change with cable length; (6) the 

linearity value remains unaffected with wrapping for LVDT 7 and 8; (7) the linearity value 

increases with wrapping for LVDT 9; (8) the sensitivity value remains unaffected with 

wrapping; (9) the calibration procedure reduces the linearity values; (10) the sensitivity value 

remains unchanged with the calibration procedure; (11) the cable length effect in linearity 

value is reduced with the calibration procedure; (12) the wrapping effect in linearity value is 

eliminated with the calibration procedure for LVDT 9. 

A summary of obtained results for LVDTs with ± 25.00 mm of measurement field is given in 

Figure 4.9. An increase in linearity value is verified with an increase in cable length. This 
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variation is higher in the situation of no calibration. This confirms the necessity of developing 

the calibration of the system transducer and cable before performing any test. A linearity 

value which is three times higher the manufacturer value is obtained when a cable length of 

105 m is used. Therefore, considering this value twice the recommended by manufacturers, 

to take into account cable losses [67], may be not conservative when long cables are used. 

Table 4.6. Results LVDT (± 25.00 mm). 

LVDT 

Cable length 

Test type 

Linearity Sensitivity 

[m] 
Value Mean Value Mean 

[%] [mV/V/mm] 

7 

5 calibrated 

0.06 

0.21 

39.57 

39.78 8 0.07 39.65 

9 0.49 40.12 

7 

10 not calibrated 

0.18 

0.48 

39.19 

38.98 8 0.20 39.21 

9 1.05 38.55 

7 

35 not calibrated 

0.69 

1.02 

39.19 

38.91 8 1.01 39.08 

9 1.35 38.45 

7 

105 not calibrated and wrapped 

3.20 

3.84 

39.23 

39.97 8 3.96 40.18 

9 4.37 40.51 

7 

105 not calibrated and stretched 

2.99 

3.05 

39.18 

39.67 8 3.42 39.34 

9 2.75 40.49 

7 

10 calibrated 

0.06 

0.09 

39.18 

39.16 8 0.08 38.62 

9 0.13 39.69 

7 

35 calibrated 

0.24 

0.21 

39.23 

39.14 8 0.20 38.59 

9 0.18 39.60 

7 

105 calibrated and wrapped 

0.54 

0.49 

39.20 

39.38 8 0.46 39.36 

9 0.46 39.58 

7 

105 calibrated and stretched 

0.33 

0.40 

39.93 

39.64 8 0.44 39.35 

9 0.43 39.63 

Commonly the values provided by manufacturers for sensitivity are lower than those 

determined at laboratory. This is explained by the fact that this property is determined by 

manufacturers in special site conditions that are practically impossible to reproduce at 
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laboratory. Additionally, some of these transducers already have years of use and this has 

an impact in determined sensitivity values. 

  

a) b) 

  

c) d) 

Figure 4.8. LVDT (± 12.50 mm): a) linearity calibrated; b) linearity not calibrated; c) sensitivity 

calibrated; d) sensitivity not calibrated. 

Figure 4.10 indicate a summary of all results obtained with different LVDTs, respectively, for 

measurement fields of ± 5.00 mm (light), ± 12.50 mm (medium) and ± 25.00 mm (dark), 

which characteristics are provided in Table 4.3. The main conclusions are that: (1) linearity 

increases substantially with cable length being this value unaffordable when long cables are 

used; (2) the variation in linearity is higher when no calibration procedures are taken; 

(3) calibration reduces linearity values and so it is recommended to always calibrate the 

system transducer and cable previously to any application; (4) sensitivity is independent of 

both cable length and calibration procedures; (5) sensitivity is a property of used transducers 

as it only varies with measurement field. 

Within this analysis it is verified that the sensor accuracy component of measurement error is 

only dependent on linearity, being sensitivity an intrinsic property of used sensor. However, it 

is also shown that the consideration of this component as twice the linearity value given by 

manufacturers, to take into account cable and acquisition equipment losses [67], may be not 

conservative when long cables are used. Therefore, the linearity value should be detailed 
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evaluated in these situations. Other measures are also suggested: (1) not to use long cables 

in monitoring systems; (2) always calibrate the system transducer with cable; and (3) avoid 

wrapping cables, as it may increase the linearity value. 

  

a) b) 

  

c) d) 

Figure 4.9. LVDT (± 25.00 mm): a) linearity calibrated; b) linearity not calibrated; c) sensitivity 

calibrated; d) sensitivity not calibrated. 

According to Table 4.2, other sources of measurement error exist. In the examples of this 

thesis developed tests were performed in short term, which eliminates the environmental 

conditions effect (robustness), and loads were applied in a static way, which eliminates 

vibration and fatigue problems (stability) [67]. Therefore, these components are not detailed 

study in this thesis. In respect to applied load intensity and positioning, it is first important to 

identify if the test is developed at laboratory or not. In laboratory, the applied load is perfectly 

controlled and load positioning error may be neglected. In this situation the load intensity 

error is determined in a similar way as the sensor accuracy, but now considering a load cell. 

If in field, then load positioning is more difficult and some measures should be taken to 

minimize this error: (1) introduce lines in the pavement in specific coordinates for each load 

case; (2) measure the distance between vehicle axles. In this situation, load intensity may 

also be measured by weighting each vehicle. Once these different sources are identified it is 
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then necessary to compute the measurement error (uexp) through the law of propagation of 

uncertainties [37, 38]. 

  

a) b) 

  

c) d) 

Figure 4.10. LVDT (light: ± 5.00 mm; medium: ± 12.50 mm; dark: ± 25.00 mm): a) linearity 

calibrated; b) linearity not calibrated; c) sensitivity calibrated; d) sensitivity not calibrated. 

4.6.2.2. Modeling 

Modeling error (unum) is the difference between the response of a given model and that of an 

ideal model that accurately represents the structural behavior. Figure 4.11 presents the 

respective propagation. It is possible to divide this error in three main components [152]: 

(a) u1 is due to discrepancy between the behavior of a mathematical model and that from the 

real structure; (b) u2 is introduced during numerical computation of the solution of partial 

differential equations (e.g. finite element method, mesh quality, etc.); and (c) u3 arises from 

inaccurate assumptions made during simulation (e.g. boundary condition such as support 

characteristics, applied load steps, etc.). Component u1 is extremely difficult to quantify, it is 

problem dependent and it can be minimized using modeling expertise [12]. Ravindram et al. 

[152] proposes to consider this component as null when an ideal situation is assumed. 
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Figure 4.11. Modeling errors u1, u2 and u3 (adapted from Ravindram et al. [152]). 

On its preliminary study, Goulet et al. [69] present the estimation of modeling errors in model 

identification and its consequences. For these authors, modeling errors are classified in two 

classes, respectively: epistemic and aleatoric. The former arise from lack of knowledge about 

structural behavior, use of simplified hypothesis or modeling assumptions. Aleatoric errors 

describe uncertainties that are related to parameter values. These authors, on their analyses, 

only consider the epistemic uncertainties. 

For Goulet et al. [67] the modeling uncertainties are divided in the following sources: (a) finite 

element method (u1); (b) mesh discretization accuracy (u2); (c) uncertainties in geometry of 

analyzed structure (u3); (4) other assumptions (e.g. bearing devices assumed to be point 

loads) (u3). These authors only consider the component u2 and u3, neglecting thus the 

component u1 [152]. Table 4.7 summarizes these sources. 

Table 4.7. Modelling errors: causes and quantification. 

Sources Causes Quantification method 

Finite element method Modelling experience and 
judgment 

Discrepancy between the real structure 
and the mathematical model (u1) 

Mesh discretization Numerical analysis Numerical computation of the solution of 
partial differential equations (u2) 

Model exactitude 
Dimensions taken from the “as-

built” structure 
Inaccurate assumptions made during 

simulation (u3) 

Other assumptions (e.g. linear elastic 
behavior, bearing devices and truck 
wheels represented by point loads, 

etc.) 

Linear superposition, other 
validating models 

Inaccurate assumptions made during 
simulation (u3) 

The finite element method and mesh discretization component errors are computed by 

comparing the obtained results from the numerical model, used in model identification 

procedure, with a reference model. This comparison is established through the following 

expression (4.6), 
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in which ynum0 indicate the registered value from the reference model, ynum1 is the obtained 

value from the numerical model, used in model identification, and n the number of comparing 

points. 

An example of a pinned-pinned supported reinforced concrete beam which was loaded up to 

failure in laboratory (Figure 4.12a), identical to that used to explain the measurement errors 

(Table 4.2), is presented to indicate typical modeling errors. In this situation the studied beam 

is modeled with an accurate finite element mesh (Figure 4.12b). 

 

 

a) b) 

Figure 4.12. Modelling errors in a reinforced concrete beam example: a) scheme; b) finite 

element mesh [116, 117]. 

In this case, the component u1 of modeling error, due to the use of a finite element method, is 

neglected as it is supposed an ideal situation of modeling procedures [152]. However, other 

components, due to mesh discretization (u2) and to inaccurate assumptions (u3), are 

considered. Table 4.8 provides each component value. By comparing with results from 

Table 4.2 it is possible to conclude that modeling errors are much higher than measurement 

errors. This is common in laboratory controlled environments in which the measurement 

errors are very low. 

In this situation model exactitude is neglected as it is assumed that the developed model 

represents geometry as accurate as possible. Other hypotheses, such as the representation 

of bearing devices as point loads, are also neglected in this case once a global structural 

analysis is developed [67, 69]. The mesh discretization and inaccurate assumptions are 

computed through expression (4.6). Once these different sources are identified it is then 

necessary to compute the modeling error (unum) through the law of propagation of 

uncertainties [90, 91, 92]. 
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Table 4.8. Modelling errors in a reinforced concrete beam example. 

Sources Quantification method 
Value 

[%] 

Finite element method It is minimized through modelling experience → 0.00 

Mesh discretization Based on preliminary study (by comparing to a 
refined mesh model) 

6.74 

Model exactitude Model “as built” → 0.00 

Inaccurate assumptions Based on preliminary study (by comparing to a 
model with a smaller load step length) 

3.79 

Considered hypotheses Other hypothesis are negligible → 0.00 

4.6.3. Convergence criterion 

There are several possibilities of applying the fitness function convergence criterion of model 

identification (Figure 4.3). A procedure is presented by Goulet et al. [67, 69], in which the 

numerical models that present a fitness function value lower than a pre-specified threshold 

value are considered as candidate models. Ravindram et al. [152] proposes a formulation for 

fitness function which helps to understand the importance of each component error on the 

convergence criterion proposed by Goulet et al. [67, 69]. Considering y as the real behavior 

of a quantity, yexp the measured and ynum the numerical value, the following relationships are 

thus obtained through expression (4.7), 

exp
exp

y y u= +  (4.7)

and (4.8), 

( )1 2 3
num num

numy y u y u u u= + = + + +  (4.8)

Model identification procedure intends to minimize the absolute value of the difference 

between ynum and yexp known as residual (q). Rearranging the terms in previous expressions 

(4.7) and (4.8), it follows the expression (4.9), 

( )exp
exp 1 2 3 exp

num
numq y y u u u u u u= − = − = + + −  (4.9)

Considering that both unum and uexp might be positive or negative, it is possible to conclude 

that, (4.10), 
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exp
exp 1 2 3 exp

num
numq y y u u u u u u≤ + ≤ + ≤ + + +  (4.10)

Being the fitness function directly dependent of computed residual f(q). Considering 

expression (4.10), the proposed convergence criterion by Goulet et al. [67, 69] may be 

reduced to expression (4.11), 

( )f q u≤  (4.11)

being u the global uncertainty. This value establishes a superior limit for the fitness function. 

In this situation, the convergence criterion defines that the improvement in fitness function 

value (∆f), from two models separated of a pre-specified gap (n), should be lower than or 

equal to a threshold value (ε), indicated at Figure 4.3. Accordingly, by considering expression 

(4.4), it is possible to conclude that, (4.12), 

i n i i n if f f f f+ +∆ ≤ − ≤ +  (4.12)

being fi and fi+n, respectively, the fitness function values for generation i and i+n. Therefore, 

and according to the methodology proposed by Ravindram et al. [152], the convergence 

criterion may be reduced to (4.13), 

i n i i n if f f u u+ +∆ ≤ + ≤ +  (4.13)

being ui and ui+n the global uncertainty, computed for generation i and i+n. This value 

establishes a superior limit for the improvement in fitness function. 

In order to compute the global uncertainty (u) it will be necessary to combine both 

measurement and modeling errors through the law of propagation of uncertainty, indicated at 

JCGM [90, 91, 92], (4.14), 

( ) ( ) ( ) ( )
1 22 22 2

1 1 1

( ) 2 ( ) ( ) ,
n n n

i i i j i j i j
i i j i

u f x u x f x f x u x u x r x x
−

= = = +

= ∂ ∂ ⋅ + ⋅ ∂ ∂ ⋅ ∂ ∂ ⋅ ⋅ ⋅∑ ∑∑ (4.14)

where u(x) is the uncertainty related to each item x, ∂f/∂x is the partial derivative of the fitness 

function in order to item x, and r(xi,xj) the correlation coefficient. The following expression 

(4.15) is obtained when a null correlation coefficient is considered, 

( )22 2

1

( )
n

i i
i

u f x u x
=

= ∂ ∂ ⋅∑  (4.15)

The fitness function, presented in expression (4.2), is composed by two terms, respectively, 

a numerical and an experimental. The partial derivative, in relation to each term, can be 

determined through a sensitivity analysis. This analysis is developed by sequentially 
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changing each term and, at same time, studying the fitness function response. The partial 

derivative values, obtained from this analysis, are given by expression (4.16), 

( ) ( )exp1 maxnum
if y y∂ ∂ =  (4.16)

and (4.17), 

( ) ( )exp exp1 max if y y∂ ∂ =  (4.17)

In order to apply expression (4.15) to determine the global uncertainty value it will be 

necessary to separately compute both measurement and modeling errors, and then to use 

the partial derivative values given by expression (4.16) and (4.17). 

In some situations it is measured more than a structure property and/or in more than a 

location. Additionally, there are some cases in which there is more than a tested structure, in 

identical conditions, and/or more than a load case. The fitness function, in this situation, is 

given by expression (4.3). Accordingly, in this situation, the uncertainty related to each 

measured property in a specific location of the tested structure and for the studied load case 

is computed. Further, the expression (4.15) is applied to obtain the global uncertainty. In this 

case the partial derivatives ∂f/∂fi,j,k,l are unitary. 

According to expression (4.13), the threshold value (ε) is computed by taking into 

consideration the sum of global uncertainties from two generations (ui and ui+n) as a superior 

limit. These uncertainties are computed through expression (4.15). In this situation, the 

partial derivatives ∂∆f/∂ui+n and ∂∆f/∂ui are unitary. Obtained value is then introduced in the 

optimization algorithm of the model identification procedure. 

4.6.4. Engineering judgment procedure 

Global optimization algorithms, as the evolutionary strategies in its plus version [29], when 

incorporated in model identification, usually provide a population of models. A family of 

numerical models is thus extracted when an algorithm criteria is accomplished (Figure 4.3). 

At the same time, it is recommended to run each algorithm more than once with different 

initial points. Therefore, several models are obtained from model identification, being 

important to decide about the most adequate model. 

The selection of these models may be based in experience [67] or eventually in more robust 

algorithms. However, even in this latter situation an engineer judgment criterion is always 

necessary. In this situation, an algorithm based in the probability of occurrence of each 

model is developed to select the most adequate model. This algorithm is based in the 

principle that the most suitable model is that which assessed parameter values are close to 
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initial mean values, unless some accidental situation is detected. Therefore, the following 

expression (4.18) might be used, 

( )
1

n

d id
i

f f x
=

= ∏  (4.18)

where xid is the value of the assessed parameter i, and f(xid) is the PDF value for this 

parameter, assuming a PDF from bibliography [93] or based in experience. Figure 4.13 

illustrates how the PDF value is obtained. 

 

Figure 4.13. Engineering judgment procedure. 

Then the product of all PDF values, for all assessed parameters, and for all extracted 

models, is computed (fd). The updated model, from proposed model identification procedure, 

is that which presents the highest value. An engineer judgment criterion is intrinsic to the 

developed algorithm, when assuming the principle of the probability of occurrence of each 

model. 

4.7. Probabilistic analysis 

In a second step, and according to Figure 4.1, the proposed probabilistic assessment 

methodology performs the reliability analysis of the assessed structure in order to evaluate, 

from a probabilistic point of view, its behavior. Therefore, the previous updated numerical 

model is converted into a probabilistic model by introducing randomness in its model 

parameters. 

This randomness represents the physic uncertainty source. The aleatoric variation in 

material, geometric and physic structure properties is therefore considered. Accordingly, 

each parameter is represented by a PDF. A correlation matrix, composed by correlation 

coefficients (ρij), is also used. This coefficient is a measure of strength of linear dependence 

between two parameters. It is computed through the Pearson coefficient, which is defined as 

the covariance of two parameters divided by the product of their standard deviations [33, 
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123]. This value varies between -1 and 1. The closer the coefficient is to either -1 or 1, the 

stronger is the correlation between the parameters. 

The statistical uncertainty is incorporated into the probabilistic model when establishing each 

parameter PDF (e.g. when defining the mean and the standard deviation value). This 

uncertainty source is reduced when more information regarding the parameter PDF is 

obtained (e.g. complementary data). A Bayesian inference algorithm is then used to 

incorporate such information into developed probabilistic model. 

A sampling procedure is therefore implemented to randomly generate the model parameter 

values. For each set of generated parameter values, the updated numerical model is 

analyzed with nonlinear structural analysis software, being the obtained results statistically 

processed. 

Two procedures may be developed to evaluate the structure behavior. Each procedure gives 

an appropriate structural performance index. In the first procedure the structure behavior is 

analyzed by a comparison with acquired experimental data. An evaluation index is 

introduced to interpret the reliability of obtained probabilistic model. In the second procedure 

the structure resistance is compared with loading. In this situation a reliability index, 

necessary to evaluate the structural safety, is computed. 

Within the probabilistic analysis, some Matlab® routines [25, 129] were implemented. These 

routines are provided in Appendix B, respectively: 

(1) run.m: run the probabilistic analysis. It defines the number of generated samples, each 

parameter PDF type and the correlation matrix. Additionally, it statistically processes the 

obtained numerical results and computes the performance indexes; 

(2) lhs_iman_n.m [173]: generate random samples according to the Latin Hypercube 

sampling (LHS) algorithm, by guaranteeing the correlation coefficient values between these 

parameters through the application of the Iman and Conover algorithm [85]; 

(3) mchol.m [173]: induce data with correlation by performing the Cholesky decomposition; 

(4) latin_hs.m [173]: generate data according to the LHS algorithm; 

(5) ranking.m [173]: perform the ranking of a vector within the LHS algorithm; 

(6) parameter.m: define each model parameter value; 

(7) data.m: generate the data file which will be read and then processed in structural analysis 

software; 
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(8) processment.m: process the generated data file and convert the obtained results into 

Matlab® [25, 129]; 

(9) matrix_num.m: convert the obtained results from the structural analysis software into the 

same unities of experimental data, in order to be compared; 

(10) test_num.m: divide the numerical results into specific steps in order to guarantee that 

the same points of experimental data are compared; 

(11) run_exp.m: read experimental data and convert it into Matlab® [25, 129]; 

(12) matrix_exp.m: convert the experimental data into the same unities of numerical results, 

in order to be compared; 

(13) test_exp.m: divide the experimental data into specific steps in order to guarantee that 

the same points of numerical results are compared; 

(14) plot.m: program used to plot both experimental and numerical results. 

Additionally the nonlinear structural analysis software ATENA® [24] is used, being 

incorporated the respective executable files: (1) atenaconsole.exe: run the developed 

nonlinear numerical model using the finite element methodology; (2) gawk.exe [3]: convert 

obtained results from ATENA® into readable data for Matlab® processing. 

4.7.1. Randomness 

Randomness is introduced in numerical model by representing its parameters through 

appropriate PDF. The dependence between such parameters is given by adequate 

correlation coefficients. The majority of structural parameters present well defined PDF. 

However, there are some parameters for which the PDF is not defined in bibliography. In 

such situations an engineering judgment procedure is necessary. The correlation between 

structural parameters presents a high variability. In fact, these coefficients vary a lot with 

developed characterization tests being very difficult to quantify. 

The PDF for current materials, such as concrete and steel, and for typical geometric 

elements (e.g. section dimensions and concrete cover) is defined in bibliography [77, 93, 

134, 164, 196]. These PDFs may be adopted in both reinforced concrete and composite 

structures and they are important to determine the structure resistance capacity. Wisniewski 

[196] also indicates some reference values for pre-cast concrete structures. For these 

structures the standard deviation is lower than for cast-in-situ structures, as the quality 

control is higher. 
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4.7.1.1. Material 

Concrete and steel are commonly used in civil engineer structures. Steel can be applied in 

reinforced concrete structures, as a reinforcing bar embedded in concrete, and in metallic or 

composite structures. There is a huge variety of concrete materials. A kind of concrete 

materials, whose application increased in the last years, is the lightweight concrete. 

Figure 4.14 permit to identify used parameters to describe each material behavior. 

Concrete is a high heterogeneous material, defined by a strong nonlinear behavior 

(Figure 4.14a). The variability of its mechanical properties depends on the following factors: 

(1) component properties (e.g. cement type); (2) concrete composition (e.g. water-cement 

ratio); (3) execution (e.g. curing process); (4) testing procedure (e.g. velocity of applied load); 

(5) concrete being in the structure rather than in control specimens; (6) maintenance, 

material degradation, etc. 

 
 

a) b) 

Figure 4.14. Material behavior: (a) concrete; (b) steel (e.g. reinforcing steel). 

The most investigated parameter is the compressive strength (fc) as it serves to control the 

concrete quality during execution and is used to define the acceptance criteria. Other 

properties are also evaluated but due to a high correlation with concrete compressive 

strength they are usually defined via empirical relations. 

According to JCSS [93] the concrete strength at any specific location i, in a given structure j, 

as a function of its standard strength fc0, is given by the following expression (4.19), 

( ), 0, 1,c ij c ij jf t f Yλα τ=  (4.19)

The respective standard strength is given by (4.20), 

( )0, expc ij ij j jf U M= ∑ +  (4.20)
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being fc0,ij a Lognormal variable, independent of Y1j, with PDF mean (Mj) and standard 

deviation (Σj) parameters at job j, Y1j a Lognormal variable representing additional variations 

due to placing, curing and hardening conditions of in-situ concrete at job j, Uij a standard 

Normal variable representing variability within a structure, λ a Lognormal variable with mean 

0.96 and CV 0.005 and α(t,τ) a deterministic function which takes into account the concrete 

age at loading time t [days] and the duration of loading τ [days]. 

The remaining concrete properties as tensile strength (ft), elasticity modulus (Ec) and ultimate 

strain in compression (εc) are given by (4.21), 

2/3
, , 20.3t ij c ij jf f Y=  (4.21)

and (4.22), 

( )( )1/3
, , 310.5 1 ,c ij c ij j dE f Y tβ φ τ= +  (4.22)

and (4.23), 

( )( )3 1/6
, , 46 10 1 ,c ij c ij j df Y tε β φ τ− −= ⋅ +  (4.23)

being ϕ the creep coefficient, βd the total load which depends of the structure type and 

reflecting the variables Y2j, Y3j and Y4j, variations due to factors not well accounted for by 

concrete compressive strength. Table 4.9 indicates the recommended PDF parameters for 

those variables. 

Table 4.9. PDF for variables Yij [93]. 

Parameter Variable PDF Mean value 
CV 

[%] 

Compression (fc) Y1j Lognormal 1.00 6.00 

Tension (ft) Y2j Lognormal 1.00 30.00 

Elasticity Modulus (Ec) Y3j Lognormal 1.00 15.00 

Ultimate Strain (εc) Y4j Lognormal 1.00 15.00 

The PDF indicated at JCSS [93] is a result of several studies, developed by different 

researchers. A summary of part of these research studies is presented in Wisniewski [196]. 

This author also compared precast and cast in-situ concrete material properties. Accordingly, 

the model of Bartlett and MacGregor [13] is recommended to define the concrete 

compressive strength. This model is given by equation (4.24), 
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, 1 2 , m inc real c no alf F F f=  (4.24)

being fc,real the real concrete compressive strength in the structure, fc,nominal the nominal 

concrete compressive strength, F1 a random variable relating cylinder to nominal 

compressive strength, F2 a random variable relating in-situ to cylinder strength, and by 

equation (4.25), 

1 2

2 2
,c real F FV V V= +  (4.25)

where Vc,real is the real CV of concrete compressive strength, and VF1 and VF2 the CV of, 

respectively, F1 and F2. 

For Wisniewski [196], a Normal or Lognormal PDF is used for these properties. The following 

statistical properties for concrete compressive strength are respectively indicated: (1) cast in-

situ: fc,real = 1.00 * fc,nominal, considering F1 = 1.20 and F2 = 0.85; Vc,real = 12%, considering VF1 

= 7% and VF2 = 10%; (2) precast: fc,real = 1.00 * fc,nominal, considering F1 = 1.10 and F2 = 0.90; 

Vc,real = 9%, considering VF1 = 5% and VF2 = 8%. Regarding probabilistic models for other 

concrete properties, Wisniewski [196] proposes to model the tensile strength (ft) by a Normal 

or Lognormal PDF with CV of 20%, while the elasticity modulus (Ec) can be modeled by a 

Normal PDF with CV of 8%. 

A parameter that is frequently used in numerical models but for which there is few 

information regarding its PDF is the fracture energy (Gf). This parameter may be defined by a 

Weibull PDF with a CV of 20% [174, 176]. In respect to correlation matrices for concrete 

properties, Strauss et al. [174, 176] propose the coefficients indicated at Table 4.10. These 

values are purely indicative as there are no normalized values for them due to its high 

variability. 

Although, there are several probabilistic models for traditional concrete material, the 

information regarding the lightweight concrete material is still scarce, being thus very difficult 

to establish appropriate PDF. Some information about this material is given in EuroLightCon 

[51] and in Nowak et al. [135]. The former provides the main results of a European research 

project that focused a lightweight aggregate concrete. The second reference provide results 

of a research funded by the Portland Cement Association and presents PDF for several kind 

of concrete materials, including lightweight aggregate concrete. According to these authors it 

is recommended to use Normal PDF for all properties. A CV of 10% is proposed for 

compressive strength (fc) and for elasticity modulus (Ec), while a value of 20% is indicated for 

tensile strength (ft). By analyzing the obtained results by Valente [188] a value of 10% may 

be considered for all parameters, including the fracture energy (Gf). 
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Table 4.10. Correlation of concrete parameters (adapted from Strauss et al. [174, 176]). 

 Ec ft fc Gf 

Ec 1.00 0.70 0.90 0.50 

ft 0.70 1.00 0.80 0.90 

fc 0.90 0.80 1.00 0.60 

Gf 0.50 0.90 0.60 1.00 

The variability of steel parameters is generally lower than the variability of concrete 

parameters (Figure 4.14b). This is due to the higher quality control implemented during its 

production. According to Sobriño [170] the main factors that might cause the variation of 

reinforcing steel bars are: (1) variability of material strength; (2) variability of bar geometry; 

(3) material degradation (e.g. corrosion); (4) load history (e.g. fatigue); (5) used method for 

strength parameters determination (e.g. velocity of applied load). 

The probabilistic model code defines two independent models for reinforcing steel bars and 

laminated steel profiles. Therefore, the JCSS [93] proposes, for reinforcing steel, the 

definition of the steel bar yield strength (σy) as the sum of three independent Gaussian 

variables, (4.26), 

( )1 11 12 13X d X X X= + +  (4.26)

being X11 = N(µ11(d),σ11) the variations in the global mean of different mills, X12 = N(0,σ12) the 

batch to batch variation, X13 = N(0,σ13) the variation within a single batch and d the nominal 

bar diameter. Accordingly, for a steel production of good quality the following standard 

deviation values can be used: (1) σ11 = 19 MPa; (2) σ12 = 22 MPa; and (3) σ13 = 8 MPa. This 

results in an overall standard deviation σ = 30 MPa. The yield strength mean value (µ = µ11) 

is thus defined through equation (4.27), 

2nomSµ σ= + ⋅  (4.27)

being Snom the nominal value. In Table 4.11 it is indicated the PDF parameter values for 

reinforcing steel. For these variables Normal PDF can be adopted. Table 4.12 presents 

values for correlation coefficients between those parameters. 

The JCSS [93] proposal is a conclusion of numerous research studies, developed worldwide 

by different authors. A summary of some of these works is indicated in Wisniewski [196]. 

This author proposes the following statistical parameters for reinforcing steel properties, in 

which λ is the bias factor or the ratio between the mean and the nominal value: (1) yield 

strength (σy): for older steels λ = 1.20 and CV = 10%, and for modern steels λ = 1.15 and CV 
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= 5%; (2) ultimate strength (σu): consider a value 15 - 20% higher than yield strength, and CV 

= 10% and 5%, respectively, for older and modern steels. These properties can be modeled 

by Normal or Lognormal PDF. Limit strain (εlim) can be modeled by Normal or Lognormal 

PDF with mean value of 10% and CV = 15%. Steel elasticity modulus (Es) can be modeled 

by Normal PDF with mean value 202 GPa and CV = 4%. Reinforcing steel area (As) can be 

also modeled by a Normal PDF with CV = 2% and the mean value equal to its nominal value. 

Table 4.11. PDF for reinforcing steel parameters [93]. 

Parameter Mean value Standard deviation 
CV 

[%] 

Bar area (As) As,nom - 2.0 

Yield strength (σy) σy,nom + 2σ 30 MPa - 

Ultimate strength (σu) - 40 MPa - 

Ultimate strain (εlim) - - 9.0 

Table 4.12. Correlation between reinforcing steel parameters [93]. 

 As σy σu εlim 

As 1.00 0.50 0.35 0.00 

σy 0.50 1.00 0.85 -0.50 

σu 0.35 0.85 1.00 -0.55 

εlim 0.00 -0.85 -0.55 1.00 

The probabilistic model code indicates a different PDF for steel material in laminated steel 

profiles. Table 4.13 present the PDF parameter values for steel parameters according to 

JCSS [93]. These values are based on European studies developed from 1970 onwards. A 

Lognormal PDF is recommended for those parameters. Table 4.14 presents the correlation 

coefficient values between those variables. 

Respectively, the suffix (sp) is used for the code nominal value, α is a spatial position factor 

(α = 1.05, for webs of hot rolled sections, and α = 1.00, otherwise), u is a factor related to the 

fractile of used PDF to describe the distance between the code nominal value and the mean 

value (u is found to be in the range of -1.5 to -2.0 for steel produced in accordance with 

relevant EN standards), C is a constant reducing the yield strength as obtained from usual 

mill tests to static yield strength (a value of 20 MPa is recommended) and parameter B = 1.5 
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for structural carbon steel, B = 1.4 for low alloy steel and B = 1.1 for quenched and tempered 

steel. 

Table 4.13. PDF for steel profile parameters [93]. 

Parameter Mean value 
CV 

[%] 

Yield strength (σy) σy,sp * α * exp(-u * CV) - C 0.07 

Ultimate strength (σu) B * E[σu] 0.04 

Elasticity modulus (Es) Es,sp 0.03 

Ultimate strain (εlim) εlim,sp 0.06 

Table 4.14. Correlation between steel profile parameters [93]. 

 σy σu Es εlim 

σy 1.00 0.75 0.00 -0.45 

σu 0.75 1.00 0.00 -0.60 

Es 0.00 0.00 1.00 0.00 

εlim -0.45 -0.60 0.00 1.00 

Connectors, used in composite structures, to establish the connection between concrete slab 

and laminated steel profile, are traditionally in steel material. The Nelson headed studs [131] 

is a connector type, commonly used in composite structures. These connectors are executed 

in a similar manner to laminated steel profile. Accordingly, identical parameter PDF (e.g. for 

ultimate strength) are recommended. 

4.7.1.2. Geometry 

Geometric imperfections are due to deviations from specified values of the cross-sectional 

shape, the reinforcement position, the horizontality and verticality of concrete lines, and the 

alignment of columns, beams and surfaces of constructed structure [128]. Geometrical 

imperfections are related to quality control, during execution, and to permitted tolerances by 

codes. The following factors may affect the distribution of these imperfections: (1) structure 

type (e.g. slab bridge); (2) construction process and applied technology (e.g. precast); (3) 

execution quality (e.g. workmen). 
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According to the probabilistic model code [93] the deviations of a dimension X can be 

described by the statistical characteristics of its deviations Y from its nominal value Xnom, 

(4.28), 

no mY X X= −  (4.28)

Accordingly, the deviations of the external dimensions of precast and cast in-situ concrete 

components, for nominal dimensions (Xnom) up to 1000 mm, can be modeled by a Normal 

PDF with mean and standard deviation value defined by (4.29), 

[ ]0 0.003 3y nomX mmµ≤ = ≤  (4.29)

and (4.30), 

[ ]4 0.006 10y nomX mmσ = + ≤  (4.30)

Additionally, the deviations of concrete cover in reinforced concrete elements can be 

modeled by a Normal PDF with mean and standard deviation defined in Table 4.15. 

The JCSS [93] proposal is a result of various studies, developed by several authors. Some of 

these studies are summarized in Wisniewski [196]. This author also compares precast and 

cast in-situ concrete geometric properties. In this situation, the absolute dimensions are 

studied, instead of deviation values. For Wisniewski [196], the precast concrete bridge 

girders and slabs height may be modeled by a Normal PDF with mean 0.5% higher than the 

nominal value and a standard deviation σ = 5 mm. The section width can be modeled by a 

Normal PDF with bias factor λ = 1.00 and standard deviation σ = 5 mm. Thickness may be 

assumed as normally distributed with bias factor λ = 1.05 and standard deviation σ = 10 mm. 

The cast in-situ reinforced concrete slabs height may be modeled by a Normal PDF with bias 

factor λ = 1.00 and standard deviation σ = 10 - 15 mm. 

Table 4.15. PDF for concrete cover [93]. 

Parameter 
Mean value Standard deviation 

[mm] [mm] 

Column and wall 0 - 5 5 - 10 

Slab bottom steel 0 - 10 5 - 10 

Beam bottom steel -10 – 0 5 - 10 

Slab and beam top steel 0 - 10 10 - 15 

In respect to steel section dimensions the probabilistic model given in JCSS [93] is based on 

the study of Fajkus et al. [54]. These authors presented some data on geometric deviations 
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of cross-sections of rolled products, according to expression (4.28). Preliminary results 

obtained for I profile (IPE 80 to 200) indicate that the mean and standard deviation of Y for 

basic dimensions (height, width and thickness) are less than 1 mm, (4.31), 

1.0 1ymm mmµ− ≤ ≤ +  (4.31)

and (4.32), 

1.0y mmσ ≤  (4.32)

For cross-section area it has been found that independently on the profile height, the mean 

value differs from the nominal value insignificantly. Accordingly, the obtained CV is about 

3.20 %. The Normal PDF seems to be a fully satisfactory model for this property. 

It has been found that external dimensions of concrete and steel sections are only dependent 

on production mode. No significant correlation has been established between vertical and 

horizontal dimensions. Furthermore, no data is available concerning the correlation of 

internal (e.g. concrete cover) and external dimensions. 

Some of the geometric parameters, such as the steel profile top flange width and the 

connector geometry (e.g. stud shank diameter) are used to compute the interface 

parameters [50]. In this situation, it is recommended to use for the connector geometry a 

PDF identical to that indicated for the steel profile due to their similar execution process. 

4.7.1.3. Physic 

The physic properties incorporate all the model parameters which are not included in 

material and geometry properties. In this situation, the spring stiffness and the interface 

connection parameters are considered as physic properties. These parameters are more 

difficult to quantify as the existent information about them is scarce. 

The spring stiffness is introduced to simulate the structural support behavior. Horizontal 

springs are used to represent the complex system bearing, column and foundation. In this 

situation, the PDF is defined by an engineering judgment procedure. However, once the 

information about this parameter is scarce, which makes the engineering judgment 

procedure very hard, another procedure is recommended. Accordingly, it is recommended to 

use in the probabilistic analysis the assessed value from model identification, instead of a 

PDF. 

The interface connection parameters are introduced to simulate the steel–concrete 

connection in composite structures. Unfortunately, the information about these parameters is 

still scarce. An interesting work is that of Zona et al. [200] who proposed a methodology for 
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probabilistic nonlinear structural analysis of continuous steel-concrete composite girders. 

These authors presented PDF for various interface parameters. 

Interface is characterized by normal and shear stresses. Figure 4.15 indicate these two 

models. The parameter PDF values for these models are computed through previous 

identified PDF for concrete and steel connector material, for steel profile and connector 

geometry and also for the interaction between these two materials [50]. However, while for 

material and geometric properties there are several sources of PDF values, for the 

interaction properties the existent information is scarce. This is especially due to the fact that 

these parameters are dependent on several factors, such as the connector type, used 

materials and geometry. A study which provided some information about this is that of Roik 

et al. [159]. This study presents the results of push-out tests with headed studs and different 

concrete materials. Accordingly, a Normal PDF with a CV of 30% is recommended for 

connection stiffness (k). The obtained results by Valente [188] within its study of headed stud 

connectors with light weight aggregate concrete indicate a Normal PDF with a CV of 20% for 

this property. 

  

a) b) 

Figure 4.15. Interface parameters: a) normal; b) shear stresses. 

4.7.2. Bayesian inference 

Bayesian inference is a framework that can be used to update the PDF when additional data 

is available. The objective is to reduce the statistical uncertainty. This procedure was detailed 

described at chapter three. Bayesian inference is incorporated in the probabilistic 

assessment algorithm. Therefore some Matlab® routines were developed, according to 

Figure 4.2b [25, 129]. These routines are provided in Appendix C, namely: 

(1) run.m: run the Bayesian inference algorithm considering data.txt file, which contains 

measured values (likelihood), and winbugs_data.txt file, that provides some of WinBugs® 

model parameters [111] such as: (a) number of unknown parameters (mean, standard 
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deviation or both); (b) application of logarithmic conversion; (c) application of Weibull PDF; 

(d) number of samplings; (e) considered prior PDF (Jeffrey’s or conjugate PDF); (f) prior PDF 

parameters (in case of an informative PDF) and respective weight (number of samplings); 

(2) read.m: read data.txt file and winbugs_data.txt file and convert these values into legible 

Matlab® parameters [25, 129]; 

(3) test.m: validate the generated WinBugs® [111] model parameters; 

(4) winbugs.m: run WinBugs® [111] for Normal or Lognormal PDF; 

(5) convert.m: convert WinBugs® model parameters from Matlab® [25, 129] to WinBugs® 

[111]; 

(6) calcbugs.m: compute both likelihood mean and standard deviation values; 

(7) winbugsmu.m, winbugssigma.m, winbugsmusigma.m: develop the Bayesian inference for 

the mean, the standard deviation or for both parameters. In each situation, the appropriate 

Bayesian model, written in BUGS language [111], is read; 

(8) matbugs.m (by Kevin Murphy and Maryam Mahdaviani, August 2005: 

http://code.google.com/p/matbugs/): establish an interface between Matlab® [25, 129] and 

WinBugs® [111]; 

(9) calcbugsmu.m, calcbugssigma.m, calcbugsmusigma.m: process WinBugs® [111] results 

and compute the posterior PDF for each parameter and for the population; 

(10) plotbugsmu.m, plotbugssigma.m, plotbugsmusigma.m: plot the prior, the likelihood and 

the posterior PDF for each parameter and for the population. 

Additional Matlab® [25, 129] routines were developed to perform the Bayesian inference 

when a Weibull PDF is adopted. These routines, also indicated in Appendix C, are: 

(1) weibull.m: run WinBugs® [111] when a Weibull PDF is chosen; 

(2) matrix_in.m: read prior Weibull PDF parameter values; 

(3) wbl.m: compute Weibull PDF parameters for measured values (likelihood); 

(4) matrix_up.m: compute posterior PDF parameter values assuming a Weibull PDF; 

(5) plotbugswbl.m: plot the prior, the likelihood and the posterior Weibull PDF. 

Furthermore it is used the WinBugs® software [111], namely the executable file 

winbugs14.exe, which is a framework for constructing and analysing Bayesian full probability 

models through the Gibbs sampling (BUGS project). WinBugs® [111] processes the model 

specification and constructs an object-oriented representation of it. These models are 
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analysed by using Markov Chain Monte Carlo (MCMC) techniques. Developed models in 

WinBugs® [111], given at Appendix D, are: (1) unknown mean (µ) and known variance (σ2) – 

mu.txt; (2) unknown mean (µ) and variance (σ2) with Jeffrey’s prior – mu_tau_jeff.txt; 

(3) unknown mean (µ) and variance (σ2) with conjugate prior – mu_tau_conj.txt. 

4.7.3. Simulation algorithms 

Once the PDF is known and updated for all aleatoric variables of a structural problem, the 

use of simulation algorithms will permit to generate values for those variables, to compute 

the structural response and to evaluate each limit function when necessary. The failure 

probability (pf) is the output of any limit function evaluation procedure. It may be described by 

the following integral (4.33), 

( ) ( )
( ) 0

0f x
g x

p I g X f X dx
≤

 = ≤ ⋅ ∫  
(4.33)

in which fx(X) is the PDF of variable X and I [g(X)≤0] is an indicator function, defined by 

(4.34), 

( ) ( )
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 (4.34)

Discrete integration techniques may be used within the sampling procedure to convert 

expression (4.33) into (4.35), 

( )( )

1

1 0
n

i
f f

i

p p N I g X
=

 ≅ = ⋅ ≤ ∑ɶ  (4.35)

being N the number of samples and X(i) the vector of random variables for simulation i. 

Obtained results from sampling may be fitted to a cumulative distribution function, such as 

represented in Figure 4.16. 

 

Figure 4.16. Curve fitting of cumulative distribution function. 
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The analysis of this figure permit to conclude that as the failure probability decreases, it also 

decreases the number of possible observations in interest region g(X)≤0, which means that 

the majority of observations will occur in safety region presenting thus no practical use. A 

way of increasing the number of simulations in such zone is by increasing the total number of 

samples. If the number of samples is infinite, obtained results from this method would be 

exact, (4.36), 

( ) ( ) 0
0 limf N

N g X
p P g X

N→ ∞

 ≤  = ≤ =   (4.36)

Simulation algorithms have been widely used to assess the condition and safety of 

structures. They are especially important when complex analytic formulas are used. This is 

what happens in the majority of analyzed civil engineer structures. A technique that is 

worldwide used is the Monte Carlo (MC) simulation [33, 77, 134, 166]. The MC method is 

generally used to solve high complex problems in which computation is costly. This method 

involve the generation of samples according to a defined PDF and the use of obtained data 

to approach the interest function. 

Accordingly, when applying MC techniques to determine the failure probability the following 

methodology should be used: (1) generate values for input parameters according to its PDF; 

(2) estimate the function g(X) with sampled values, through a deterministic approach; 

(3) verify if the limit state g(X)≤0 is attained; (4) count the number of simulations in which this 

limit is overpassed; (5) estimate the failure probability, through equation (4.35). 

Simulation techniques as MC are computationally expensive due to the high number of 

simulations. Variance reduction techniques were thus introduced in order to diminish the 

number of samples. These techniques permit to significantly reduce the necessary 

simulations to compute a specific variance value or, in other words, they permit to reduce the 

variance values for a specific number of simulations. 

One of these techniques is the importance sampling. Within this methodology the sampling 

values are concentrated in failure region. Therefore the sampling center is moved from its 

origin to the most probable failure point, which is located over the limit state region [42]. 

Enright and Frangopol [43] used an adaptive importance sampling algorithm to compute the 

failure probability. 

The stratified sampling techniques are also variance reduction techniques. In such 

techniques, the integration region is divided into subregions in order to increase the number 

of simulations in subregions that present a high contribute to the failure probability. The most 

used stratified sampling algorithm is the LHS [77, 134, 144]. The main idea of this method is 
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to divide each input parameter domain Xi in equiprobable disjunctive intervals Xi
k, as 

presented in Figure 4.17a. 

 

 

a) b) 

Figure 4.17. Latin hypercube sampling (LHS): a) division in equal probability intervals; 

b) sampling scheme. 

Each interval is characterized by a sample, defined according to the PDF. This method 

restricts the total number of samples, N, to the number of intervals which are considered in 

the division of the sampling region, k. These intervals are chosen in an aleatoric way, 

according to Figure 4.17b. The current practice is to directly choose samples by inverse 

transformation of the cumulative distribution function in the middle of kth interval, through 

expression (4.37), 

1
,

0.5
i k i

k
x F

N
− − =  
 

 (4.37)

being xi,k the kth sample of the ith variable Xi and Fi
-1 the inverse cumulative distribution 

function for variable Xi. Figure 4.18 illustrates the sampling procedure. 

The LHS method is thus summarized in the following steps: (1) divide the domain of each 

aleatoric variable Xi into k equiprobable disjunctive regions; (2) generate k samples of each 

aleatoric variable, a sample per region; (3) generate k simulations with previous sampled 

values, being each value only used once and all the samples should be used; (4) evaluate 

the limit state function g(X), for each simulation, and register the number of times in which it 

is exceed; (5) Estimate the failure probability through expression (4.35). 

The advantage of this method is that the number of simulations may be reduced maintaining 

the same numerical precision. It is verified that an acceptable precision is obtained if the 
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number of simulations is identical to the number of aleatoric variables, N=Xi, but very good 

results are obtained if N=2*Xi. 

  

Figure 4.18. Illustration of sampling from marginal. 

When sampling, the correlation structure should be maintained according to the target 

correlation matrix. There are generally two difficulties related to statistical correlation: 

(1) during sampling an undesired correlation may be introduced between random variables. It 

can happen, especially in the case of a very small number of simulations, where the number 

of combined intervals is limited; (2) introduce the prescribed statistical correlation between 

random variables, defined by the correlation matrix. 

A technique for generation of correlated random variables has been proposed by Iman and 

Conover [85]. An application of this technique in a simple example is developed by 

Mildenhall [126]. This technique is simple to use, is distribution free, preserves the exact form 

of the marginal PDF in input variables, and may be used with any type of sampling scheme 

for which the correlation between input variables is a meaningful concept. 

This technique is based on the iterative updating of the sampled matrix, through the 

Cholesky decomposition of the correlation matrix [85]. As a measure of statistical correlation, 

the Spearman correlation coefficient (Tij) between the variables i and j, Tij ∈ [-1;1] [33, 123] is 

used, (4.38), 
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∑
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being R the matrix containing a permutation of the rank numbers in each column. The 

ranking numbers in each column of matrix R are then rearranged to have the same ordering 

as the numbers in each column of the target correlation matrix. The technique can be applied 

iteratively and can result in a very low correlation coefficient if uncorrelated random variables 

are generated. However, Huntington and Lyrintzis [84] found that the approach tends to 
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converge to an ordering which still gives significant correlation errors between some 

variables. 

The described scheme is linked to the Spearman correlation measure which is very robust in 

cases of non-Gaussian PDF. Additionally, it only uses ranks, instead of sampled values. Its 

limitation is related to the fact of the necessary number of simulations being higher than the 

number of random variables to achieve a positive definite correlation matrix. It can be 

understood as a serious drawback in cases where a very high number of variables exist and 

a limited number of simulations are possible. 

These obstacles stimulated the work of Huntington and Lyrintzis [84] who proposed the 

single-switch-optimized ordering scheme. This approach consists in the imposition of a target 

correlation structure by matrix manipulations only. However, this imposition may be 

understood as an optimization problem for which the difference between prescribed and 

generated correlation matrices should be as small as possible. Vorechovský and Novák [192, 

193, 194] propose a new efficient technique to impose the statistical correlation when using 

LHS algorithms. This technique is based in a stochastic optimization method called simulated 

annealing. It is robust, efficient, fast and performs well with a large number of variables. An 

application of this technique is given in Bergmeister et al. [14]. 

Within this probabilistic assessment a LHS algorithm is used to sample numerical models 

according to updated model parameter PDF. This algorithm was implemented in Matlab® by 

Stein [173] and presented at Appendix B. In this situation, it will be generated 500 samples, 

which is higher than twice the number of aleatoric variables. The correlation coefficients, 

introduced by means of a correlation matrix, are kept during simulation through the 

application of the Iman and Conover [85] algorithm. This algorithm is also provided at 

Appendix B. 

4.8. Structural performance indexes 

During probabilistic assessment algorithm, values are generated for input parameters, and, 

accordingly, for each sample, the model is analyzed and obtained results are statistically 

processed, being obtained a numerical PDF. Performance indexes are then used to evaluate 

the structural behavior. In this situation, they are classified in evaluation and safety 

assessment indexes. While the former is related to the evaluation of the structural behavior, 

both in service and failure region, through a comparison with obtained experimental data, the 

latter is related to the failure limit state, through a comparison with loading PDF. 
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4.8.1. Evaluation assessment 

The evaluation indexes are mostly used when it is necessary to verify if the structural 

behavior is, or not, within the expectable during a performance test. In this situation, it is 

introduced an index-i, used to evaluate the analyzed structure behavior within the whole test, 

and an index-p [118, 119, 120, 122], that permits to probabilistically evaluate such behavior 

in a time frame of the test. 

The index-i consists in evaluating if the measured value during a test falls into the computed 

95% confidence interval for an output parameter, and according to Figure 4.19a, (4.39), 

[ ]index-i %i tn n=  (4.39)

being ni the number of measured values that falls into it and nt the total number of registered 

values. This value increases with the number of experimental registers that fall into predicted 

numerical confidence interval. 

The index-p evaluates the approximation of experimental data to computed numerical PDF, 

through equation (4.40), 

( )( ) [ ]expindex-p 1 abs 0.5 0.5 %num numP X F CV  = − ≤ − ⋅   
 (4.40)

being Fexp the measured data, Pnum the obtained numerical PDF, X ≤ Fexp indicates the 

probability of X being lower than or equal to Fexp considering the numerical PDF, 0.5 is the 

obtained probability when Fexp is equal to the mean value of the numerical PDF, and CVnum is 

the coefficient of variation of numerical PDF. These parameters are given at Figure 4.19b. 

The highest value of index-p corresponds to the most reliable numerical PDF. 

  

a) b) 

Figure 4.19. Evaluation assessment: a) index-i; b) index-p. 
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4.8.2. Safety assessment 

The reliability index is a performance index, used to quantify the structure safety. It is more 

objective and explicitly than traditional visual-inspection based indexes. Therefore, it is a 

more impartial mean to assess the structure performance, and thus it is recommended to be 

used in maintenance and management procedures [59]. 

In safety assessment, a comparison between resistance (R) and loading (S) PDF is 

performed [33, 134]. According to Figure 4.20a, the failure probability (pf) is proportional to 

the intersection area of these PDF, which corresponds to the case in which the structural 

resistance is lower than the applied load, (4.41), 

( )fp P R S= ≤  (4.41)

Or in other words, (4.42), 

( )0fp P R S= − ≤  (4.42)

In this situation the indicator function g(X) is the limit function (Z(R,S) = R – S). Therefore, it 

is possible to express (4.41) through (4.43), 

( )( ), 0fp P Z R S= ≤  (4.43)

In this situation, the failure probability is computed, and according to expression (4.35), 

through (4.44), 

( ), 0
[%]f

f
t

N Z R S n
P

N n

 ≤ = =  (4.44)

being nf the number of sampled models which fall into failure region and nt the total number 

of sampled models. The reliability index (β) is then given by expression (4.45), 

( )1
fPβ −= −Φ  (4.45)

being Φ-1 the inverse cumulative distribution function for a standard Normal PDF. 

Figure 4.20b presents the limit function PDF and its relation to the reliability index. 

The structural safety assessment [93, 134, 166] consists in computing the obtained reliability 

index and comparing it to a target reliability index (βtarget). The target reliability values have to 

be established based on the reliability analysis of many structures. Therefore, the nominal 

target values have to take into account several factors as the failure type, associated risk and 

costs, etc. 
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a) b) 

Figure 4.20. Safety assessment: a) resistance and loading; b) failure probability. 

It is important to divide these indexes into those that are used in a structural element analysis 

and those that are used in a global structure analysis. As target reliabilities for member level 

it is proposed the values of AASHTO LRFD [1] and LRFR [2], of EN-1990 [46], of ISO 13822 

[86], of JCSS [93], and of Schneider [166]. 

In respect to ISO 13822 [86], the target reliability level used for verification of an existing 

structure can be determined based on calibration with current code, the concept of minimum 

total expected cost, and/or the comparison with other social risks. The requirements should 

also reflect the type and importance of the structure, possible failure consequences and 

socio-economic criteria. 

Although the performance requirements on safety and serviceability for the assessment of 

existing structures are in principle the same as for the design of new structures, there are 

some fundamental differences between these two activities affecting the differentiation in 

structural reliability, namely: (1) economic considerations: the incremental cost between 

acceptance and upgrading the existing structure can be very large, whereas the incremental 

cost of increasing the safety of a structural design is generally very small; (2) social 

considerations: this include disruption of occupants and activities, considerations that do not 

affect the structural design of new structures; (3) sustainability considerations: reduction of 

waste and recycling, which are less important considerations in the design of new structures. 

The remaining working life determined at the assessment is considered as a reference 

period for an existing structure for serviceability, while the design working life is often 

considered as a reference period for a new structure. The target reliability indexes may be 

chosen in accordance with current codes, if provided, otherwise the values given in 

Table 4.16 are intended as illustrations for the assessment of existing structures. 

Since Eurocodes are legal codes in most of European countries, the reliability levels stated 

there, especially in EN-1990 [46], could give some idea of required safety of bridges in 

Europe. Two sets of indexes are presented for different reference periods (1 and 50 years). 
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The reliability classes used for ultimate limit state are RC-1, RC-2 and RC-3 corresponding to 

low, medium and high failure consequences, related to loss of human life and economic, 

social and environmental costs. These values might be over conservative for existing 

structures as they are mainly proposed for bridge design. Table 4.17 indicates those values. 

Table 4.16. Target reliability indexes (βtarget) for structures [86]. 

Limit states Target reliability index Reference period 

Serviceability 

Reversible 0.00 Intended remaining working life 

Irreversible 1.50 Intended remaining working life 

Ultimate 

Very low consequences of failure 2.30 LS years * 

Low consequences of failure 3.10 LS years * 

Medium consequences of failure 3.80 LS years * 

High consequences of failure 4.30 LS years * 

* LS is the minimum safety standard period (e.g. 50 years). 

Table 4.17. Target reliability indexes (βtarget) for structures [46]. 

Limit state 
Reference period 1 year Reference period 50 years 

RC-1 RC-2 RC-3 RC-1 RC-2 RC-3 

Ultimate 4.20 4.70 5.20 3.30 3.80 4.30 

Serviceability - 2.90 - - 1.50 - 

In respect to JCSS [93] the target reliability values for ultimate limit states are based on cost 

benefit analysis and are compatible with calibration studies and statistical observations. The 

values proposed by JCSS [93] are indicated at Table 4.18. 

The consequence class classification is based in the ratio ρ between total costs 

(i.e. construction costs and failure costs) and construction costs. Accordingly, there are: 

(1) class 1: minor consequences, ρ is less than 2 (risk to life, given a failure, is small to 

negligible and economic consequences are small or negligible; e.g. agricultural structures, 

silos, masts, etc.); (2) class 2: moderate consequences, ρ is between 2 and 5 (risk to life, 

given a failure, is medium or economic consequences are considerable; e.g. office buildings, 

industrial buildings, apartment buildings, etc.); (3) class 3: large consequences, ρ is between 

5 and 10 (risk to life, given a failure, is high or economic consequences are significant; 
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e.g. main bridges, theaters, hospitals, high rise buildings, etc.). Failure consequences also 

depend on failure type, which can be classified according to: (1) ductile failure with reserve 

strength capacity, resulting from strain hardening; (2) ductile failure with no reserve capacity; 

(3) brittle failure. 

Table 4.18. Target reliability indexes (βtarget) for structures [93]. 

Relative cost of 
safety measure 

Ultimate limit state 

Serviceability limit state 
Minor consequences 

of failure 

Moderate 
consequences of 

failure 

Large 
consequences of 

failure 

Large 3.10 (pf ≈ 10-3) 3.30 (pf ≈ 5*10-4) 3.70 (pf ≈ 10-4) 1.30 (pf ≈ 10-1) 

Normal 3.70 (pf ≈ 10-4) 4.20 (pf ≈ 10-5) 4.40 (pf ≈ 5 * 10-6) 1.70 (pf ≈5 * 10-2) 

Small 4.20 (pf ≈ 10-5) 4.40 (pf ≈ 5 * 10-6) 4.70 (pf ≈ 10-6) 2.30 (pf ≈ 10-2) 

The minimum reliability index, βtarget = 3.50, required for the design of bridges in USA, defined 

at AASHTO LRFD [1], is based on average reliability index values computed from a sample 

of past design. This value corresponds to the reliability of an individual member and strength 

limit states. It was computed considering specific probabilistic models for loads, geometry 

and mechanical properties of materials. Therefore, if different probabilistic models were 

used, different target reliability would be obtained for the same sample of past design. The 

code AASHTO LRFR [2] proposes a value of target reliability index for the strength 

assessment of bridge members, βtarget = 2.50. This value is lower than the previous due to 

the fact that evaluation is performed for a much shorter exposure period. 

Schneider [166] proposes the following Table 4.19 as a rough indication of the order of 

magnitude of reliability indexes per year. Reliability indexes concerning lifetime are smaller 

because acceptable failure probabilities are roughly annual failure probabilities times the 

expected lifetime of the structure. Reliability requirements regarding the structure 

serviceability are less severe than those related to structural safety. 

The consequences of a possible failure as well as the type of failure must be considered. 

Therefore, the following consequences are provided: (1) class 1: almost no consequences, 

small transient disturbances for users, serviceability affected during short periods; 

(2) class 2: minor consequences, no hazards to life and limb, economic consequences of 

failure are low; (3) class 3: moderate consequences, hazards to life and limb are low, 

economic consequences of failure are considerable; (4) class 4: large consequences, 

hazards to life and limb are medium, economic consequences of failure are considerable; (5) 

class 5: extreme consequences, hazards to life and limb are high, economic consequences 
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of failure are very high. Moreover, the following failure types are given: (1) type A: 

serviceability failure, structure almost in elastic domain; (2) type B: ductile failure of 

redundant systems with reserve strength; (3) type C: ductile failure, but almost no reserve 

strength; (3) type D: brittle failure of non-redundant systems. 

Table 4.19. Target reliability indexes (βtarget) for structures [166]. 

  Type of failure 

  Type A Type B Type C Type D 

C
on

se
qu

en
ce

s 

Class 1 1.00 1.50 2.00 2.50 

Class 2 1.50 2.00 2.50 3.00 

Class 3 2.00 2.50 3.50 4.00 

Class 4 2.50 3.00 4.50 5.00 

Class 5 3.00 4.00 5.00 6.00 

In respect to target reliabilities for system level it is proposed the models of fib [55] and of 

Tabsh and Nowak [180]. According to JCSS [93] the previous values, given in Table 4.18, 

relate to the dominant failure mode of the structural system or to the structural component 

dominating system failure. Therefore, a structure with multiple and equally important failure 

modes should be designed for a higher level of reliability. 

Therefore, the reliability of a bridge, when considered as a structural system, is usually 

higher than the reliability of its members. According to Tabsh and Nowak [180] the difference 

between common values for those indexes in USA bridges is about 2, i.e., instead of using 

β=3-4, for bridge member, for the whole system a value of β=5-6 is recommended. 

Traditional design or assessment methods did not consider this additional structural capacity 

in a quantitative manner, but it is known that this additional over-strength exists and that 

member requirements can be chosen in a less conservative manner. 

Nowadays the assessment can be performed at both member and system level. Therefore, 

and in order to introduce consistency between these two levels, target reliability indexes for 

system level should be higher than those for member level. So far, and unfortunately, there is 

no code or guideline that clearly defines target reliability indexes for assessment of structures 

at system level. Many codes are member orientated and the effort in last decades is to 

develop target safety for design and evaluation of structural members without accounting for 

redundancy and system effect. Two important works in this respect are from Ghosn and 

Moses [64] and from Liu et al. [108]. Other interesting work is that indicated at fib [55]. These 
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authors proposed five bridge reliability states. Table 4.20 indicate these states and related 

reliability indexes. 

Table 4.20. Bridge reliability states [55]. 

Reliability states 

5 4 3 2 1 

Reliability index 

β ≥ 9.00 9.00 > β ≥ 8.00 8.00 > β ≥ 6.00 6.00 > β ≥ 4.60 4.60 > β 

Attribute for reliability 

Excellent Very good Good Fair Unacceptable 

4.9. Conclusions 

A methodology for probabilistic assessment of structures is presented in this chapter. This 

methodology permits to evaluate the structural safety and condition. It is composed by a two 

main steps. In a first step the numerical model is updated through a model identification 

procedure. Further, the updated deterministic model is transformed into a probabilistic model 

and a probabilistic analysis is developed. Finally, each parameter PDF may be updated with 

complementary data, through a Bayesian inference algorithm. 

This methodology contemplates all sources of uncertainty. Modeling and measurement 

errors are introduced when computing the model identification tolerance criterion. Physical 

uncertainties are incorporated into model parameter PDF. Statistical uncertainty may be 

reduced with the application of the Bayesian inference algorithm. Human errors may be 

identified during the probabilistic assessment procedure. 

The developed algorithm presents a high computational cost. In order to minimize it, a 

sensitivity analysis, in which the most important parameters are selected, should be applied. 

The implemented procedures of such analysis are introduced. This procedure is highly 

dependent on the defined target importance measure value. If any parameter presents a 

value that is higher than this value, then it should be considered as critical. 

A study is developed to evaluate measurement errors, specifically in LVDT. Accordingly, the 

linearity and sensitivity of different transducers, with different cable lengths, is evaluated. 

This study permits to conclude that the system transducer and cable should be always 

calibrated before being implemented in a monitoring system, as it reduces in large scale the 

linearity value and so the measurement error. Additionally, it is verified that long cables are 
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not recommended as its linearity value increases in a way that makes the assessment 

procedure inaccurate. 

Modeling errors, and the way they are computed, are also indicated. Additionally it is shown 

how these errors should be combined with measurement errors, in order to obtain the model 

identification fitness function tolerance criterion. Once a pool of models is obtained from 

model identification, then an engineering judgment procedure, based in the probability of 

occurrence of each model, is performed to select the most suitable model. 

Important PDF for material, geometry and physic properties are further defined. Some of 

these parameters are well defined in bibliography, but others, as those related to lightweight 

concrete or to steel-concrete interface, are not. Therefore, in this situation, the PDF definition 

is based in experience. When defining the PDF parameters (e.g. mean and standard 

deviation), a statistical uncertainty is introduced. Accordingly, this uncertainty can be reduced 

with the acquisition of new data. Bayesian methods are thus applied to include information 

from complementary data into these models. 

It is also presented some simulation algorithms, necessary to sample the numerical models 

which will be analyzed within the probabilistic assessment. A special emphasis is given to the 

LHS method and to Iman and Conover [85] algorithm, necessary to implement the correlation 

matrix. Performance indexes that provide information about the structure behavior are also 

provided. Two of these indexes are related to the evaluation of the structural behavior, both 

in service and failure region, while the other, the reliability index, gives information on 

structural safety. Some target values for this latter index are also given.  
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5 Reinforced Concrete Beams 

5.1. Introduction 

This chapter presents the probabilistic study on the behavior of two sets of reinforced 

concrete beams, a pinned-pinned and other pinned-fixed supported, which were tested in 

laboratory up to failure. The purpose of such analysis is to probabilistically assess the 

behavior of reinforced concrete structures, by taking into consideration all sources of 

uncertainty. 

In a first step, a nonlinear deterministic numerical model was developed and simplified, by 

reducing both the finite elements and load step increment. Further, a sensitivity analysis was 

performed, in order to study the influence of each variable on the structural behavior. The 

most relevant parameters were then selected for further analysis. These procedures are 

important as they reduce the computational cost of a further probabilistic analysis. 

In a second step, model identification was executed. The deterministic numerical model is 

therefore updated with obtained experimental data by using a robust optimization technique 

and taking into account both measurement and modeling errors. Parameters as material, 

geometry and physic ones were respectively assessed. For pinned-fixed beams, the spring 

constant, used to simulate the fixed support, was also assessed. This procedure is important 

as it permit to obtain an updated deterministic numerical model of evaluated structure, to be 

used in a further probabilistic analysis. 
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In a third step, a nonlinear probabilistic analysis was developed. Therefore, it was necessary 

to define, according to bibliography, each input parameter probability density function (PDF). 

For pinned-fixed beams those PDF were later updated through a Bayesian inference 

approach, by considering the results from laboratory characterization tests. Such tests were 

developed to characterize both material and geometry properties. An updated resistance 

PDF is then obtained, necessary for a safety assessment procedure. 

Different resistance PDF of reinforced concrete beams were then computed for different 

levels of updating, specifically, considering or not model identification and Bayesian 

inference procedures. Obtained results were then compared to measured data. The 

influence of both model identification and Bayesian inference procedures is pointed out on a 

safety assessment example. 

5.2. Experimental tests 

5.2.1. Pinned-pinned beams 

The first set of tested structures is composed by two pinned-pinned supported beams. Such 

beams, with a rectangular section of 75 x 150 mm2 and 1.50 m span length, were concreted 

at once. The scheme of these tests is presented in Figure 5.1a. Loads were applied by an 

actuator with 150 kN capacity and were positioned at 1/3 and 2/3 of the span length. Each 

beam was supported in two elements, placed symmetrically in relation to their symmetric 

axle. While one of those elements restricts only the vertical displacement, the other restricts 

both vertical and horizontal one [114, 115, 116, 117]. 

Tested beams present the same concrete class (C25/30) and longitudinal steel 

reinforcement type (S500B), according to EN 1992-1-1 [48]. A longitudinal reinforcement of 

3φ6 (As = 0.85 cm2) and a transversal reinforcement of φ4@0.10 (Asw/s = 2.51 cm2/m) was 

used. The concrete cover was considered to be 10 mm in all sides. 

The laboratory test was developed with displacement control, by using a displacement 

transducer positioned inside the actuator. The applied load was registered through a load cell 

positioned inside the actuator. The middle span displacement was monitored through a 

displacement transducer (LVDT), with a measurement field of ± 25.00 mm, a sensitivity of 

34.00 mV/V/mm and an accuracy of 0.10%. The repeatability was reached by using the 

same materials and providing identical laboratory conditions during the developed tests. 

Figure 5.1b presents an image of those tests. 
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a) b) 

Figure 5.1. Test: a) scheme; b) laboratory (top right: actuator; bottom right: LVDT). 

The collapse mechanism, presented in Figure 5.2a, is characterized by a plastic hinge 

located at middle span. Figure 5.2b shows the collapse mechanism. Obtained experimental 

results are given in Figure 5.3. The structural behavior is divided in three steps: (1) Pre-

cracking phase, before concrete cracking, in which steel did not reach the yield strength, and 

concrete did not reach both tensile and compressive strength; (2) Post-cracking phase in 

which the concrete, submitted to tensile stresses, already reached the tensile strength, but 

both steel and concrete did not reach their yield and compressive strength; (3) A final phase 

in which the concrete, in compression, and the steel, in tension, already reached the 

compressive and yield strength. A bending failure mode with concrete crushing and yielding 

of longitudinal steel reinforcement was obtained. The failure load (FR) is of 24.61 kN 

(beam 1) and of 24.97 kN (beam 2). 

  

a) b) 

Figure 5.2. Collapse mechanism: a) scheme b) image. 
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Figure 5.3. Experimental data. 

5.2.2. Pinned-fixed beams 

The second set comprises two tested pinned-fixed supported beams. Those beams, with a 

rectangular section of 75 x 150 mm2 and a free span of 1.50 m, were concreted at once. 

Figure 5.4a presents a scheme of developed laboratory tests. Loads were applied by an 

actuator with 150 kN capacity, and were positioned at 1/3 and 2/3 of the span length. Those 

beams were supported in two elements, a pinned and a fixed support. While one of those 

elements restricts only the vertical displacement, the other restricts both the vertical and the 

horizontal one and, also, the bending moment. In this case there is no symmetry and the 

structure is one degree hyperstatic [115, 116, 117, 119, 121, 122]. 

Tested beams present the same concrete class (C25/30) and longitudinal steel 

reinforcement type (S500B), according to EN 1992-1-1 [48]. It was respectively considered a 

superior and an inferior longitudinal reinforcement of 2φ8 (As = 1.01 cm2) and of 3φ6 

(As = 0.85 cm2). It was adopted a transversal reinforcement of φ4@0.03 (Asw/s = 8.38 cm2/m), 

in supports region, and of φ4@0.08 (Asw/s = 3.14 cm2/m), at middle span. The concrete cover 

was considered to be 20 mm in all sides. 

The laboratory test was developed with displacement control, using a displacement 

transducer positioned inside the actuator. The applied load was registered through a load cell 

positioned inside the actuator. The middle span displacement was controlled by a 

displacement transducer (LVDT), with a measurement field of ± 25.00 mm, a sensitivity of 

33.84 mV/V/mm and an accuracy of 0.10%. The pinned support reaction was registered 

through a load cell with 200 kN of capacity and 0.10% of accuracy. The repeatability was 

achieved, by using the same materials and providing the same laboratory conditions during 

the developed tests. Figure 5.4b shows those tests. 

Due to the fact of being one degree hyperstatic the collapse mechanism is characterized by 

two plastic hinges, Figure 5.5a, located at fixed support and beside the point load that is 
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close to the pinned support. Figure 5.5b shows the collapse mechanism. As the applied load 

and the pinned support reaction were measured, it was possible to obtain, in an indirect way, 

the bending moment at fixed support, by using the static equilibrium equations. 

 

 

a) b) 

Figure 5.4. Test: a) scheme; b) laboratory (top right: actuator; center right: load cell; bottom 

right: LVDT). 

  

a) b) 

Figure 5.5. Collapse mechanism: a) scheme b) image. 

Obtained experimental results are given in Figure 5.6. The structural behavior is divided into 

five steps: (1) Pre-cracking phase, before concrete cracking, in which steel did not reach the 

yield strength, and concrete did not reach both tensile and compressive strength and in 

which a partial restraint is verified at fixed support; (2) Post-cracking phase in which the 

concrete, submitted to tensile stresses, already reached the tensile strength; (3) Post-

cracking phase in which a full restraint is observed at fixed support; (4) First hinge phase in 

which the concrete, in compression, and the steel, in tension, respectively reached the 

compressive and yield strength at fixed support; (5) Second hinge phase in which the 
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concrete, in compression, and the steel, in tension, respectively reached the compressive 

and yield strength in the section beside the point load that is close to the pinned support. 

Obtained failure mode was of bending with concrete crushing and yielding of longitudinal 

steel reinforcement. It is also verified that the fixed support does not work as a full clamp 

since the beginning of loading, due to concrete accommodation. The failure load (FR) and 

maximum bending moment (MR1
*) is of 30.52 kN and 7.38 kN.m (beam 1) and of 28.26 kN 

and 6.43 kN.m (beam 2). 

  

a) b) 

Figure 5.6. Experimental data. 

5.3. Numerical analysis 

Tested reinforced concrete beams were numerically studied through a nonlinear finite 

element model developed with software ATENA® [23, 24]. Used materials, concrete and 

steel, were defined by a set of parameters that define the respective constitutive law. 

The stress-strain law for concrete is presented in Figure 5.7a. This law is defined by some 

parameters as: (1) elasticity modulus (Ec); (2) compressive strength (fc); (3) compressive 

strain at compressive strength (εc); and (4) tensile strength (ft). This material presents a 

different behavior when submitted to compressive and tensile stresses. In compression it is 

characterized by an initial parabolic phase until compressive strength and then by a linear 

phase (softening). The critical displacement parameter (wd) is used to define the softening 

phase. When submitted to tension stresses, the material behavior is characterized by an 

initial linear phase until tensile strength and then by an exponential phase. The fracture 

energy (Gf) is proportional to the area of this diagram. 

The uniaxial stress-strain law for steel is presented in Figure 5.7b. This law is defined by 

some parameters as: (1) elasticity modulus (Es); (2) yield strength (σy); (3) limit strain (εlim); 

and (4) limit strength (σu). This material presents a bi-linear behavior, characterized by an 

initial phase in which the material presents a typical elastic behavior and a second phase 
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from material yielding until failure (hardening). A similar behavior is obtained in compression 

and in tension. 

  

a) b) 

Figure 5.7. Material stress-strain law: a) concrete; b) reinforcement steel. 

Those materials, concrete and steel, were modeled by using, respectively, an SBETA 

material and a bilinear with hardening Von Mises model, which are constitutive models of the 

ATENA® library [23, 24]. A biaxial stress failure criterion and a Von Mises yield criterion are 

respectively established. The parameter values were taken from EN 1992-1-1 [48]. Table 5.1 

and 5.2 indicate those values. 

Table 5.1. Material properties (concrete). 

Parameter Value 

Elasticity modulus (Ec) [GPa] 31.00 

Tensile strength (ft) [MPa] 2.60 

Compressive strength (fc) [MPa] 33.00 

Fracture energy (Gf) [24] [N/m] 65.00 

Compressive strain at compressive strength (εc) [‰] 2.00 

Critical compressive displacement (wd) [24] [m] 5.00 * 10-4 

Table 5.2. Material properties (steel). 

Parameter Value 

Elasticity modulus (Es) [GPa] 200.00 

Yield strength (σy) [MPa] 500.00 

Limit strength (σu) [MPa] 540.00 (k = 1.08) 

Limit strain (εlim) [‰] 50.00 
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5.3.1. Pinned-pinned beams 

The analyzed beams present a rectangular section of 75 x 150 mm2 and a span length of 

1.50m. Such beams are simply supported. While one of the supports restricts only the 

vertical displacement, the other restricts both the vertical and the horizontal one. A uniform 

mesh of quadrilateral elements was considered. Reinforcing steel bar elements were 

considered to be embedded in concrete. 

In order to correctly simulate the developed laboratory test a displacement control numerical 

test was used. Two different load cases were adopted, respectively, one representing the 

real supports and other the applied displacement. One of the used supports restraint both 

horizontal and vertical displacements, while the other only restraint the vertical ones. 

Two point loads were introduced at 1/3 and at 2/3 of the span length. An identical increment 

was considered for the applied displacement in each point load, equal to 1.00 * 10-4 m 

(downward). In order to avoid high local stresses in both support and load points, a steel 

plate was placed in such positions. A Newton-Raphson nonlinear search algorithm was used. 

Considered parameters are given in Table 5.3. The middle span displacement and applied 

load were monitored during the analysis [114, 116, 117]. 

Table 5.3. Solution parameters (Newton-Raphson). 

Solution method Newton-Raphson 

Stiffness / Update Tangent / Each iteration 

Iterations number limit 100 

Error tolerance 1.00 * 10-2 

Line search With iterations 

When performing several analysis of the same numerical model, as in model identification or 

within a probabilistic analysis, the issue of computational cost becomes very important. In 

order to overcome it, the developed numerical model was simplified. Therefore, both finite 

element and load step numbers were minimized. Accordingly, three mesh types (with 708, 

432 and 325 elements) and two different load steps (175 steps of factor 1 and 30 steps of 

factor 5) were studied. Figure 5.8a presents a finite element mesh with 432 elements. 

In a further analysis, the performance of each model was evaluated. In order to assure 

identical computational conditions, the same computer was used. The computational time 

and the related error were determined for each analysis. The applied load error was 

computed through equation (5.1), 
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( ) [ ]1 0 0 %i i i iF F F∆ = −  (5.1)

in which F1
i is the applied load for a specific step i of evaluated numerical model and F0

i is 

the applied load for the same step i of the reference numerical model. The reference model 

is the one that presents the most refined mesh and higher number of load steps. Afterwards, 

the maximum and minimum ∆-values are determined and the sum of their absolute values is 

computed. Finally, the applied load error (θ) is computed by dividing this value per two. 

Table 5.4 shows the obtained results. It is possible to conclude that the most suitable model, 

for a further analysis, is the number 3. In fact, by comparing with other models, it is possible 

to conclude that this model presents a lower error (≈5%) and, at same time, by comparing 

with reference model (number 0) it reduces the computational cost in almost 90%. 

Table 5.4. Simplification results. 

Numerical model Finite element number Step number Computational time [s] Applied load error - θ [%] 

0 708 175 151.07 - 

1 708 30 40.16 2.49 

2 432 175 126.49 5.05 

3 432 30 18.71 5.06 

4 325 175 94.46 8.36 

5 325 30 15.88 10.03 

Figure 5.8b presents the deformation, crack pattern and horizontal strain of the analyzed 

beam for chosen numerical model. In this case the collapse mechanism is characterized by 

the presence of a plastic hinge at the beam middle span. A bending failure mode, with 

concrete crushing and yielding of longitudinal steel reinforcement, is obtained. The numerical 

behavior was similar to the experimental one, validating the developed model. 

  

a) b) 

Figure 5.8. Numerical model: a) finite element mesh; b) failure mechanism. 

5.3.2. Pinned-fixed beams 

These beams present a rectangular section of 75 x 150 mm2 and a span length of 1.50 m. 

They are supported in two points, a pinned and a fixed one. While one of those elements 
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restricts only the vertical displacement, the other restricts both the vertical and the horizontal 

one along a line. Vertical spring elements were introduced along the support line, in this latter 

case, to study the related restraint to this degree of freedom. Such springs would only work 

for vertical displacements and when in compression. In order to avoid high local stresses, a 

steel plate was placed between the structure and both structural supports. A uniform mesh of 

quadrilateral elements was considered. Reinforcing steel bar elements were considered to 

be embedded in concrete. 

In order to correctly simulate the laboratory test, some considerations were taken. A 

displacement control numerical test was adopted. Three load cases were considered, one 

representing the real supports with spring elements placed at fixed support, other 

representing real supports with a vertical displacement restraint at fixed support and other 

representing the applied displacement. The load is applied at middle span of a steel profile 

which will load the beam in two points, respectively, at 1/3 and at 2/3 of the span length. An 

identical increment was considered for the applied displacement in each point load, equal to 

1.00 * 10-4 m (downward). A Newton-Raphson nonlinear search algorithm was used. 

Considered parameters are given in Table 5.3. The middle span displacement, the applied 

load and the pinned support reaction were monitored during the analysis. The bending 

moment at fixed support was computed through static equilibrium equations [116, 117, 119, 

121, 122]. 

When performing several analysis of the same numerical model, as in model identification or 

within a probabilistic analysis, the issue of computational cost becomes very important. In 

order to overcome it, the developed numerical model was simplified. Therefore, both finite 

element and load step numbers were minimized. Accordingly, three mesh types (with 3983, 

1333 and 427 elements) and two different load steps (210 steps of factor 0.50 and 60 steps 

of factor 2) were studied. Figure 5.9a presents a finite element mesh with 1333 elements. 

In a further analysis, the performance of each model was evaluated. In order to assure 

identical computational conditions, the same computer was used. The computational time 

and the related error were determined for each analysis. The applied load error was 

computed through equation (5.2), 

( ) [ ]1 0 0 %i i i i
F F F F∆ = −  (5.2)

in which F1
i is the applied load for a specific step i of evaluated numerical model and F0

i is 

the applied load for the same step i of the reference numerical model. The reference model 

is the one that presents the most refined mesh and higher number of load steps. Then, the 

maximum and minimum ∆F-values are determined and the sum of their absolute values is 
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computed. Finally, the applied load error (θF) is computed by dividing this value per two. The 

pinned support reaction error was computed through equation (5.3), 

( ) [ ]1 0 0 %i i i i
R R R R∆ = −  (5.3)

in which R1
i is the obtained reaction value for a specific step i of evaluated numerical model 

and R0
i is the obtained reaction value for the same step i of the reference numerical model. 

The reference model is the same as the one used to determine the applied load error. Then, 

the maximum and minimum ∆R-values are determined and the sum of their absolute values 

is computed. The reaction error (θR) is then computed by dividing this value per two. 

Table 5.5 gives the obtained results. It is possible to conclude that the most suitable model, 

for a further analysis, is the number 3. In fact, by comparing with other models, it is possible 

to conclude that this model presents a lower error (≈6%) and, at same time, by comparing 

with reference model (number 0) it reduces the computational cost in almost 90%. 

Table 5.5. Simplification results. 

Numerical model Finite element 
number 

Step number Computational 
time [s] 

Applied load 
error - θF [%] 

Reaction error - 
θR [%] 

0 3983 210 966.26 - - 

1 3983 60 756.41 2.14 3.80 

2 1333 210 211.38 4.80 4.58 

3 1333 60 141.01 6.00 5.82 

4 427 210 79.15 9.16 9.32 

5 427 60 41.56 9.23 12.57 

A first step calibration procedure was developed, taking into consideration the chosen 

numerical model, to determine the most suitable spring stiffness value (k = 149.13 kN/m). 

Such procedure consisted in identifying the value that optimizes the distance between 

numerical and experimental data. In order to develop this analysis, an evolutionary strategies 

optimization algorithm in its plus version [29] was used. During this procedure the other 

parameter values were fixed. It is verified that the fixed support is not working as a full clamp 

since the beginning of loading, as the obtained stiffness value is low. This parameter intends 

to represent the concrete accommodation in fixed support during the initial phase. 

The vertical displacement restraint is only assured in a more advanced phase of the test, in 

which the spring elements are replaced by pinned supports. During the same optimization 

procedure it was identified this instant, which occurs for load step 30. Accordingly, the load 
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cases were divided into 30 steps with a factor of 2 in the presence of spring supports, and 30 

steps with a factor of 2 with pinned supports. During this last phase the fixed support works 

as a full clamp, totally restraining the beam rotation. 

The collapse mechanism is characterized by two plastic hinges, the first at fixed support and 

the second beside the point load, which is close to the pinned support. A bending failure 

mode, with concrete crushing and yielding of longitudinal steel reinforcement, is obtained. 

The numerical behavior of analyzed reinforced concrete beams was similar to the one 

obtained in experimental tests. Obtained results validate the numerical model. Figure 5.9b 

presents the deformation, crack pattern and horizontal strain of tested beam. 

  

a) b) 

Figure 5.9. Numerical model: a) finite element mesh; b) failure mechanism. 

5.4. Model identification 

The basis of a model identification methodology is to rearrange a set of numerical 

parameters in such a way that the numerical response best fits the existent experimental 

data. This fact converts this kind of analysis into a typical optimization problem. In this case, 

the optimization function is based in an approximation between numerical and experimental 

data, and the objective is to obtain the curve that best adapts to existent experimental data. 

A detailed description of this function is given in chapter four. 

The optimization algorithm that was used in this analysis was the evolutionary strategy in its 

plus version [29]. It begins with an initial population of critical parameter values, generated 

randomly, and then, using the evolutionary operators, new populations are generated. A final 

population is extracted for each run. A detailed description of this algorithm is given at 

chapter two. This algorithm is processed with different starting points. An engineer judgment 

procedure, based in the probability of occurrence of each individual, is developed to 

determine the most suitable individual, from those previously extracted. This procedure is 

detailed described in chapter four. 

When using this procedure, multiple runs of the same numerical model are necessary. In 

each run, the fitness function value, which characterizes the approximation between 

experimental and numerical curves, is computed. The identification stops when one of the 

algorithm stopping criteria is attained. One of these criteria consists in establishing that the 

improvement on minimum fitness function value, obtained from two generations separated of 
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a pre-specified gap, should be less than or equal to a threshold value. This value is 

computed through the law of propagation of uncertainty [90, 91, 92], detailed described at 

chapter four. It may be interpreted as the methodology precision, once obtained results 

become more accurate with its decrease. 

It is known that one of the main disadvantages of model identification, the computational 

cost, increases with the number of variables to be optimized. Therefore, it is first important to 

select those which are critical. This can be done by performing a sensitivity analysis. This 

analysis consists in studying the fitness function variation with each input parameter. An 

importance measure (bk) was then obtained for each evaluated parameter. A detailed 

description of this measure is given in chapter four. In this case, if this value is equal or 

higher than 10% (blim) then the parameter will be considered as critical. 

In this case, model identification was performed for both service and failure region. The 

analysis in service phase identified different combinations of values for critical parameters 

that lead to very good results. However, the majority of these combinations lead to bad 

results in an analysis until failure load. This is important to highlight as model identification is 

typically performed with data from load test, and the majority of load tests are developed in 

service phase. Therefore, although a good approximation of registered data is obtained, this 

does not mean that the structure behavior until failure load is perfectly characterized. In order 

to overcome this, other complementary tests such as nondestructive tests (NDT), laboratory 

characterization tests and visual inspections should be executed. 

5.4.1. Pinned-pinned beams 

Two sensitivity analyses were developed in this case, one for service phase and other until 

failure load. The evaluated parameters are those related to materials, concrete and steel, 

and to geometry. It was respectively varied one standard deviation (σ) from each parameter 

mean value. In order to compute each standard deviation (σ), the following coefficient of 

variations (CV) were established [93]: (1) concrete elasticity modulus (Ec): 10%; (2) concrete 

tensile strength (ft): 20%; (3) concrete compressive strength (fc): 10%; (4) concrete fracture 

energy (Gf): 10%; (5) concrete compressive strain at compressive strength (εc): 10%; (6) 

concrete critical displacement (wd): 10%; (7) reinforcing steel elasticity modulus (Es): 5%; (8) 

reinforcing steel yield strength (σy): 5%; (9) reinforcing steel limit strength (σu): 5%; (10) 

reinforcing steel limit strain (εlim): 15%; (11) reinforcing steel area (As): 2%; (12) inferior 

concrete cover (cinf): 20%; (13) superior concrete cover (csup): 20%; (14) beam width (b): 

10%; and (15) beam height (h): 10%. Figure 5.10 and 5.11 gives the obtained results. 
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Figure 5.10. Importance measure (service). 

The analysis developed in service phase pointed out for the importance of concrete elasticity 

modulus (Ec), tensile strength (ft) and fracture energy (Gf), of longitudinal steel reinforcement 

elasticity modulus (Es) and area (As), and of section width (b) and height (h). In fact, it is 

reasonable to admit that when submitted to low stresses the beam response is only 

dependent of concrete elasticity modulus and fracture energy, and of steel elasticity 

modulus. In this situation the concrete, in tension, reached their tensile strength and started 

to crack. Therefore, tensile strength is also an important parameter. By developing this 

analysis, from 15 initial possible parameters, only 7 of them were considered critical, 

reducing so the computational cost. 

 

Figure 5.11. Importance measure (failure). 

The analysis performed until failure load revealed a decrease on the importance of concrete 

parameters, with exception of compressive strength (fc) that increases. In respect to 

longitudinal steel reinforcement it is important to point out an increase on the importance of 

the yield strength (σy). In fact, it is verified for higher loads that steel reached this strength 

and started the hardening phase. In respect to geometry parameters, it is important to refer 
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the increase on the importance measure of inferior concrete cover (cinf). Other critical 

parameters, previously identified during the sensitivity analysis in service phase, are still 

considered. Therefore, from 15 initial parameters, only 9 of them were considered, reducing 

so the computational cost. 

Once the numerical model and critical parameters, to be optimized, are identified, the further 

step is the application of proposed model identification methodology. In this case, the middle 

span displacement was measured during the laboratory test. This measurement is expressed 

by the graphic that plots the applied load (F) against the measured displacement (δ). In this 

situation the fitness function characterizes the approximation between numerical and 

experimental values for applied loads. One of used tolerance criteria is related to the 

convergence in the space of fitness value, defined by the threshold value (ε). In order to 

obtain this value, a division between uncertainty types, respectively, experimental and 

numerical, is developed. 

From experimental uncertainties, it is possible to select: (1) Sensor accuracy (0.10%), which 

includes not only the displacement transducer precision but also the cable and acquisition 

equipment losses [68, 154]; (2) Load positioning, which, in this case is considered to be zero 

as it was perfectly controlled within the developed test; (3) Load intensity (0.10%), that 

includes not only the load cell resolution but also the cable and the acquisition equipment 

losses [68, 154]; (4) Environmental effects, which can be neglected due to the fact of being a 

short term test and so the variations in temperature and humidity are very small to be 

considered; (5) Vibration noise, that can also be ignored as the test is performed in a static 

way. 

In this case, only the load intensity component will be considered when computing the 

experimental uncertainty. This component presents a uniform PDF (Type B) and so, 

according to JCGM [90, 91, 92], it should be divided by √3, obtaining then the result of 

5.77*10-2 %. In order to compute the experimental uncertainty it will be necessary to 

determine the experimental data derivative in respect to this component (∂yexp/∂x = 1.00 kN). 

This uncertainty is obtained through equation (5.4) [90, 91, 92], 

( )22 2 2 7 4
exp exp1.00 5.77 10 100 3.33 10 5.77 10 kNu u− − −= ⋅ ⋅ = ⋅ → = ⋅ (5.4)

From numerical uncertainties, it is possible to select: (1) Finite element method 

accuracy (3.79%), determined by comparing the developed numerical model with other 

which presents a higher number of load steps [69]; (2) Mesh refinement (6.74%), determined 

by comparing the developed numerical model with other which presents a more refined mesh 

[69]; (3) Model exactitude, that can be neglected as the numerical model is developed 
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according to the experimental test; (4) Considered hypothesis, that are also neglected as all 

model simplifications (e.g. consideration of supports as point loads) are validated within a 

global structural analysis. 

When computing the numerical uncertainty, both finite element method and mesh refinement 

components will be considered. These components are represented by a uniform PDF 

(Type B) and so, according to JCGM [90, 91, 92], they should be divided by √3, obtaining 

then the result of 2.19 % and of 3.89 %, respectively. In order to determine the numerical 

uncertainty, the partial derivative of the numerical results in respect to these two components 

should be computed (∂ynum/∂x = 1.00 kN). This uncertainty is obtained through equation (5.5) 

[90, 91, 92], 

( ) ( )2 22 2 2 3 21.00 3.89 100 1.00 2.19 100 1.99 10 4.46 10 kNnum numu u− −= ⋅ + ⋅ = ⋅ → = ⋅ (5.5)

Once the experimental and numerical uncertainties are computed, it will be possible to 

determine the fitness function uncertainty. In order to obtain this value, it is necessary to 

compute the partial derivative of the fitness function in respect to both experimental and 

numerical data. These values vary with tested beam as they are proportional to maximum 

applied load (∂f1/∂y
num = ∂f1/∂y

exp = 1/max(y1
exp) = 4.10 * 10-2 kN-1, for beam 1, and 

∂f2/∂y
num = ∂f2/∂y

exp = 1/max(y2
exp) = 4.00 * 10-2 kN-1, for beam 2). The fitness function 

uncertainty is respectively computed, for each tested beam, through equations (5.6) and 

(5.7) [90, 91, 92], 

( ) ( ) ( ) ( )
1 1

2 2 2 22 2 4 2 2 6 34.10 10 5.77 10 4.10 10 4.46 10 3.29 10 1.82 10f fu u− − − − − −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅  (5.6)

( ) ( ) ( ) ( )
2 2

2 2 2 22 2 4 2 2 6 34.00 10 5.77 10 4.00 10 4.46 10 3.20 10 1.79 10f fu u− − − − − −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅ (5.7)

The global fitness function value is obtained through the square root of the sum of the square 

of these components. In order to determine the global uncertainty, the partial derivative of the 

fitness function in respect to each component should be computed (∂f/∂f1 = ∂f/∂f2 = 1.00). 

This uncertainty is obtained through equation (5.8) [90, 91, 92], 

( ) ( )2 22 2 3 2 3 6 31.00 1.82 10 1.00 1.79 10 6.49 10 2.55 10f fu u− − − −= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (5.8)

The improvement on global fitness value (∆f) from two generations, separated of a specified 

gap (n), is given in chapter four. In order to determine its uncertainty, the partial derivative of 

the improvement in respect to each component needs to be computed 

(∂∆f/∂fi+n = ∂∆f/∂fi = 1.00). This uncertainty is obtained through equation (5.9) [90, 91, 92], 
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( ) ( )2 22 2 3 2 3 5 31.00 2.55 10 1.00 2.55 10 1.30 10 3.60 10f fu u− − − −
∆ ∆= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (5.9)

As all uncertainty sources are of Type B, a coverage factor (k) of 2 should be adopted [90, 

91, 92]. The fitness value criterion establishes that the respective improvement (∆f) should 

be less than or equal to the threshold value (ε). This value is obtained by multiplying the 

value from expression (5.9) by factor k. The obtained threshold value for the analysis in 

service phase is determined in a similar way. These values are further indicated, (5.10), 

3

3

7.15 10 0.72%

7.21 10 0.72%

Service

Failure

ε
ε

−

−

 → = ⋅ =


→ = ⋅ =
 (5.10)

This means that, for instance, for model identification until failure load, if the improvement in 

minimum fitness value of a population from two generations separated of a specified gap (n) 

is, respectively, less than or equal to 0.72%, the algorithm stops, as the fitness function 

tolerance criterion is reached. This shows that it is not meaningful to improve the fitness 

function of a value that is less than or equal to the precision itself. 

The evolutionary strategy algorithm in its plus version [29] is further executed. In this case, a 

parent population (µ) and a parent for recombination (ρ) of 10 individuals, and an offspring 

population (λ) of 50 individuals were defined. The algorithm will run until one of the 

established criteria is reached. Other stopping criteria, as the maximum generation’s 

number (1000), were considered. The generation gap (n), used for the fitness function 

tolerance criterion, is proportional to this number. It was established that this value is 10% of 

the specified maximum generation’s number. Therefore, the improvement on minimum 

fitness value is evaluated from a gap of 100 generations. Once the algorithm stops, a 

population, constituted by different individuals, is obtained. 

The respective algorithm is processed with different starting points. An engineer judgment 

procedure is developed to determine the most suitable individual, from those previously 

extracted. This individual is constituted by a set of values, a value for each critical parameter. 

Table 5.6 presents the nominal values, and individuals obtained from model identification in 

service phase and until failure load. In the same table, between brackets, the bias factor, 

which represents the ratio between the identified and the nominal value for each variable, is 

also presented. When applying this methodology in service phase, not only the critical 

parameters, as already identified during the sensitivity analysis, but also their optimal values, 

may differ from the application until failure load. 

From a first analysis of Table 5.6., it is possible to realize that: (1) Obtained value of some 

parameters, as the concrete tensile (ft) and compressive strength (fc), the section width (b) 
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and height (h) and the inferior concrete cover (cinf), is lower than the nominal one; (2) The 

longitudinal steel reinforcement elasticity modulus (Es) value, obtained from this 

methodology, when applied until failure load, is lower than the nominal one and, both these 

values are lower than the one from the application of the methodology in service phase; 

(3) The concrete elasticity modulus (Ec) value, obtained from this methodology, when applied 

until failure load, is higher than the nominal one and, both these values are higher than the 

one obtained from the application of the methodology in service phase; (4) Obtained value of 

some parameters, as the concrete fracture energy (Gf) and the longitudinal steel 

reinforcement yield strength (σy) and area (As), is higher than the nominal one. 

Table 5.6. Model identification results. 

Numerical model Nominal 
value 

Model identification 

Service * Failure * 

P
ar

am
et

er
 

Material 

Concrete 

Ec [GPa] 31.00 24.80 (0.80) 31.44 (1.01) 

ft [MPa] 2.60 2.09 (0.80) 2.54 (0.98) 

fc [MPa] 33.00 33.00 (-) 29.87 (0.91) 

Gf [N/m] 65.00 74.50 (1.15) 65.00 (-) 

Longitudinal steel 
reinforcement 

Es [GPa] 200.00 233.27 (1.17) 186.73 (0.93) 

σy [MPa] 500.00 500.00 (-) 535.83 (1.07) 

As [cm2] 0.85 1.02 (1.20) 0.91 (1.07) 

Geometry 

cinf [cm] 1.00 1.00 (-) 0.99 (0.99) 

b [cm] 7.50 6.53 (0.87) 7.27 (0.97) 

h [cm] 15.00 14.52 (0.97) 14.28 (0.95) 

* Bias factor is presented between brackets. 

Both analyses indicated that concrete material presents a worse quality than the expected. 

The main reasons for that are the difficulties related to the concreting process of small 

structural elements. However, the analysis performed until failure load indicated a higher 

elasticity modulus than the predicted. When evaluating the steel reinforcement, obtained 

results indicated a better quality material. However, the analysis performed until failure load 

indicated a lower elasticity modulus than the predicted. Both analyses indicated a higher 

steel area. Obtained value from the analysis in service phase is far from the others. In 

respect to geometry parameters, obtained values for inferior concrete cover are close to 

nominal ones. Additionally, obtained beam dimensions are smaller than the predicted. 

Obtained results from the analysis until failure load are the closest to nominal values. 
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It is also important to mention that the same collapse mechanism and failure mode was 

obtained in experimental and numerical tested beams. Figure 5.12 presents the applied 

load (kN) plotted against the middle span displacement (m) for measured experimental data 

and for numerical results, obtained by considering the nominal values, and those from model 

identification in service phase and until failure load. From the analysis it is possible to 

conclude that the results from model identification until failure load are those that best fit the 

experimental curve. The numerical results considering nominal values present a higher 

cracking load and post-cracking stiffness and a lower failure load, while the results obtained 

by using model identification in service phase, are very similar to experimental data, within 

the service region, presenting then a higher post-cracking stiffness and failure load. 

 

Figure 5.12. Numerical results. 

Table 5.7 presents the minimum fitness function values obtained by considering the nominal 

values and those from model identification in service phase and until failure load. A first 

analysis permit to conclude that the fitness function value obtained in service phase is lower 

than that determined until failure load. This is due to the fact that in service region the 

numerical results are close to experimental data than in failure region. It is also verified, for 

both cases, an improvement of this value with model identification. However, it is also 

verified that this improvement is higher in service region (92.97%) than in failure 

region (75.90%). The structural behavior in failure region presents a higher nonlinearity. 

Therefore, for this region, optimization becomes harder and obtained results are not as good. 

Table 5.8 presents the obtained failure load (FR) by considering the nominal values and 

those from model identification in service phase and until failure load. Obtained error from 

model identification until failure load is considerably lower than that given by nominal values 

and by model identification in service phase. In fact, during this later analysis the model 

identification is only realized in service phase. Therefore, it becomes difficult to predict the 

failure load. Hence, model identification in service phase, itself, does not give good results. 
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Additional complementary testes are thus recommended. In respect to model identification 

until failure load, obtained error is less than 1% which is very good. 

Table 5.7. Minimum fitness function values. 

Numerical model 

Fitness function 

Service Failure 

Value [%] Improvement [%] Value [%] Improvement [%] 

Nominal values 3.38 - 7.70 - 

Model identification 0.24 92.97 1.86 75.90 

Table 5.8. Failure load (FR). 

Numerical model 
Failure load 

Value [kN] Error [%] * 

Nominal values 23.28 6.13 

Model 
identification  

Service 26.42 6.53 

Failure 24.84 0.16 

* Comparing with the real failure load. 

5.4.2. Pinned-fixed beams 

Two sensitivity analyses were developed, one for service phase and other until failure load 

[122]. It were evaluated the same parameters as for pinned-pinned beams. Figure 5.13 and 

5.14 presents, respectively, the results from the former and from the latter analysis. 

 

Figure 5.13. Importance measure (service). 
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The analysis developed in service phase pointed out for the importance of concrete elasticity 

modulus (Ec), tensile strength (ft) and fracture energy (Gf), of inferior longitudinal 

reinforcement steel elasticity modulus (Es) and area (As) and of section width (b) and height 

(h). Therefore, from 15 possible parameters, only 7 of them were considered critical, 

reducing thus the computational cost. 

 

Figure 5.14. Importance measure (failure). 

The analysis performed until failure load revealed that the critical parameters, previously 

identified with the analysis in service phase, still present an important influence in the 

structural behavior. On the other hand the influence of concrete compressive strength (fc), of 

inferior longitudinal reinforcement yield strength (σy), and of inferior concrete cover (cinf), 

increases, as expected, and should be also considered. Hence, from 15 possible initial 

parameters, only 10 of them were considered, reducing then the computational cost. 

Two additional physic parameters that have a large influence on the overall structural 

behavior, namely, the spring stiffness and the instant in which the fixed support starts to work 

as a full clamp, were also considered during the analysis. Accordingly, 9 and 12 parameters 

will be, respectively, evaluated in the analysis for service phase and until failure load. 

Once the numerical model is validated and the critical parameters selected, the further step 

consists in applying the model identification methodology. In this case, during the laboratory 

test, both the middle span displacement and the pinned support reaction were measured. 

These measurements are expressed by two graphics, respectively, one that plots the applied 

load (F) against the measured displacement (δ) and, other that plots the measured 

reaction (R) against the bending moment at fixed support (M). In this situation the fitness 

function characterizes the approximation between numerical and experimental values for 

both applied load and measured reaction. 
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One of used tolerance criteria is related to the convergence in the space of fitness value, 

defined by the threshold value (ε). In order to obtain this value, the uncertainty of each fitness 

function component will be studied in separate. The global uncertainty is then computed 

through their combination. Therefore, and for each component, it is necessary to identify both 

experimental and numerical uncertainty sources. 

From experimental uncertainties, it is possible to select: (1) Sensor accuracy (0.10% - 

displacement transducer; 0.10% - load cell), which includes also the cable and acquisition 

equipment losses [68, 154]; (2) Load intensity (0.10%) that includes not only the load cell 

resolution but also the cable and acquisition equipment losses [68, 154]; (3) Load 

positioning, environmental effects and vibration noise which effects can be neglected in this 

case. 

From numerical uncertainties, it is possible to select: (1) Finite element method accuracy 

(5.91%, δ-F; 6.16%, M-R), determined by comparing the developed numerical model with 

other which presents a higher number of load steps [69]; (2) Mesh refinement (11.42%, δ-F; 

11.75%, M-R), determined by comparing the developed numerical model with other which 

presents a more refined mesh [69]; (3) Model exactitude and considered hypothesis 

(e.g. consideration of supports as point loads) that can be neglected in this situation. 

The following step consists in determining the uncertainty of the fitness function applied load 

component. In this case, the experimental uncertainty is only dependent on the load intensity 

component. This component presents a uniform PDF (Type B) and so, according to JCGM 

[90, 91, 92], it should be divided by √3, obtaining then the result of 5.77*10-2 %. The 

experimental data is linearly dependent of this component (∂yexp/∂x = 1.00 kN). The 

experimental uncertainty is computed through equation (5.11) [90, 91, 92], 

( )22 2 2 7 4
exp exp1.00 5.77 10 100 3.33 10 5.77 10 kN

F F
u u

δ δ− −

− − −= ⋅ ⋅ = ⋅ → = ⋅  (5.11)

The same procedure is used to determine the numerical uncertainty. For this case, both finite 

element method and mesh refinement effects will be considered. These errors are 

represented by a uniform PDF (Type B) and so, according to JCGM [90, 91, 92], they should 

be divided by √3, obtaining then the result of 3.41% and 6.59%, respectively. The numerical 

results are linearly dependent of these components (∂ynum/∂x = 1.00 kN). The numerical 

uncertainty is then computed through equation (5.12) [90, 91, 92], 

( ) ( )2 22 2 2 21.00 3.41 100 1.00 6.59 100 7.42 10 kN
F Fnum numu u

δ δ− −

−= ⋅ + ⋅ → = ⋅ (5.12)

Once the experimental and numerical uncertainties are computed, it will be possible to 

determine the uncertainty of the fitness function applied load component. In order to obtain 
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this value, it is necessary to compute the partial derivative of this component in respect to 

both experimental and numerical data. These values vary with tested beam as they are 

proportional to maximum applied load (∂fδ-F1/∂y
num = ∂fδ-F1/∂y

exp = 1/max(y1
exp) = 3.30*10-2kN-1, 

for beam 1, and ∂fδ-F2/∂y
num = ∂fδ-F2/∂y

exp = 1/max(y2
exp) = 3.60 * 10-2 kN-1, for beam 2). The 

uncertainty of the fitness function applied load component is then obtained, for each beam, 

through equations (5.13) and (5.14) [90, 91, 92], 

( ) ( ) ( ) ( )
1 1

2 2 2 22 2 4 2 2 6 33.30 10 5.77 10 3.30 10 7.42 10 5.92 10 2.43 10F Fu uδ δ
− − − − − −

− −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅  (5.13)

( ) ( ) ( ) ( )
2 2

2 2 2 22 2 4 2 2 6 33.60 10 5.77 10 3.60 10 7.42 10 6.90 10 2.63 10F Fu uδ δ
− − − − − −

− −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅  (5.14)

The fitness function applied load component is obtained through the square root of the sum 

of the square of each beam component. In order to determine its uncertainty, the partial 

derivative of the fitness function applied load component in respect to each beam component 

should be computed (∂fδ-F/∂fδ-F1 = ∂fδ-F/∂fδ-F2 = 1.00). This uncertainty is obtained through 

equation (5.15) [90, 91, 92], 

( ) ( )2 22 2 3 2 3 5 31.00 2.43 10 1.00 2.63 10 1.28 10 3.58 10F Fu uδ δ
− − − −

− −= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (5.15)

In a second step, the uncertainty of the fitness function measured reaction component is 

determined. In this case, the experimental uncertainty is only dependent on the sensor 

accuracy component. As this component presents a uniform PDF (Type B), and according to 

JCGM [90, 91, 92], it should be divided by √3, obtaining then the result of 5.77*10-2 %. The 

experimental data is linearly dependent of this component (∂yexp/∂x = 1.00 kN). The 

experimental uncertainty is given by equation (5.16) [90, 91, 92], 

( )22 2 2 7 4
exp exp1.00 5.77 10 100 3.33 10 5.77 10 kN

M R M R
u u

− −

− − −= ⋅ ⋅ = ⋅ → = ⋅  (5.16)

An identical procedure is used to determine the numerical uncertainty. For this case, both 

finite element method and mesh refinement effects are considered. These errors are 

represented by a uniform PDF (Type B) and so, according to JCGM [90, 91, 92], they should 

be divided by √3, obtaining then the result of 3.56% and 6.78%, respectively. The numerical 

results are linearly dependent of these components (∂ynum/∂x = 1.00 kN). The numerical 

uncertainty is then computed through equation (5.17) [90, 91, 92], 

( ) ( )2 22 2 2 21.00 3.56 100 1.00 6.78 100 7.66 10 kN
M R M Rnum numu u

− −

−= ⋅ + ⋅ → = ⋅  (5.17)

Then, it is necessary to determine the uncertainty of the fitness function measured reaction 

component. The partial derivatives of such component, in respect to both experimental and 

numerical data, differ from beam to beam as they are proportional to maximum measured 
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reaction (∂fM-R1/∂y
num = ∂fM-R1/∂y

exp = 1/max(y1
exp) = 1.36 * 10-1 kN-1, for beam 1, and 

∂fM R2/∂y
num = ∂fM-R2/∂y

exp = 1/max(y2
exp) = 1.56 * 10-1 kN-1, for beam 2). The uncertainty of the 

fitness function measured reaction component is then computed, for each beam, through 

equations (5.18) and (5.19) [90, 91, 92], 

( ) ( ) ( ) ( )
1 1

2 2 2 22 1 4 1 2 4 21.36 10 5.77 10 1.36 10 7.66 10 1.08 10 1.04 10M R M Ru u− − − − − −
− −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅ (5.18)

( ) ( ) ( ) ( )
2 2

2 2 2 22 1 4 1 2 4 21.56 10 5.77 10 1.56 10 7.66 10 1.42 10 1.19 10M R M Ru u− − − − − −
− −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅  (5.19)

The fitness function measured reaction component is obtained through the square root of the 

sum of the square of each beam component. In order to determine its uncertainty, the partial 

derivative of the fitness function measured reaction component in respect to each beam 

component should be computed (∂fM-R/∂fM-R1 = ∂fM-R/∂fM-R2 = 1.00). This uncertainty is 

obtained through equation (5.20) [90, 91, 92], 

( ) ( )2 22 2 2 2 2 4 21.00 1.04 10 1.00 1.19 10 2.50 10 1.58 10M R M Ru u− − − −
− −= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (5.20)

The global fitness value is the square root of the sum of the square of each component, 

respectively, for applied load and measured reaction. In this situation the global fitness 

function is linearly dependent of these components (∂f/∂fδ-F = ∂f/∂fM-R = 1.00). The global 

uncertainty is computed through equation (5.21) [90, 91, 92], 

( ) ( )2 22 2 3 2 2 4 21.00 3.58 10 1.00 1.58 10 2.62 10 1.62 10f fu u− − − −= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (5.21)

The improvement on global fitness value (∆f) from two generations, separated of a specified 

gap (n), is given in chapter four. In order to determine its uncertainty, the partial derivative of 

the improvement in respect to each component needs to be computed 

(∂∆f/∂fi+n = ∂∆f/∂fi = 1.00). This uncertainty is obtained through equation (5.22) [90, 91, 92], 

( ) ( )2 22 2 2 2 2 4 21.00 1.62 10 1.00 1.62 10 5.25 10 2.29 10f fu u− − − −
∆ ∆= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (5.22)

As all uncertainty sources are of Type B, a coverage factor (k) of 2 should be adopted [90, 

91, 92]. The fitness function criterion establishes that the respective improvement (∆f) should 

be less than or equal to the threshold value (ε). This value is obtained by multiplying the 

value from expression (5.22) by factor k. The obtained threshold value for the analysis in 

service phase is determined in a similar way. These values are further indicated, (5.23), 

2

2

4.17 10 4.17%

4.58 10 4.58%

Service

Failure

ε
ε

−

−

 → = ⋅ =


→ = ⋅ =
 (5.23)
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This means that, for instance, for model identification until failure load, if the improvement in 

minimum fitness function value of a population from two generations separated of a specified 

gap (n) is, respectively, less than or equal to 4.58% then the algorithm stops, as the fitness 

function convergence criteria is attained. This shows that it is not meaningful to improve the 

fitness function of a value less than or equal to the precision itself. These values are higher 

than those obtained for pinned-pinned beams. In fact, the threshold value increases with the 

number of necessary points to compute the fitness function. 

The evolutionary strategy algorithm in its plus version [29] is further executed. In this case, it 

was considered a parent population (µ) and a parent for recombination (ρ) of 10 individuals, 

and an offspring population (λ) of 50 individuals. The algorithm is executed until one of the 

established criteria is attained. Other stopping criteria, as the maximum number of 

generations (1000), were considered. The generation gap (n), used for the fitness function 

tolerance criterion, is proportional to this number. It was established that this value is 10% of 

the specified maximum number of generations. Therefore, the improvement on minimum 

fitness function value is evaluated from a gap of 100 generations. Once the algorithm stops, 

a population, constituted by different individuals, is obtained. 

The respective algorithm is executed with different starting points. An engineer judgment 

procedure is developed to determine the most suitable individual, from those previously 

extracted. This individual is constituted by a set of values, a value for each critical parameter. 

Table 5.9 presents the nominal values, and individuals obtained from model identification in 

service phase and until failure load [119, 121]. In the same table, between brackets, the bias 

factor, which represents the ratio between the identified and the nominal value for each 

variable, is also presented. 

From a first analysis of Table 5.9., it is possible to realize that: (1) Obtained value of some 

parameters, as the concrete elasticity modulus (Ec) and compressive strength (fc), the section 

width (b) and height (h) and the load step, is lower than nominal one; (2) The inferior 

longitudinal steel reinforcement elasticity modulus (Es) and spring stiffness (k) values, 

obtained from this methodology, when applied until failure load, are lower than the nominal 

ones, being both these values lower than the ones obtained from the application of the 

methodology in service phase; (3) The concrete tensile strength (ft) and fracture energy (Gf) 

values, obtained from this methodology, when applied until failure load, are higher than the 

nominal ones and, both these values are higher than the ones obtained from the application 

of the methodology in service phase; (4) Obtained value of some parameters, like the inferior 

longitudinal steel reinforcement yield strength (σy) and area (As) and the inferior concrete 

cover (cinf), is higher than nominal one. 
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Table 5.9. Model identification results. 

Numerical model Nominal 
value 

Model identification 

Service * Failure * 

P
ar

am
et

er
 

Material 

Concrete 

Ec [GPa] 31.00 30.34 (0.98) 29.07 (0.94) 

ft [MPa] 2.60 2.45 (0.94) 2.63 (1.01) 

fc [MPa] 33.00 33.00 (-) 30.74 (0.93) 

Gf [N/m] 65.00 63.40 (0.98) 67.00 (1.03) 

Inferior 
longitudinal steel 

reinforcement 

Es [GPa] 200.00 244.58 (1.22) 180.96 (0.90) 

σy [MPa] 500.00 500.00 (-) 548.28 (1.10) 

As [cm2] 0.85 1.02 (1.20) 0.89 (1.05) 

Geometry 

cinf [cm] 2.00 2.00 (-) 2.04 (1.02) 

b [cm] 7.50 7.04 (0.94) 7.15 (0.95) 

h [cm] 15.00 12.16 (0.81) 13.59 (0.91) 

Physic 
k [kN/m] 149.13 164.21 112.75 

step [-] 30 26 25 

* Bias factor is presented between brackets. 

Both analyses indicated that concrete material presents a worse quality than the expected. 

When evaluating the steel reinforcement, obtained results indicated a better quality material. 

Both analyses indicated a higher steel area. Obtained value from the analyses in service 

phase is far from the others. In respect to geometry parameters, obtained values for inferior 

concrete cover are close to nominal ones. Additionally, obtained beam dimensions are 

smaller than the predicted. Considering physic parameters, a lower spring stiffness value is 

given by the analysis until failure load. Obtained results from the analysis until failure load 

are the closest to nominal values. 

Comparing these results with those obtained from pinned-pinned beams, and taking into 

consideration that the used steel is of same quality, that concrete material is of same class, 

and that geometry and production procedures are identical, the following conclusions are 

attained: (1) Obtained results for pinned-fixed beams are closer to nominal values than for 

pinned-pinned beams; (2) The concrete quality is slightly inferior than the predicted; (3) The 

steel reinforcement quality is higher than the predicted; (4) The steel reinforcement elasticity 

modulus, obtained from the analysis until failure load, is lower than the nominal value; (5) For 

both analysis, the steel area is higher than the nominal value; (6) Beam dimensions are, for 
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both analysis, smaller than the predicted; (7) Obtained inferior concrete cover, for both 

analysis, is close to the nominal value. 

It is also important to mention that the same collapse mechanism and failure mode was 

obtained in experimental and numerical tested beams. In Figure 5.15a the applied load (kN) 

is plotted against the middle span displacement (m), and in Figure 5.15b the reaction at 

pinned support (kN) is plotted against the bending moment at fixed support (kN.m), for 

measured data and for numerical results, obtained by considering the nominal values and 

those from model identification in service phase and until failure load. From the analysis it is 

possible to conclude that the results from model identification until failure load are those that 

best fit the experimental curve. The numerical results considering nominal values present a 

higher cracking load and post-cracking stiffness. Obtained results from model identification in 

service phase are similar to experimental data, in service region, presenting then a higher 

post-cracking stiffness and a lower failure load and bending moment at fixed support. 

  

a) b) 

Figure 5.15. Numerical results. 

Table 5.10 presents the minimum fitness function values obtained by considering the 

nominal values and those from model identification in service phase and until failure load. It 

is verified that the obtained fitness function value in service phase is lower than that 

determined until failure load. This is due to the fact that in service region the numerical 

results are close to experimental data than in failure region. Even so, for both situations, the 

developed methodology revealed a considerable improvement on this value. This updating 

procedure is more efficient in the service region (55.26%) than in failure region (28.69%). 

The fitness function value obtained in this situation is higher, and the respective improvement 

lower, than that for the pinned-pinned beams. This is due to an increase in the number of 

critical parameters and of necessary points to compute the fitness function, from a situation 

to another. 

Table 5.11 indicates the failure load (FR) and maximum bending moment at fixed support 

values by considering the nominal values and those from model identification in service 
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phase and until failure load. Obtained error from model identification until failure load is lower 

than that given by nominal values and by model identification in service phase. In fact, it is 

possible to verify that, when applying the methodology in service phase, the model 

identification is performed for this region, being not possible to guarantee the curve fitting for 

the failure region. Obtained error for the situation of model identification until failure load is 

less than 10% which is reasonable. Comparing the results from this analysis with those 

obtained for pinned-pinned beams it is possible to conclude that, again, this analysis 

revealed to be less precise. 

Table 5.10. Minimum fitness function values. 

Numerical model 

Fitness function 

Service Failure 

Value [%] Improvement [%] Value [%] Improvement [%] 

Nominal values 15.09 - 21.73 - 

Model identification 6.75 55.26 15.50 28.69 

Table 5.11. Failure load (FR) and maximum bending moment (MR1
*). 

Numerical model 
Failure load Maximum bending moment 

Value [kN] Error [%] * Value [kN.m] Error [%] * 

Nominal values 29.01 1.29 6.04 12.46 

Model identification 
Service 25.51 13.20 5.56 19.42 

Failure 29.17 0.75 6.26 9.28 

* Comparing with the real failure load and maximum bending moment. 

5.5. Characterization tests 

5.5.1. Concrete material 

Used concrete on pinned-fixed beams was of class C25/30 [48]. The stress-strain law 

parameters were determined by uniaxial compression tests in six cylindrical specimens [136] 

and by fracture energy tests in six beam specimens [155]. Each cylinder was tested at 

28 days, presenting 300 mm of height and 150 mm of diameter, Figure 5.16a. Each beam 

was tested at 28 days, and presents 850 mm length by 100 mm height and 100 mm width. A 

notch with 25 mm depth and 5 mm thickness was executed in each specimen. These beams 

were submitted to a point load at middle span until failure, Figure 5.16b. 
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a) b) 

Figure 5.16. Laboratory tests: a) uniaxial compression test; b) fracture energy test. 

From the uniaxial compression tests it was possible to determine the concrete elasticity 

modulus (Ec), the compressive strain at compressive strength (εc), and the compressive 

strength (fc). The fracture energy tests gave the concrete tensile strength (ft) and the fracture 

energy (Gf). A statistical analysis was developed for each parameter. Both mean and 

standard deviation were determined. Table 5.12 gives those values. A bias value, which 

represents the ratio between the experimental and the nominal value, is also presented for 

each variable. 

Table 5.12. Concrete parameters. 

Parameter Nominal value Mean value (µ) * Standard deviation (σ) 

Elasticity modulus (Ec) [GPa] 31.00 28.01 (0.90) 1.73 

Tensile strength (ft) [MPa] 2.60 2.67 (1.03) 0.22 

Compressive strength (fc) [MPa] 33.00 30.77 (0.93) 0.78 

Fracture energy (Gf) [N/m] 65.00 103.91 (1.60) 9.93 

Compressive strain at 
compressive strength (εc) 

[‰] 2.00 2.79 (1.40) 0.13 

* Bias factor is presented between brackets. 

Some bias values are close to one, which means that obtained data is close to the nominal 

value. However, this is not verified for some parameters as the compressive strain at 

compressive strength (εc) and the fracture energy (Gf). An important conclusion is that used 

concrete presents a lower quality than what was initially expected as bias values of more 

significant parameters, specifically elasticity modulus (Ec) and compressive strength (fc), are 

lower than one. This confirms the obtained model identification results. Coefficients of 
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variation are all less than 10% which indicates that the variability of such parameters is small. 

Obtained correlation coefficient (ρij) values for measured parameters are presented in 

Table 5.13. 

Table 5.13. Correlation coefficients (ρij) in concrete. 

 Ec ft fc Gf εc 

Ec 1.00 * 0.67 * 0.99 

ft * 1.00 * 0.75 * 

fc 0.67  1.00 * 0.19 

Gf * 0.75 * 1.00 * 

εc 0.99 * 0.19 * 1.00 

* These parameters present no correlation as they were determined by different laboratory tests. 

5.5.2. Steel material 

Used steel on pinned-fixed beams was classified as S500B, according to EN 1992-1-1 [48]. 

Longitudinal steel reinforcement bars of ϕ6 and ϕ8 were used. In respect to transversal 

reinforcement the used diameter is ϕ4. Such steel was not classified before and so this 

analysis constitutes it first characterization. Six specimens were considered for each 

reinforcement diameter. The uniaxial tensile tests were executed according to the norm 

NP ENV 10002-1 [139] (Figure 5.17a). Each specimen presents a length of 500 mm 

(Figure 5.17b). 

After collecting data from tested specimens, a statistical analysis was developed for each 

parameter and the respective mean and standard deviation value were obtained. A bias 

value, which represents the ratio between the experimental and the nominal value, is also 

presented for each variable. Such value was not determined for ϕ4 reinforcement as there 

was no information from the producer about this steel. Results are presented on Table 5.14 

and 5.15. 
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a) b) 

Figure 5.17. Laboratory tests: a) uniaxial tension test; b) reinforcing steel specimen. 

Table 5.14. Steel parameters (transversal reinforcement). 

Parameter Mean value (µ) Standard deviation (σ) 

Elasticity modulus (Es) [GPa] 195.39 38.67 

Yield strength (σy) [MPa] 356.56 16.47 

Limit strength (σu) [MPa] 483.86 6.21 

Limit strain (εlim) [‰] 143.62 6.38 

Table 5.15. Steel parameters (longitudinal reinforcement). 

Parameter Nominal value Mean value (µ) * Standard deviation (σ) 

Elasticity modulus (Es) [GPa] 200.00 205.31 (1.03) 20.22 

Yield strength (σy) [MPa] 500.00 582.94 (1.16) 22.46 

Limit strength (σu) [MPa] 540.00 692.61 (1.28) 13.54 

Limit strain (εlim) [‰] 50.00 134.99 (2.70) 24.52 

* Bias factor is presented between brackets. 

The transversal reinforcement was identified to be of lower quality than S400B steel. For this 

situation the CV of elasticity modulus (Es) presents a higher value. This is essentially due to 

the fact of being difficult to tie these bars during the test due to their small diameters. 

For longitudinal reinforcement obtained bias values are all higher than one, which indicates 

that the steel quality is higher than what was initially expected. This confirms the obtained 

results from model identification. Coefficients of variation are, in a general way, less 

than 10% which indicates that the variability of such parameters is small. This is not verified 
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for limit strain (εlim) as obtained standard deviations indicates a high dispersion. The 

correlation coefficients (ρij) between measured parameters were also determined. Obtained 

results are presented on Table 5.16 and 5.17. 

Table 5.16. Correlation coefficients (ρij) in steel (transversal reinforcement). 

 Es σy σu εlim 

Es 1.00 0.10 0.43 0.19 

σy 0.10 1.00 0.83 0.43 

σu 0.43 0.83 1.00 0.58 

εlim 0.19 0.43 0.58 1.00 

Table 5.17. Correlation coefficients (ρij) in steel (longitudinal reinforcement). 

 Es σy σu εlim 

Es 1.00 0.23 0.33 0.18 

σy 0.23 1.00 0.49 0.59 

σu 0.33 0.49 1.00 0.48 

εlim 0.18 0.59 0.48 1.00 

5.5.3. Concrete cover 

The concrete cover was evaluated for pinned-fixed beams, by cutting in two parts the tested 

beams, after each test, and measuring the distance from the longitudinal reinforcement to the 

top (csup) and bottom (cinf) beam surfaces. Cuts were developed in the location of plastic 

hinges. 

A statistical analysis was developed for both superior and inferior concrete cover. The mean 

and standard deviation values were determined through this analysis. Obtained results are 

presented in Table 5.18. A bias value, which represents the ratio between the experimental 

and the nominal value, is also presented. 

Table 5.18. Concrete cover. 

Parameter Nominal value Mean value (µ) * Standard deviation (σ) 

Inferior concrete cover (cinf) [mm] 20.00 23.00 (1.15) 2.24 

Superior concrete cover (csup) [mm] 20.00 24.94 (1.25) 4.17 

* Bias factor is presented between brackets. 
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Bias values indicate that obtained concrete cover values are close to the nominal ones. This 

confirms the results obtained from model identification. The superior longitudinal 

reinforcement presents a higher concrete cover (csup). Moreover, a higher standard deviation 

is obtained in this situation. This is due to the fact that it is more difficult to control this cover 

during concreting. The correlation coefficient (ρij) between these two parameters is 0.50. 

5.6. Probabilistic analysis 

Once the numerical model is developed and calibrated according to obtained experimental 

data, the next step consists in determining a reliable PDF for resistance. Such curve can be 

used in a further safety analysis, in which it will be compared to a specific loading PDF [33, 

123]. This analysis will be important to help engineers in any decision regarding structural 

safety. 

The resistance of reinforced concrete beams is dependent on material (concrete and steel), 

geometry (section dimensions and concrete cover) and physic parameters. Physic 

properties, as spring stiffness, previously determined by an optimization procedure, are 

considered to be deterministic due to the fact of being inherent to the studied structure. In 

order to obtain the resistance PDF it is important to consider the randomness in such 

parameters. 

Model parameters are thus characterized by a PDF. The most used PDF are the Normal 

ones. In some situations, for which the parameters cannot assume negative values, a 

Lognormal PDF should be used instead. Those curves are defined by a mean (µ) and 

standard deviation (σ) value. In this case, these values are obtained from bibliography [26, 

93, 148, 181, 182]. 

In some situations, when there is complementary data due to visual inspection, non-

destructive tests (NDT), or even from installed monitoring systems, a Bayesian inference [15] 

approach can be used. This approach is detailed described in chapter three. In the situation 

of pinned-fixed beams, the updating procedure is based in collected data from material 

(concrete and steel) and geometry (concrete cover) tests. The Bayesian inference was 

developed by considering both informative and non-informative (Jeffrey’s) prior. Considered 

posterior PDF is the one that presents the lowest standard deviation. 

Once each critical parameter PDF is defined, the next step consists in random generation of 

these parameter values to be used in a further probabilistic numerical analysis. This 

procedure is based in a random sampling technique designated by Latin Hypercube 

sampling (LHS) [144]. This procedure is detailed described at chapter four. 
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A set of values are respectively obtained from the probabilistic analysis. These values are 

then statistically processed and fitted to a Normal PDF. Two indexes, index-i and index-p, 

presented in chapter four, are introduced. While the former is used to evaluate each beam 

behavior within the whole test, the latter is used to evaluate the accuracy of obtained 

resistance PDF. 

5.6.1. Pinned-pinned beams 

In this case, Normal and Lognormal PDF were considered for material and geometry 

parameters [114, 116, 117]. It was considered as mean value, the nominal values and those 

from model identification in service phase and until failure load. The adopted coefficients of 

variation were the same of previous sensitivity analysis. These values are indicated at Table 

5.19. Table 5.20 presents the considered correlations between these parameters. 

Table 5.19. Parameter values. 

Parameter 
Nominal value Model identification 

(service) 
Model identification 

(failure) 

µ σ µ σ µ σ 

Ec [GPa] 31.00 3.10 24.80 2.48 31.44 3.14 

ft [MPa] 2.60 0.52 2.09 0.42 2.54 0.51 

fc [MPa] 33.00 3.30 33.00 3.30 29.87 2.99 

Gf [N/m] 65.00 6.50 74.50 7.45 65.00 6.50 

Es [GPa] 200.00 10.00 233.27 11.66 186.73 9.34 

σy [MPa] 500.00 25.00 500.00 25.00 535.83 26.79 

As [cm2] 0.85 0.02 1.02 0.02 0.91 0.02 

cinf [cm] 1.00 0.20 1.00 0.20 0.99 0.20 

b [cm] 7.50 0.75 6.53 0.65 7.27 0.73 

h [cm] 15.00 1.50 14.52 1.45 14.28 1.43 

The applied load is obtained during the probabilistic analysis for each measured and 

computed displacement. Figure 5.18 shows the obtained results for the situation of nominal 

values. It is verified that the experimental data is within the 95% confidence interval for the 

majority of evaluated points. Obtained index-i presents a value of 94.25% for beam 1 and of 

93.73% for beam 2. 
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Table 5.20. Correlation coefficients (ρij). 

 Ec ft fc Gf Es σy As cinf b h 

Ec 1.00 0.70 0.90 0.50 0.00 0.00 0.00 0.00 0.00 0.00 

ft 0.70 1.00 0.80 0.90 0.00 0.00 0.00 0.00 0.00 0.00 

fc 0.90 0.80 1.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 

Gf 0.50 0.90 0.60 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Es 0.00 0.00 0.00 0.00 1.00 0.80 0.50 0.00 0.00 0.00 

σy 0.00 0.00 0.00 0.00 0.80 1.00 0.50 0.00 0.00 0.00 

As 0.00 0.00 0.00 0.00 0.50 0.50 1.00 0.00 0.00 0.00 

cinf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.10 0.60 

b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00 0.10 

h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.10 1.00 

 

Figure 5.18. Nominal values. 

Figure 5.19a displays the results for the situation of model identification in service phase. For 

this situation the experimental data is within the bounds defined by the 95% confidence 

interval for the majority of analysed points. The index-i is of 92.94% for beam 1 and of 

93.52% for beam 2. 

Figure 5.19b presents the results obtained by model identification until failure load. For this 

situation the experimental data is within the bounds defined by the 95% confidence interval 

for almost evaluated points. It is important to verify that, in this case, the experimental data 

curve is in the middle of these two bounds. Obtained index-i is of 98.85% for beam 1 and of 

98.68% for beam 2. 

In this case, a set of failure load (FR) values is obtained. A Normal PDF, which represents the 

structural resistance, is then adjusted to this set. Obtained resistance PDF parameter values 
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are indicated in Table 5.21. On the same table it is also given the obtained index-p for each 

tested beam and for each numerical model. 

  

a) b) 

Figure 5.19. Model identification: a) service; b) failure. 

From the analysis of these results it is important to conclude that: (1) Obtained mean and 

standard deviation with nominal values are lower than the ones obtained with values from 

model identification; (2) A high index-p is obtained for all situations. Therefore, an accurate 

resistance PDF is obtained for all cases; (3) Obtained index-p with nominal values is closer 

to the one obtained with values from model identification in service phase. This means that 

model identification in service phase does not increase the accuracy of resistance PDF; 

(4) Obtained index-p with values from model identification until failure load is the highest. 

This means that the use of model identification until failure load increases the accuracy of 

resistance PDF. 

Figure 5.20 presents the resistance PDF that result from the parameter values (standard 

deviation and mean) indicated in Table 5.21. It is possible to identify that the obtained 

resistance PDF with values from model identification until failure load is located among the 

others. The obtained resistance PDF with values from model identification in service phase 

gives the highest mean. This will lead to a non-conservative safety analysis. The obtained 

resistance PDF with nominal values is close to the one obtained with values from model 

identification until failure load. 

Table 5.21. Failure load (FR). 

Numerical model µ [kN] σ [kN] 
Index-p [%] 

Beam 1 Beam 2 

Nominal values 23.27 2.97 95.56 94.47 

Model identification (service) 26.37 3.34 94.91 95.89 

Model identification (failure) 24.67 3.19 99.80 99.02 
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Figure 5.20. Failure load (FR). 

5.6.2. Pinned-fixed beams 

Normal and Lognormal PDF were considered for material and geometry properties of pinned-

fixed beams [116, 117, 119, 121, 122]. The PDF mean values were considered to be the 

nominal values and those from model identification in service phase and until failure load. 

The adopted coefficients of variation were the same of previous sensitivity analysis. These 

values are indicated at Table 5.22. 

Table 5.22 present, between brackets, the results from a Bayesian inference analysis [119, 

121, 122]. In this situation, the materials (concrete and steel) and geometry (concrete cover) 

parameters were updated. In respect to concrete material, obtained mean values are close to 

previous ones. However, for concrete fracture energy (Gf) this is not verified. The Bayesian 

inference reduced the standard deviation value for concrete compressive strength (fc) and 

tensile strength (ft). In respect to reinforcing steel elasticity modulus (Es), obtained mean 

values are close to previous ones. However, for the reinforcing steel yield strength (σs) this is 

not verified. In respect to inferior concrete cover (cinf), obtained mean value increased with 

Bayesian inference. 

The Jeffrey’s prior is used, during this procedure, to update the concrete compressive 

strength (fc), except for data values due to model identification until failure load, and fracture 

energy (Gf). It was also used to update the reinforcing steel yield strength (σy) and the inferior 

concrete cover (cinf), except for the situation of model identification until failure load. In the 

other situations an informative prior was used as it provides a lower standard deviation value. 

Table 5.23 indicates the used correlation values. Inside brackets it is indicated the real 

values from complementary tests. These values are used when considering the updated 

PDF. It is verified, in a general way, that real correlations are not as strong as predicted. 
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Table 5.22. Parameter values. 

Parameter 
Nominal value * Model identification (service) * Model identification (failure) * 

µ σ µ σ µ σ 

Ec [GPa] 31.00 (30.10) 3.10 (4.79) 30.34 (29.68) 3.03 (4.51) 29.07 (28.76) 2.91 (3.36) 

ft [MPa] 2.60 (2.62) 0.52 (0.31) 2.45 (2.68) 0.49 (0.34) 2.63 (2.64) 0.53 (0.31) 

fc [MPa] 33.00 (30.79) 3.30 (1.38) 33.00 (30.79) 3.30 (1.38) 30.74 (30.69) 3.07 (1.16) 

Gf [N/m] 65.00 (104.61) 6.50 (15.83) 63.41 (104.61) 6.34 (15.83) 66.95 (104.61) 6.70 (15.83) 

Es [GPa] 200.00 (202.48) 10.00 (11.69) 244.58 (223.98) 12.23 (14.20) 180.96 (192.84) 9.05 (12.09) 

σy [MPa] 500.00 (579.59) 25.00 (27.85) 500.00 (579.59) 25.00 (27.85) 548.28 (579.59) 27.41 (27.85) 

As [cm2] 0.85 0.02 1.02 0.02 0.89 0.02 

cinf [cm] 2.00 (2.14) 0.40 (0.48) 2.00 (2.14) 0.40 (0.48) 2.04 (2.16) 0.41 (0.46) 

b [cm] 7.50 0.75 7.04 0.70 7.15 0.72 

h [cm] 15.00 1.50 12.16 1.22 13.59 1.36 

* Bayesian inference values are presented between brackets. 

Table 5.23. Correlation coefficients (ρij). 

 Ec ft fc Gf Es σy As cinf b h 

Ec 1.00 0.70 0.90 (0.67) * 0.50 0.00 0.00 0.00 0.00 0.00 0.00 

ft 0.70 1.00 0.80 0.90 (0.75) * 0.00 0.00 0.00 0.00 0.00 0.00 

fc 0.90 (0.67) * 0.80 1.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 

Gf 0.50 0.90 (0.75) * 0.60 1.00 0.00 0.00 0.00 0.00 0.00 0.00 

Es 0.00 0.00 0.00 0.00 1.00 0.80 (0.23) * 0.50 0.00 0.00 0.00 

σy 0.00 0.00 0.00 0.00 0.80 (0.23) * 1.00 0.50 0.00 0.00 0.00 

As 0.00 0.00 0.00 0.00 0.50 0.50 1.00 0.00 0.00 0.00 

cinf 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.10 0.60 

b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 1.00 0.10 

h 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.10 1.00 

* Real values are presented between brackets. 

During the probabilistic analysis it was evaluated the applied load and the bending moment 

at fixed support, respectively, for each measured and computed displacement and pinned 

support reaction. Figure 5.21 shows the obtained results for the situation of nominal values. It 



Uncertainty Evaluation of Reinforced Concrete and Composite Structures Behavior

 

 
155

 

is verified that the experimental data is within the 95% confidence interval for the majority of 

evaluated points. Obtained index-i presents a value of 91.34% (beam 1) and 

92.03% (beam 2), for applied load, and of 93.90% (beam 1) and 92.30% (beam 2), for 

bending moment at fixed support [122]. The most accurate model is, in this case, the 

bending moment at fixed support one. 

When applying the Bayesian inference to nominal values it is obtained the results given by 

Figure 5.22. In this case the index-i is of 89.54% (beam 1) and 89.81% (beam 2), for applied 

load, and of 88.99% (beam 1) and 87.89% (beam 2), for bending moment at fixed 

support [122]. This indicates that the Bayesian inference did not improve the accuracy of 

both numerical models. The most accurate model is, in this case, the applied load one. 

Figure 5.23 gives the obtained results with values from model identification in service phase. 

In this case the index-i is of 91.99% (beam 1) and 91.98% (beam 2) for applied load, and of 

92.55% (beam 1) and 92.62% (beam 2), for bending moment at fixed support. By comparing 

with models obtained for nominal values, it is possible to conclude that there is not any 

increase on the accuracy of both numerical models. The most accurate model is still the 

bending moment at fixed support one. 

  

a) b) 

Figure 5.21. Nominal values without Bayesian Inference. 

  

a) b) 

Figure 5.22. Nominal values with Bayesian Inference. 
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a) b) 

Figure 5.23. Model identification (service) without Bayesian Inference. 

When applying the Bayesian inference to obtained values from model identification in service 

phase it is obtained the results given by Figure 5.24. Obtained index-i presents a value of 

96.11% (beam 1) and 96.25% (beam 2), for applied load, and of 95.46% (beam 1) and 

94.52% (beam 2), for bending moment at fixed support. The Bayesian inference improved, in 

this situation, the accuracy of both numerical models. The applied load model becomes the 

most accurate one. 

  

a) b) 

Figure 5.24. Model identification (service) with Bayesian Inference. 

Figure 5.25 indicates the obtained results with values from model identification until failure 

load. In this case, the index-i is of 95.19% (beam 1) and 94.88% (beam 2), for applied load, 

and of 94.49% (beam 1) and 93.11% (beam 2), for bending moment at fixed support. It was 

verified that both models gave, in this situation, excellent results. There was an improvement 

on both the applied load and bending moment model, comparing with nominal values and 

those from model identification in service phase. The most accurate model is, in this case, 

the applied load one. 
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a) b) 

Figure 5.25. Model identification (failure) without Bayesian Inference. 

When applying the Bayesian inference to obtained values from model identification until 

failure load, it is obtained the results given by Figure 5.26. Obtained index-i presents a value 

of 96.04% (beam 1) and 95.91% (beam 2), for applied load, and of 92.91% (beam 1) and 

90.94% (beam 2), for bending moment at fixed support. The Bayesian inference only 

improved the applied load model. The most accurate model is still the applied load one. 

  

a) b) 

Figure 5.26. Model identification (failure) with Bayesian Inference. 

In this case, a set of failure load (FR) values is obtained. A Normal PDF, which represents the 

structural resistance, is then adjusted to this set. Obtained resistance PDF parameter values 

are indicated in Table 5.24. On the same table it is also given the obtained index-p for each 

tested beam and for each numerical model [119, 122]. 

From the analysis of these results, it is possible to conclude that: (1) Obtained mean and 

standard deviation with nominal values and with values from model identification until failure 

load are higher than the ones obtained with values from model identification in service 

phase; (2) The Bayesian inference approach increased the mean and standard deviation of 

obtained resistance PDF; (3) Obtained index-p value for beam 2 is, in most cases, higher 

than the one obtained for beam 1; (4) In majority of situations, the Bayesian inference 

approach increased the index-p value. Obtained index-p values are very good, being, several 
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times, higher than 90%, which indicates accurate resistance PDF curves. Obtained 

resistance PDF with values from model identification until failure load, considering the 

Bayesian inference, presents the highest index-p values, considering both tested beams. 

Results from model identification in service phase are the poorer ones. 

Table 5.24. Failure load (FR). 

Numerical model µ [kN] σ [kN] 
Index-p [%] 

Beam 1 Beam 2 

Nominal values 28.49 3.79 94.58 99.35 

Nominal values + 
Bayesian inference 31.69 4.19 97.09 92.24 

Model identification 
(service) 

25.12 3.37 88.06 91.31 

Model identification 
(service) + Bayesian 

inference 
27.82 3.66 92.90 98.73 

Model identification 
(failure) 27.79 3.71 92.82 98.66 

Model identification 
(failure) + Bayesian 

inference 
29.07 3.84 96.12 97.79 

Figure 5.27 indicates the resistance PDF, whose parameter values (mean and standard 

deviation) are presented in Table 5.24. Obtained resistance curves with nominal values and 

with values from model identification until failure load data are almost identical. The 

resistance PDF due to model identification in service phase presents a lower mean and 

standard deviation. An important conclusion is that the resistance PDF mean and standard 

deviation increased with the use of Bayesian inference. 

In this case, a set of maximum bending moment at fixed support (MR1
*) values is obtained. A 

Normal PDF, which represents the structural resistance, is then adjusted to this set. 

Obtained resistance PDF parameter values are indicated in Table 5.25. On the same table it 

is also given the obtained index-p for each tested beam and for each numerical model [119, 

122]. 
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Figure 5.27. Failure load (FR). 

Table 5.25. Maximum bending moment (MR1
*). 

Numerical model µ [kN.m] σ [kN.m] 
Index-p [%] 

Beam 1 Beam 2 

Nominal values 5.81 0.90 85.76 92.11 

Nominal values + 
Bayesian inference 6.16 0.94 87.69 96.54 

Model identification 
(service) 5.23 0.71 86.47 87.69 

Model identification 
(service) + Bayesian 

inference 
5.49 0.66 87.97 89.81 

Model identification 
(failure) 5.49 0.73 86.82 89.34 

Model identification 
(failure) + Bayesian 

inference 
5.80 0.77 87.23 92.24 

From the analysis of these results it is important to conclude that: (1) Obtained mean and 

standard deviation with nominal values are higher than the ones obtained with values from 

model identification; (2) The Bayesian inference increased the mean of obtained 

resistance PDF; (3) In majority of situations, the Bayesian inference increased the standard 

deviation of resistance PDF; (4) Obtained index-p value for beam 2 is higher than the one 

obtained for beam 1; (5) The Bayesian inference approach increased the index-p value. 

Obtained index-p values are good, being, in some situations, higher than 90%, which 

indicates accurate resistance PDF. Obtained resistance PDF with nominal values, 
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considering the Bayesian inference, presents the highest index-p values, considering both 

tested beams. Results from model identification in service phase are the poorer ones. 

Figure 5.28 presents the resistance PDF, whose parameter values (mean and standard 

deviation), are indicated at Table 5.25. It is possible to identify that the obtained 

resistance PDF with values from model identification until failure load is located among the 

others. Obtained resistance PDF with nominal values, considering or not the Bayesian 

inference, are the ones that give the highest mean. The Bayesian inference approach 

increased the mean and standard deviation of maximum bending moment at fixed support, 

except for model identification in service phase. 

 

Figure 5.28. Maximum bending moment (MR1
*). 

5.7. Safety assessment 

Obtained resistance model is then used in a simple example of safety assessment. This 

example consists in assessing the studied beam safety in a residential building. Two 

analyses were developed, respectively one for pinned-pinned (Figure 5.29a) and other for 

pinned-fixed beams (Figure 5.29b). 

In this situation, loading is divided into self-weight and live load. All the other permanent 

loads were neglected. Self-weigh (w) is computed through equation (5.24), 

conc conc steel steelw A Aγ γ= ⋅ + ⋅  (5.24)

being γconc and γsteel the concrete and reinforcing steel specific weight, and Aconc and Asteel the 

concrete and reinforcing steel area. These parameters present a Normal PDF, according to 

JCSS [93]. Therefore, self-weight presents a Normal PDF. 
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Live loads are divided into: (1) sustained or long-term (qlt), defined by a Gamma PDF [93]; 

and (2) intermittent or short term (qst), defined by an exponential PDF [93]. The applied load 

(p) is the sum of self-weight with both long and short-term live load component multiplied by 

the influence length of the beam (Linf), which is, in this situation, 6.0 m. This value is given by 

equation (5.25). Table 5.26 provides the mean and standard deviation of each PDF. 

inf inflt stp w q L q L= + ⋅ + ⋅  (5.25)

Table 5.26. Probabilistic models. 

Parameter PDF µ σ 

γconc [kN/m3] Normal 24.00 0.96 

γsteel [kN/m3] Normal 77.00 0.77 

qlt [kN/m3] Gamma 0.30 0.45 

qst [kN/m3] Exponential 0.30 0.57 

5.7.1. Pinned-pinned beams 

In this case, the resistance model is given by the failure load model (FR), whose parameters 

are provided at Table 5.21. A model is obtained for each analysis, respectively, considering 

the nominal values and those from model identification in service phase and until failure load. 

In order to compare resistance and loading curves it is necessary to transform this model into 

a model for maximum bending moment at middle span (MR), through equation (5.26), 

( )2 2 2R RM F L= ⋅ ⋅  (5.26)

This model depends on the beam span (L) which is, in this situation, 1.50 m. A Normal PDF 

is obtained for resistance. The further step consists in computing the maximum bending 

moment (MS), through equation (5.27), 

( )2 8SM p L= ⋅  (5.27)

A Lognormal PDF is then adjusted to obtained data. A limit state function (Z), which 

compares resistance and loading curves, is then defined through equation (5.28), 

R SZ M M= −  (5.28)

The limit state is exceeded when loading is higher than resistance. The further step consists 

in generating values for each curve, according to each PDF parameters, and to register the 
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number of values in which this limit state is exceeded in relation to the total number of 

evaluated points. The failure probability (Pf) is determined through equation (5.29), 

( 0)fP P Z= ≤  (5.29)

The reliability index (β) is then obtained, considering this value. A detailed description of how 

this index is computed is given in chapter four. Table 5.27 presents both failure probabilities 

and reliability indexes for all models. 

 
 

a) b) 

Figure 5.29. Residential building: a) pinned-pinned beams; b) pinned-fixed beams [121]. 

Through the analysis of this table, it is possible to conclude that obtained β-value considering 

the values from model identification until failure load is identical to the one considering 

nominal values. An increase on β-value is verified when considering the values from model 

identification in service phase. However, and according to Table 5.21, this model presents a 

low reliability. Accordingly, the most accurate result is the one considering the values from 

model identification until failure load. 

In this example, the building is of class 2 (apartment building – risk to life, given a failure, is 

medium or economic consequences are considerable) and of class B (normal cost of safety 

measure), according to JCSS [93]. Therefore, a target reliability index (βtarget) of 3.3 is 

recommended. This will permit to conclude that the assessed beam is safe. 

Table 5.27. Safety assessment. 

Numerical model Pf β 

Nominal values 2.55 * 10-4 3.48 

Model identification (service) 1.00 * 10-4 3.72 

Model identification (failure) 1.72 * 10-4 3.51 
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5.7.2. Pinned-fixed beams 

In this situation, due to the fact of being one degree hyperstatic, the collapse mechanism is 

characterized by two plastic hinges, located at fixed support and beside the point load that is 

close to the pinned support. Therefore, the limit state function (Z) is composed by two 

equations, one for each plastic hinge. In this case, the resistance and loading model for 

maximum bending moment are respectively compared in each equation. 

In this case, the resistance model is given by the failure load model (FR), whose parameters 

are provided at Table 5.24, and by the maximum bending moment at fixed support 

model (MR1
*), whose parameters are given at Table 5.25. A model is obtained for each 

analysis, respectively, considering the nominal values and those from model identification in 

service phase and until failure load, considering or not the Bayesian inference. 

Therefore, it is necessary to transform these models into a model for maximum bending 

moment at fixed support (MR1) and beside the point load that is close to the pinned 

support (MR2). Consequently, the maximum bending moment at fixed support (MR1
**) is 

computed for each generated value of failure load model (FR), according to the static 

equilibrium equations, (5.30), 

**
1 0.125R RM F L= ⋅ ⋅  (5.30)

If MR1
** is lower than MR1

*, then MR1 = MR1
** and MR2 is computed through the static 

equilibrium equations. If MR1
** is higher than MR1

*, then MR1 = MR1
*. In this case, the load 

intensity (FR1), necessary to obtain MR1
*, is computed through equation (5.31), 

* *
1 1 1 10.125 8.0 /R R R RM F L F M L= ⋅ ⋅ → = ⋅  (5.31)

In this case, MR2 is obtained in other way, (5.32), 

( )
( )

2 1 1

* *
2 1 1

*
2 1

0.250 0.1875

0.250 8.0 / 0.1875 8.0

0.250 0.5

R R R R

R R R R

R R R

M F F L F L

M F M L L M

M F L M

= ⋅ − ⋅ + ⋅ ⋅ ⇔

= ⋅ − ⋅ ⋅ + ⋅ ⋅ ⇔

= ⋅ ⋅ −

 (5.32)

Both MR1 and MR2 models depend on the beam span (L) which is, in this situation, 1.50 m. 

These models are represented by a Normal PDF. The further step consists in computing the 

maximum bending moment at fixed support (MS1) through the static equilibrium 

equations, (5.33), 

( )2
1 8SM p L= ⋅  (5.33)
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In this situation the maximum bending moment beside the point load that is close to the 

pinned support (MS2) is computed through the static equilibrium equations. However, if MS1 is 

higher than MR1, MS2 needs to be computed in other way. In this case, the load intensity (p1), 

necessary to obtain MR1, is computed through equation (5.34), 

( )2 2
1 1 1 18 8 /R RM p L p M L= ⋅ → = ⋅  (5.34)

In this case, MS2 is obtained through equation (5.35), 

( )( )
( )( )

2 2
2 1 1

2 2 2 2
2 1 1

2
2 1

8 0.0625

8 / 8 0.0625 8 /

/ 8 0.5

S

S R R

S R

M p p L p L

M p M L L M L L

M p L M

= − ⋅ + ⋅ ⋅ ⇔

= − ⋅ ⋅ + ⋅ ⋅ ⋅ ⇔

= ⋅ − ⋅

 (5.35)

A Lognormal PDF is then adjusted to obtained data. A limit state function (Z), which 

compares resistance and loading curves, is then defined through equation (5.36), 

1 1

2 2

R S

R S

M M
Z

M M

−
=  −

 (5.36)

The limit state is exceeded when loading is higher than resistance. The further step consists 

in generating values for each curve, according to each PDF parameters, and to register the 

number of values in which this limit state is exceeded in relation to the total number of 

evaluated points. The failure probability (Pf) is determined through equation (5.37), 

( 0)fP P Z= ≤  (5.37)

The reliability index (β) is then obtained, considering this value. A detailed description of how 

this index is computed is given in chapter four. Table 5.28 presents both failure probabilities 

and reliability indexes for all models [121]. 

Table 5.28. Safety assessment. 

Numerical model Pf β 

Nominal values 1.40 * 10-5 4.20 

Nominal values + Bayesian inference 5.00 * 10-6 4.42 

Model identification (service) 4.22 * 10-5 3.93 

Model identification (service) + Bayesian inference 1.65 * 10-5 4.15 

Model identification (failure) 1.97 * 10-5 4.11 

Model identification (failure) + Bayesian inference 1.30 * 10-5 4.21 
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Through the analysis of this table, it is possible to conclude that obtained β-value considering 

the values from model identification until failure load is lower than the one considering 

nominal values. A decrease on β-value is verified when considering the values from model 

identification in service phase. An increase on β-value is verified with Bayesian inference. In 

this case, and according to Table 5.24 and 5.25, the most accurate result is the one 

considering nominal values and Bayesian inference. 

In this example, the building is of class 2 (apartment building – risk to life, given a failure, is 

medium or economic consequences are considerable) and of class B (normal cost of safety 

measure), according to JCSS [93]. Therefore, a target reliability index (βtarget) of 3.30 is 

recommended. This will permit to conclude that assessed beam is safe. 

5.8. Conclusions 

This chapter describes the probabilistic assessment of two different sets of reinforced 

concrete beams, a pinned-pinned and other pinned-fixed supported, which were tested in 

laboratory up to failure. In order to do so, a nonlinear numerical model was developed and 

further simplified, without changing too much its accuracy. A sensitivity analysis was further 

developed in order to identify the critical parameters, from material, geometry or physic 

source. Some of these parameters were detailed characterized at laboratory. 

A model identification procedure was then executed to update the numerical model with 

measured data. To perform that an optimization technique, based in the evolutionary 

strategies algorithm in its plus version, was used. Both modelling and measurement errors 

were considered in an optimization algorithm stopping criteria. This process was developed 

for both service and failure region. 

A nonlinear probabilistic analysis was then executed. In order to do so a PDF was defined for 

each critical parameter. Some of these PDF were then updated with results from laboratory 

characterization tests, through a Bayesian inference approach. In some cases, the statistical 

uncertainty was reduced with this process. A probabilistic analysis, based in a LHS 

procedure, was further executed. 

From the probabilistic analysis it was obtained an updated resistance PDF for applied load, 

in the situation of pinned-pinned beams, and also for maximum bending moment at fixed 

support, for the case of pinned-fixed beams. It was then possible to probabilistically evaluate 

the experimental behavior of each tested beam by comparing those curves with obtained 

experimental data. These resistance PDF models are then used in a safety assessment 

example. 
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Some conclusions were obtained from probabilistic assessment: (1) model identification until 

failure load gives very good results (errors less than 10%); (2) model identification in service 

phase gives good results only for service region. Obtained results for failure region are bad. 

Complementary tests are thus recommended in this situation; (3) the most accurate models 

from a probabilistic analysis are those with values from model identification until failure load. 

Therefore the application of model identification before any probabilistic analysis is 

recommended; (4) Bayesian inference also increases the accuracy of probabilistic models. 

Therefore it is recommended the use of this procedure when complementary data is 

available. 
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6 Composite Beams 

6.1. Introduction 

The probabilistic assessment of two composite beams that were tested at laboratory, up to 

failure, is presented in this chapter. The purpose of such analysis is to probabilistically 

assess the behavior of composite structures, by taking into consideration all sources of 

uncertainty. In order to perform this, it was necessary to develop first a nonlinear numerical 

model. 

This model was then simplified by reducing both the finite element mesh size and load step 

increment. Simplification is an important step as computational cost is a relevant issue on the 

use of such methodology. With the same purpose, a sensitivity analysis was executed too. 

The objective of such study is to evaluate the influence of each parameter on the overall 

structural behavior. The most important parameters were then identified. 

Afterwards, model identification was developed. During this procedure, material (concrete 

and steel), geometry and physic (steel-concrete interaction) parameters are adjusted in an 

automatic way, so that numerical results best fit obtained experimental data. A robust 

optimization technique is then incorporated. Both modeling and measurement errors were 

introduced in this analysis. This procedure is important as it permit to obtain an updated 

deterministic numerical model of evaluated structure. 

A nonlinear probabilistic analysis was developed. Therefore, it was necessary to define, 

according to bibliography, each input parameter probability density function (PDF). Those 
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PDF were then updated through a Bayesian inference procedure and taking into 

consideration results from laboratory characterization tests. Such tests were executed to 

determine some properties of used materials and of steel-concrete interface. An updated 

resistance PDF is then obtained, necessary for a safety assessment procedure. 

Different resistance PDF of composite beams was then computed for different levels of 

updating, specifically, considering or not model identification and Bayesian inference 

procedures. Obtained results were then compared to measured data. The influence of both 

model identification and Bayesian inference procedures is pointed out on a safety 

assessment example. 

6.2. Experimental tests 

Tested composite beams are made up of a laminated steel profile connected to a solid 

lightweight concrete slab through headed stud steel connectors [118, 120, 121, 188, 189], 

according to Figure 6.1a. These beams, with a span length of 4.50 m (L), are pinned-pinned 

supported, according to Figure 6.1b. 

The lightweight concrete slab is designed to resist to compressive stresses when the beam is 

submitted to bending moments. A lightweight concrete, classified as LC 50/55 according to 

EN 1992-1-1 [48], was used. The concrete slab presents a width of 350 mm (bslab) and a 

thickness of 60 mm (hslab). 

Two layers of reinforcing steel wires spaced of 10 cm (4ϕ3.80), classified as S500B 

according to EN 1992-1-1 [48], were used in lightweight concrete slab, according to Figure 

6.1a. This corresponds to a total steel area (As,l) of 0.91 cm2. The concrete inferior (cinf) and 

superior (csup) cover is of 10 mm. 

An IPE 120 laminated steel profile, in S275 steel according to EN 1993-1-1 [49], was chosen 

to guarantee that the composite cross section is of class 1, according to EN 1994-1-1 [50], 

and that the neutral axis is positioned at concrete slab when the beam is submitted to 

bending moments. The top surface of steel beam is greased with concrete mould releasing 

agent in order to eliminate adherence between steel and concrete. 

The steel-concrete connection is provided by headed stud steel connectors. They are 

fabricated with steel type St-37-3-K according to regulation DIN 17 100 [159], which 

corresponds to S235J2G3+C450 according to EN 10025 [44, 131]. These connectors are 

welded to the steel beam and then concreted inside the lightweight concrete slab in order to 

guarantee that it works as a unique element. 
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One of the tested beams is designed for total connection, designated by beam 1, as the 

cross section ultimate strength does not depend on connection resistance [118, 120, 121, 

188, 189]. In order to do that, shear studs are uniformly disposed along the beam span, 

guaranteeing a full shear connection. The adopted distribution is of 8 studs in half beam 

span. The considered distance between studs, and according to Figure 6.1b (top), is of 

0.29 m (d1) and 0.17 m (d2). This means that failure occurs on a composite element, before 

the connection failure happens. This beam was tested with 31 days of concrete age. 

The other tested beam, labeled as beam 2, presents a distribution of 4 studs in half beam 

span [188, 189]. The shear connection, in this situation, is only partial. The distance between 

studs is, and in agreement with Figure 6.1b (bottom), of 6.25 * 10-1 m (d1) and 3.25 * 10-1 m 

(d2). For this situation, a connection failure is expected. This beam was tested with 35 days 

of concrete age. 

These beams were submitted to a short-term static load with two closely spaced 

concentrated loads (F) on beam middle span region, according to Figure 6.1b (LF = 0.15 m), 

approaching to a single concentrate load [118, 120, 121, 188, 189]. Loads were applied by a 

hydraulic actuator positioned at beam middle span. This actuator is connected to a load cell 

with a resolution of 0.05%. A steel plate was used to divide the load cell into two equal loads. 

This division intends to avoid stress concentration on beam middle span and the possibility of 

concrete crushing. The supports, placed symmetrically, are materialized with two hinges 

which allow the support rotation. A Teflon sheet is placed in a hinge to permit the sliding in 

horizontal direction. The vertical displacement is restricted in both hinges. 

 

 

 

a) b) 

Figure 6.1. Scheme of tested beam, adapted from Valente [188]: a) transversal; 

b) longitudinal (half span). 
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Developed test is divided in four steps [188]: (1) load control: cyclic loading varying 25 times 

between 2 and 15 kN, with a rate of 0.50 kN/s; (2) load control: constant increasing load 

from 2 to 20 kN; (3) displacement control: linear increase of displacement at beam middle 

span, with a rate of 0.02 mm/s, until a total displacement of 70 mm; (4) displacement control: 

taking the beam up to failure, with a rate of 0.05 mm/s. 

During laboratory test it was measured the applied load, by a load cell located inside the 

actuator, and the quarter and middle span vertical displacement, by different displacement 

transducers (LVDT) [118, 120, 121, 188, 189]. Used displacement transducers present a 

measurement field of ± 25.00 mm (quarter span) and of ± 50.00 mm (middle span), a 

sensitivity of 33.00 mV/V/mm (quarter span) and of 28.00 mV/V/mm (middle span) and an 

accuracy of 0.10 %. Figure 6.2 presents an image of the developed test. 

Both beams present an identical collapse mechanism, characterized by a plastic hinge 

located in the region between applied loads (Figure 6.3a). In respect to obtained failure 

modes, beam 1 suffered a bending failure. Concrete crushes near the point load, with a 

longitudinal crack at middle height of concrete section, growing towards the beam middle 

span. The steel reinforcement near the crushing zone shows some local buckling. Beam 2 

suffered a bending failure associated to a shear connection failure. Concrete crushes near 

the point load and, at final stages of test, stud failure takes place. For this beam, tensile 

cracks appear at bottom face of concrete slab. Additionally, a horizontal slip between steel 

profile and concrete slab is visible. Figure 6.3b and 6.3c, respectively, presents an image of 

obtained failure mode for beam 1 and 2. 

 

Figure 6.2. Experimental test [188]. 



Uncertainty Evaluation of Reinforced Concrete and Composite Structures Behavior

 

 
171 

 

   

a) b) c) 

Figure 6.3. Collapse mechanism [188]: a) scheme; b) beam 1; c) beam 2. 

Obtained experimental results are presented in Figure 6.4 and 6.5, respectively, for beam 1 

and 2. From the analysis of these results, an elastic behavior is observable at initial phase of 

the test, as there is an approximate linear relation between applied load and deflection value. 

This is expected as all materials present an initial elastic behavior too and a total 

compatibility between steel and concrete materials is verified for lower loads. A loss of 

stiffness is then verified as the increase in applied load is smaller while deformation keeps 

the same growing rate. Both beams present a ductile behavior due to a significant vertical 

deformation while the maximum applied load is kept almost constant. 

For beam 1, with total connection design, failure is conditioned by concrete. In this situation it 

is verified that: (1) bending failure occurs before shear connection failure; (2) the connection 

behavior is rigid; and (3) the connection presents an ability to develop higher slip 

deformations when failure happens. 

  

a) b) 

Figure 6.4. Experimental data (beam 1): a) quarter span displacement; b) middle span 

displacement. 
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a) b) 

Figure 6.5. Experimental data (beam 2): a) quarter span displacement; b) middle span 

displacement. 

Beam 2 shows a lower stiffness as it presents larger deformation for the same load level. 

This aspect is more or less observable since the beginning of the test and was expected 

because less shear studs has the consequence of more load being applied to each 

connector, which results in higher deformation at the steel to concrete interface. In this 

situation, the beam load capacity is conditioned by the connection load capacity. It was also 

verified that shear connector failure occurs almost simultaneously with concrete slab 

crushing. 

In experimental tests it was verified that slip values for partial connection (beam 2) are 

significantly higher than those for total connection (beam 1) [188]. In fact, partial connection 

design keeps bending failure from occurring previously to shear failure and, therefore, high 

values of slip develop before failure. Additionally, vertical deflection is influenced by 

connection deformability as a high vertical deflection is attained for partial connection. Ductile 

behavior of composite beams results not only from ductile behavior of steel acting together 

with lightweight concrete but also of shear connection ductile behavior. 

The connection deformability also changes the longitudinal shear flow. The connectors 

positioned near supports become more loaded than those at beam middle span. As only 

small friction forces are developed between concrete slab and steel beam, due to applied 

mould releasing agent, all shear forces are transmitted through connectors. For partial 

connection, the connection deformability has an important influence on reducing the shear 

flow value. When connection behavior is no longer elastic, shear flow is reduced and an 

important loss of composite action takes place. Consequently, the composite beams flexural 

stiffness is affected by the loss of composite action between steel profile and concrete slab. 

For both beams, the yielding of steel section lower fibbers should occur before concrete 

cracking on slab lower fibbers. The connection deformability and the loss of composite action 
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induce a redistribution of stress within the cross section, which results in successive changes 

of the neutral axis position. The yield of steel section results in a higher neutral axis. As the 

neutral axis initial position is supposed to be close to the concrete slab, it is probable that if it 

changes its position, tensile stresses will appear at concrete slab lower fibbers, leading it to 

crack. Table 6.1 presents, for each tested beam, the failure load (FR) and the corresponding 

vertical displacement (δR). 

Table 6.1. Failure load (FR) and corresponding vertical displacement (δR) [188]. 

Beam Failure load [kN] Displacement [mm] 

1 23.86 129.80 

2 21.20 239.50 

6.3. Numerical analysis 

A nonlinear finite element model developed with software ATENA® [23, 24], that considers 

both shear connection and materials nonlinear behavior, was used to analyze the behavior of 

tested composite beams [118, 120, 121, 188, 189]. The defined geometry is previously 

presented in Figure 6.1, in accordance with experimental specimens. Used materials, 

concrete and steel, and also the interface law were defined by a set of parameters. 

The existence of a curvature ratio between both flanges and the web of the IPE 120 

laminated steel profile makes the numerical representation more difficult. In order to 

overpass it, a simplification is developed in order to take into account such curvature. Such 

simplification is made by equating the area and inertia of the real steel profile to an 

equivalent one. Therefore, the web height (hweb) and flanges thickness (hfl,inf and hfl,sup) are 

determined, maintaining the flange width (bfl,inf and bfl,sup) and the total height 

(h = 120.00 mm) of the real steel profile. Figure 6.6 represents the equivalent steel profile 

with the computed dimensions. 

Figure 6.7a presents the concrete material stress-strain law. In the tensile region, the 

diagram is described by a linear initial step until tensile strength (flt) is reached and then by a 

decreasing exponential part. The fracture energy (Glf) is proportional to the area of this 

region. In the compressive region, the behavior is characterized by an initial parabolic phase, 

until compressive strength (flc) is reached, and then by a decreasing linear part, designated 

by softening. The concrete elasticity modulus (Elc), the compressive strain at compressive 

strength (εlc) and the critical displacement (wld) are parameters that define this region. 

The same stress-strain law is used to simulate both reinforcement bars and laminated steel 

profile, as indicated in Figure 6.7b and 6.7c. This material presents an identical behavior 



Chapter 6. Composite Beams 

 

 
174 

 

when in compression and tensile region. It is characterized by an initial linear phase in which 

the material presents a typical elastic behavior, following a hardening region, from material 

yielding until failure. The initial phase is characterized by an elasticity modulus (Es,l and Es,p) 

until the yield strength is reached (σy,l and σy,p). The second part is characterized in a 

different way for reinforcement and for steel profile. In the former case, it is defined by a limit 

strain (εlim,l) and strength (σu,l) while, for the latter, it is only described by a hardening 

modulus (Hp), presenting no failure criteria. 

 

bfl,inf = 64.00 mm 

bweb = 4.40 mm 

bfl,sup = 64.00 mm 

hfl,inf = 6.60 mm 

hweb = 106.80 mm 

hfl,sup = 6.60 mm 

Figure 6.6. Equivalent steel profile (nominal values). 

   

a) b) c) 

Figure 6.7. Stress-strain law: a) concrete; b) reinforcing steel; c) steel profile. 

Used materials, concrete and steel, were modeled by an SBETA and a bilinear with 

hardening Von Mises material model, which are constitutive models of the ATENA® 

library [23, 24]. A biaxial stress failure criterion and a Von Mises yield criterion are 

respectively established. The nominal values, considered in numerical model, were those 

indicated at EN 1992-1-1 [48], for concrete and steel reinforcement, and in EN 1993-1-1 [49] 

for steel profile. Table 6.2, 6.3 and 6.4 present those values. 
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In respect to lightweight concrete material, its density (ρ) was estimated to be 1811.50 kg/m3 

according to bibliography [188]. For this material, the elasticity modulus (Elc), the tensile 

strength (flt) and the compressive strain at compressive strength (εlc) can be determined 

through the following equations (6.1), (6.2) and (6.3) [48], 

37.0 0.68 25.09lc c EE E GPaη= ⋅ = ⋅ =  (6.1)

1 4.10 0.89 3.67lt tf f GPaη= ⋅ = ⋅ =  (6.2)

( ) ( )1.05 1.00 58.00 1.05 37.00 0.68 2.20‰lc lc c Ek f Eε η= ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ =  (6.3)

being ηE = (ρ/2200)2 = 0.68, η1 = 0.40 + 0.60 * ρ/2200 = 0.89 and k = 1.00 (lightweight 

aggregate). 

The connection between concrete slab and steel profile, provided by headed stud steel 

connectors, is modeled with an interface material model [23, 24]. This model is based on a 

Mohr-Coulomb criterion with tension cut-off. This law is given in terms of shear (τ) and 

normal stresses (σ). According to Figure 6.8a, the initial failure corresponds to the moment 

when cohesion (c) value is reached. After stress violates this condition, the relation between 

these stresses is given by the dry friction (ϕ) that is considered to be very low. 

For shear stresses, and for positive slip (∆uT), this law is characterized by an initial shear 

stiffness (KTT), until the Mohr-Coulomb criterion is reached, and then it presents a minimum 

shear stiffness (KTT,min) that is 1% of KTT (Figure 6.8b). This behavior tries to replicate the 

relation between shear stress and slip at steel to concrete interface, measured in push-out 

tests. For normal stresses, and for positive uplifts (∆uN), it is defined by an initial normal 

stiffness (KNN) until the tensile strength (ft) is reached. Once attained, the normal stress is 

reduced to 0, being this law defined by a minimum normal stiffness (KNN,min) that is 1% of KNN 

(Figure 6.8c). 

Table 6.2. Material properties (concrete). 

Parameter Value 

Elasticity modulus (Elc) [GPa] 25.09 

Tensile strength (flt) [MPa] 3.67 

Compressive strength (flc) [MPa] 58.00 

Fracture energy (Glf) [23, 24] [N/m] 91.75 

Compressive strain at compressive strength (εlc) [‰] 2.20 

Critical compressive displacement (wld) [23, 24] [m] 1.50 * 10-3 



Chapter 6. Composite Beams 

 

 
176 

 

Table 6.3. Material properties (reinforcing steel). 

Parameter Value 

Elasticity modulus (Es,l) [GPa] 200.00 

Yield strength (σy,l) [MPa] 500.00 

Limit strength (σu,l) [MPa] 540.00 (k = 1.08) 

Limit strain (εlim,l) [‰] 50.00 

Table 6.4. Material properties (steel profile). 

Parameter Value 

Elasticity modulus (Es,p) [GPa] 210.00 

Yield strength (σy,p) [MPa] 275.00 

Hardening modulus (Hp) [GPa] 1.04 

The parameter values considered on this model are dependent on shear stud and concrete 

material. Normal stiffness (KNN) and tensile strength (ft) values are obtained from stud 

behavior in tension. Both these parameters are assumed to present high values in order to 

guarantee that the connection is working when submitted to normal stresses. 

 

  

a) b) c) 

Figure 6.8. Interface law: a) normal and shear stress; b) shear stress and slip c) normal 

stress and uplift. 

The cohesion (c) or maximum stress at interface element, and shear stiffness (KTT) values 

are respectively determined through equations (6.7) and (6.10) [118, 120, 121, 188, 189]. 

These values are different from beam 1 to beam 2 as the number of studs change. The 

cohesion value depends on the stud maximum load capacity (PRm). This value is determined 

according to EN 1994-1-1 [50] by using the following equations (6.4), (6.5) and (6.6), 
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20.8 4 47.78Rk uP f d kNπ= ⋅ ⋅ =  (6.4)

20.29 53.19Rk lck lcmP d f E kNα= ⋅ ⋅ ⋅ ⋅ =  (6.5)

( )0.2 1 0.97sch dα = ⋅ + =  (6.6)

in which, d is the diameter of the stud shank equal to 13 mm, hsc is the overall stud height 

equal to 50 mm, fu is the ultimate tensile strength of stud material equal to 450 MPa,  α is a 

parameter that depends from the ratio hsc / d = 3.84, Elcm is the concrete elasticity modulus 

(Table 6.2), flck the characteristic concrete compressive strength equal to 50 MPa. The 

characteristic value of stud maximum load capacity (PRk = 47.78 kN) is the minimum value of 

expression (6.4) and (6.5). The mean value (PRm = 53.09 kN) is then obtained by dividing this 

value per 0.90, according to EN 1994-1-1 [50]. By considering this value it is then possible to 

determine the cohesion nominal values for both situations of total (8 studs) and partial 

connection (4 studs) through equations (6.7), (6.8) and (6.9), 

( )
( )

max

int

stud imum load capacity number of studs in half span
c

width of the erface half span length

⋅
=

⋅
 (6.7) 

( )
( )2

53.09 8
2.95

6.40 10 2.25
c MPa

−

⋅
= ≅

⋅ ⋅
 (6.8)

( )
( )2

53.09 4
1.47

6.40 10 2.25
c MPa

−

⋅
= ≅

⋅ ⋅
 (6.9)

A similar procedure is considered to determine the shear stiffness (KTT). In order to obtain 

such parameter it is necessary to compute the stud stiffness value. However, this value is 

extremely difficult to quantify as it depends from several factors. Accordingly, it was defined a 

value of 220 kN/mm based on bibliography [188, 189]. By taking this value into consideration 

it is then possible to determine the shear stiffness for both situations of total (8 studs) and 

partial connection (4 studs), through equations (6.10), (6.11) and (6.12). Table 6.5 presents 

the considered values to define the interface model. 

( )
( )intTT

stud stiffness number of studs in half span
K

width of the erface half span length

⋅
=

⋅
 (6.10) 

( )
( ) ( ) 2

2

220 8
12222.2 2

6.40 10 2.25
TTK kN m mm

−

⋅
= ≅

⋅ ⋅
 (6.11)

( )
( ) ( ) 2

2

220 4
6111.1 1

6.40 10 2.25
TTK kN m mm

−

⋅
= ≅

⋅ ⋅
 (6.12)
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Table 6.5. Interface properties. 

Parameter 
Value 

Beam 1 Beam 2 

Normal stiffness (KNN) [MPa] 1.00 * 107 1.00 * 107 

Shear stiffness (KTT) [MPa] (per mm) 12.2(2) 6.1(1) 

Tensile strength (ft) [MPa] 1.00 * 102 1.00 * 102 

Cohesion (c) [MPa] 2.95 1.47 

With the purpose of reducing the computational cost, only half of the beam was modeled, 

taking advantage of existent symmetry (Figure 6.1b). In order to do that it was necessary to 

introduce horizontal supports along the symmetry line. Additionally, a vertical support was 

included in the model to simulate real supports. A uniform finite element mesh composed by 

quadrilateral elements, for concrete slab and steel profile, by truss elements, embedded in 

concrete slab, for reinforcing steel, and by interface elements, for steel-concrete connection, 

was adopted [23, 24]. 

Additional considerations were taken when developing the numerical model, in order to 

adequately simulate the laboratory test. A displacement control numerical test was used in 

whole numerical analysis. Two different load cases were considered, respectively, one 

representing the real supports and other the applied displacement. A downward increment of 

1.00 * 10-4 m was considered for the applied displacement. In order to avoid high local 

stresses in both support and load point, a steel plate was placed in such positions. A 

Newton-Raphson nonlinear search algorithm was used. Adopted parameters are present on 

Table 6.6. During the analysis, the quarter and the middle span displacements were 

monitored, according to Figure 6.1b, and also the applied load. 

Table 6.6. Solution parameters (Newton-Raphson). 

Solution method Newton-Raphson 

Stiffness / Update Tangent / Each iteration 

Iterations number limit 50 

Error tolerance 1.00 * 10-2 

Line search With iterations 

The computational cost issue becomes relevant in both model identification and probabilistic 

analysis procedures, in which numerous analyses of the same numerical model are realized. 
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In order to overcome this problem, the developed numerical model is simplified by reducing 

the mesh size and increasing the step length. Therefore, three different meshes (18620, 

4934 and 318 elements) and two load steps (270 steps with different factors and 700 steps 

of factor 2.0) are considered. The 270 steps are respectively divided in: (1) 15 steps of 

factor 20; (2) 10 steps of factor 15; (3) 10 steps of factor 10; (4) 45 steps of factor 5; and 

(5) 190 steps of factor 3. Figure 6.9 present a mesh constituted by 4934 elements. The 

performance of each model was studied with the same computer, in order to assure identical 

computational conditions. In this situation, the applied load error was computed through 

equation (6.13), 

( ) [ ]1 0 0 %i i i iF F F∆ = −  (6.13)

where F1
i indicates the applied load in step i and F0

i is the applied load for the same step in 

the reference numerical model. This model is considered to be that with a more refined mesh 

and with a lower step length. The maximum and minimum ∆-values are then obtained and 

the sum of their absolute values is computed. Finally, the applied load error (θ) is determined 

by dividing this value per two. Obtained results are indicated in Table 6.7. 

The chosen model for subsequent analysis, and according to obtained results, is the 

number 3. In fact, and by comparing with reference model number 0, models number 4 and 5 

present a higher error. Moreover, model number 1 and 2 present a higher computational 

cost. The numerical model for beam 2 is the same as for beam 1. The only difference is that 

for beam 2 more load steps, respectively, 270 steps of factor 5, are added to those from 

model 3 as the vertical deflection increases, rising the computational cost too. 

Table 6.7. Simplification results. 

Numerical model Finite element 
number Step number Computational time [s] Applied load error - 

θF [%] 

0 18620 700 39334.94 - 

1 18620 270 28096.33 0.20 

2 4934 700 5444.82 0.30 

3 4934 270 2493.79 0.44 

4 318 700 952.38 4.14 

5 318 270 440.24 4.38 

Figure 6.10a (top) indicates the deformation, crack pattern in concrete slab and horizontal 

strains of analyzed beam 1, for chosen numerical model and considering the nominal values. 
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In this case the collapse mechanism is characterized by the presence of a plastic hinge in 

the middle span region. A bending failure mode, with concrete crushing and yielding of steel 

profile is obtained. Figure 6.10b (top) indicates interface stresses between concrete slab and 

steel profile. It is possible to observe that cohesion value (blue) is only reached in a small 

region of the interface. Obtained behavior is similar to experimental one, validating the 

developed numerical model. 

Figure 6.10a (bottom) provides the deformation, crack pattern in concrete slab and horizontal 

strains of analyzed beam 2, for chosen numerical model and considering the nominal values. 

The collapse mechanism is described by a plastic hinge which appears in middle span 

region. Figure 6.10b (bottom) indicates the interface stresses between concrete slab and 

steel profile. The cohesion value (blue) is reached along the whole interface. Obtained failure 

mode is bending with concrete crushing and yielding of steel profile, together with a lack of 

capacity to redistribute more shear stress along the steel-concrete interface. Obtained 

behavior is similar to experimental one, validating the developed numerical model. 

 

Figure 6.9. Numerical model (finite element mesh). 

  

  

a) b) 

Figure 6.10. Numerical model (top: beam 1; bottom: beam 2): a) failure mechanism; 

b) interface stresses. 

Both numerical models indicate that due to the existence of slip at steel to concrete interface 

a redistribution of stresses is verified at interface [188, 189]. A higher failure load is obtained 

for beam 1 (total connection). In this case, a total redistribution of stresses is verified. The 

shear stresses redistribution along the beam is possible due to the high deformability of 

connectors. Although, if such deformation capacity is not guaranteed, then connectors 

positioned close to supports suffer failure right after the maximum stress is installed. This is 

verified for beam 2 (partial connection). 
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6.4. Model identification 

The aim of a model identification methodology is to rearrange a set of numerical parameters 

in such a way that the numerical response best fits the existent experimental data [118, 120, 

121]. This fact converts this kind of analysis into a typical optimization problem. In this case, 

the optimization function is based in an approximation between numerical and experimental 

data, and the objective is to obtain the curve which best adapts to existent experimental data. 

A detailed description of this function is given in chapter four. 

The optimization algorithm that was used during this analysis was the evolutionary strategies 

in its plus version [29]. It begins with an initial population of critical parameter values, 

generated randomly, and then, using the evolutionary operators, new populations are 

generated. A final population is extracted for each run. A detailed description of this algorithm 

is given at chapter two. This algorithm is processed with different starting points. An engineer 

judgment procedure, based in the probability of occurrence of each individual, is developed 

to determine the most suitable individual, from those previously extracted. This procedure is 

detailed described in chapter four. 

When using this procedure, multiple runs of the same numerical model are necessary. In 

each run, the fitness function value, which characterizes the approximation between 

experimental and numerical curves, is computed. The identification stops when one of the 

previously defined algorithm stopping criteria is achieved. One of these criteria consists in 

establishing that the improvement on minimum fitness function value, obtained from two 

generations separated of a pre-specified gap, should be less than or equal to a threshold 

value. This value is computed through the law of propagation of uncertainty [90, 91, 92], 

detailed described at chapter four. It may be interpreted as the methodology precision, once 

obtained results become more accurate with its decrease. 

Model identification computational cost depends on the number of parameters to be 

optimized. A sensitivity analysis is performed to identify the critical parameters, or, in other 

words, those that present a higher influence on the structural behavior [120]. This analysis 

consists in studying the fitness function variation with each input parameter. An importance 

measure (bk) was then obtained for each evaluated parameter. A detailed description of this 

measure is given in chapter four. If this value is equal or higher than 10% (blim), the 

parameter will be considered as critical. 

Two sensitivity analyses were developed, one for service phase and other until failure load. 

The analysis in service phase identified different combinations of values for critical 

parameters that lead to very good results. However, the majority of these combinations lead 
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to bad results in an analysis until failure load. This is important to highlight as model 

identification is typically performed with data from load test, and the majority of load tests are 

developed in service phase. Therefore, although a good approximation of registered data is 

obtained, this does not mean that the structure behavior until failure load is perfectly 

characterized. In order to overcome this, other complementary tests such as nondestructive 

tests (NDT), laboratory characterization tests and visual inspections should be executed. 

Studied variables are related to material, geometry and physic parameters. It was 

respectively varied a standard deviation (σ) from each parameter mean value. In order to 

compute each standard deviation (σ), the following coefficient of variations (CV) were 

established [51, 93, 102, 135, 159, 190]: (1) concrete elasticity modulus (Elc): 10%; 

(2) concrete tensile strength (flt): 20%; (3) concrete compressive strength (flc): 10%; 

(4) concrete fracture energy (Glf): 10%; (5) concrete compressive strain at compressive 

strength (εlc): 10%; (6) concrete critical displacement (wld): 10%; (7) Steel profile elasticity 

modulus (Es,p): 5%; (8) steel profile yield strength (σy,p): 5%; (9) steel profile hardening 

modulus (Hp): 20%; (10) reinforcing steel elasticity modulus (Es,l): 5%; (11) reinforcing steel 

yield strength (σy,l): 5%; (12) reinforcing steel limit strength (σu,l): 5%; (13) reinforcing steel 

limit strain (εlim,l): 15%; (14) interface shear stiffness (KTT): 10%; (15) interface 

cohesion (c): 12.5%; (16) steel profile bottom flange width (bfl,inf): 2%; (17) steel profile web 

thickness (bweb): 2%; (18) steel profile top flange width (bfl,sup): 2%; (19) concrete slab 

width (bslab): 10%; (20) reinforcing steel area (As,l): 2%; (21) steel profile bottom flange 

thickness (hfl,inf): 2%; (22) steel profile web height (hweb): 2%; (23) steel profile top flange 

thickness (hfl,sup): 2%; (24) concrete slab height (hslab): 10%; (25) inferior concrete 

cover (cinf): 20%; (26) superior concrete cover (csup): 20%. Figure 6.11 and 6.12 gives the 

obtained results for beam 1. 

From the analysis of Figure 6.11, it is possible to identify as critical parameters, respectively, 

those related to used materials, namely, concrete elasticity modulus (Elc) and steel profile 

elasticity modulus (Es,p), and geometric ones, as slab width (bslab) and height (hslab), the steel 

profile web thickness (bweb) and height (hweb), the superior flange width (bfl,sup) and the inferior 

flange thickness (hfl,inf). In fact, for lower intensity loadings, used materials, according to 

Figure 6.7a, 6.7b and 6.7c, are working in elastic region, being their elastic properties the 

most important ones. Accordingly, from 26 possible parameters, only 8 of them were 

considered, reducing so the computational cost in the model identification procedure. 

The analyzes of Figure 6.12 shows that critical parameters identified during the analysis for 

service phase still present a significant influence in structural behavior until failure load. In 

this evaluation all concrete parameters become critical. From all these parameters it is 
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important to indicate those that describe its behavior in compression. These parameters 

present a higher impact as a bending failure with concrete crushing is identified. The same 

way, steel profile parameters, with exception of hardening modulus (Hp), are critical as steel 

material yields before concrete crushing. In respect to interface parameters, for higher loads, 

the maximum stress at interface element is reached in some regions. Consequently, the 

cohesion parameter (c) becomes an important parameter too. In a general way, the 

geometric parameters related to concrete slab and laminated steel profile dimensions, with 

exception of inferior flange width (bfl,inf), present a high influence on structural behavior. In 

this situation, from 26 possible initial parameters, only 16 were considered in the study, 

reducing then the computational cost. 

 

Figure 6.11. Importance factor (service). 

 

Figure 6.12. Importance factor (failure). 

The sensitivity analysis performed for beam 2 is identical to that developed for beam 1. In 

fact, both numerical model and evaluated parameters are the same for these beams. The 

difference consists in some of the interface parameters, namely, shear stiffness (KTT) and 

cohesion (c), for which the nominal values are different. The importance measures of these 
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two parameters are then determined for beam 2. A value of 0.00 % and of 9.99 %, for the 

analysis for service phase, and, of 13.62 % and of 4.04 %, for the analysis until failure load, 

respectively, for cohesion and shear stiffness parameters were obtained. As expected, there 

is an increase in shear stiffness importance measure in service region but not sufficient to be 

considered as critical. 

Once the numerical model and critical parameters, to be optimized, are identified, the further 

step is the application of proposed model identification methodology. In this case, both 

quarter and middle span displacements were measured during the laboratory test 

(Figure 6.1b). The results from these two measurements are presented in two independent 

graphics, namely, the applied load (F) plotted against the quarter span displacement (δ1/4) 

and against the middle span displacement (δ1/2). The fitness function is, in this situation, a 

combination of two different measurements. It is characterized by the approximation between 

numerical and experimental values for applied loads. Before running the model identification 

methodology, it is necessary to determine the threshold value (ε) that defines the fitness 

function convergence criteria. In order to compute it, a division of uncertainty types, in 

experimental and numerical ones is necessary. 

The sources of experimental uncertainty are, in this situation: (1) Sensor accuracy (0.20%) 

that includes the displacement transducer precision, and the cable and acquisition equipment 

losses [68, 154]; (2) Load intensity (0.10%) which includes the load cell resolution and the 

cable and acquisition equipment losses [68, 154]; (3) Load positioning, environmental effects 

and vibration noise which effects may be neglected in this case. 

In this case, only the load intensity component will be considered when computing the 

experimental uncertainty for quarter span displacement. This component presents a uniform 

PDF (Type B) and so, according to JCGM [90, 91, 92], it should be divided by √3, obtaining 

then the result of 5.77*10-2 %. The experimental data is linearly dependent on this 

component (∂yexp/∂x = 1.00 kN). The experimental uncertainty is then computed through 

equation (6.14) [90, 91, 92], 

( )
1/41/ 4

22 2 2 7 2 4
exp exp1.00 5.77 10 100 3.33 10 kN 5.77 10 kN

F F
u u

δ δ− −

− − −= ⋅ ⋅ = ⋅ → = ⋅  (6.14)

An identical procedure is used for computing the experimental uncertainty for middle span 

displacement. This value is given by equation (6.15) [90, 91, 92], 

( )
1/2 1/2

22 2 2 7 2 4
exp exp1.00 5.77 10 100 3.33 10 kN 5.77 10 kN

F F
u u

δ δ− −

− − −= ⋅ ⋅ = ⋅ → = ⋅  (6.15)

In respect to numerical uncertainty, it is indicated the following sources: (1) Finite element 

method accuracy (0.34%, δ1/4 – F; 0.74%, δ1/2 - F), determined by comparing the previous 
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numerical model with other with a higher number of load steps [69]; (2) Mesh refinement 

(0.70%, δ1/4 - F; 1.42%, δ1/2 - F), obtained by comparing the previous numerical model with 

other with a more refined mesh [69]; (3) Model exactitude and considered hypothesis (e.g. 

consideration of supports as point loads) may be neglected in this situation. 

In this case, both finite element method and mesh refinement effects will be considered when 

computing the numerical uncertainty for quarter span displacement. These components are 

represented by a uniform PDF (Type B) and so, according to JCGM [90, 91, 92], they should 

be divided by √3, obtaining then the result of 0.20% and of 0.40%, respectively. The effects 

of both components on numerical results are linear (∂ynum/∂x = 1.00 kN). The numerical 

uncertainty is then computed through equation (6.16) [90, 91, 92], 

( ) ( )
1/4 1/4

2 22 2 2 5 2 31.00 0.20 100 1.00 0.40 100 2.02 10 kN 4.49 10 kN
F Fnum numu u

δ δ− −

− −= ⋅ + ⋅ = ⋅ → = ⋅  (6.16)

An identical procedure is used to determine the numerical uncertainty for middle span 

displacement. This value is given by equation (6.17) [90, 91, 92], 

( ) ( )
1/2 1/2

2 22 2 2 5 2 31.00 0.43 100 1.00 0.82 100 8.55 10 kN 9.25 10 kN
F Fnum numu u

δ δ− −

− −= ⋅ + ⋅ = ⋅ → = ⋅  (6.17)

Once the experimental and numerical uncertainties are computed, it will be possible to 

determine the fitness function uncertainty. In order to obtain this value, it is necessary to 

compute the partial derivative of the fitness function in respect to both experimental and 

numerical data. These values vary with tested beam as they are proportional to maximum 

applied load (∂f/∂ynum = ∂f/∂yexp = 1/max(yi
exp) =4.20*10-2kN-1). The fitness function uncertainty 

in respect to quarter span displacement is given by equation (6.18) [90, 91, 92], 

( ) ( ) ( ) ( )
1/4 1/4

2 2 2 22 2 4 2 3 8 44.20 10 5.77 10 4.20 10 4.49 10 3.60 10 1.90 10F Fu uδ δ
− − − − − −

− −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅  (6.18)

The fitness function uncertainty in respect to middle span displacement is obtained through 

an identical procedure. This value is given by equation (6.19) [90, 91, 92], 

( ) ( ) ( ) ( )
1/2 1/2

2 2 2 22 2 4 2 3 7 44.20 10 5.77 10 4.20 10 9.26 10 1.51 10 3.88 10F Fu uδ δ
− − − − − −

− −= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ = ⋅ → = ⋅  (6.19)

The global fitness function value is obtained through the square root of the sum of the square 

of these components. In order to determine the global uncertainty, the partial derivative of the 

fitness function in respect to each component is computed (∂f/∂fδ1/2-F = ∂f/∂fδ1/4-F = 1.00). This 

value is then computed through equation (6.20) [90, 91, 92], 

( ) ( )2 22 2 4 2 4 7 41.00 3.88 10 1.00 1.90 10 1.87 10 4.32 10f fu u− − − −= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (6.20)
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The improvement on global fitness function minimum value (∆f) from two generations, 

separated of a specified gap (n), is given in chapter four. Accordingly, and assuming that the 

partial derivative of the improvement in respect to each component is unitary 

(∂∆f/∂fi+n = ∂∆f/∂fi = 1.00), it is possible to obtain the respective uncertainty value through 

equation (6.21) [90, 91, 92], 

( ) ( )2 22 2 4 2 4 7 41.00 4.32 10 1.00 4.32 10 3.73 10 6.11 10f fu u− − − −
∆ ∆= ⋅ ⋅ + ⋅ ⋅ = ⋅ → = ⋅  (6.21)

As all uncertainty sources are from Type B a coverage factor (k) of 2 should be adopted [90, 

91, 92]. The fitness value criterion establishes that the respective improvement (∆f) should 

be less than or equal to the threshold value (ε). Correspondingly, this value is obtained by 

multiplying that determined from expression (6.21) by factor k. The obtained value from the 

analysis in service phase is determined in a similar way. 

For beam 2, the same laboratory equipment and numerical model that was adopted for 

beam 1 is used. Consequently, the only difference on threshold values computation remains 

on the derivative of fitness function in respect to experimental and numerical results, as the 

maximum experimental load is different in this situation 

(∂f/∂ynum = ∂f/∂yexp = 1/max(yi
exp) = 4.70 * 10-1 kN-1). Obtained threshold values, for beam 1 

and 2, are indicated in equation (6.22), 

4

3

4

3

8.00 10 0.08%
1:

1.20 10 0.12%

9.00 10 0.09%
2 :

2.50 10 0.25%

Service
beam

Failure
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ε
ε

ε
ε

−

−

−

−

 → = ⋅ =


→ = ⋅ =

 → = ⋅ =


→ = ⋅ =

 (6.22)

This means that, for instance, for beam 1, if the improvement in minimum fitness function 

value, until failure load, of a population from two generations separated of a specified gap (n) 

is, respectively, less than or equal to 0.12% than the algorithm stops, as the fitness function 

convergence criteria is achieved. This means that it is not meaningful to improve the fitness 

function of a value that is less than or equal to the precision itself. 

The evolutionary strategies algorithm in its plus version [29] is further executed. In this case, 

it was defined a parent population (µ) and parent for recombination (ρ) of 10 and 20 

individuals, and an offspring population (λ) of 50 and 75 individuals, respectively, for service 

and failure analysis. Other stopping criteria, like the maximum number of generations (1000), 

were also considered. The generation gap (n) used for the fitness function criteria is 

proportional to this number. It was established that this value is 10% of the specified 

maximum generation’s number. Therefore, the improvement on minimum fitness value is 
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evaluated from a gap of 100 generations. Once the algorithm stops, a population, constituted 

by different individuals, is obtained. 

The respective algorithm is processed with different starting points. An engineer judgment 

procedure is developed to determine the most suitable individual, from those previously 

extracted. This individual is constituted by a set of values, a value for each critical parameter. 

Tables 6.9 and 6.10 present the nominal values and individuals obtained from model 

identification in service phase and until failure load, respectively, for beam 1 and 2. In the 

same table, between brackets, the bias factor, which represents the ratio between the 

identified and the nominal value for each variable, is also presented. When applying this 

methodology in service phase, not only the critical parameters, as already identified during 

the sensitivity analysis, but also their optimal values, may differ from the application until 

failure load. 

By analyzing the results from Table 6.8 it is possible to conclude that: (1) Obtained value for 

concrete parameters from model identification until failure load is close to the nominal one, 

with exception of the compressive strain at compressive strength (εlc). A higher value is 

obtained for compressive strength (flc) and for critical displacement (wld). A lower value is 

obtained for elasticity modulus (Elc), for tensile strength (flt) and for fracture energy (Glf). For 

model identification in service phase the elasticity modulus (Elc) presents a higher value, far 

from the nominal one; (2) Obtained value for reinforcing steel parameter from model 

identification is slightly higher than the nominal one; (3) In respect to cohesion parameter, 

obtained value from model identification until failure load is close, although slightly higher, to 

the nominal one, (4) In respect to geometry parameters, obtained values from model 

identification are close to nominal ones. Exceptions are found for the inferior flange 

thickness (hfl,inf), in situation of model identification in service phase, and for the web 

thickness (bweb), in the case of model identification until failure load. 

While obtained values from model identification in service phase indicate a higher quality 

concrete material, those obtained from model identification until failure load indicate that its 

quality is close to the expected. In respect to steel material, the results revealed a higher 

quality than expected. Initial prediction of steel-concrete interface model is confirmed by 

model identification until failure load. Steel profile dimensions are close to those expected in 

design for both model identification procedures and for the majority of assessed parameters. 

The slab geometry is close to that predicted in design. Obtained values from model 

identification until failure load are the closest to nominal ones. 
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Table 6.8. Model identification results (beam 1). 

Numerical model Nominal 
value 

Model identification 

Service * Failure * 

P
ar

am
et

er
 

M
at

er
ia

l 

Concrete 

Elc [GPa] 25.09 30.00 (1.20) 23.71 (0.94) 

flt [MPa] 3.67 3.67 (-) 3.56 (0.97) 

flc [MPa] 58.00 58.00 (-) 59.19 (1.02) 

Glf [N/m] 91.75 91.75 (-) 91.18 (0.99) 

εlc [‰] 2.20 2.20 (-) 2.69 (1.22) 

wld [m] 1.50 * 10-3 1.50 * 10-3 (-) 1.51 * 10-3 (1.01) 

Steel profile 
Es,p [GPa] 210.00 230.00 (1.10) 215.65 (1.03) 

σy,p [MPa] 275.00 275.00 (-) 297.98 (1.08) 

Physic c [MPa] 2.95 2.95 (-) 3.00 (1.02) 

Geometry 

bweb [mm] 4.40 4.20 (0.95) 5.22 (1.19) 

bfl,sup [mm] 64.00 63.00 (0.98) 63.95 (1.00) 

bslab [mm] 350.00 348.63 (1.00) 353.83 (1.01) 

hfl,inf [mm] 6.60 7.60 (1.15) 6.64 (1.01) 

hweb [mm] 106.80 106.04 (0.99) 106.89 (1.00) 

hfl,sup [mm] 6.60 6.60 (-) 7.21 (1.09) 

hslab [mm] 60.00 61.26 (1.02) 62.14 (1.04) 

* Bias factor is presented between brackets. 

By analyzing the results from Table 6.9 it is possible to conclude that: (1) Obtained value for 

concrete parameters from model identification until failure load is close to the nominal one, 

with exception of the tensile strength (flt), compressive strain at compressive strength (εlc) 

and critical displacement (wld). A higher value is obtained, with exception of the tensile 

strength (flt). For model identification in service phase the elasticity modulus (Elc) also 

presents a higher value, far from the nominal one; (2) Obtained value for steel profile 

elasticity modulus (Es,p) from model identification is close to the nominal one. Obtained steel 

profile yield strength (σy,p) from model identification until failure load is higher than the 

nominal one; (3) In respect to cohesion parameter, obtained value from model identification 

until failure load is close, although slightly higher, to the nominal one, (4) In respect to 

geometry parameters, obtained values from model identification are close to the nominal 
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ones. An exception is verified for the inferior flange thickness (hfl,inf) when developing the 

model identification in service phase. 

Table 6.9. Model identification results (beam 2). 

Numerical model Nominal 
value 

Model identification 

Service * Failure * 

P
ar

am
et

er
 

M
at

er
ia

l 

Concrete 

Elc [GPa] 25.09 30.00 (1.20) 26.73 (1.07) 

flt [MPa] 3.67 3.67 (-) 3.16 (0.86) 

flc [MPa] 58.00 58.00 (-) 58.93 (1.02) 

Glf [N/m] 91.75 91.75 (-) 91.67 (1.00) 

εlc [‰] 2.20 2.20 (-) 2.80 (1.27) 

wld [m] 1.50 * 10-3 1.50 * 10-3 (-) 1.71 * 10-3 (1.14) 

Steel profile 
Es,p [GPa] 210.00 216.51 (1.03) 199.75 (0.95) 

σy,p [MPa] 275.00 275.00 (-) 350.00 (1.27) 

Physic c [MPa] 1.47 1.47 (-) 1.55 (1.05) 

Geometry 

bweb [mm] 4.40 4.80 (1.09) 4.79 (1.09) 

bfl,sup [mm] 64.00 63.74 (1.00) 63.81 (1.00) 

bslab [mm] 350.00 354.91 (1.01) 349.56 (1.00) 

hfl,inf [mm] 6.60 7.60 (1.15) 6.50 (0.98) 

hweb [mm] 106.80 106.92 (1.00) 106.86 (1.00) 

hfl,sup [mm] 6.60 6.60 (-) 6.60 (1.00) 

hslab [mm] 60.00 59.49 (0.99) 59.85 (1.00) 

* Bias factor is presented between brackets. 

Obtained values from model identification in service phase indicate a higher quality concrete 

material. However, those obtained from model identification until failure load indicate that its 

quality is close to the expected. Obtained values from model identification revealed a higher 

quality steel material than expected. Initial estimate for steel-concrete interface is confirmed 

by model identification until failure load. Steel profile dimensions are close to those expected 

in design for both model identification procedures and for most of assessed parameters. The 

slab geometry is close to that predicted in design. Obtained values from model identification 

until failure load are the closest to nominal ones. 
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Comparing both results, obtained for beam 1 and 2, it is possible to conclude the following: 

(1) Obtained values from model identification for beam 1 are the closest to nominal ones; 

(2) The concrete quality is close to initially predicted; (3) Reinforcing steel material presents a 

higher quality than initially expected; (4) Initial estimate of steel-concrete interface is 

confirmed; (5) Concrete slab dimensions are close to what was predicted in design; (6) Steel 

profile geometry is close to what was expected in design. 

In Figure 6.13 and 6.14 the applied load (kN) is plotted against the quarter and the middle 

span displacement (m), respectively, for beam 1 and 2, for measured data and for numerical 

results, considering the nominal values, and those from model identification in service phase 

and until failure load. By studying both figures it is possible to conclude that model 

identification until failure load presents the numerical curve that best fits the experimental 

data. 

  

a) b) 

Figure 6.13. Numerical results (beam 1). 

For beam 1, the obtained failure mode was identical in both experimental and numerical tests 

corresponding to a bending failure with concrete crushing and yielding of the steel profile. 

This beam presents an initial elastic behavior. In this situation a good agreement between 

experimental data and numerical results is obtained for all situations. A loss of stiffness is 

then verified for load values higher than 0.50 FR. This fact is visible as the increase in load 

values is smaller while deformation keeps the same growing rate. For these ratios of load it is 

verified in numerical model that the steel section low fibbers are close to yielding strain which 

means that the first nonlinear behavior is conditioned by steel section. In respect to 

numerical results, this is the point where they start to differ from each other. Considering the 

experimental data to be the reference, the model which results first deviate from that ones, is 

the one with nominal values, for a load equivalent to 0.50 FR. For a load equivalent to 0.70 FR 

the first cracks appear at concrete slab. For this ratio, the obtained model from model 

identification in service phase starts to diverge. Finally, the obtained model from model 
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identification until failure load follows the experimental data until FR. Consequently, the 

numerical model that presents a failure load close to FR is the one due to model identification 

until failure load. The other two models present so lower loads, being the lowest failure load 

the one due to numerical model considering the nominal values. 

  

a) b) 

Figure 6.14. Numerical results (beam 2). 

For beam 2, in both experimental and numerical tests the obtained failure mode was 

identical, respectively, a combination of a bending failure with concrete crushing and yielding 

of the steel profile with a lack of capacity of redistributing more shear stresses along the steel 

to concrete interface. When studying, in detail, its behavior, it is possible to conclude that it is 

similar to the one of beam 1. However, a loss of stiffness is verified for a lower ratio. In fact, 

the nonlinearity appears at ratios of around 0.45 Fmax. For this situation, both the steel beam 

yielding and the concrete cracking are not conditioning the nonlinear behavior of composite 

beam, as the strain values for both materials are far from those limits. Therefore the 

nonlinear behavior is due to steel to concrete connection. The rest of its behavior until failure 

is identical to that described for beam 1. Nevertheless, this beam presents a lower failure 

load which results from the fact that the connectors shear capacity is accomplished at the 

whole interface, meaning that the beam has no more capacity to redistribute loads. 

Additionally, this beam presents a higher ductility as all the connection capacity is achieved. 

Table 6.10 indicates the minimum fitness function values obtained by considering the 

nominal values and those from model identification in service phase and until failure load for 

beam 1. It is verified that obtained value from model identification in service phase is lower 

than that determined until failure. In fact, in service region, experimental and numerical 

results are closer than for higher applied loads. Nevertheless, for these two situations the 

applied methodology revealed an important improvement of this value. In fact, this 

improvement is, for both situations, higher than 80% which is really impressive. 
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Table 6.10. Minimum fitness function values (beam 1). 

Numerical model 

Fitness function 

Service Failure 

Value [%] Improvement [%] Value [%] Improvement [%] 

Nominal values 4.65 - 19.35 - 

Model identification 0.80 82.80 2.13 88.99 

In Table 6.11 It is indicated the minimum fitness function values obtained by considering the 

nominal values and those from model identification in service phase and until failure load for 

beam 2. The improvement on fitness function value, obtained in this situation, is slightly 

lower than that determined for beam 1. In this situation, as the number of parameters to 

optimize is the same, this is due to an increase in the number of necessary points to 

compute the fitness function. 

Table 6.11. Minimum fitness function values (beam 2). 

Numerical model 

Fitness function 

Service Failure 

Value [%] Improvement [%] Value [%] Improvement [%] 

Nominal values 3.85 - 20.43 - 

Model identification 0.95 75.33 5.82 71.51 

Table 6.12 indicates failure load (FR) and the corresponding displacement (δR), measured at 

beam middle span for beam 1. Obtained values from model identification until failure load are 

those that present a lower error. In fact, it is possible to verify that, when applying the 

methodology in service phase, the model identification is performed for this region, being not 

possible to guarantee the curve fitting for the failure region. Obtained error for the situation of 

model identification until failure load is less than 10%, which is considered to be very good. 

Table 6.13 indicates the values obtained for beam 2. By analyzing these results, it is possible 

to conclude that model identification until failure load provides the most accurate failure 

load (FR). Moreover, a higher improvement is verified for displacement at failure load (δR) 

when developing model identification in service phase. However, when considering this 

model, a smaller improvement on failure load is obtained. Therefore, the most accurate 

model is that given by model identification until failure load. This confirms the obtained 

results for beam 1. 
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Table 6.12. Failure load (FR) and corresponding vertical displacement (δR) (beam 1). 

Numerical model 
Failure load Displacement 

Value [kN] Error [%] * Value [mm] Error [%] * 

Nominal values 19.99 16.22 122.66 5.50 

Model identification 
Service 21.06 11.74 105.03 19.08 

Failure 23.26 2.51 119.79 7.71 

* Comparing with the real failure load and correspondent displacement. 

Table 6.13. Failure load (FR) and corresponding vertical displacement (δR) (beam 2). 

Numerical model 
Failure load Displacement 

Value [kN] Error [%] * Value [mm] Error [%] * 

Nominal values 17.18 18.97 262.76 9.71 

Model identification 
Service 17.41 17.88 244.06 1.90 

Failure 20.04 5.47 273.70 14.28 

* Comparing with the real failure load and correspondent displacement. 

6.5. Characterization tests 

6.5.1. Concrete material 

The concrete in composite beams is a lightweight LC50/55 [48]. Some parameters that 

represent the stress-strain law curve were determined through characterization tests. 

Respectively, the compressive strength (flc) was obtained by uniaxial compression 

tests [136], the elasticity modulus (Elc) by specific compression tests [109], and both the 

concrete tensile strength (flt) and fracture energy (Glf) by fracture energy tests [155]. 

Additional tests were developed to determine the concrete over-dry density. It was obtained 

a mean value of 1811.5 kg/m3 which confirmed the initial estimation. 

The concrete specimens were produced at same time of corresponding beam and later 

tested at same date. The same mixture was used for every specimen but as casting was 

developed in different dates, slight variations on concrete properties were expected. Each 

cylinder from uniaxial compressive tests presents 300 mm of height and 150 mm of 

diameter (Figure 6.15a). Identical dimensions were adopted for tested cylinders to determine 

the elasticity modulus (Figure 6.15b). Each beam from fracture energy test present, as 

dimensions, 850 mm of length by 100 mm of height and 100 mm of width. A notch with 
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25 mm of depth and 5 mm of thickness was executed in each proof. These beams, with a 

span of 800 mm were submitted to a middle span point load until failure (Figure 6.15c). 

   

a) b) c) 

Figure 6.15. Laboratory tests [188]: a) uniaxial compression test; b) modulus of elasticity test; 

c) fracture energy test. 

Compressive tests on cylinders proved that the compressive strength evolution in time is not 

significant, especially from 28 days. Two reasons explain this fact, respectively, the used 

cement CEM I 52.5 R, which confers high initial strength to concrete, and a lightweight 

aggregate characteristic referred by many authors [17]. Accordingly, it was considered on 

this study all values obtained from concrete cylinders with 28 days or more. It were used for 

such analysis the results from 203 different tests for compressive strength. 

For elasticity modulus a similar conclusion was obtained. In fact, for the first days of concrete 

age this value tends to grow faster but, after 28 days of age, it tends to stabilize, growing 

slower. Accordingly, it was considered on this analysis all tests developed in concrete 

cylinders with 28 days or more. However, in this situation, the number of developed tests is a 

little lower. It was respectively considered the results from 186 tests. 

Both tensile strength and fracture energy present a reduced evolution in time. This is 

specially verified for concrete specimens with 28 days or more. Consequently, all tests 

performed in specimens with an age equal or higher than 28 days were considered. 

Accordingly, the results from 5 fracture energy tests were adopted on this analysis. 

A statistical analysis was then developed for each parameter. Both mean and standard 

deviation value were determined (Table 6.14). A bias value, which represents the ratio 

between the experimental and the nominal value, is also presented for each variable. 

Obtained values are close to one, which means that obtained data is close to nominal value. 

However, this is not verified for fracture energy (Glf) as obtained values are lower than the 

nominal ones. Coefficients of variation (CV) are all less than 10% which indicates that the 
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variability of such parameters is small. The correlation coefficients (ρij) between measured 

parameters were also determined. Such values are presented in Table 6.15. 

Table 6.14. Concrete parameters. 

Parameter Nominal 
value 

Mean value (µ) * Standard deviation (σ) 

Elasticity modulus (Elc) [GPa] 25.09 24.81 (0.99) 2.23 

Tensile strength (flt) [MPa] 3.67 3.78 (1.03) 0.16 

Compressive strength (flc) [MPa] 58.00 58.32 (1.01) 4.97 

Fracture energy (Glf) [N/m] 91.75 78.42 (0.86) 1.83 

* Bias factor is presented between brackets. 

Table 6.15. Correlation coefficients (ρij) in concrete. 

 Elc flt flc Glf 

Elc 1.00 * 0.70 * 

flt * 1.00 * 0.79 

flc 0.70 * 1.00 * 

Glf * 0.79 * 1.00 

* These parameters present no correlation as they were determined by different laboratory tests. 

6.5.2. Steel material 

In order to characterize used steel material in stud connectors, reinforcement bars and 

laminated profile, uniaxial tensile tests were performed [139]. Tested specimens were 

sampled from the same stud connectors, reinforcement bars and laminated steel profile, 

used in push-out tests and in composite beams. 

Due to the small size of headed studs (13 mm diameter), no experimental testing was done 

for steel properties of this connecting devices. However, it was considered the obtained 

values from tested studs with diameters of 19, 22 and 25 mm. The same occurred with 

reinforcement bars. In fact the diameter of ϕ3.80 was too small to be tested and, tests were 

so developed with diameter of ϕ5. 8 specimens of studs (Figure 6.16a), 3 of reinforcement 

bars (Figure 6.16b), and 3 of laminated steel profile (Figure 6.16c) were tested. 

Some parameters that represent the stress-strain law curve were determined through these 

characterization tests. In respect to stud connectors, it is only present the results concerning 

the ultimate strength. These values will characterize the tensile strength (ft) parameter used 

in interface model. A statistical analysis was developed for each parameter and the 
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respective mean and standard deviation were obtained. Results are presented on Table 

6.16, 6.18 and 6.20. A bias value, which represents the ratio between the experimental and 

the nominal value, is also presented. The correlation coefficients (ρij) between measured 

parameters were also determined. Results are given on Table 6.17 and 6.19. 

   

a) b) c) 

Figure 6.16. Laboratory tests [188]: a) stud; b) reinforcement; c) steel profile. 

Obtained values indicate that bias factors are higher than one. This confirms that used 

material is of better quality than expected in design. Obtained CV values are, in general, 

lower than 5% which indicates a small variation of these properties. A higher CV of 12.50% is 

obtained for steel profile hardening modulus. 

Table 6.16. Steel parameters (laminated profile). 

Parameter Nominal value Mean value (µ) * Standard deviation (σ) 

Yield strength (σy,p) [MPa] 275.00 335.67 (1.22) 9.10 

Hardening modulus (Hp) [GPa] 1.04 0.72 (0.69) 0.09 

* Bias factor is presented between brackets. 

Table 6.17. Correlation coefficients (ρij) in steel (laminated profile). 

 σy,p Hp 

σy,p 1.00 0.63 

Hp 0.63 1.00 

Table 6.18. Steel parameters (reinforcement). 

Parameter Nominal value Mean value (µ) * Standard deviation (σ) 

Yield strength (σy,l) [MPa] 500.00 583.41 (1.17) 8.02 

Ultimate strength (σu,l) [MPa] 540.00 606.06 (1.12) 8.32 

* Bias factor is presented between brackets. 
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Table 6.19. Correlation coefficients (ρij) in steel (reinforcement). 

 σy,l σu,l 

σy,l 1.00 0.60 

σu,l 0.60 1.00 

Table 6.20. Steel parameters (stud connectors). 

Parameter Nominal value Mean value (µ) * Standard deviation (σ) 

Tensile strength (ft) [MPa] 450.00 567.57 (1.26) 18.95 

* Bias factor is presented between brackets. 

6.5.3. Push-out tests 

Several authors developed push-out tests with steel headed stud connectors in the past few 

years [8, 60, 61]. These tests allows for a rigorous analysis on the shear connection behavior 

by assessing the load-slip relation until failure and the respective failure mechanisms. 

Obtained failure mode for stud connectors are by shear failure of used connector, by local 

concrete crushing or by pull-out of a concrete cone. 

Valente [188] developed push-out tests to study different connection types. This test tries to 

simulate the transfer of shear forces at the steel to concrete interface of composite beams. At 

this point it is only described and presented the results from standard push-out tests (POST) 

on headed studs [50]. 

The geometry of tested specimens was the same. It was only considered specimens with 

13 mm stud diameter as this is the diameter which is used in tested composite beams 

(Figure 6.17a). The specimens, presented at Figure 6.18a, consists of two lightweight 

concrete slabs held in vertical position, and of a steel HEB260 profile positioned between 

them, with welded studs concreted inside the slab. The slabs present as dimensions 

450 mm x 450 mm x 100 mm. Two layers of ϕ5 reinforcement bars were embedded in 

concrete slab. Figure 6.17b and c gives a scheme of tested specimens. 

Shear failure on studs is identified on all tested specimens. The behavior until failure 

between tested specimens is identical. It is characterized by an initial stiffer behavior, 

followed by a plastic behavior, with a constant or slow increasing load capacity. The 

maximum load values are very similar between developed tests. The lightweight concrete 

slabs were observed for identification of crack pattern. There is spread cracking around the 

stud position (Figure 6.18b). There is also some horizontal cracking between the two studs 
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positioned at same horizontal level. Studs achieve important deformation before failure. No 

cracking is observed at exterior face of concrete slab. 

The first important result measured in these tests is the maximum applied load. This value, 

divided by the number of similar connectors in each specimen, corresponds to the maximum 

applied load (per connector) (Pmax). Five different tests were respectively developed. 

Obtained mean is of 56.74 kN and standard deviation of 1.73 kN. Then, different values of 

this parameter are generated randomly, considering a Normal PDF and, by taking into 

account equation (6.7), different cohesion values are also obtained. 

 

  

a) b) c) 

Figure 6.17. Push-out tests (mm) [188]: a) headed stud configuration; b) and c) specimen 

geometry for POST tests. 

 
 

a) b) 

Figure 6.18. Laboratory tests [188]: a) testing frame; b) failure pattern on concrete slab. 

The second important result is the connection stiffness (k) which is defined as a relation 

between the percentage of maximum applied load (per connector) and the correspondent 

slip value (s). These values are determined assuming an elastic behavior of connector until a 
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percentage of maximum applied load (per connector) is reached (X is variable), through 

equation (6.23) [188], 

( )
max maxmax % %% X P X Pk X P P s=  (6.23)

It is verified that all specimens present an elastic behavior until around 0.60 Pmax. In this 

situation it was used 12 results for a % of maximum applied load between 0.40 and 0.65. A 

mean of 196.01 kN/m and a standard deviation of 22.80 kN/m were obtained. Then, different 

values of this parameter are generated randomly, considering a Normal PDF and, by taking 

into account expression (6.10), different tangent stiffness values are also obtained. 

Table 6.21 and 6.22 presents the results from this analysis for both beams, respectively, with 

total (beam 1) and partial connection (beam 2). As the considered value of maximum applied 

load (per connector) (Pmax) and of connection stiffness (k) is the same, the main difference 

between both beams consists in the number of studs in half span. 

Table 6.21. Interface parameters (beam 1). 

Parameter Nominal 
value 

Mean value (µ) * Standard deviation (σ) 

Shear stiffness (KTT) [MPa] (per mm) 12.2(2) 10.89 (0.89) 1.27 

Cohesion (c) [MPa] 2.95 3.15 (1.07) 0.09 

* Bias factor is presented between brackets. 

Table 6.22. Interface parameters (beam 2). 

Parameter Nominal value Mean value (µ) * Standard deviation (σ) 

Shear stiffness (KTT) [MPa] (per mm) 6.1(1) 5.44 (0.89) 0.63 

Cohesion (c) [MPa] 1.47 1.58 (1.07) 0.05 

* Bias factor is presented between brackets. 

6.6. Probabilistic analysis 

At this point a deterministic numerical model was developed and calibrated according to 

obtained experimental data by using a model identification procedure. The next step of this 

methodology consists in determining a reliable probabilistic numerical model that provides a 

PDF for resistance [118, 120, 121]. This curve may be further used for structural safety 

analysis, in which it is compared to a loading PDF [33, 123]. This analysis will be important to 

help engineers in any decision regarding structural safety. 
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The resistance curve of composite beams is obtained by considering the randomness of 

some parameters, as those related to concrete slab (material and geometry), steel profile 

(material and geometry) and interface between them. Used parameters were those 

considered to be critical from previous sensitivity analysis. This uncertainty is introduced in 

the probabilistic analysis by using a specific PDF for each parameter. The most used PDF 

are the Normal ones. In some situations, for which the parameters cannot assume negative 

values, a Lognormal PDF should be used instead. Those curves are defined by mean (µ) 

and standard deviation (σ) value. In this case, these values are based either in experience, 

when the information about the studied parameter is few, or in bibliography. 

In respect to lightweight concrete parameters the existent information is few, since this 

material is recently used in civil engineer structures. The work of Leming [102], of 

Nowak et al. [135], of Valum and Nilsskog [190] and the results from the European Research 

Project EuroLightCon [51] are important sources of the needed information. For steel 

material, at laminated profile, and for slab and steel profile geometry the Probabilistic Model 

Code [93] indicates the needed values. Finally, for the stud maximum load capacity the 

present information is rare due to the fact of this capacity being dependent from used 

concrete, from connector material and from developed welding procedures. Therefore, a 

decision, based in experience, presents a very important role. Nevertheless, the work of 

Roik et al. [159] is considered. 

In some situations, when there is complementary data, the values of these parameters may 

be updated through a Bayesian inference approach [15, 118, 120, 121]. This approach is 

detailed described in chapter three. In this case, the updating procedure is based in collected 

data from material (concrete and steel) and steel to concrete interface tests. The Bayesian 

inference was developed by considering both informative and non-informative (Jeffrey’s) 

prior. Considered posterior PDF is the one that presents the lowest standard deviation. 

Once each critical parameter PDF is defined, the next step consists in random generation of 

these parameter values to be used in a further probabilistic numerical analysis. This 

procedure is based in a random sampling technique designated by Latin Hypercube 

sampling (LHS) [144]. This procedure is detailed described at chapter four. Obtained results 

are a set of computed values that can be statistically processed and adjusted to a Normal 

PDF. 

The beam behavior is strictly monitored during the whole analysis. Such procedure consists 

in evaluating if each measured load for a specific displacement is within the numerical 

95% confidence interval. An index-i is then used to study this. Another index, indicated as 
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index-p, is used to evaluate the accuracy of obtained resistance PDF [118, 120]. A 

description of these indexes is provided at chapter four. 

A Normal and Lognormal PDF were considered for material, geometric and physic properties 

of these beams. The mean values are the nominal ones or those obtained from model 

identification in service phase and until failure load. The adopted coefficients of variation 

were the same of previous sensitivity analysis. Those values are indicated on Table 6.23. 

Table 6.23. Parameter values (beam 1). 

Parameter 
Nominal value * Model identification (service) * Model identification (failure) * 

µ σ µ σ µ σ 

Elc [GPa] 25.09 (24.81) 2.51 (2.20) 30.00 (24.81) 3.00 (2.20) 23.71 (24.81) 2.37 (2.20) 

flt [MPa] 3.67 (3.78) 0.73 (0.28) 3.67 (3.78) 0.73 (0.28) 3.56 (3.78) 0.71 (0.28) 

flc [MPa] 58.00 (58.31) 5.80 (5.02) 58.00 (58.31) 5.80 (5.02) 59.19 (58.31) 5.92 (5.02) 

Glf [N/m] 91.75 (78.33) 9.18 (7.13) 91.75 (78.33) 9.18 (7.13) 91.18 (78.33) 9.12 (7.13) 

εlc [‰] 2.20 0.22 2.20 0.22 2.69 0.27 

wld [m] 1.50*10-3 0.15*10-3 1.50*10-3 0.15*10-3 1.51*10-3 0.15*10-3 

Es,p [GPa] 210.00 10.50 230.00 11.50 215.65 10.78 

σy,p [MPa] 275.00 (337.61) 13.75 (37.75) 275.00 (337.61) 13.75 (37.75) 297.98 (337.61) 14.90 (37.75) 

c [MPa] 2.95 (3.12) 0.37 (0.10) 2.95 (3.12) 0.37 (0.10) 3.00 (3.08) 0.38 (0.10) 

bweb [mm] 4.40 0.09 4.20 0.08 5.22 0.10 

bfl,sup [mm] 64.00 1.28 63.00 1.26 63.95 1.28 

bslab [mm] 350.00 35.00 348.63 34.86 353.83 35.38 

hfl,inf [mm] 6.60 0.13 7.60 0.15 6.64 0.13 

hweb [mm] 106.80 2.14 106.04 2.12 106.89 2.14 

hfl,sup [mm] 6.60 0.13 6.60 0.13 7.21 0.14 

hslab [mm] 60.00 6.00 61.26 6.13 62.14 6.21 

* Bayesian inference values are presented between brackets. 

In such Table, and between brackets, it is presented the results from a Bayesian inference 

procedure. In this situation, both materials (concrete and steel) and the interface parameter 

cohesion were updated. In a general way, the Bayesian updating provided mean results 

close to the nominal values and those from model identification. Exceptions are the concrete 

fracture energy (Glf) and steel profile yield strength (σy,p). Moreover, and with exception of 

steel profile yield strength (σy,p), for which obtained experimental data is far from numerical 
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results, the Bayesian inference procedure reduced the standard deviation values. The 

Jeffrey’s prior is used in almost all situations, except for interface cohesion (c) in model 

identification until failure. 

Table 6.24 indicates the parameter values for beam 2, respectively, for material, geometric 

and physic properties. A Normal and Lognormal PDF were considered for those parameters. 

The mean values are the nominal ones or those from model identification in service phase 

and until failure load. Considered coefficients of variation are the same as those used in 

previous sensitivity analysis. In the same table, and between brackets, are indicated the 

Bayesian inference values. In a general way, obtained results are similar to those for beam 1. 

In this situation, the steel profile yield strength (σy,p), from model identification until failure 

load, is reduced with Bayesian inference. In this situation, the conjugate informative prior is 

used. In the other cases the Jeffrey’s prior is used. 

Table 6.24. Parameter values (beam 2). 

Parameter 
Nominal value * Model identification (service) * Model identification (failure) * 

µ σ µ σ µ σ 

Elc [GPa] 25.09 (24.81) 2.51 (2.21) 30.00 (24.81) 3.00 (2.21) 26.73 (24.81) 2.67 (2.21) 

flt [MPa] 3.67 (3.78) 0.73 (0.28) 3.67 (3.78) 0.73 (0.28) 3.16 (3.78) 0.63 (0.28) 

flc [MPa] 58.00 (58.31) 5.80 (5.02) 58.00 (58.31) 5.80 (5.02) 58.93 (58.31) 5.89 (5.02) 

Glf [N/m] 91.75 (78.33) 9.18 (7.13) 91.75 (78.33) 9.18 (7.13) 91.67 (78.33) 9.17 (7.13) 

εlc [‰] 2.20 0.22 2.20 0.22 2.80 0.28 

wld [m] 1.50*10-3 0.15*10-3 1.50*10-3 0.15*10-3 1.71*10-3 0.17*10-3 

Es,p [GPa] 210.00 10.50 216.51 10.83 199.75 9.99 

σy,p [MPa] 275.00 (337.61) 13.75 (37.75) 275.00 (337.61) 13.75 (37.75) 350.00 (342.81) 17.50 (24.63) 

c [MPa] 1.47 (1.56) 0.18 (0.07) 1.47 (1.56) 0.18 (0.07) 1.55 (1.56) 0.19 (0.07) 

bweb [mm] 4.40 0.09 4.80 0.10 4.79 0.10 

bfl,sup [mm] 64.00 1.28 63.74 1.27 63.81 1.28 

bslab [mm] 350.00 35.00 354.91 35.49 349.56 34.96 

hfl,inf [mm] 6.60 0.13 7.60 0.15 6.50 0.13 

hweb [mm] 106.80 2.14 106.92 2.14 106.86 2.14 

hfl,sup [mm] 6.60 0.13 6.60 0.13 6.60 0.13 

hslab [mm] 60.00 6.00 59.49 5.95 59.85 5.99 

* Bayesian inference values are presented between brackets. 
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Table 6.25 indicates the used correlation values. Inside brackets are presented the real 

values, obtained from characterization tests. These values are used in the analysis 

considering the Bayesian inference. It is verified, in a general way, that real correlations are 

not as strong as it was predicted in theory. 

Table 6.25. Correlation coefficients (ρij). 

 Elc flt flc Glf Es,p σy,p 

Elc 1.00 0.70 0.90 (0.70) * 0.50 0.00 0.00 

flt 0.70 1.00 0.80 0.90 (0.79) * 0.00 0.00 

flc 0.90 (0.70) * 0.80 1.00 0.60 0.00 0.00 

Glf 0.50 0.90 (0.79) * 0.60 1.00 0.00 0.00 

Es,p 0.00 0.00 0.00 0.00 1.00 0.80 

σy,p 0.00 0.00 0.00 0.00 0.80 1.00 

* Real values are presented between brackets. 

During the probabilistic analysis it was evaluated the applied load for each measured and 

computed quarter and middle span displacement. In Figure 6.19 and 6.20 are presented the 

results that correspond to a situation of nominal parameter values, respectively, for beam 1 

and 2 models. Obtained index-i were, respectively, of 89.10% (beam 1) and 

91.59% (beam 2), for quarter span, and of 89.75% (beam 1) and 92.65% (beam 2), for 

middle span displacement. Obtained values are high which indicate that most of measured 

points fall into computed confidence interval. 

  

a) b) 

Figure 6.19. Nominal values (beam 1) without Bayesian inference: a) quarter span; b) middle 

span. 

The application of a Bayesian inference procedure to nominal data values lead to the results 

presented in Figure 6.21 and 6.22. In this situation obtained index-i were of 94.18% (beam 1) 

and 96.07% (beam 2), for quarter span and, of 95.73% (beam 1) and 96.73% (beam 2), for 
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middle span displacement. These values are higher than those presented before, which 

indicates an increase on the accuracy of both models due to Bayesian inference. 

In Figure 6.23 and 6.24 are presented the results with values from model identification in 

service phase. It is important to mention that, for this situation, excellent results were 

obtained for index-i, respectively, 94.31% (beam 1) and 94.74% (beam 2) for quarter span, 

and of 94.56% (beam 1) and 94.28% (beam 2) for middle span displacement. By comparing 

with obtained results with nominal parameter values it is possible to conclude that there is an 

improvement on the accuracy of numerical model with model identification. 

  

a) b) 

Figure 6.20. Nominal values (beam 2) without Bayesian inference: a) quarter span; b) middle 

span. 

  

a) b) 

Figure 6.21. Nominal values (beam 1) with Bayesian inference: a) quarter span; b) middle 

span. 
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a) b) 

Figure 6.22. Nominal values (beam 2) with Bayesian inference: a) quarter span; b) middle 

span. 

  

a) b) 

Figure 6.23. Model identification (service) (beam 1) without Bayesian inference: a) quarter 

span; b) middle span. 

  

a) b) 

Figure 6.24. Model identification (service) (beam 2) without Bayesian inference: a) quarter 

span; b) middle span. 

Figure 6.25 and 6.26 indicate obtained results for the situation of data values obtained from 

modal identification in service phase, but taking into consideration the Bayesian inference 

procedure. Obtained index-i were of 95.73% (beam 1) and 94.76% (beam 2) for quarter 
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span, and of 95.95% (beam 1) and 95.28% (beam 2) for middle span displacement. In this 

situation the inference increased the accuracy of obtained models. 

Figure 6.27 and 6.28 indicate the results obtained by considering data values from model 

identification until failure load. The index-i were of 94.56% (beam 1) and 95.55% (beam 2), 

for quarter span, and of 93.76% (beam 1) and 96.62% (beam 2), for middle span 

displacement. It was verified that both models provided, in this situation, excellent results, 

and, with exception of beam 1 for middle span displacement, an increase on its accuracy is 

obtained with model identification. 

The application of a Bayesian inference procedure to data values determined by model 

identification until failure load provided the results presented in Figure 6.29 and 6.30. For this 

situation the index-i were of 96.02% (beam 1) and 97.10% (beam 2), for quarter span, and of 

96.74% (beam 1) and 97.59% (beam 2), for middle span displacement. An increase on its 

accuracy is obtained with inference, for all analysed beams. Obtained models, and by 

comparing with the others, are the most accurate ones. 

  

a) b) 

Figure 6.25. Model identification (service) (beam 1) with Bayesian inference: a) quarter span; 

b) middle span. 

  

a) b) 

Figure 6.26. Model identification (service (beam 2) with Bayesian inference: a) quarter span; 

b) middle span. 
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a) b) 

Figure 6.27. Model identification (failure) (beam 1) without Bayesian inference: a) quarter 

span; b) middle span. 

  

a) b) 

Figure 6.28. Model identification (failure) (beam 2) without Bayesian inference: a) quarter 

span; b) middle span. 

  

a) b) 

Figure 6.29. Model identification (failure) (beam 1) with Bayesian inference: a) quarter span; 

b) middle span. 
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a) b) 

Figure 6.30. Model identification (failure) (beam 2) with Bayesian inference: a) quarter span; 

b) middle span. 

In this case, a set of failure load (FR) values is obtained. A Normal PDF, which represents the 

structural resistance, is then adjusted to this set. Obtained resistance PDF parameter values 

for beam 1 are indicated in Table 6.26. On same table, the index-p values are also 

presented. 

Table 6.26. Failure load (FR) (beam 1). 

Numerical model µ [kN] σ [kN] Index-p [%] 

Nominal values 19.00 2.21 89.60 

Nominal values + Bayesian inference 22.76 2.50 96.63 

Model identification (service) 20.47 1.76 92.04 

Model identification (service) + Bayesian inference 23.87 2.28 97.84 

Model identification (failure) 21.89 2.56 93.76 

Model identification (failure) + Bayesian inference 24.42 2.49 99.60 

From the analysis of obtained results, it is possible to conclude that: (1) The mean value 

increases as model identification procedures are applied; (2) The Bayesian inference 

approach increases the mean and standard deviation values of obtained resistance PDF, 

with exception of model identification until failure load for which the standard deviation value 

is decreased; (3) The index-p value is increased with the application of model identification 

techniques; (4) The index-p value also increases with the application of Bayesian inference 

procedure. It is possible to state that index-p presents very good results, being, several 

times, higher than 90%, which indicates accurate resistance PDF. The resistance PDF 
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obtained from model identification until failure load with Bayesian inference presents the 

highest index-p values. Results from nominal data values are the poorer ones. 

Table 6.27 indicates the obtained resistance PDF parameter values for beam 2. On same 

table, the index-p values are also presented. From the analysis of obtained results, it is 

possible to conclude that: (1) The mean value is increased with the application of model 

identification; (2) The Bayesian inference approach increases the mean value, and 

decreases the standard deviation; (3) The index-p value is increased with the application of 

model identification; (4) Also, this parameter value is increased with the application of 

Bayesian inference procedure. It is possible to say that index-p presents very good results, 

being, several times, higher than 90%. This indicates that obtained resistance PDF are 

accurate. The resistance PDF obtained from model identification until failure load with 

Bayesian inference presents the highest index-p values. Results from nominal data values 

are the poorer ones. 

Table 6.27. Failure load (FR) (beam 2). 

Numerical model µ [kN] σ [kN] Index-p [%] 

Nominal values 16.49 2.02 88.54 

Nominal values + Bayesian inference 19.14 1.58 95.00 

Model identification (service) 18.16 1.96 91.75 

Model identification (service) + Bayesian inference 20.86 1.55 96.80 

Model identification (failure) 19.35 2.54 95.49 

Model identification (failure) + Bayesian inference 19.56 0.92 98.56 

Figure 6.31 represents the resistance PDF (FR), for beam 1, whose parameter values (mean 

and standard deviation) are presented in Table 6.28. An important concern is that the use of 

a Bayesian procedure increases the resistance PDF mean and standard deviation value for 

nominal values and those from model identification until service. For model identification until 

failure, only an increase on mean value is verified. The same way, model identification 

revealed an increase on mean value. 
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Figure 6.31. Failure load (FR) (beam 1). 

Figure 6.32 indicates resistance PDF (FR), for beam 2, whose parameter values (mean and 

standard deviation) are presented in Table 6.28. An important concern is that the use of a 

Bayesian procedure increases the resistance PDF mean and diminishes the standard 

deviation value for both nominal values and those from model identification. The same way, 

model identification revealed an increase on mean value. 

 

Figure 6.32. Failure load (FR) (beam 2). 

6.7. Safety assessment 

Obtained resistance model is then used in a simple example of safety assessment [121]. 

This example consists in assessing the studied beam safety in a residential building, 

Figure 6.33. In this case, the resistance model is given by the failure load model (FR), whose 

parameters are provided at Table 6.26 and 6.27, respectively, for beam 1 and 2. A model is 
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obtained for each analysis, respectively, considering the nominal values and those from 

model identification in service phase and until failure load. 

 

Figure 6.33. Residential building. 

In order to compare resistance and loading curves it is necessary to transform the obtained 

resistance model into a model for maximum bending moment at middle span (MR), through 

equation (6.24), 

( )2 2 2R RM F L= ⋅ ⋅  (6.24)

This curve depends from the beam span (L) which is, in this situation, of 4.50 m. A Normal 

PDF is obtained for resistance. 

Then, it is necessary to determine the loading curve. In order to do that it is important to 

determine the slab span. Such span will define the influence length of analysed beam (Linf) 

which is, in this example, of 4.00 m. In this situation, loading is divided in self-weight and live 

load. All the other permanent loads were neglected. The self-weigh (w) is then computed 

through equation (6.25), 

conc conc steel steelw A Aγ γ= ⋅ + ⋅  (6.25)

being γconc and γsteel the concrete and laminated steel profile specific weight, and Aconc and 

Asteel the concrete and laminated profile area. These parameters present a Normal PDF, 

according to JCSS [93]. Therefore, self-weight presents a Normal PDF. 

Live loads are divided into sustained, or long-term (qlt), and intermittent, or short term (qst), 

according to JCSS [93]. These PDF are respectively defined by a Gamma and an 

exponential PDF [93]. Table 6.28 provides the mean and standard deviation of each PDF. 

The applied load (p) is the sum of self-weight with both long and short-term live load 

component multiplied by the influence length of the beam, through equation (6.26), 
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inf inflt stp w q L q L= + ⋅ + ⋅  (6.26)

Table 6.28. Probabilistic models. 

Parameter PDF µ σ 

γconc [kN/m3] Normal 17.17 0.69 

γsteel [kN/m3] Normal 77.00 0.77 

qlt [kN/m2] Gamma 0.30 0.45 

qst [kN/m2] Exponential 0.30 0.57 

The further step consists in computing the maximum bending moment (MS), through 

equation (6.27), 

( )2 8SM p L= ⋅  (6.27)

Obtained values are then adjusted to a Lognormal PDF. In order to compare resistance and 

loading curves a limit state function (Z) is defined, through equation (6.28), 

R SZ M M= −  (6.28)

This limit state is exceeded when loading is higher than resistance. The further steps consist 

in generating several values for each curve, according to each PDF parameters, and to 

register the number of values in which this limit state is exceeded in relation to the total 

number of evaluated points. The failure probability (Pf) is determined through equation (6.29), 

( 0)fP P Z= ≤  (6.29)

The reliability index (β) is then obtained, considering this value. A detailed description of how 

this index is computed is given in chapter four. On Table 6.29 and 6.30 are represented both 

failure probabilities and reliability indexes for all models, considering beam 1 and 2. 

In this example, the building is of class 2 (apartment building – risk to life, given a failure, is 

medium or economic consequences are considerable) and of class B (normal cost of safety 

measure), according to JCSS [93]. Therefore, a target reliability index (βtarget) of 3.30 is 

recommended. 

The following conclusions are then obtained for beam 1: (1) when considering the nominal 

values or those from model identification in service phase the beam is classified as unsafe; 

(2) when the values from model identification until failure are taken into account, the beam is 

considered to be safe; (3) obtained results for all models, considering a Bayesian inference 
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approach, indicate that the beam is classified as safe. This means that the probabilistic 

assessment revealed a capacity reserve which was not accounted in design. 

Table 6.29. Safety assessment (beam 1). 

Numerical model pf β 

Nominal values 1.05 * 10-3 3.07 

Nominal values + Bayesian inference 2.90 * 10-4 3.44 

Model identification (service) 5.44 * 10-4 3.27 

Model identification (service) + Bayesian inference 1.82 * 10-4 3.57 

Model identification (failure) 4.06 * 10-4 3.34 

Model identification (failure) + Bayesian inference 1.57 * 10-4 3.60 

Table 6.30. Safety assessment (beam 2). 

Numerical model pf β 

Nominal values 2.53 * 10-3 2.81 

Nominal values + Bayesian inference 8.32 * 10-4 3.15 

Model identification (service) 1.31 * 10-3 3.00 

Model identification (service) + Bayesian inference 4.51 * 10-4 3.31 

Model identification (failure) 1.04 * 10-3 3.08 

Model identification (failure) + Bayesian inference 6.46 * 10-4 3.22 

In respect to beam 2 the following conclusions are pointed out: (1) all the evaluated models 

are considered to be unsafe; (2) the β-value increases with model identification; (3) this value 

also increases with Bayesian inference; (4) the highest β-value is obtained when considering 

the values from model identification in service phase with Bayesian inference. Both beams 

present the same tendency. Two differences are respectively identified: (1) beam 2 presents 

lower β-values; (2) the highest β-value is obtained for different models. 

6.8. Conclusions 

This chapter provides the probabilistic assessment of two composite beams which were 

loaded at laboratory up to failure. The first beam presents a total connection while the other 

is partially connected. All other properties are maintained. Consequently, while the former 

presents a typical failure mode of bending with concrete crushing and yielding of steel profile, 

the latter presents a combined failure mode of bending and connection. 
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In this analysis, a nonlinear numerical model was developed and then simplified, without 

changing too much its accuracy. A sensitivity analysis is further executed to identify the most 

important properties, which can be due to material, geometric and physic source. Some of 

these parameters were characterized with detail at laboratory. 

The developed numerical model is then adjusted to experimental data, through a model 

identification procedure. To perform that an optimization technique, based in the evolutionary 

strategies algorithm in its plus version, was used. Both modelling and measurement errors 

were considered in the algorithm stopping criteria. This procedure was developed for both 

service and failure region. 

Further, a nonlinear probabilistic analysis was executed. In order to do so it was defined a 

PDF for each critical parameter. Such parameters are then updated with complementary 

data from laboratory characterization tests, by using a Bayesian inference approach. In some 

cases, the statistical uncertainty was reduced with this process. A probabilistic analysis, 

based in a LHS procedure, was further executed. 

From the probabilistic analysis it was obtained an updated resistance PDF for applied load, 

for both analysed beams. It was then possible to probabilistically evaluate the experimental 

behavior of each tested beam by comparing those curves with obtained experimental data. 

These resistance PDF models are then used in a safety assessment example. 

Some conclusions were obtained from probabilistic assessment: (1) model identification until 

failure load gives very good results (errors less than 10% for failure load); (2) model 

identification in service phase gives good results only for service region. Obtained results for 

failure region are bad. Complementary tests are thus recommended in this situation; (3) the 

most accurate models from a probabilistic analysis are those with values from model 

identification until failure load. Therefore the application of model identification before any 

probabilistic analysis is recommended; (4) Bayesian inference also increases the accuracy of 

probabilistic models. Therefore it is recommended the use of this procedure when 

complementary data is available. 
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7 Sousa River Bridge 

7.1. Introduction 

The developed probabilistic assessment framework is now tested with a case study that 

consists on a composite bridge submitted to a performance load test. Accordingly, within this 

chapter some aspects of Sousa River Bridge, the chosen structure, are described. The 

developed load test is also presented with reference to some important issues concerning 

applied loads, introduced load cases, monitoring schemes, etc. 

A numerical model is developed in order to evaluate the structural behavior, by comparing 

obtained results with those from load test. This model is, in a first phase, calibrated with 

measured data. The main concerns regarding the numerical model development, such as 

used mesh, geometry definition, etc., are provided. A sensitivity analysis is then developed, 

both in service and failure region, to identify the most important parameters. 

Once the numerical model is calibrated, the next step consists in applying the probabilistic 

assessment algorithm. This methodology, detailed described in chapter four, is divided in two 

modules, the model identification and the probabilistic analysis. During the identification 

procedure the numerical parameters are automatically adjusted in order that obtained results 

best fit the experimental data. This updating procedure is performed until a certain limit, 

given by the tolerance criterion, is attained. This value results from a weighted combination 

of measurement and modeling errors. 
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Once updated, a probabilistic numerical model is obtained by introducing randomness in 

input parameters, from material, geometry and physic sources. The statistical analysis of 

obtained results permits to determine the resistance probabilistic density function (PDF), 

necessary for safety assessment purposes. A description of used loading PDF is also 

provided. 

Moreover, complementary tests are developed to increase the reliability of some input 

parameters. A description of these tests and obtained results are also given. An updated 

resistance PDF is computed through the use of a Bayesian inference procedure and 

considering obtained data from these tests. Obtained results from this case study will also 

enhance the advantages of using the probabilistic assessment framework. 

7.2. Load test 

7.2.1. Description 

The Sousa river bridge was designed by Lisconcebe, S.A. [104, 105, 106] and constructed 

by Teixeira Duarte, S.A. [183]. This bridge belongs to the highway A43, Gondomar to Aguiar 

de Sousa (IC24), which is operated by BRISA, S.A. (Figure 7.1). 

 

Figure 7.1. Sousa river bridge, overview [99]. 

This bridge presents a total length, between abutments, of 202.00 m – from 6+722.50 km to 

6+924.50 km - corresponding to four spans of 44.00 m and an extreme span, near abutment 

A2, of 26.00 m, as indicated in Figure 7.2. 

 

Figure 7.2. Sousa river bridge, side view (m) [105]. 
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This bridge consists in two adjacent and independent structures, with identical typology, 

spaced of 3.00 m, each with a traffic flow, according to Figure 7.3. This figure also shows 

that this bridge is located in a straight zone of the highway. 

 

Figure 7.3. Sousa river bridge, horizontal plan (m) [105]. 

The continuous deck is composed by a precast reinforced concrete slab supported in two 

longitudinal metallic I-beams, as represented in Figure 7.4. The carriageway presents a 

transversal dimension of 7.50 m, an interior shoulder of 1.00 m, an external shoulder of 

3.00 m, sidewalks (including cornice) and safety guards of 1.60 m, which result in a total of 

13.10 m. 

 

Figure 7.4. Sousa river bridge, transversal profile (m) [105]. 

The longitudinal girders present a constant height of 2.00 m, with exception to the extreme 

span in which it varies with deck inclination. These beams are made of welded steel profiles, 

constituted by individual plates. Top and bottom flange widths are constant within the whole 

bridge with, respectively, 700 mm and 840 mm. The web and flange thickness varies 

longitudinally in order to accomplish the relevant design criteria [105]. Therefore, the top 

flange thickness varies between 20 mm and 100 mm, the bottom flange thickness varies 
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between 25 mm and 110 mm, and the web thickness varies between 14 mm and 20 mm. 

Figure 7.5 shows the fabricated metallic girders already assembled on site. 

 

Figure 7.5. Metallic girders, overview (provided by Teixeira Duarte, S.A.). 

Transversally, these girders are fixed by stringers, separated of 5.50 m in 44.00 m span, and 

of 5.20 m in 26.00 m extreme span (Figure 7.6 and 7.7). The stringers are formed by 

laminated steel profiles welded to half steel profiles of the same type (IPE600). These half 

profiles are thus welded to the longitudinal girder flanges. The reinforced concrete slab, the 

metallic girders and the stringers constitute a transversal and rigid framework. 

 

Figure 7.6. Metallic girders, horizontal plan (m) [105]. 

Additionally, and for web stability reasons, transversal reinforcements consisting in vertical 

plates, separated of 1/3 of the distance between stringers, are introduced. At support region, 

in both columns and abutments, the web reinforcements are interior and exterior, in order to 

resist to concentrated reactions. The stringers at support region are welded profiles from 

individual plates with different dispositions, whether it is an interior or an extreme support. 

These dispositions can be identified in both Figure 7.6 and 7.7. 
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Figure 7.7. Metallic girders, side view (m) [105]. 

The precast reinforced concrete slabs are placed along the deck. Nelson headed studs [131], 

welded to the top flange of metallic girders, are used to establish the connection between 

these concrete slabs and the steel girders. There are three distinct zones of higher, medium 

and lower density of studs, as it can be verified in Figure 7.6. In order to guarantee 

waterproofing, neoprene joints are introduced in the slab / girder interface, eliminating thus 

the existent friction between these two elements. 

The deck is supported in columns and abutments through pot bearings (Figure 7.4). 

Longitudinally, it is fixed in all columns and moves over the abutments. Transversally, both 

columns and abutments give support to the deck. Expansion joints, that allow the bridge to 

move under temperature and other environmental effects, are introduced in the bridge 

extremities. 

Columns are executed in reinforced concrete, presenting a maximum height of 35.00 m 

(average of 25.00 m). A constant I-section is adopted, with maximum dimensions 

2.50 m x 4.80 m, being the highest value in transversal direction. Figure 7.8, indicates the 

dimensions of C1 and C4, and C2, while Figure 7.9 gives the dimensions of C3 (identified in 

Figure 7.2). A capital is introduced on the top of each column, in order to increase the section 

dimensions. The foundations are rigid, except in C3 for which, six short piles of 1.20 m 

diameter, connected to a pile cap block, are used. 

The abutments are independent from the rest of the structure (Figure 7.2 and 7.3). They are 

constituted by a shear beam that is responsible of supporting the deck. This beam is 

continuously connected to parallel walls of constant thickness and variable width that 

increase with depth. A rigid foundation is used for the abutments. A transition slab is placed 

between the bridge and the rest of the highway. A view of the inferior side of the bridge deck 

(C4 and A2) is shown in Figure 7.10. 

The pavement is betuminous with 20 mm thickness of regularization layer and 30 mm 

thickness of abrasion layer. It is also considered when in construction other equipment’s 
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such as rain sewage, cable infrastructure, safety guards, etc. This equipment’s are 

represented at Figure 7.4. 

a) b) 

Figure 7.8. Columns (m) [105]: a) C1 and C4; b) C2. 

 

Figure 7.9. Column C3 (m) [105]. 

 

Figure 7.10. Sousa River Bridge, inferior side view (provided by Teixeira Duarte, S.A.). 

The foundations, abutments and columns are erected following traditional procedures. The 

steel deck is manufactured by Socometal, S.A. [171] and incrementally launched through the 
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abutment A1, as it can be seen in Figure 7.5. Afterwards, the precast concrete slabs, 

developed by Mota Engil, S.A. [183], are placed over the metallic girders, according to Figure 

7.11. These panels are connected through reinforcement bars and cast in-situ concrete. 

A negative is left during construction between precast slabs, according to Figure 7.12. The 

precast slabs will be placed on the steel beams and the position of the negatives 

corresponds to the position of the studs in the steel beam. After placing, concrete is cast on 

the negatives, in order to establish the connection between concrete panels and the steel 

beams. 

 

 

a) b) 

Figure 7.11. Precast concrete slabs [105]: a) side view; b) horizontal plan. 

 

Figure 7.12. Connection between precast and cast in-situ concrete [105]. 

Concrete of class C30/37 [48] was used for bridge foundations, abutments and columns, and 

concrete of class C40/50 [48] was used for precast slabs and cast in-situ concrete. A 500 NR 

SD [48] steel is adopted for the reinforcement bars, which are perfectly embedded in the 

precast concrete slab. S355 [49] steel is considered for metallic girder. Used headed studs 

are produced in S235 J2 G3 + C450 [131] steel. 

7.2.2. Obtained results 

In order to evaluate the bridge behavior before its exploitation phase, a load test was 

performed by LABEST [99]. The vertical displacement and the temperature were measured 

through an automatic data acquisition system, during the test. The temperature was 
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measured at both inferior and superior side of the deck. All transducers are electric based 

and were tested and calibrated in laboratory, before load test. 

The vertical displacement measurements were made with reference to the ground level. 

Linear variable differential transformers (LVDTs) were used for that. Such transducers 

present a precision of 0.05 mm (maximum value) for a measurement field of ± 25 mm (full 

scale), corresponding to a linearity of 0.10%. Six transducers were installed, two in the 

upward and four in the downward bridge. In this study, only this latter structure is considered. 

Accordingly, two transducers were installed at span A1 - C1, designated by VD1 and VD2, 

and other two at span C1 - C2, indicated as VD3 and VD4. Figure 7.13 shows a horizontal 

plan of used instrumentation. 

A data acquisition system was used to register the signal in a continuous way from LVDTs 

and from environmental temperature sensors. A frequency of 10 Hz was designed for 

registering the vertical displacement data. The observation post is implemented closer to 

section A1 (Figure 7.13). This post is directly connected to a notebook in order to minimize 

any human error. A cable was used for each displacement transducer. Therefore two 

transducers, present a cable length of 17 m (VD1 and VD2), while the other two, present 

66 m of cable length (VD3 and VD4. A description of installed LVDTs is presented at 

Table 7.1. 

 

Figure 7.13. Instrumentation, horizontal plan [99]. 

Table 7.1. Installed LVDTs [99]. 

Bridge span A1-C1 

P
os

iti
on

 

[m] 

17 

Downward bridge Electric LVDT 

VD1 

VD2 

Bridge span C1-C2 66 
VD3 

VD4 
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The load test was developed with four typologically identical vehicles (four axles), as 

represented at Figure 7.14. These vehicles are loaded with sand in order to obtain a total 

weight that is close to 32 ton. 

 

Figure 7.14. Four axles vehicle used in the load test [99]. 

Accordingly, while the two front axles support 40% (20% each) of the load, the two rear axles 

support 60% (30% each) of the total weight. A detailed description of each vehicle weight 

and distance between axles is indicated at Table 7.2. 

Table 7.2. Identification of used vehicles [99]. 

 
 Vehicles 

A B C D 

d1 [m] 1.35 1.40 1.40 1.35 

d2 [m] 2.25 2.20 2.30 2.50 

d3 [m] 2.10 2.10 2.00 1.85 

Total weight [ton] 32.82 32.36 32.68 32.92 

In this situation, three different load cases (LC1 - LC3) will be studied. In each situation the 

vehicles are immobilized in the bridge deck a time period of around 5 minutes. This period, 

between load cases, should be large enough to eliminate any vibration but, at same time, not 

too high, in order to minimize environmental effects. The exact position where the vehicles 

will stop is marked in the pavement. These load cases were defined in order to obtain the 

maximum value of each measured parameter. Table 7.3 indicates the main results to be 

expected from each load case. 

In this situation, the considered load cases correspond to four vehicles in order to take the 

advantage of transversal symmetry. Figure 7.15a indicates a horizontal plan of how these 

vehicles are separated from each other, and Figure 7.15b shows these four vehicles 

positioned in the bridge deck. 
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Table 7.3. Main results to be expected [99]. 

Structure Load case Number of vehicles Objective 

Downward bridge 

LC1 4 Maximum displacement at A1 - C1 

LC2 4 Maximum displacement at C1 - C2 and rotation at C1 

LC3 4 Maximum rotation at C2 

The three load cases are schematically represented in Figure 7.16 to 7.18. In LC1 

(Figure 7.16) the front axles of the two front vehicles are positioned at 26.00 m distance from 

section A1, at span A1 - C1. 

  

a) b) 

Figure 7.15. Distance gap (m): a) between vehicles; b) in the bridge deck [99]. 

 

Figure 7.16. Load case 1 [99]. 

In LC2 (Figure 7.17) the front axles of the two front vehicles are positioned at 31.00 m 

distance from section C1, at span C1 - C2. 

 

Figure 7.17. Load case 2 [99]. 
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In LC3 (Figure 7.18) the front axles of the two front vehicles are positioned at 31.00 m 

distance from section C2, at span C2 – C3. 

 

Figure 7.18. Load case 3 [99]. 

The three load cases were developed in a continuous basis on the way Gondomar to Aguiar 

de Sousa. Some images of the developed test are shown in Figure 7.19. The zero reference 

value was measured when no vehicle was applied to the bridge. This measurement is 

developed at the beginning of the test, in the defined interval between each load case and in 

the final phase of the test. 

The data acquisition for unload situation permits to observe and control the temperature 

effect on the structure and in the monitoring system along the test. It was verified that the 

temperature was kept almost constant. This information permit to conclude that the 

temperature effect in registered values may be neglected [99]. 

  

a) b) 

Figure 7.19. Load test: a) transversal profile; b) overview [99]. 

The obtained values for the four displacement transducers and for the three load cases are 

indicated in Table 7.4. The maximum vertical displacement is registered for the extreme span 

A1 - C1. As the span dimension and the applied load are identical for all load cases, this fact 

might be due to an inferior restriction of this span rotation. 

Additionally, it is verified a variation between pairs of transducers positioned at same section 

of the span (lower than 5%). These differences might be due to load disposition along the 

carriageway, deck geometry, or variations in metallic girder connections. Nevertheless an 
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identical structural response is observed for all transducers. The results from the load test 

report indicate that the structural behavior is admissible and that the constructed bridge is in 

agreement with the design project [99]. 

Table 7.4. Registered vertical displacements [99]. 

Load Case 
VD1 VD2 VD3 VD4 

[mm] [mm] [mm] [mm] 

LC1 16.01 14.48 -4.11 * -3.51 * 

LC2 -4.10 * -3.84 * 14.00 13.40 

LC3 1.86 1.84 -3.47 * -2.92 * 

* Negative value corresponds to a displacement in upward direction. 

7.3. Numerical analysis 

In order to evaluate the bridge behavior, a numerical model is developed with ATENA® [23, 

24] nonlinear structural analysis software. This model is executed according to the design 

project of Lisconcebe, S.A. [104, 105, 106], and calibrated with obtained results from load 

test. A comparison is thus established with experimental data and each simplification is 

evaluated from a modeling error perspective. 

7.3.1. Numerical model 

Before developing the nonlinear structural model, a test with an elastic structural analysis 

software is performed in order to validate some simplifications. In this situation, and for the 

three considered load cases, a comparison is made with the structural behavior of a bridge 

with five spans of 44.00 m, which corresponds to a total length of 220.00 m, and with a 

constant metallic girder height of 2.00 m. Obtained results provide an error that is lower than 

1%, which validates this simplification. 

A 2D plane stress model is then developed in ATENA® [23, 24]. This model intends to 

represent the tested bridge. The bridge transversal section, constituted by two metallic 

girders and a precast reinforced concrete slab, is symmetric (Figure 7.4). In this situation, the 

three load cases are also symmetric, as can be checked from Figure 7.16 to 7.18. Therefore, 

when developing the structural model, it is possible to take advantage of symmetry. 

Accordingly, it is considered a width of 6.55 m for the precast slab (half of the full width, 

13.10 m). An important consideration is the variation of the effective width along the bridge 

due to the shear lag effect [50]. Therefore, in the first and final 11.00 m of the bridge length, a 

deck width of 6.08 m is considered. 
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The precast slab presents a non-uniform geometry. In fact, its height varies from 0.25 m, at 

internal shoulder and slab middle span, to 0.40 m above the metallic girder (Figure 7.4). The 

width is constant, in the first 0.25 m, and then it progressively diminishes, in the subsequent 

0.15 m, to 0.70 m. This non-uniformity is considered in the numerical model by introducing 

several layers. As the number of layers increase, the model gets close to reality, but it also 

gets more complex. Therefore, two rectangular layers are proposed and considered to be a 

good compromise between accuracy and efficiency. Each layer presents the same 

height (hslab) as before, varying its width (bslab) in a way that area and inertia remain 

unchanged. This approximation does not guarantee the same gravity center (YG). An error 

lower than 7% is computed, which is not considered relevant to the global bridge behavior. 

The obtained results are indicated in Table 7.5. 

Table 7.5. Precast concrete slab equivalent section. 

Length bslab hslab Area Inertia 
YG * 

Real Equivalent  Error 

[m] [m] [m] [m2] [m4] [m] [m] [%] 

0 – 11 
2.76 0.15 

1.99 2.21 * 10-2 2.49 * 10-1 2.33 * 10-1 6.38 
6.30 0.25 

11 – 209 
2.95 0.15 

2.11 2.35 * 10-2 2.50 * 10-1 2.33 * 10-1 6.91 
6.68 0.25 

209 – 220 
2.76 0.15 

1.99 2.21 * 10-2 2.49 * 10-1 2.33 * 10-1 6.38 
6.30 0.25 

* This value is determined considering the interface section as reference. 

The reinforcement bars were considered to be completely embedded in the precast concrete 

slab. Therefore, the number of bars was counted and the corresponding area was divided in 

layers, in the numerical model. Two layers were respectively considered at the upper side of 

the concrete slab and three layers were defined in the lower side. Obtained reinforcing steel 

area (As,l) per layer is given at Table 7.6. 

The position of each layer in the numerical model is also given at Table 7.6. In order to 

obtain such position it becomes necessary to compute the superior concrete cover 

(csup = 6.33 * 10-2 m). It is assumed the same cover for superior and inferior layer of the 

upper side of concrete slab. For lower side of concrete slab, the total area of each layer is 

distributed in its gravity center. 
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Table 7.6. Precast concrete slab reinforcement. 

Layer 
Length As,l Position 

[m] [cm2] [m] 

1 
0.00 – 11.00; 209.00 – 220.00 97.77 (34ϕ16+26ϕ12) 2.34 

11.00 – 209.00 104.10 (36ϕ16+28ϕ12) 2.34 

2 
0.00 – 11.00; 209.00 – 220.00 49.13 (16ϕ16+15ϕ12) 2.21 

11.00 – 209.00 55.42 (18ϕ16+17ϕ12) 2.21 

3 0.00 – 220.00 25.14 (8ϕ16+8ϕ12) 2.12 

4 0.00 – 220.00 12.57 (4ϕ16+4ϕ12) 2.08 

5 0.00 – 220.00 12.06 (6ϕ16) 2.02 

The metallic I-beam is constituted by welded plates. It presents a constant height of 2.00 m, 

along the bridge, except for the extreme span in which it presents a slightly variation. 

However, and according to previous simplification, this value is considered to be constant in 

the whole bridge. The bottom and top flange presents, respectively, widths of 700 and 

840 mm. The flanges and web thickness varies along the bridge. These values are given at 

Table 7.7. 

All these sections were classified according to EN-1993-1-1 [49]. For negative bending 

moment they all present a web of class 2 or 3. For these classes, the full length of the web is 

considered to be effective. For positive bending moment, all the cross sections present a 

web of class 4. Thus it is necessary to evaluate the neutral axis position. This analysis 

provided the information that its location is always in the concrete slab, which means that the 

web is in tension and thus there is no risk of buckling. Accordingly, the web effective length 

may be considered as total within the whole bridge. In respect to flanges, all sections are of 

class 2 or 3. 

Once a plane stress model is adopted, it becomes costly to compute all variations in flanges 

thickness, according to Table 7.7. This would imply a horizontal line along the bridge for each 

thickness. Therefore, the adopted mesh size should be very small in order to maintain an 

appropriate edge length ratio. Additionally, the number of macro elements would increase 

considerably. This would imply a high computational cost which is not appropriate for a 

probabilistic assessment algorithm. 

Therefore, and in order to overcome this problem, it was used only a macro element, to 

simulate the girder web, with a total height of 2.00 m, and with a thickness variation (bweb) 
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according to Table 7.7. Moreover, horizontal steel bars, embedded in this macro element, 

were introduced to simulate the girder flanges. The diameter of each bar is computed in a 

way that the real and equivalent flange area (Afl,sup and Afl,inf) and section gravity center 

remain unchanged. In this situation, obtained maximum error in moment of inertia is of 

10.52%. Table 7.8 present the corresponding results. 

Table 7.7. Thickness variation along the bridge. 

Section 
Length 

Thickness [mm] 

Section 
Length 

Thickness [mm] 

Top 
Flange 

Bottom 
Flange Web Top 

Flange 
Bottom 
Flange Web 

[m] [mm] [mm] [mm] [m] [mm] [mm] [mm] 

1 0.00 – 33.90 30 40 16 1 121.90 – 123.90 30 40 16 

2 33.90 – 35.90 40 60 16 6 123.90 – 125.90 45 55 16 

3 35.90 – 37.90 65 75 18 7 125.90 – 128.95 65 75 16 

4 37.90 – 40.95 75 85 18 8 128.95 – 135.05 85 90 18 

5 40.95 – 47.05 100 110 20 7 135.05 – 138.10 65 75 16 

4 47.05 – 50.10 75 85 18 6 138.10 – 140.10 45 55 16 

3 50.10 – 52.10 65 75 18 1 140.10 – 165.90 30 40 16 

2 52.10 – 54.10 40 60 16 2 165.90 – 167.90 40 60 16 

1 54.10 – 79.90 30 40 16 3 167.90 – 169.90 65 75 18 

6 79.90 – 81.90 45 55 16 4 169.90 – 172.95 75 85 18 

7 81.90 – 84.95 65 75 16 5 172.95 – 179.05 100 110 20 

8 84.95 – 91.05 85 90 18 4 179.05 – 182.10 75 85 18 

7 91.05 – 94.10 65 75 16 3 182.10 – 184.10 65 75 18 

6 94.10 – 96.10 45 55 16 2 184.10 – 186.10 40 60 16 

1 96.10 – 98.10 30 40 16 1 186.10 – 220.00 30 40 16 

9 98.10 – 121.90 25 30 14 - - - - - 

The web reinforcement at both abutments and columns, necessary to concentrate reactions 

(Figure 7.6 and 7.7), is simulated by considering an equivalent thickness at each web macro 

element, in a length and height that corresponds to reality. This value is computed in a way 

that the reinforcement area is kept unchanged, being then added to the real web thickness. 
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Accordingly, at A1 and A2 the thickness value increases to 53.00 mm, at C1 and C4 to 

48.20 mm and at C2 and C3 to 46.20 mm. 

Moreover, a vertical steel bar, embedded in web macro element, is introduced in each 

support section to simulate an existent steel plate (Figure 7.6 and 7.7). The diameter of this 

bar is computed in a way that the total area remains unaltered. Therefore, a diameter of 

114.30 mm and of 66.10 mm is obtained for the steel bar, respectively, at abutment and at 

column support section. 

In order to avoid any local instability, the web is reinforced at bridge span with vertical 

stringers, respectively, a half IPE600 spaced of 5.50 m and a steel plate spaced of 1/3 of 

5.50 m (Figure 7.6 and 7.7). In order to model these elements, a vertical steel bar, 

embedded at web macro element, is considered. The diameter of this bar is computed in a 

way that the total area remains unchanged. Therefore, a diameter of 99.65 mm and of 

71.36 mm is respectively considered for the half IPE600 and for the steel plate. 

Table 7.8. Metallic girder equivalent section. 

Section 

Equivalent diameter Area YG Inertia 

Top 
Flange 

Bottom 
Flange 

Top 
Flange 

Bottom 
Flange 

Top 
Flange 

Bottom 
Flange Total * Real Equivalent * Error 

[mm] [mm] [m2] [m2] [m] [m] [m] [m4] [m4] [%] 

1 161.64 204.86 2.10 * 10-2 3.36 * 10-2 1.99 2.00 * 10-2 8.59 * 10-1 6.05 * 10-2 6.24 * 10-2 3.16 

2 186.64 250.90 2.80 * 10-2 5.04 * 10-2 1.98 3.00 * 10-2 8.06 * 10-1 7.94 * 10-2 8.34 * 10-2 5.10 

3 237.58 280.17 4.55 * 10-2 6.30 * 10-2 1.97 3.75 * 10-2 8.84 * 10-1 1.09 * 10-1 1.16 * 10-1 6.72 

4 255.20 298.26 5.25 * 10-2 7.14 * 10-2 1.96 4.25 * 10-2 8.88 * 10-1 1.22 * 10-1 1.31 * 10-1 7.81 

5 294.25 338.89 7.00 * 10-2 9.24 * 10-2 1.95 5.50 * 10-2 8.96 * 10-1 1.53 * 10-1 1.69 * 10-1 10.52 

6 197.97 240.22 3.15 * 10-2 4.62 * 10-2 1.98 2.75 * 10-2 8.71 * 10-1 8.11 * 10-2 8.49 * 10-2 4.69 

7 237.93 280.51 4.55 * 10-2 6.30 * 10-2 1.97 3.75 * 10-2 8.81 * 10-1 1.08 * 10-1 1.15 * 10-1 6.82 

8 271.68 306.91 5.95 * 10-2 7.56 * 10-2 1.96 4.50 * 10-2 9.10 * 10-1 1.31 * 10-1 1.43 * 10-1 8.51 

9 147.77 177.63 1.75 * 10-2 2.52 * 10-2 1.99 1.50 * 10-2 8.93 * 10-1 4.93 * 10-2 5.05 * 10-2 2.34 

* This value is computed considering the girder web. 

The structure is supported in two abutments and four columns (Figure 7.2). The vertical 

displacement is restricted in these positions. While at abutments the horizontal displacement 

is free, at columns it is supposed to be fixed. However, this restriction is not total due to the 

deformability of the column, the pot bearing and the foundation. 
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In order to study this effect, these columns are grouped in two sets according to their height 

and configuration (Figure 7.8 and 7.9), respectively, C1 and C4 (set 1) and C2 and C3 

(set 2). A model is thus developed for each set, in an elastic structural analysis software. 

Each vertical bar is divided in two or three segments, according to each set configuration. 

The geometry (area and inertia) and the material properties (C30/37, Ec=33GPa) are the real 

values. These vertical bars are restricted at their bottom in all directions, considering that 

foundation is perfect. A unitary load is horizontally applied at their top, being then computed 

the correspondent horizontal displacement. 

Therefore, in ATENA® [23, 24] numerical model, vertical restrictions are considered in all 

supports (including abutments). A horizontal spring is also considered at each column. The 

horizontal spring constant is the inverse of the computed horizontal displacement, with 

elastic structural analysis software. Accordingly, a value of k1 = 56.69 kN/m and of 

k2 = 9.93 kN/m is respectively obtained for the first and second set. In order to avoid stress 

concentration a steel plate, with a width equal to the metallic girder bottom flange (840 mm), 

is introduced at each support. 

In respect to materials, C40/50 [48] was adopted on both precast slabs and cast in-situ 

concrete. Figure 7.20a presents the stress-strain law for concrete. Both compressive strain at 

compressive strength (εc) and critical compressive displacement (wd) are considered to be 

deterministic within the analysis. 

 
  

a) b) c) 

Figure 7.20. Stress-strain law: a) concrete; b) reinforcing steel; c) steel profile. 

Used reinforcement, embedded in precast concrete slab, is of class A 500 NR SD [48]. The 

stress-strain law for this material is shown at Figure 7.20b. The elasticity modulus (Es,l) is 

considered to be deterministic within the analysis. S355 [49] material was considered for 

metallic girder. Figure 7.20c indicates the stress-strain law for this material. In this situation, 

for plates with thickness lower than 50 mm it is used a S355J0, between 50 and 75 mm a 

S355J2, between 75 and 90 mm a S355K2, and between 90 and 110 mm a S355ML. For 

laminated steel profiles, S355J0 is used [44]. An elasticity modulus of 210 GPa (Es,p) was 
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considered for steel material. Such parameter is considered to be deterministic within the 

analysis. 

Used materials, concrete and steel, were modeled by an SBETA and a bilinear with 

hardening Von Mises material model, which are constitutive models of the ATENA® library 

[23, 24]. A biaxial stress failure criterion and a Von Mises yield criterion are respectively 

established. The nominal values, considered in numerical model, were those indicated at 

EN 1992-1-1 [48], for concrete and steel reinforcement, and in EN 1993-1-1 [49] for steel 

profile. Table 7.9, 7.10 and 7.11 present those values. 

Table 7.9. Material properties (precast slab and cast in-situ concrete). 

Parameter Mean value 

Elasticity modulus (Ec) [GPa] 35.00 

Tensile strength (ft) [MPa] 3.50 

Compressive strength (fc) [MPa] 48.00 

Fracture energy (Gf) [23, 24] [N/m] 87.50 

Compressive strain at compressive strength (εc) [‰] 2.00 

Critical compressive displacement (wd) [23, 24] [m] 5.00 * 10-4 

Table 7.10. Material properties (reinforcing steel). 

Parameter Mean value 

Elasticity modulus (Es,l) [GPa] 205.00 

Yield strength (σy,l) [MPa] 560.00 

Limit strength (σu,l) [48] [MPa] 644.00 (k = 1.15) 

Limit strain (εlim,l) [48] [‰] 80.00 

The connection between precast concrete slab and metallic girder is guaranteed by headed 

studs, produced in S235 J2 G3 + C450 steel [131], with yield strength (σy) of 350 MPa, limit 

strength (σu) of 450 MPa and limit strain (εlim) of 18 %, and by cast in-situ concrete. An 

interface material model, based in a Mohr-Coulomb failure criterion with tension cut-off, is 

used to describe such behavior. This law is given in terms of shear (τ) and normal 

stresses (σ). According to Figure 7.21a, the initial failure corresponds to the moment when 

cohesion (c) value is reached. After stress violates this condition, the relation between these 

stresses is given by the dry friction (ϕ) which is considered to be very low. 
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Table 7.11. Laminated steel profile material [44]. 

No. Thickness Yield strength (σy,p) Limit strength (σu,p) Limit strain (εlim,p) Hardening Modulus (Hp) 

[mm] [MPa] [MPa] [%] [MPa] 

1 ≤ 16 355 470-53 20-22 696.10 

2 ≤ 40 345 470-53 20-22 743.90 

3 ≤ 60 335 470-53 19-21 831.60 

4 ≤ 80 325 470-53 18-20 928.60 

5 ≤100 315 470-530 18-20 981.40 

6 ≤ 110 295 450-600 18-18 1287.80 

For shear stresses, and for positive slip (∆uT), this law is characterized by an initial shear 

stiffness (KTT), until the Mohr-Coulomb criterion is reached, and then it presents a minimum 

shear stiffness (KTT,min) that is 1% of the initial value (Figure 7.21b). For normal stresses, and 

for positive uplifts (∆uN), it is defined by an initial normal stiffness (KNN) until the tensile 

strength (ft) is reached. Once attained, the normal stress is reduced to 0, being this law 

defined by a minimum normal stiffness (KNN,min) that is 1% of KNN (Figure 7.21c). 

 

  

a) b) c) 

Figure 7.21. Interface law: a) normal and shear stress; b) shear stress and slip; c) normal 

stress and uplift. 

There are three distributions of headed studs along the bridge, respectively, low (6 studs), 

medium (8 studs) and high (10 studs) density (Figure 7.6). The space between each layer of 

studs, 0.50 m, is the same. The length of each region is defined according to the shear 

stress diagram [105]. The medium density is used to avoid an abrupt transition from low to 

high density region. As this region is very short, it will not be considered in this model. 

Accordingly, the definition of the length of each region is presented at Table 7.12. 
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In respect to normal behavior, the interface is defined by normal stiffness (KNN) and tensile 

strength (ft) parameters. Both these parameters are assumed to present high values in order 

to guarantee the composite action. These values are considered to be deterministic within 

the whole analysis. 

Considering the shear behavior, the interface is characterized by shear stiffness (KTT) and 

cohesion (c) parameters. The cohesion value depends from the stud maximum load capacity 

(PRm). This value is determined according to EN 1994-1-1 [50] by using equation (7.1) and 

(7.2), 

20.80 4 102.07Rk uP f d kNπ= ⋅ ⋅ ⋅ =  (7.1)

20.29 123.87Rk ck cmP d f E kNα= ⋅ ⋅ ⋅ ⋅ =  (7.2)

being d the stud shank diameter (19 mm), hsc the stud height (150 mm), fu the limit strength 

of stud material (450 MPa) [131],  α a parameter that depends from the ratio hsc / d = 7.89, 

Ecm the concrete elasticity modulus (Table 7.9) and fck the characteristic concrete 

compressive strength (40 MPa). The characteristic stud maximum load capacity 

(PRk = 102.07 kN) is the minimum value of (7.1) and (7.2). The mean value (PRm = 113.41 kN) 

is then obtained by dividing the previous value per 0.90 [50]. By considering this value it is 

then possible to determine the cohesion value, through equations (7.3), (7.4) and (7.5), 

( )
( )

max

int

stud imum load capacity number of studs
c

width of the erface length

⋅
=

⋅
 (7.3)

( )
( )
113.41 10

3.24
0.70 0.50

c MPa
⋅

= ≅
⋅

 (7.4)

( )
( )

113.41 6
1.94

0.70 0.50
c MPa

⋅
= ≅

⋅
 (7.5)

A similar procedure is used to determine the shear stiffness. In order to obtain such 

parameter it is necessary to compute the stud stiffness value. However, this is extremely 

difficult to quantify as it depends from several factors. Accordingly, it was defined a value of 

325 kN/mm, based in experience. By taking this value into consideration it is then possible to 

determine the shear stiffness through equations (7.6), (7.7) and (7.8), 

( )
( )intTT

stud stiffness number of studs
K

width of the erface length

⋅
=

⋅
 (7.6)

( )
( )

2325.00 10
9285.71

0.70 0.50TTK kN m mm
⋅

= ≅
⋅

 (7.7)
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( )
( )

2325.00 6
5571.43

0.70 0.50TTK kN m mm
⋅

= ≅
⋅

 (7.8)

Table 7.13 summarizes the obtained values for interface properties, considering both 

situations of high and low density of headed studs. 

Table 7.12. Interface density region. 

Density 
Length 

Density 
Length 

[m] [m] 

High 0.00 – 8.50 High 120.75 – 123.50 

Low 8.50 – 32.75 Low 123.50 – 126.25 

High 32.75 – 44.00 High 126.25 – 132.00 

Low 44.00 – 49.75 Low 132.00 – 137.25 

High 49.75 – 52.50 High 137.25 – 140.00 

Low 52.50 – 55.25 Low 140.00 – 142.75 

High 55.25 – 77.25 High 142.75 – 164.75 

Low 77.25 – 80.00 Low 164.75 – 167.50 

High 80.00 – 82.75 High 167.50 – 170.25 

Low 82.75 – 88.00 Low 170.25 – 176.00 

High 88.00 – 93.75 High 176.00 – 187.25 

Low 93.75 – 96.50 Low 187.25 – 211.50 

High 96.50 – 99.25 High 211.50 – 220.00 

Low 99.25 – 120.75 - - 

In respect to mesh, quadrilateral elements with 0.21 m dimension size are used. Additionally, 

interface elements are used to simulate the steel to concrete connection and spring elements 

are chosen to simulate the horizontal support conditions. In order to simulate the 

reinforcement bars, nonlinear truss elements, embedded at concrete slab, are considered. 

These elements are also introduced to simulate the web reinforcements and both top and 

bottom flanges of metallic girder. A frame of obtained mesh is shown at Figure 7.22. 

The pavement was not considered as part of the structure but as a distributed load 

instead (ppav). In fact, it presents 0.05 m thickness, which means that in order to obtain an 

appropriate edge-length ratio a small mesh size should be used, requiring a high 

computational cost. Accordingly, two distributed loads of 6.50 kN/m and of 6.81 kN/m were, 
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respectively, computed considering the betuminous specific-weight (γpav = 22.50 kN/m3) and 

the pavement width for the initial and final 11.00 m (5.77 m) and for the rest of the bridge 

length (6.05 m), Figure 7.4. Concerning the bridge self-weight, it is adopted a concrete (γconc) 

and steel (γsteel) specific weight, respectively, of 24.00 kN/m3 and 77.00 kN/m3. An additional 

load of 7.85 kN/m, corresponding to the self-weight of secondary elements (i.e. guardrail and 

central reservation, Figure 7.4), is incorporated. 

Table 7.13. Interface properties. 

Parameter 
Value 

High density Low density 

Normal stiffness (KNN) [GPa] 1.00 * 104 1.00 * 104 

Shear stiffness (KTT) [MPa] (per mm) 9.29 * 103 5.57 * 103 

Tensile strength (ft) [MPa] 1.00 * 102 1.00 * 102 

Cohesion (c) [MPa] 3.24 1.94 

 

Figure 7.22. Finite element mesh. 

Additionally, single loads are introduced, a load per each axis, to simulate the load test 

vehicles (Figure 7.14). The load position varies according to load case. Three load cases are 

considered, respectively, with the front axis of the first vehicle positioned at a distance of 

26.00 m from A1, of 31.00 m from C1 and of 31.00 m from C2 (Figures 7.16 to 7.18). The 

load weight is distributed in a proportion of 40% - 60%, respectively, for front and rear axles. 

The total weight of each vehicle (to be converted into kN) and the distance between axles is 

indicated at Table 7.2. A total weight of 321.28 kN and of 320.20 kN is, respectively, 

considered to simulate the vehicles (A+C)/2 and (B+D)/2, Figure 7.15a. These vehicles are 

loading half of the bridge section considering the respective transversal symmetry. 

For each load step it is monitored the support reaction and the vertical displacement at same 

points of the monitoring plans (17 and 66 m, Figure 7.13). The structure is first loaded with 

ten steps, with a factor of 0.10, with self-weight only (including pavement), and then it is 

introduced the vehicle loading with ten steps, with a factor of 0.10. The difference between 

obtained displacements for step 20 (with self-weight and vehicles) and for step 10 (with self-
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weight only) is then computed. Accordingly, obtained vertical displacements may be, 

respectively, compared to experimental values, from Table 7.4. In order to develop this 

analysis, a Newton-Raphson algorithm is used. The main parameter values of this algorithm 

are indicated at Table 7.14. 

Then, this structure is loaded up to failure by adding more steps with a factor of 0.10, 

respectively, by increasing the vehicle loading. The number of necessary steps to carry the 

structure up to failure will depend on the considered load case and on previously defined 

structural parameter values. In this situation an arc-length algorithm is used in order to better 

evaluate the peak behavior. A description of main parameters of this algorithm is presented 

at Table 7.15. 

Table 7.14. Solution parameters (Newton-Raphson). 

Solution method Newton-Raphson 

Stiffness / Update Tangent / Each iteration 

Limit number of iterations 40 

Tolerance error 1.00 * 10-2 

Line search With iterations 

Table 7.15. Solution parameters (Arc-Length). 

Solution method Arc Length 

Stiffness / Update Tangent / Each iteration 

Limit number of iterations 40 

Tolerance error 1.00 * 10-2 

Arc length 

Method Consistently linearized 

Adjustment method Constant 

Load / Displacement ratio 0.20 

Line search With iterations 

Figure 7.23 presents the bridge vertical deformation for step 10 (self-weight). It is possible to 

detect a symmetric behavior, as expected, being the most critical sections those located at 

extreme spans. Those sections are positioned at interior support and at 40% of the span 

length, respectively, for negative and positive bending moment. These sections are 

considered to be critical as they present the highest stress values. 
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Figure 7.23. Bridge deformation (step 10). 

In Figure 7.24a it is provided, for the first span, the normal strain values. Localized cracking 

is detected at negative bending moment region. A maximum tensile strain of 1.03 ‰ is 

verified in this region, at top fibbers. Concrete slab and part of the metallic girder are in 

tension. The maximum compressive strain value, in metallic girder, is of 0.39 ‰. At positive 

bending moment region the concrete slab is in compression. A maximum tensile strain of 

0.64 ‰ is attained at metallic girder bottom fibers. Figure 7.24b indicates obtained values for 

interface tangential stresses. The analysis permit to verify that for positive bending moment 

region this value is of 0.66 MPa (low density) while for negative bending moment region this 

value is of 1.44 MPa (high density). Accordingly, these values are far from interface cohesion 

values (Table 7.13). 

  

a) b) 

Figure 7.24. Obtained results (step 10): a) normal strain; b) interface tangential stress. 

Figure 7.25 indicates the bridge deformation for step 20 and for load case 1, in which the 

vehicles are applied at first span (Figure 7.16). By comparing with Figure 7.23 it is possible to 

verify that bridge deformation is no longer symmetric, due to the asymmetry of applied load. 

Therefore, it is verified an increase in horizontal strain for the first span of the bridge. Critical 

sections are at interior support and at 40% of the span length. 
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Figure 7.25. Bridge deformation for load case 1 (step 20). 

At Figure 7.26a it is given the normal strains for critical span. It is verified an increase in 

cracking at negative bending moment region, above the support. For this section the 

maximum tensile strain at top fibers reaches 1.21 ‰. The concrete slab and part of the 

metallic girder are in tension. Compressive strain is only attained in the metallic girder, being 

its maximum value 0.45 ‰. For positive bending moment region, part of concrete slab is in 

compression and part is in tension, which means that neutral axis moved in upward direction. 

The maximum tensile strain at girder bottom fibers is of 0.76 ‰. Figure 7.26b presents 

obtained interface tangential stresses. It is verified a maximum value for positive bending 

moment region of 0.93 MPa (low density) and for negative bending moment region of 

1.47 MPa (high density), which are still lower than the interface cohesion values (Table 7.13). 

  

a) b) 

Figure 7.26. Obtained results for load case 1 (step 20): a) normal strain; b) interface 

tangential stress. 

At Figure 7.27 is represented the beam deformation for load step 70 and for load case 1. By 

comparing with Figure 7.25 it is possible to verify an increased deformation on the first bridge 

span, while all the other spans are released. Critical sections are those identified in previous 

step 20. 
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Figure 7.27. Bridge deformation for load case 1 (step 70). 

Figure 7.28a presents the normal strain values for critical span. In the support section the 

tensile strain in the concrete slab is of 1.41 ‰. The metallic girder is partly in tension and 

partly in compression, presenting a maximum compressive strain of 0.47 ‰. The maximum 

tensile strain is verified at positive bending moment region, at the metallic girder bottom 

fibbers. A value of 1.88 ‰ is obtained. The metallic girder is, in this region, completely in 

tension and the concrete slab is partly in compression and partly in tension. In this situation, 

localized cracking, due to concrete crushing, is detected at positive bending moment region. 

Figure 7.28b presents the interface tangential stresses. In this situation it is obtained a value 

for positive bending moment region of 1.37 MPa (lowest density) and for negative bending 

moment region of 2.20 MPa (highest density), which are closer to defined interface cohesion 

values (Table 7.13), than previously. 

  

a) b) 

Figure 7.28. Obtained results for load case 1 (step 70): a) normal strain; b) interface 

tangential stress. 

Figure 7.29 present the bridge deformation for step 186 (bridge collapse) and for load 

case 1. By comparing this figure with Figure 7.27, it is possible to verify a higher deformation 

at first span while all the others are being progressively released. Critical sections are the 

same as those identified at step 20 and 70. 
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Figure 7.29. Bridge deformation for load case 1 (step 186). 

Figure 7.30a presents the critical span normal strain values. Cracking in concrete slab is 

verified for both negative and positive bending moment region. In support section, the tensile 

strain is of 2.97 ‰, being the concrete slab completely in tension. The metallic girder is partly 

in tension and partly in compression, presenting a maximum compressive strain of 1.48 ‰. A 

maximum tensile strain of 11.87 ‰ is obtained in positive bending moment region. The 

metallic girder and a portion of the concrete slab are in tension, which indicates that neutral 

axis is positioned in top fibers. Figure 7.30b presents interface tangential stresses. It is 

verified a maximum value for positive bending moment region of 1.62 MPa (low density) and 

for negative bending moment region of 3.24 MPa (high density). This means that the 

cohesion value for high density region is attained (Table 7.13) and a redistribution of 

tangential stresses is produced. 

  

a) b) 

Figure 7.30. Obtained results for load case 1 (step 186): a) normal strain; b) interface 

tangential stress. 

The collapse mechanism is characterized by two plastic hinges, respectively, at column C1 

(step 70) and at 40% of the span length (step 186). Applied loads are redistributed from the 

first to the second hinge. It is important to notice that the numerical analysis stops, in this 

situation, for load step 186. A detailed analysis shows that reinforcement at negative bending 

moment region reaches, in this moment, its limit strain. Therefore, the redistribution capacity 

is over and the bridge failure is attained. A bending failure mode with concrete crushing, and 

yielding of both reinforcement bars and steel profile, is obtained. 
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Figure 7.31 presents obtained results for load case 1. The applied load, equal to the sum of 

all support reactions, is plotted against the obtained vertical displacements VD1* and VD2*, 

respectively, at 17 m and 66 m of the bridge length. These values correspond to VD1/VD2 

and to VD3/VD4 transducers, indicated at Figure 7.13. It is possible to verify an inversion in 

VD2* values as the vehicle load increases, which reverses previous displacement due to 

self-weight. 

Accordingly, the bridge presents an initial behavior, close to elastic, until the first hinge is 

formed. Then, applied stresses are redistributed to middle span region. The bridge stiffness 

is reduced but it still presents a high resistance capacity. This second phase ends with the 

materialization of the second hinge. During the third phase, the bridge presents a small 

increase in resistance capacity that is due to steel profile hardening. However, the increase 

in maximum load is less than 5%. This stage finishes with the attainment of the limit strain at 

reinforcement. 

 

Figure 7.31. Obtained results for load case 1. 

Figure 7.32 shows the obtained bridge deformation with load case 2, in which the vehicles 

are positioned in the second bridge span (Figure 7.17). In this situation the collapse 

mechanism is defined by three hinges, respectively, at column C1 and C2 (step 70) and at 

middle span (step 104). Applied loads are redistributed from negative to positive bending 

moment region. The numerical analysis stops, in this situation, for load step 104. A detailed 

analysis shows that reinforcement at negative bending moment region reaches, in this 

moment, its limit strain. Therefore, the redistribution capacity is over and the bridge failure is 

attained. A bending failure mode with concrete crushing, and yielding of both reinforcement 

bars and steel profile, is obtained. 
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Figure 7.32. Bridge deformation for load case 2 (step 104). 

Figure 7.33 presents obtained results, for load case 2. An inversion is verified in VD1* values 

as the vehicle load increases, which reverses previous displacement due to self-weight. 

Accordingly, the bridge presents an initial behavior, close to elastic, until the first hinges are 

formed, respectively, at column C1 and at column C2. These two hinges result in the 

diminishment of the bridge stiffness. Then, applied stresses are redistributed to middle span 

region. A third hinge appears at this region. Then the bridge presents a residual resistance 

capacity until its collapse, due to steel profile hardening. It is verified that the increase in 

maximum load is less than 5%. 

 

Figure 7.33. Obtained results for load case 2. 

Figure 7.34 shows the obtained bridge deformation with load case 3, in which the vehicles 

are positioned in the third bridge span (Figure 7.18). In this case the collapse mechanism is 

defined by three hinges, respectively, at column C2 and C3 (step 70) and at middle span 

(step 210). Applied loads are redistributed from negative to positive bending moment region. 

The numerical analysis stops for load step 210. A detailed analysis shows that reinforcement 

at negative bending moment region reaches its limit strain. Therefore, the redistribution 
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capacity is over and the bridge failure is attained. A bending failure mode with concrete 

crushing, and yielding of both reinforcement bars and steel profile, is obtained. 

 

 

Figure 7.34. Bridge deformation for load case 3 (step 210). 

Figure 7.35 presents obtained results, for load case 3. An inversion is verified in VD2* values 

with the increase in vehicle load, which reverses previous displacement due to self-weight. 

Accordingly, the bridge presents an initial behavior, close to elastic, until the first hinges are 

formed, respectively, at column C2 and at column C3. The bridge stiffness is then reduced. 

The applied stresses are redistributed to middle span region. A third hinge appears at middle 

of the bridge span. The bridge still presents a residual resistance capacity until its collapse, 

due to steel profile hardening. It is verified that the increase in maximum load due to 

hardening is less than 5%. 

 

Figure 7.35. Obtained results for load case 3. 

The analysis stops, for the three load cases, when the reinforcement limit strain at negative 

bending moment region is attained. Moreover, It is verified that the moment it stops vary with 

considered load case. It also varies with defined parameter values. In this situation, the 

developed model will be applied in a probabilistic analysis, considering different load cases, 
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for which the parameter values are randomly generated. Therefore, a maximum number of 

300 steps are established in order to account for all possibilities. 

Additionally, it is important to notice that within the probabilistic analysis it might appear a 

combination of parameter values that may lead to concrete or steel profile material failure. 

While for concrete material failure the nonlinear analysis software automatically stops, for 

steel profile this is not verified. In fact, it is important to notice that used model for metallic 

girder material (Figure 7.20c) presents an infinite hardening. Therefore, in this situation, the 

only way of determining the exact failure load is in post processing. However, a detailed 

study revealed that the possibility of this failure type is extremely low and thus, from a 

probabilistic point of view, the results from these models may be neglected. 

Table 7.16 presents VD1* and VD2* displacement values for calibrated model and for the 

three considered load cases. The error between numerical and experimental data, given at 

Table 7.4, is also computed for each situation. Obtained error for LC1, measurement VD1*, 

is of 16.86%, and for LC2, measurement VD2*, is of 4.58%. These results validate the 

developed model, as they are the most significant ones. It is important to notice that the 

developed numerical model is less stiff than the real structure. 

Other analyses were developed in order to justify some model simplifications. Therefore, and 

for each situation, both VD1* and VD2* displacement values and its difference from the 

reference model are respectively computed. Obtained results, errors and justifications are 

provided in Table 7.17. In this case the reference model is that previous described, whose 

results are indicated in Table 7.16. 

Table 7.16. Obtained numerical results. 

Load case 
VD1* Error VD2* Error 

[mm] [%] [mm] [%] 

LC1 17.77 16.86 -5.09 34.43 

LC2 -4.90 23.56 14.32 4.58 

LC3 1.40 24.32 -4.82 51.99 

* Negative value corresponds to a displacement in upward direction. 

The analysis presented in Table 7.17 permits to conclude that: (1) introducing more layers in 

reinforced concrete slab will decrease the edge-length ratio and will lead to a stiffer model. In 

order to overcome it, a small element size may be introduced but this will lead to a higher 

number of elements, increasing the computational cost. Therefore, a compromise between 

cost and accuracy is guaranteed by considering only two layers; (2) the error due to the 
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simulation of both metallic beam flanges with truss elements is negligible. As previous 

indicated the error in steel profile inertia presents a maximum of 10.52 % (Table 7.8), which 

is of minor importance when an overall analysis is developed. This simplification is therefore 

validated and obtained model becomes lighter; (3) when considering the medium density 

region at interface the model gets stiffer. However, this interface is located in a very short 

length (Figure 7.6), conducing thus to a higher computational cost. In order to keep the cost 

and accuracy compromise, the use of two interfaces is recommended; (4) the consideration 

of a pavement macro element slightly increases the bridge stiffness. However, the number of 

finite elements increases a lot which results in a higher computational cost. Therefore it is 

recommended not to consider this layer in order to establish a compromise between cost and 

accuracy; (5) removing the reinforcements at support sections will conduct to a less stiff 

model. In fact, these elements rigidify this region, increasing the rotation restriction. This 

effect becomes more relevant when evaluating the structural behavior up to failure. 

Therefore, these reinforcements should be considered in the numerical model; (6) removing 

the reinforcements at bridge span, slightly reduces the bridge stiffness. These elements are 

also important in an analysis up to failure load as they avoid any web instability. Therefore, it 

is recommended to include them on the numerical model; (7) results are practically the same 

either considering a quadrilateral or mixed finite element mesh, which means that the 

adopted element size is reasonable and that the finite element mesh, only composed by 

quadrilateral elements, is adequate. This validates the used finite element mesh. 

Table 7.17. Simplifications and modeling errors. 

Simplification Justification 
Error 

[%] 

(1) Introducing five reinforced concrete slab layers More stiff model 6.30 

(2) Introducing both top and bottom flanges macro elements No changes ≈ 0.00 

(3) Introducing medium density region at interface More stiff model 9.96 

(4) Introducing pavement macro element More stiff model 3.15 

(5) Removing web reinforcements at supports Less stiff model 5.23 

(6) Removing web reinforcements at bridge span Less stiff model 1.07 

(7) Introducing mixed mesh No changes ≈ 0.00 

With this model a good compromise between cost and accuracy is guaranteed. For one side 

it is possible to run the model in ATENA® console in less than five minutes, in service phase, 

and less than half an hour, until failure load, which is a reasonable time for the probabilistic 
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assessment algorithm. For the other side, the developed numerical model is validated as 

obtained results are close to load test data (Table 7.16). 

7.3.2. Sensitivity analysis 

A sensitivity analysis is performed to identify the critical parameters, or, in other words, those 

that present a high influence on the structural behavior. This analysis is developed for the 

three load cases (Table 7.3) and for both service and failure region. In this situation, model 

identification is only performed in service phase as obtained data from load test is in this 

region. However, the probabilistic analysis is developed up to failure. Therefore, the fitness 

function and failure load variation with each input parameter are respectively evaluated in the 

sensitivity analysis in service phase and until failure load. 

Studied parameters are related to material, geometry and physic sources. In order to perform 

the sensitivity analysis a standard deviation (σ) is respectively varied from each parameter 

mean value. An importance measure (bk) is then computed for each evaluated parameter. A 

detailed description of this measure is given in chapter four. If this value is equal or higher 

than 10% (blim), the parameter will be considered as critical. 

The analyzed parameters are 58, which are then grouped into 20, corresponding to: 

(1) concrete material - elasticity modulus (Ec), tensile strength (ft), compressive strength (fc) 

and facture energy (Gf); (2) reinforcing steel material - yield strength (σy,l), limit strength (σu,l) 

and strain (εlim,l); (3) laminated steel profile material - yield strength (σy,p) and hardening (Hp), 

which corresponds to six different profiles (Table 7.11); (4) steel to concrete interface - shear 

stiffness (KTT) and cohesion (c), corresponding to two different stud distributions (Table 7.13); 

(5) reinforced concrete slab dimensions - width (bslab) and height (hslab), which corresponds to 

two concrete layers (Table 7.5); (6) laminated steel profile dimensions - web thickness (bweb), 

corresponding to four different cases (Table 7.7), and both top (Afl,sup) and bottom (Afl,inf) 

flanges area, corresponding to nine different cases (Table 7.8); (7) reinforcing steel 

area (As,l), corresponding to five different cases (Table 7.6); (8) superior reinforcement 

concrete cover (csup) at top reinforced concrete slab layer; (9) concrete specific weight (γconc); 

(10) pavement weight (ppav), corresponding to two different values. All the other parameters 

are considered to be irrelevant for the sensitivity analysis. 

Table 7.18 and 7.19 indicate the evaluated parameters and, respectively, their coefficient of 

variations (CV) and standard deviations (σ), used to compute the importance measures. For 

some of these parameters, such values are provided in bibliography [93, 196]. However, for 

others, they are obtained in an alternative way: (1) the laminated steel profile hardening 

modulus (Hp), which is computed through the CV of yield strength, limit strength and limit 
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strain, see Table 7.11; (2) steel to concrete interface parameters (KTT and c), which are 

computed through the CV of concrete [48], headed stud material and geometry [131] 

parameters, through equations (7.1) to (7.8); (3) pavement self-weight (ppav), which is a 

combination of the CV of the pavement thickness and of betuminous specific weight. 

Table 7.18. Parameter variation in sensitivity analysis. 

Parameter 
CV 

Parameter 
CV 

Parameter 
CV 

Parameter 
CV 

[%] [%] [%] [%] 

Ec 10.00 σy,l 5.00 Hp 20.00 Afl,inf 2.00 

ft 20.00 σu,l 5.00 KTT 10.00 As,l 2.00 

fc 10.00 εlim,l 15.00 c 12.50 γconc 3.00 

Gf 10.00 σy,p 5.00 Afl,sup 2.00 ppav 10.00 

Obtained results, for each parameter, are then grouped by specific sets and their mean value 

is computed. These results, from sensitivity analysis in service phase, are given at 

Figure 7.36. In this situation, the critical parameters are: (1) concrete elasticity modulus (Ec); 

(2) concrete tensile strength (ft); (3) reinforced concrete slab height (hslab); (4) concrete 

specific weight (γconc); and (5) pavement weight (ppav). Accordingly, from 58 parameters, 7 of 

them are considered to be critical. Therefore, the computational cost of model identification is 

reduced. 

Table 7.19. Parameter variation in sensitivity analysis. 

Parameter 
σ 

Parameter 
σ 

[mm] [mm] 

bslab 5.00 bweb 1.00 

hslab 10.00 csup 1.50 
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Figure 7.36. Sensitivity analysis (service). 

The concrete elasticity modulus (Ec) and tensile strength (ft) are extremely important for the 

overall structure behavior. Fracture energy (Gf) presents some importance, as it is 

proportional to concrete behavior area in tension, but not enough to be considered critical. 

The compressive strength (fc) does not influence the structural behavior. In fact, for lower 

intensity loadings, concrete material, according to Figure 7.20a, is working in elastic region, 

being their elastic properties the most important ones. The influence of both reinforcing 

steel (σy,l, σu,l and εlim,l) and laminated steel profile (σy,p and Hp) material is very low. This is 

confirmed by the analysis of Figure 7.20b and 7.20c, for which these parameters are 

irrelevant for lower intensity loads. Both reinforcing steel area (As,l) and superior concrete 

cover (csup) do not influence the bridge behavior. 

In respect to interface parameters it is important to notice that both shear stiffness (KTT) and 

cohesion (c) parameters present some influence on overall structure behavior. Nevertheless, 

the influence of these parameters is not sufficient to be considered critical when analyzing 

the bridge behavior. 

In respect to concrete slab, it is verified that its width (bslab) does not influence the bridge 

behavior. In other way, the slab height (hslab) presents a high influence on its behavior. This is 

explained by the inertia formula in which the slab inertia is cubically proportional to its height. 

Moreover, the variation in its height is higher than in its width (Table 7.19). This is due to the 

fact of its height being computed as a combination of precast and cast in-situ components, 

and, in this latter situation, a higher dispersion is obtained. 

The influence of some laminated steel profile geometry parameters (bweb and Afl,sup) is null. 

This is essentially due to the fact that very low variations are obtained for these parameters 

(Table 7.18 and 7.19). The main reason for that is the high quality control in fabrication 
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process of these girders. The bottom flange area (Afl,inf) presents a high influence, but not 

enough to be considered critical. In fact, the composite section inertia is highly dependent of 

this parameter, due to its distance to the cross section gravity center, and according to 

Steiner’s theorem. 

Both concrete (γconc) specific weight and pavement (ppav) weight present a high influence in 

the structural behavior. For one side these parameters influence the overall bridge behavior 

since the beginning of the test. For other side, the influence of pavement weight is higher 

than expected due to a high uncertainty in its value (Table 7.18), as it is a combination of 

betuminous specific weight with its thickness. 

A sensitivity analysis, developed up to failure load, is further executed. The results from such 

analysis are provided in Figure 7.37. The critical parameters may be different from those 

previously identified. In Figure 7.37 it is not provided the results for the metallic girder yield 

strength (σy,p). In fact, it is verified, in this situation, a large variability in importance measure 

values for all evaluated plates (Table 7.11). Therefore, each yield strength importance 

measure is considered as a single value. Figure 7.38 presents obtained results. 

Obtained results indicate as critical parameters: (1) concrete elasticity modulus (Ec); 

(2) concrete tensile strength (ft); (3) concrete compressive strength (fc); (4) reinforcing steel 

yield strength (σy,l); (5) metallic girder yield strength for plate 1 (σy,p1) and for plate 2 (σy,p2). 

Therefore, from 57 evaluated parameters, 6 of them are considered to be critical. This will 

make the probabilistic analysis more efficient from a computational cost point of view. 

In respect to concrete parameters, both tensile (ft) and compressive (fc) strength are 

important. In fact, and according to Figure 7.20a, these parameters define the concrete 

material maximum load capacity in tension and in compression. The importance of the 

elasticity modulus (Ec) decreases in this situation, but still presents a high influence in the 

overall structural behavior. Fracture energy (Gf) is important, due to its relation to the 

concrete tensile area, but not enough to be considered as a critical parameter. The 

reinforcing steel yield strength (σy,l) is relevant for the structural behavior. This material is 

considered to be embedded in concrete slab and thus the composite section resistance will 

depend of it. The influence of reinforcing steel limit strength (σu,l) and strain (εlim,l) is very low. 

However, as indicated before, this latter parameter is important as it establishes the moment 

the bridge collapse. 
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Figure 7.37. Sensitivity analysis (failure). 

 

Figure 7.38. Sensitivity analysis of steel profile yield strength (failure). 

The reinforcing steel area (As,l) influences the structure behavior, but not enough to be 

considered critical. In fact, once this material is completely embedded in concrete slab, the 

reinforcement area is necessary to determine the composite section resistance. The 

importance of the superior concrete cover (csup) in the structural behavior is low. In fact, this 

parameter presents a very low influence when computing the cross section resistance. 

Additionally, these two parameters present a low variation (Table 7.18 and 7.19). 

According to Figure 7.38 the laminated steel profile yield strength (σy,p) presents a high 

importance on the structure behavior. The bridge resistance is highly influenced by the 

metallic girder, and, according to Figure 7.20c, this parameter is very important as it defines 

the transition between elastic and plastic regions of the stress-strain law. However, such 

effect is stronger in plate 1 (σy,p1) and plate 2 (σy,p2). All the other plates present a lower 
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influence on the structural behavior. The most important plates are, in fact, positioned at the 

first and second span, for the considered load cases (Table 7.3). The hardening 

parameter (Hp) practically does not influence the structure behavior. 

In respect to interface, the influence of cohesion (c) parameter is high, but not sufficient to be 

considered critical. In fact, as load increases, the cohesion value is attained in critical 

sections being then progressively mobilized to closer sections. Additionally, it is verified a 

lower importance of shear stiffness parameter (KTT). This parameter, in fact, defines the 

redistribution rate at interface but does not influence the failure load. 

Regarding the section dimensions it is verified that both parameters, concrete slab 

width (bslab) and height (hslab), influence the structural behavior. The metallic girder geometry 

also influences such behavior. However, these parameters are not enough to be considered 

critical. This might be due to their low variability (Table 7.18). From all geometric parameters, 

the bottom flange area (Afl,inf) is that which presents a high influence in the structure 

behavior. In fact, when computing the section inertia, the influence of this parameter is higher 

than of both web thickness (bweb) and top flange area (Afl,sup), due to its distance to the cross 

section gravity center, and according to Steiner’s theorem.  

The importance of concrete self-weight (γconc) is high, but not enough to be considered 

critical. When evaluating the failure load variation, it is studied the carrying capacity of a 

structure already loaded with its self-weight. In this situation, the numerical analysis showed 

that localized cracking appears at negative bending region of the bridge (Figure 7.24a). In 

fact, this parameter may influence the cracking distribution along the bridge and, therefore, 

its carrying capacity. The pavement self-weight (ppav) influences the structural behavior, but 

not sufficient to be considered critical. In fact, it is known that this value presents a little 

contribution in the structure self-weight. 

7.4. Model identification 

This methodology is applied to identify the critical parameter values, previously selected 

through a sensitivity analysis developed in service phase (Figure 7.36). Additionally, two 

other parameters corresponding to the horizontal spring stiffness at supports (k1 and k2) will 

be assessed within this procedure. These values were computed in numerical analysis but 

they are, in fact, unknown as they result of a combination of column stiffness with local pot 

bearing effects and foundation restrictions. Accordingly, they are determined within this 

process being considered as deterministic values in a further probabilistic analysis. 

Therefore, 9 parameters are adopted. 
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The basis of this methodology is to reorganize a set of numerical parameters in such a way 

that the numerical output best fits the measured data. This fact transforms this analysis into 

an optimization problem for which there is a function to be minimized. In this case, the fitness 

function is based in an approximation between numerical and experimental data. A detailed 

description of this function is given in chapter four. In order to process it, an optimization 

algorithm becomes necessary. 

In this situation, evolutionary strategies algorithm in its plus version are used [29]. A detailed 

description of this algorithm is provided at chapter two. It begins with an initial population of 

critical parameter values, generated randomly, and then, new populations are generated 

through the use of evolutionary operators. In this case, it was defined a parent population (µ) 

and a parent for recombination (ρ) of 10 individuals, and an offspring population (λ) of 50 

individuals. The algorithm is processed with five different starting points. A final population is 

extracted in each run. An engineer judgment procedure, based in the probability of 

occurrence of each individual, is developed to determine the most suitable individual, from 

those previously extracted. This procedure is detailed described in chapter four. 

When using this procedure, several runs of the same numerical model are necessary. The 

fitness function value is computed in each run. The identification stops when a previously 

defined algorithm stopping criteria is reached. One of these criteria is related to the 

improvement on minimum fitness function value. It defines that this value, obtained from two 

generations separated of a pre-specified gap, should be less than or equal to a threshold 

value. This value is computed through the law of propagation of uncertainty [90, 91, 92], 

detailed described at chapter four. It may be interpreted as the methodology precision, once 

obtained results become more accurate with its decrease. 

Other stopping criteria, like the maximum number of generations (1000), were also 

considered. The generation gap (n) used for the fitness function criteria is proportional to this 

number. In this situation, it was established that this value is 2% of the specified maximum 

generation’s number. Therefore, the improvement on minimum fitness value is evaluated 

from a gap of 20 generations. 

7.4.1. Tolerance criterion 

In this situation the fitness function relates numerical and experimental vertical 

displacements, at 17 m and 66 m of the bridge length (Table 7.1), for the three load cases 

(Table 7.3). In order to perform model identification, it is necessary to determine the 

threshold value (ε) that defines the fitness function convergence criteria. In order to compute 
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this value, a division of uncertainty types, respectively, in measurement and modeling errors, 

is necessary. 

In respect to measurement errors, only the sensor accuracy component is considered. In 

fact, all the other components may be neglected, such as [68]: (1) vibration noise caused by 

vehicles, not detected during the load test [99]; (2) environmental effects, that did not 

influence the obtained results [99]; (3) load positioning, perfectly controlled during the load 

test by introducing visible marks in the pavement; and (4) load intensity, also controlled as 

each vehicle weight was precisely measured beforehand (Table 7.2). 

In this situation it were used LVDTs, with ± 25 mm of measurement field, to monitor the 

vertical displacement. The linearity value of these transducers, given by the manufacturer, is 

of 0.10%. Other effects, such as the cable length, should be considered when computing the 

sensor accuracy component. In this situation, the system transducer and cable is calibrated 

beforehand. In chapter four it is given different curves that relate the LVDT error with cable 

length for different cases. Accordingly, the following equation (7.9) is used, 

3 1
exp 2.60 10 1.27 10

i iu L− −= ⋅ ⋅ + ⋅  (7.9)

being Li the cable length (m) for transducer i. In this situation, and according to Table 7.1, 

there are two different cable lengths, respectively, 17 m (VD1 and VD2) and 66 m (VD3 and 

VD4). Accordingly, two linearity values are obtained: (1) VD1 and VD2 = 1.71 * 10-1 %; 

(2) VD3 and VD4 = 2.98 * 10-1 %. 

The measurement error presents a uniform PDF (type B) and so, according to JCGM [90, 91, 

92], it should be divided by √3. Therefore, the following values are obtained: (1) VD1 and 

VD2 = 9.86 * 10-2 %; (2) VD3 and VD4 = 1.72 * 10-1 %. In order to compute the experimental 

uncertainty, through equation (7.10) and (7.11) [90, 91, 92], it is necessary to determine the 

experimental data derivative in respect to each component (∂yexp/∂x = 1.00 mm), 

( )
1, 2 1, 2

22 2 2 7 4
exp exp1.00 9.86 10 100 9.72 10 9.86 10 mm

VD VD VD VD
u u− − −= ⋅ ⋅ = ⋅ → = ⋅  (7.10)

( )
3, 4 3, 4

22 2 1 6 3
exp exp1.00 1.72 10 100 2.96 10 1.72 10 mm

VD VD VD VD
u u− − −= ⋅ ⋅ = ⋅ → = ⋅  (7.11)

The following components are considered when computing the modeling error: (1) finite 

element method accuracy (VD1* = 3.53 * 10-1 %; VD2* = 2.81 %), obtained by comparing the 

previous numerical model with other with a higher number of load steps [69]; (2) mesh 

refinement (VD1* = 1.80 %; VD2* = 9.77 %), obtained by comparing the previous numerical 

model with other with a more refined mesh [69]; and (3) considered hypothesis (Table 7.17). 

The model exactitude component may be neglected [69]. 
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The modeling error presents a uniform PDF (type B) and so, according to JCGM [90, 91, 92], 

it should be divided by √3, being obtained the following values: (1) finite element method 

accuracy - VD1* = 0.20 %, VD2* = 1.62 %; (2) mesh refinement - VD1* = 1.04 %, VD2* = 

5.64 %; (3) considered hypothesis (Table 7.17): (a) introducing five reinforced concrete slab 

layers - VD1* and VD2* = 3.64 %, (b) introducing medium density region at interface - VD1* 

and VD2* = 5.75 %, (c) introducing pavement macro element - VD1* and VD2* = 1.82 %. In 

order to compute the numerical uncertainty, through equation (7.12) and (7.13) [90, 91, 92], it 

is necessary to determine the numerical results derivative in respect to each component 

(∂ynum/∂x = 1.00 mm), 

( ) ( ) ( ) ( ) ( )( )1*

1*

2 2 2 2 22 2

3 2

1.00 1.04 100 0.20 100 3.64 100 5.75 100 1.82 100

5.08 10 7.12 10 mm

VD

VD

num

num

u

u− −

= ⋅ + + + + =

= ⋅ → = ⋅
 (7.12)

( ) ( ) ( ) ( ) ( )( )2*

2*

2 2 2 2 22 2

3 2

1.00 5.64 100 1.62 100 3.64 100 5.75 100 1.82 100

8.41 10 9.17 10 mm

VD

VD

num

num

u

u− −

= ⋅ + + + + =

= ⋅ → = ⋅
 (7.13)

Once the experimental and numerical uncertainties are computed, it will be possible to 

determine the fitness function uncertainty. In order to obtain this value, it is necessary to 

compute the partial derivative of the fitness function in respect to both experimental and 

numerical data (∂f/∂ynum = ∂f/∂yexp = 1/max(yi
exp)), for each monitoring point and for each load 

case. These values are provided at Table 7.20. They are computed based on the values of 

Table 7.4 (absolute values). 

Table 7.20. Partial derivative values (mm-1). 

Load Case VD1 VD2 VD3 VD4 

LC1 0.06 0.07 0.24 0.28 

LC2 0.24 0.26 0.07 0.08 

LC3 0.54 0.54 0.29 0.34 

In this situation, there are four comparing points (VD1 and VD2 - VD1*; VD3 and VD4 - 

VD2*) and three load cases (Table 7.3), which results in twelve components. The following 

Table 7.21 provides the computed fitness function uncertainty value for each component [90, 

91, 92]. The global fitness function value is the square root of the sum of the square of these 

components. In order to determine the global uncertainty, the partial derivative of the global 

fitness function in respect to each component should be computed (∂f/∂fVD1-VD1* = ∂f/∂fVD2-VD1* 

= ∂f/∂fVD3-VD2* = ∂f/∂fVD4-VD2* = 1.00). The global uncertainty value (uf = 9.14 %) is then 

obtained through the square root of the sum of all the values indicated at Table 7.22. 
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Table 7.21. Fitness function uncertainty values (%). 

Load Case VD1 - VD1* VD2 - VD1* VD3 - VD2* VD4 - VD2* 

LC1 0.45 0.45 2.23 2.23 

LC2 2.24 2.24 0.51 0.51 

LC3 4.93 4.93 2.64 2.64 

Table 7.22. Square of fitness function uncertainty values (Table 7.21). 

Load Case VD1 - VD1* VD2 - VD1* VD3 - VD2* VD4 - VD2* 

LC1 0.20 0.20 4.98 4.98 

LC2 5.00 5.00 0.26 0.26 

LC3 24.30 24.30 6.98 6.98 

The improvement on global fitness function minimum value (∆f) from two generations, 

separated of a specified gap (n), is given in chapter four. Accordingly, and assuming that the 

partial derivative of the improvement in respect to each component is unitary 

(∂∆f/∂fi+n = ∂∆f/∂fi = 1.00), it is possible to obtain the respective uncertainty value through 

equation (7.14) [90, 91, 92], 

( ) ( )2 22 2 2 3 21.00 9.14 100 1.00 9.14 100 16.71 10 12.92 10f fu u− −
∆ ∆= ⋅ + ⋅ = ⋅ → = ⋅  (7.14)

Due to the fact of all uncertainty sources being from type B, a coverage factor (k) of 2 must 

be adopted [90, 91, 92]. The fitness value criterion establishes that its improvement (∆f) 

should be less than or equal to the threshold value (ε). Correspondingly, this value is 

obtained by multiplying the value from expression (7.14) by factor k, resulting in 25.84 %. 

7.4.2. Obtained results 

Each analysis provides a final population of 10 models. As five analyses were developed, 50 

models are identified. Figure 7.39 shows the obtained fitness function value for the selected 

models. It is possible to verify a small dispersion in fitness function value between models 

belonging to the same population. In this case, the minimum value is obtained for the first 

analysis (model 1) while its maximum is obtained on the second analysis (model 20). 
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Figure 7.39. Model identification, fitness function value. 

An engineering judgment evaluation, based in the probability of occurrence of each 

individual, is further developed in order to identify the most appropriate model. A detailed 

description of this procedure is given at chapter four. Figure 7.40 presents obtained 

probability values for all selected models. In this situation, model 20, from the second 

analysis, presents the highest value being thus selected. 

 

Figure 7.40. Model identification, engineering judgment evaluation. 

Table 7.23 indicates the nominal and identified value (model 20) for critical parameters, 

previously selected through a sensitivity analysis. In the same table, between brackets, the 

bias factor, which represents the ratio between the identified and the nominal value, is also 

presented. 

Obtained results permit to conclude that used concrete presents a higher quality than initially 

expected. In fact, both elasticity modulus (Ec) and tensile strength (ft) values are greater than 

nominal ones, respectively, 3% and 15% higher. In respect to horizontal spring stiffness it is 

important to conclude that identified k1 and k2 values are respectively lower and higher than 
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the predicted. Both biases are far from one, which confirms the high uncertainty of this 

parameter. This value increases with the system column, pot bearing and foundation 

stiffness. Therefore it is possible to verify a higher stiffness in C2 and C3 (set 2) and a lower 

stiffness in C1 and C4 (set 1) support sections. The slab height (hslab) is slightly higher, 

around 3%, than the design value. The concrete self-weight (γconc) is practically unchanged. 

However, the obtained pavement load (ppav) is 15% higher than the design value. This might 

be due to the irregularity in betuminous thickness. 

Table 7.23. Parameter values. 

Numerical model Nominal value Model identification * 

P
ar

am
et

er
 

Ec [GPa] 35.00 35.98 (1.03) 

ft [MPa] 3.50 4.03 (1.15) 

k1 [kN/m] 56.69 36.98 (0.65) 

k2 [kN/m] 9.93 12.90 (1.30) 

hslab [m] 
0.15 0.16 (1.05) 

0.25 0.25 (1.00) 

γconc [kN/m3] 24.00 24.34 (1.01) 

ppav [kN/m] 
6.50 7.38 (1.14) 

6.81 7.73 (1.14) 

* Bias factor is presented between brackets. 

Table 7.24 indicates the fitness function value, considering the nominal and identified value 

for critical parameters (Table 7.23), and its improvement. In this situation it is possible to 

guarantee an improvement on this value of around 20% which is considered to be good. 

Table 7.25 presents VD1* and VD2* displacement values considering model identification. 

The error between numerical and experimental data, given at Table 7.4, is also computed for 

each situation. 

Table 7.24. Fitness function values. 

Numerical model 
Value Improvement 

[%] [%] 

Nominal values 67.33 - 

Model identification 53.79 20.11 
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The following conclusions are obtained, through a comparison with Table 7.16: (1) a high 

decrease in both errors for LC1; (2) a decrease in VD1* and a slight increase in VD2* error 

for LC2; and (3) an increase in VD1* and a decrease in VD2* error for LC3. Therefore, this 

analyses permit to identify a model, in service region, that is more reliable than that used in 

design. 

Table 7.25. Obtained numerical results. 

Load case 
VD1* Error VD2* Error 

[mm] [%] [mm] [%] 

LC1 15.43 5.02 -3.57 7.87 

LC2 -3.64 8.31 12.06 11.97 

LC3 1.04 43.78 -3.48 8.92 

* Negative value corresponds to a displacement in upward direction. 

7.5. Complementary tests 

7.5.1. Developed tests 

During construction, other complementary tests were developed. These tests were important 

to control the precast slab quality and to classify used materials (concrete, reinforcing steel 

and laminated steel profile). These tests were developed by the manufacturer and they were 

requested by the constructor, Teixeira Duarte S.A. 

The precast slab dimensions and concrete cover were detailed controlled by the 

manufacturer [183]. The obtained variation around these parameters was very small. In order 

to assess the concrete material quality, C40/50 [48], it was developed uniaxial compressive 

tests in cubic specimens according to NP EN 13747 [137], for precast concrete slab, and to 

NP 206-1 [138], for cast in-situ concrete. In this situation, it was only obtained the concrete 

compressive strength (fc) [48]. 

The reinforcing steel quality, A 500 NR SD [48], was controlled through uniaxial tensile tests, 

according to LNEC E 456 specification [110]. Within this analysis, both yield (σy,l) and limit 

strength (σu,l), and also its limit strain (εlim,l) were determined. The metallic girder steel quality, 

S355 [49], was evaluated through uniaxial tensile tests, according to EN 10025-2 [45]. In this 

situation, the steel yield (σy,p), limit strength (σu,p) and also limit strain (εlim,p) were determined. 
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7.5.2. Obtained results 

Obtained results for precast slab height (hslab), from 52 proofs, are provided at Table 7.26. A 

bias value, which represents the ratio between the experimental and the nominal value, is 

also presented. Obtained results permit to conclude that geometric variations may be 

neglected within the whole analysis. This confirms the results from model identification 

procedure, see Table 7.23. 

Table 7.26. Precast slab geometry. 

Parameter 
Length 

Nominal Value Mean value (µ) * Standard deviation (σ) 
[m] 

Precast slab height 
(hslab) 

[m] 

0 – 11 
1.50 * 10-1 1.50 * 10-1 (1.00) 4.84 * 10-4 

2.50 * 10-1 2.51 * 10-1 (1.00) 8.06 * 10-4 

11 – 209 
1.50 * 10-1 1.50 * 10-1 (1.00) 4.84 * 10-4 

2.50 * 10-1 2.51 * 10-1 (1.00) 8.06 * 10-4 

209 – 220 
1.50 * 10-1 1.50 * 10-1 (1.00) 4.84 * 10-4 

2.50 * 10-1 2.51 * 10-1 (1.00) 8.06 * 10-4 

* Bias factor is presented between brackets. 

Obtained results from uniaxial concrete compressive tests for both in-situ and precast 

concrete are provided at Table 7.27. A bias value, which represents the experimental to 

nominal value ratio, is also given. These results are grouped as a low variation is verified 

from batch to batch. Therefore, 203 proofs are considered. Both elasticity modulus (Ec) and 

tensile strength (ft) parameters are computed through obtained compressive strength (fc) 

values [48]. Those results indicate that used concrete presents a slightly superior quality than 

the predicted. In fact, a higher value than the nominal one is obtained for all studied 

parameters. This confirms the results from model identification, see Table 7.23. 

Table 7.28 provides the results, from 70 proofs, obtained from the uniaxial tensile tests on 

reinforcing steel. A bias value, which represents the ratio between the experimental and the 

nominal value, is also presented. Obtained values for yield (σy,l) and limit (σu,l) strength 

confirm the steel quality predicted in design. The only exception is verified with the limit 

strain (εlim,l) for which the obtained value is higher than the nominal one. The correlation 

coefficients (ρij) between these parameters are provided at Table 7.29. 

Table 7.30 provides the results, from 31 proofs, obtained from uniaxial tensile tests on 

laminated steel profile. A bias value, which represents the experimental to nominal value 
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ratio, is also presented. It is verified that steel material presents a slightly superior quality 

than that expected in design. In fact, a higher value is obtained for yield (σy,p) and limit (σu,p) 

strength. For the limit strain (εlim,p) the obtained value is far from the nominal one. The 

correlation coefficients (ρij) between these parameters are provided at Table 7.31. 

Table 7.27. Concrete material. 

Parameter Nominal Value Mean value (µ) * Standard deviation (σ) 

Elasticity modulus (Ec) [GPa] 35.00 37.04 (1.06) 0.63 

Tensile strength (ft) [MPa] 3.50 3.98 (1.14) 0.14 

Compressive strength (fc) [MPa] 48.00 56.86 (1.18) 3.21 

* Bias factor is presented between brackets. 

Table 7.28. Reinforcing steel material. 

Parameter Nominal Value Mean value (µ) * Standard deviation (σ) 

Yield strength (σy,l) [MPa] 560.00 562.94 (1.01) 21.42 

Limit strength (σu,l) [MPa] 644.00 645.49 (1.00) 20.36 

Limit strain (εlim,l) [‰] 80.00 96.39 (1.20) 35.78 

* Bias factor is presented between brackets. 

Table 7.29. Correlation coefficients (ρij) in reinforcing steel material. 

 σy,l σu,l εlim,l 

σy,l 1.00 0.87 0.79 

σu,l 0.87 1.00 0.92 

εlim,l 0.79 0.92 1.00 

The number of proofs is appropriate for quality control procedures. However, a lower number 

may be used in probabilistic assessment. The developed model identification algorithm and 

obtained results, given at Table 7.23, are validated with data obtained from complementary 

tests. This data is further used in the probabilistic assessment algorithm. 
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Table 7.30. Metallic girder material. 

No. 

Thickness 
Yield strength (σy,p) Limit strength (σu,p) Limit strain (εlim,p) 

[MPa] [MPa] [%] 

[mm] 
Nominal 
Value 

Mean value 
(µ) * 

Standard 
deviation (σ) 

Nominal 
Value 

Mean value 
(µ) * 

Standard 
deviation (σ) 

Nominal 
Value 

Mean value 
(µ) * 

Standard 
deviation (σ) 

1 ≤ 16 355 
388.32 
(1.09) 17.52 470-530 

540.39 
(1.08) 18.18 20-22 28.71 2.33 (1.37) 

2 ≤ 40 345 377.38 
(1.09) 17.02 470-530 540.39 

(1.08) 18.18 20-22 28.71 2.33 (1.37) 

3 ≤ 60 335 366.44 
(1.09) 

16.53 470-530 540.39 
(1.08) 

18.18 19-21 27.35 2.22 (1.37) 

4 ≤ 80 325 355.51 
(1.09) 16.04 470-530 540.39 

(1.08) 18.18 18-20 25.98 2.11 (1.37) 

5 ≤100 315 344.57 
(1.09) 

15.54 470-530 540.39 
(1.08) 

18.18 18-20 25.98 2.11 (1.37) 

6 ≤ 110 295 322.69 
(1.09) 14.56 450-600 567.41 

(1.08) 19.09 18-18 24.61 2.00 (1.37) 

* Bias factor is presented between brackets. 

Table 7.31. Correlation coefficients (ρij) in metallic girder material. 

 σy,p σu,p εlim,p 

σy,p 1.00 0.98 0.94 

σu,p 0.98 1.00 0.95 

εlim,p 0.94 0.95 1.00 

7.6. Probabilistic analysis 

The previous developed numerical model is then converted into a probabilistic model by 

introducing randomness in its critical parameters, previous identified through a sensitivity 

analysis up to failure. A random number generation algorithm, based in a Latin Hypercube 

sampling (LHS) procedure [144], is introduced to generate different parameter values. This 

procedure is detailed described at chapter four. In this situation, 100 models are generated. 

These models are analyzed up to failure with a nonlinear structural analysis software [23, 

24]. The failure load PDF is statistically computed for each load case. This PDF represents 

the bridge resistance curve. This curve is then compared to a loading one in order to assess 

safety. 
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7.6.1. Bayesian inference 

The probabilistic numerical model is obtained by considering a PDF for each critical 

parameter. All the other parameters are considered to be deterministic. A Normal PDF is 

usually considered for these parameters. In some situations, for which the parameters 

cannot assume negative values, a Lognormal PDF should be used instead. Those curves 

are defined by mean (µ) and standard deviation (σ) value. 

Obtained results from complementary tests are used to update the critical parameters, 

through a Bayesian inference algorithm [15]. This procedure is detailed described at chapter 

three. Therefore, four different probabilistic models are respectively considered: (1) nominal 

values; (2) model identification values; (3) nominal values + Bayesian inference; (4) model 

identification values + Bayesian inference. The mean values (µ) from the first model are 

those from design. The standard deviation (σ) is obtained by the application of the CV, from 

Table 7.18. The mean values (µ) from the second model are those obtained with model 

identification (Table 7.23). The standard deviation (σ) is obtained in a similar way by using 

the coefficients of variation from Table 7.18. 

The other models consider the updated PDF. The Bayesian inference procedure was 

developed by considering both informative and non-informative (Jeffrey’s) prior. Considered 

posterior PDF is that with the lowest standard deviation. Table 7.32 gives the critical 

parameter PDF for the considered probabilistic models. The correlation coefficients (ρij) 

between those variables are provided at Table 7.33. 

Table 7.32. Parameter values. 

Parameters 
Nominal values * Model identification * 

µ σ µ σ 

Ec [GPa] 35.00 (37.04) 3.50 (0.63) 35.98 (36.51) 3.60 (0.52) 

ft [MPa] 3.50 (3.99) 0.70 (0.15) 4.03 (3.99) 0.81 (0.15) 

fc [MPa] 48.00 (56.86) 4.80 (3.24) 48.00 (56.86) 4.80 (3.24) 

σy,l [MPa] 560.00 (562.92) 28.00 (21.61) 560.00 (562.92) 28.00 (21.61) 

σy,p1 [MPa] 355.00 (387.93) 17.75 (18.35) 355.00 (387.93) 17.75 (18.35) 

σy,p2 [MPa] 345.00 (387.93) 17.25 (18.35) 345.00 (387.93) 17.25 (18.35) 

* Bayesian inference values are presented between brackets. 
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Table 7.33. Correlation coefficients (ρij). 

 Ec ft fc σy,l σy,p1 σy,p2 

Ec 1.00 0.70 0.90 0.00 0.00 0.00 

ft 0.70 1.00 0.80 0.00 0.00 0.00 

fc 0.90 0.80 1.00 0.00 0.00 0.00 

σy,l 0.00 0.00 0.00 1.00 0.00 0.00 

σy,p1 0.00 0.00 0.00 0.00 1.00 0.90 

σy,p2 0.00 0.00 0.00 0.00 0.90 1.00 

The analysis of these results permit to conclude that: (1) concrete material presents a higher 

quality than that initially predicted. This was previously confirmed by model identification and 

complementary tests; (2) reinforcing steel material quality corresponds to that predicted in 

design. This was previously confirmed by complementary tests; (3) metallic girder material 

presents a higher quality than that initially predicted. This was previously confirmed by 

complementary tests; (4) the inference procedure reduces the standard deviation values, the 

only exception is verified with metallic girder yield strength (σy,p) for which obtained results 

from complementary tests are far from the nominal values. 

7.6.2. Loading curve 

In order to assess the bridge safety, the computed resistance PDF should be compared with 

the loading one. Usually this curve is obtained with the information of the real histogram of 

vehicle loading. However, in this situation such information does not exist and a standardized 

curve should be used instead. Accordingly, one of the most important models is the highway 

load model LM1 from EN 1991-2 [47], schematically represented in Figure 7.41. This model 

can be used on both local and global verification of bridge elements. The characteristic 

values of load intensity, defined as a 95th percentile for a return period of 50 years, are 

provided at Table 7.34. 

This model defines that applied load should be positioned at the most unfavorable position 

for the structural component and load effect in question. According to this model, a 

carriageway is divided into an integer number of 3.00 meters wide lanes (Figure 7.41b). 

Among these lanes, that causing the most unfavorable effect is labeled lane 1, with the 

second most unfavorable lane 2, etc. Space not occupied by these lanes is named remaining 

area. 
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a) b) 

Figure 7.41. Highway traffic load model LM1 from EN 1991-2 [47]. 

Correspondingly, and for the analyzed composite bridge deck (Figure 7.4), the total applied 

load, per meter, is then computed according to expressions (7.15), (7.16) and (7.17), 

300 200 100 600ikQ kN= + + =  (7.15)

( )1 2 29.00 3.00 2.50 13.10 3.00 52.25ikq kN m kN m kN m= ⋅ + ⋅ − =  (7.16)

( )2 2 29.00 3.00 2.50 6.08 2 3.00 49.92ikq kN m kN m kN m= ⋅ + ⋅ ⋅ − = (7.17)

being Qik the concentrated load, qik
1 the distributed load for 11.00 m to 209.00 m of the 

bridge length (L1) and qik
2 for the first and final 11.00 m of the bridge length (L2). This division 

is necessary to take into consideration the effective width variation along the bridge. As only 

half section is considered in numerical model, due to its symmetry, the obtained values are 

then divided per two. Therefore, a concentrated load of 300 kN (Qik), and a distributed load of 

26.12 kN/m (qik
1) and of 24.96 kN/m (qik

2) are obtained. 

Table 7.34. Intensity of loads in highway traffic load model LM1 from EN 1991-2 [47]. 

Lanes 
Concentrated loads (Qik) Distributed loads (qik) 

[kN] [kN/m2] 

Lane 1 300 9.00 

Lane 2 200 2.50 

Lane 3 100 2.50 

Other lanes n 0 2.50 

Remaining area 0 2.50 

In this situation, the considered load cases will correspond to those defined at load test for 

which the vehicles are positioned at critical position (Table 7.3) [99]. Therefore the 

concentrated load position will correspond to the gravity center of each vehicle. According to 

Figure 7.41a two concentrated loads (Qik), spaced of 1.20 m, are considered. 
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Correspondingly, for LC1 it is considered that applied loads are positioned at 18.52 m and at 

17.32 m of bridge length (Figure 7.16), for LC2 at 67.52 m and at 66.32 m of bridge length 

(Figure 7.17), and for LC3, at 111.52 m and at 110.32 m of bridge length (Figure 7.18). 

The highway traffic load model LM1 [47] is then transformed into a loading PDF, in order to 

assess the bridge safety. A Gumbel PDF is therefore considered [196]. Accordingly, the total 

applied load (F95), corresponding to 95th percentile for a return period of 50 years, is given by 

equation (7.18), 

( ) ( )1 2
95 1 2 26.12 209.00 11.00 24.96 11.00 2 300 2 6321.82ik ik ikF q L q L Q n kN= ⋅ + ⋅ + ⋅ = ⋅ − + ⋅ ⋅ + ⋅ = (7.18) 

being n the number of concentrated loads (Qik). Additionally, and according to Wisniewski 

[196], a CV of 15% is considered for loading curve. Therefore, and through an iterative 

analysis, the following parameter values, indicated at Table 7.35 are obtained for loading 

PDF. 

Table 7.35. Loading PDF (S). 

Parameter 
Value 

[kN] 

Location parameter (µ) 4606.00 

Shape parameter (β) 577.68 

Mean value 4939.40 

Standard deviation value 740.91 

95th percentile value (F95) 6321.82 

The loading values are then randomly generated, according to a LHS algorithm [144], and 

taking into consideration the obtained parameters (Table 7.35). The generated values are 

then compared with those from the bridge resistance curve in order to assess its safety. 

7.7. Safety assessment 

The safety assessment consists in a comparison between resistance (R) and loading (S) 

curves for the bridge in analysis, according to the limit state function (Z=R–S). In this 

situation, the highway traffic load model LM1 [47] is used. This model is different from that 

used in load test as it presents a combination of single and distributed loads. This results in a 

different bridge behavior and failure load value. In order to minimize this effect the simplified 

load model is adjusted in a way that single loads are positioned in agreement with those from 

load test. 
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The load model is therefore introduced in previously developed numerical model [23, 24] and 

then, the bridge is loaded up to failure. Accordingly, 10 load steps of factor 0.10 are initially 

considered in order to take into account the structure self-weight and then 10 more steps of 

factor 0.10 are added in order to consider the load model (service region). Finally, the 

structure is carried up to failure by adding more 300 steps of factor 0.10. This value will 

guarantee that failure is always attained. 

As previously indicated, in this situation four probabilistic models are analysed, being 

obtained a set of failure load (R) values for each analysis. A Normal PDF is therefore 

adjusted to these results. Obtained mean (µ) and standard deviation (σ) value are 

respectively indicated in Table 7.36. 

Table 7.36. Resistance PDF (R). 

Numerical model 

LC1 LC2 LC3 

µ σ µ σ µ σ 

[kN] [kN] [kN] [kN] [kN] [kN] 

Nominal values 24796.00 902.40 39294.00 700.82 35991.00 659.80 

Model identification 24749.00 936.94 39550.00 780.70 35990.00 665.32 

Nominal values + 
Bayesian inference 26770.00 904.49 41210.00 751.58 37148.00 648.64 

Model identification + 
Bayesian inference 26769.00 911.05 41188.00 742.84 37270.00 649.74 

The analysis of this results permit to conclude that, for considered load cases, and for 

developed numerical model, the overall bridge resistance is substantially higher than the 

applied load model (Table 7.35). Additionally, it is identified that the critical load case 

corresponds to the first one as it presents a lower mean value. The other two load cases 

present similar results. The CV for the first load case is higher than that obtained for the 

other two situations. 

By comparing the obtained resistance PDF for the four probabilistic models, it is possible to 

conclude that model identification practically did not change the obtained results. This is due 

to the fact that the majority of assessed parameters in model identification, in service phase, 

do not influence the bridge behavior up to failure. The application of a Bayesian inference 

procedure, considering both nominal and identified parameter values, increases the failure 

load. This is due to an identified increment in the quality of concrete and laminated steel 
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profile materials (Table 7.32). This confirms an additional structural resistance capacity 

reserve which was not initially identified. 

When evaluating the CV it is possible to conclude that both initial and model identification 

models provide similar results. A slightly decrease of this value is verified with Bayesian 

inference procedure. This is due to a decrease on standard deviation value of some updated 

parameters (Table 7.32), confirming an increment in the degree of belief of obtained 

resistance curves. 

The safety assessment of this bridge consists in the evaluation of the limit state function (Z) 

which compares the resistance curves (R), whose parameters are indicated at Table 7.36, 

with loading curve (S), whose parameters are indicated at Table 7.35. Therefore it is 

necessary to sample these curves and to compute the respective failure probability (pf) and 

reliability index (β). Obtained values from this safety assessment procedure are indicated at 

Table 7.37. 

Table 7.37. Safety assessment. 

Numerical model pf * β * 

Nominal values 3.59 * 10-16 8.32 

Model identification 4.26 * 10-16 8.30 

Nominal values + Bayesian inference 1.17 * 10-17 8.73 

Model identification + Bayesian inference 1.19 * 10-17 8.72 

* Considered the most critical value from all load cases. 

The analysis of obtained results confirms what was previously specified, namely: 

(1) obtained failure probability (pf) and reliability index (β) values are high, which indicates an 

excellent structural performance; (2) obtained results from probabilistic numerical model, 

considering nominal and identified parameter values, are close; (3) the application of a 

Bayesian inference procedure increases the safety index (β) and decreases the probability of 

failure (pf). 

By comparing these results with proposed target reliability indexes (βtarget), and considering 

that an overall analysis of the structure is developed, it is possible to conclude that the 

assessed bridge is in very good situation (9 > β ≥ 8) [55]. This is in agreement with Tabsh 

and Nowak [180] guidelines, which indicate that a β-value higher than 5-6 corresponds to a 

structure with a very good performance. Once the assessed bridge is new, obtained β-value 

is within the expected. 
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This increment in β values when evaluating the overall system is due to: (1) the use of a 

nonlinear structural analysis, which considers the structure geometry and the materials 

behavior as they are in reality; (2) the consideration of a whole structure analysis, and not a 

section by section evaluation procedure, which takes into account the stress redistribution 

within the structure. In this situation there are other reasons that explain this increment, 

namely: (1) the consideration of structural elements which were not considered in design, as 

the web and support reinforcements; (2) the use of transversal symmetry which takes out of 

this evaluation load cases which imply torsional effects that might be critical. 

7.8. Conclusions 

This chapter presents the application of the developed probabilistic assessment methodology 

to a composite bridge (Sousa river bridge). It begins with a description of the structure, the 

executed load test and obtained results. It is also presented the developed numerical model 

and sensitivity analysis, realized both in service and failure region. The analysis permits to 

conclude that the bridge failure mode is of bending with concrete crushing and steel profile 

yielding. The bridge collapse mechanism is constituted by two or three hinges, depending on 

the load case. 

In a second step, the model identification algorithm is applied with the results obtained during 

load test in service phase. Within this analysis, the tolerance value that is a combination of 

modelling and measurement errors is computed. Such analysis permit to conclude that 

concrete material quality is superior than expected, that spring stiffness is a highly uncertain 

variable, that concrete slab height is well controlled during construction, as well as the 

concrete weight, and that the betuminous pavement thickness is higher than the predicted in 

design. 

A description of complementary tests and of obtained results is also provided. Uniaxial 

compressive tests with concrete and uniaxial tensile tests with both reinforcement and steel 

profile material are executed. The slab dimensions are strictly controlled and they practically 

do not change within the whole bridge. Concrete quality is superior to what was initially 

expected. Reinforcement presents the same quality as predicted in design. Steel profile 

material presents a slightly superior quality. 

A probabilistic analysis is further developed. In order to do so, the developed deterministic 

model is converted into a probabilistic model by introducing randomness in its input 

variables. A LHS algorithm is introduced to generate the parameter values. Four probabilistic 

models are obtained, respectively, with nominal and identified parameter values, and 

considering, or not, a Bayesian inference procedure. This procedure will be developed with 
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results from complementary tests, confirming a higher quality of concrete and metallic girder 

steel material. 

The developed model is then carried up to failure by introducing a standard load model in a 

location which corresponds to the load test one. Obtained resistance curve is then compared 

with loading curve. A reliability index is therefore obtained from safety assessment. Such 

index is then compared with a target one. This comparison indicated an excellent structural 

performance. The application of this framework, within this example, points out the 

advantages of the developed algorithm and, especially, of both model identification and 

Bayesian inference procedures. 
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8 Conclusions 

8.1. Concluding remarks 

According to OECD [140, 141, 142] there is a need for novel frameworks that can help 

countries in prioritizing their budget expenditures in asset management. One of these 

frameworks is the structural assessment algorithms, as they give an accurate representation 

on the current structural condition of existing structures. Such algorithms are applied to civil 

engineer structures. 

The present thesis has, as its main objective, the development and validation of an advanced 

probabilistic assessment framework. This framework is implemented with commercially 

available nonlinear structural analysis software and tested on representative structural 

examples, respectively, a reinforced concrete beam and a steel-concrete composite beam, 

both tested in laboratory environment, and a steel-concrete composite bridge, with an in situ 

field test. 

This framework is divided in two main steps, respectively: (1) step 1: model identification; 

(2) step 2: probabilistic analysis. In model identification the numerical results are best fitted to 

experimental data by adjusting model parameter values. This algorithm is important as it 

permits to determine the quality of used materials, the definition of structural geometry, and 

other physical parameters related to support conditions or interface connection. 

Different optimization algorithms are tested and their efficiency is evaluated when 

implemented in the model identification framework. From those algorithms, the evolutionary 
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strategies in its plus version [29], is selected. Obtained results reveal this algorithm to be 

more efficient than the others, as the improvement in fitness function is higher and, at same 

time, the computational cost is acceptable. 

Both modeling and measuring errors are combined and incorporated in an indirect way in the 

model identification procedure. A tolerance value is computed, based in these errors, through 

the law of propagation of uncertainties [90]. This threshold value defines the fitness function 

stop criterion. Table 8.1 provides the obtained tolerance values for all analyzed structures. 

The analysis of this table permits to conclude that obtained tolerance values in laboratory 

controlled conditions are lower than that obtained in-field (composite bridge). The tolerance 

value increases with the number of comparing points in fitness function, which varies from 

service to failure region, and with the nonlinearity of the structure behavior. This nonlinear 

behavior increases with the simulation of fixed supports (reinforced concrete beams) and 

with partial connection (composite beams). The composite bridge behavior is highly 

nonlinear. 

A detailed description of both measurement and modeling errors is also presented. The 

analysis of measurement error sources permit to conclude that: (1) it is not reasonable to use 

long cable lengths; (2) the calibration of the system transducer, cable and related 

equipment’s, before monitoring, is recommended; and (3) wrapping cables should be 

avoided in any monitoring system. 

Table 8.1.Tolerance values. 

Structure type Tolerance value [%] 

Reinforced concrete beam 
(chapter five) 

Pinned-pinned beam 
Service 0.72 

Failure 0.72 

Pinned-fixed beam 
Service 4.17 

Failure 4.58 

Composite beam (chapter six) 

Full connection beam 
Service 0.08 

Failure 0.12 

Partial connection beam 
Service 0.09 

Failure 0.25 

Composite bridge (chapter seven) Service 25.84 

A population of models is respectively obtained from model identification. All these models 

are a possible solution for the problem in analysis. Therefore, an engineering judgment 
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criterion, based in the probability of occurrence of each model, is used to identify the most 

likely model from the population. The improvement in fitness function value for this model 

indicates a close approximation between experimental and numerical data. This 

improvement varies with the structure type and the intensity of the applied load, which varies 

from service to failure region, according to Table 8.2. 

The analysis of this table permits to conclude that: (1) the improvement in service region is, 

generally, higher than in failure; (2) the improvement typically decreases with the number of 

assessed parameters; (3) higher improvements are obtained for laboratory tested structures; 

(4) the improvement decreases with the nonlinearity of the structure behavior. 

Table 8.2. Improvement in fitness function value. 

Structure type Improvement [%] Number of parameters 

Reinforced concrete 
beam (chapter five) 

Pinned-pinned beam 
Service 92.97 7 

Failure 75.90 9 

Pinned-fixed beam 
Service 55.26 9 

Failure 28.69 12 

Composite beam 
(chapter six) 

Full connection beam 
Service 82.80 8 

Failure 88.99 16 

Partial connection beam 
Service 75.33 8 

Failure 71.51 16 

Composite bridge (chapter seven) Service 20.11 9 

A sensitivity analysis is developed before model identification to determine the critical 

parameters. The identified parameters in service region may not coincide with those in 

failure. Moreover, the assessed values for these parameters are different in service and in 

failure region. This results in a complex extrapolation of results from service to failure region. 

In real situations, as the analyzed composite bridge, existing structures are evaluated 

through a load test that is developed in service phase. Therefore, it is important to notice that 

model identification, supported in load test data, provides an incomplete representation of 

this structure behavior in failure region. Complementary characterization tests are thus 

recommended in this case. 

In order to develop the probabilistic analysis, uncertainty is incorporated in the updated 

deterministic numerical model through the introduction of randomness in model parameters. 

The input values are randomly generated through a Latin Hypercube sampling (LHS) 
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algorithm [144]. While for some of these parameters it is possible to find a probability density 

function (PDF) and correlation coefficients in bibliography [93], for others they are defined 

according to experience (e.g. interface connection parameters). 

The statistical uncertainty in model parameters PDF may be reduced with complementary 

data, obtained in laboratory characterization tests, nondestructive tests or permanent 

monitoring systems. In order to do so, a Bayesian inference algorithm [15] is used. This 

procedure is important to improve the developed probabilistic numerical model. 

Two updating schemes are thus incorporated in the developed probabilistic assessment 

framework, respectively: (1) model identification; (2) Bayesian inference. An important 

decision deals with the time in which each procedure should be used. Model identification is 

applied with deterministic models, it requires a higher computational cost, and should be 

used when a high gap is verified between numerical and experimental data. Bayesian 

inference is used with probabilistic models. It is of easy computation and may be applied 

whenever there is complementary data from existing structure. 

Accordingly, and in order to validate the developed framework, laboratory tested structures 

are analyzed with the following probabilistic models: (1) initial model; (2) model identification; 

(3) initial model + Bayesian inference; (4) model identification + Bayesian inference. Model 

identification results, both in service and in failure region, are considered for those structures. 

For these structures it is introduced an index-p that will permit to evaluate the reliability of the 

obtained probabilistic model. Obtained results are provided at Table 8.3. Generally, it is 

verified an improvement in the reliability of probabilistic model with the application of model 

identification and Bayesian inference. Obtained results validate the application of this 

framework in laboratory tested structures. 

The developed probabilistic assessment framework will provide an updated resistance curve 

of evaluated structure that might be used in safety assessment. This algorithm will permit to 

identify, in some situations, an additional structure capacity reserve. This is important as 

some structures are initially considered to be unsafe and with the application of this algorithm 

it is determined that they are, in fact, in safe region. 

The algorithm is also implemented with a real case of a composite bridge submitted to a load 

test [99]. In this situation, it is not possible to compute the reliability of probabilistic model 

(index-p) due to the lack of experimental data in failure region. Nevertheless, the model 

identification is developed in service region, being the Bayesian inference used to update 

some of input parameters. A safety assessment procedure is then developed with the 
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updated resistance curve. Obtained results validate the application of this framework in real 

structures. 

The developed probabilistic assessment algorithm incorporates different sources of 

uncertainty at different stages, namely: (1) measurement and modeling errors in model 

identification; (2) physic uncertainty in input parameters of probabilistic numerical model. The 

statistical uncertainty may be reduced with Bayesian inference, if complementary data is 

available. Human errors might be identified in model identification. 

Table 8.3.Index-p value. 

Structure type 

Liability index [%] 

Initial 
Model 

identification 

Initial + 
Bayesian 
inference 

Model 
identification 
+ Bayesian 
inference 

Reinforced 
concrete beam 
(chapter five) * 

Pinned-pinned 
beam 

Service 
95.02 

95.40 
- 

- 

Failure 99.41 - 

Pinned-fixed beam 
Service 

96.97 
89.69 

94.67 
95.82 

Failure 95.74 96.96 

Composite beam 
(chapter six) 

Full connection 
beam 

Service 
89.60 

92.04 
96.63 

97.84 

Failure 93.76 99.60 

Partial connection 
beam 

Service 
88.54 

91.75 
95.00 

96.80 

Failure 95.49 98.56 

* Obtained mean value for the analyzed beams. 

The developed probabilistic assessment algorithm is combined with nonlinear structural 

analysis software. This will permit to process the algorithm both in service and failure region. 

An advantage of this framework is that it works well with any commercial available software. 

However, the accuracy of obtained results depends on the chosen software. In this situation, 

the software ATENA® [23, 24] is chosen, since it provides robust and adequate models for 

the used materials (concrete and steel) and for material interfaces (in composite structures). 

Therefore, the main advantages of this algorithm are: (1) it incorporates the majority of the 

uncertainties sources that might be identified in a structural assessment procedure; (2) it 

incorporates experimental data obtained from different sources; (3) it may be executed with 

any commercial available software. However, it presents the following drawbacks: (1) its use 

still requires a permanent accompaniment from the user; (2) for more complex structures the 

computational cost is still very high. 
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With this framework it will be possible to help operators in better characterizing the current 

state of assessed structures. This is important as it provides accurate information that might 

be used to support the maintenance strategies. Therefore, it might be a major step forward in 

the process of decision making of investment in maintenance and replacement strategies of 

civil engineer structures. 

8.2. Suggestions for future work 

A framework for the probabilistic assessment of civil engineer structures is developed and 

validated within this thesis. However, it is recognized that this research is not finished and 

different work fields were opened for future developments. 

The cable length and its wrapping effects in displacement transducer measurement error are 

detailed studied in this thesis. Other effects which are common in monitoring systems, such 

as external magnetic fields, data acquisition equipment errors, etc., should be also analyzed 

in the future. The measurement errors of other sensors, such as inclinometers, strain gages, 

etc., may be also evaluated. 

The developed framework was only tested with static data, both in service and in failure 

region. However, in several situations, the structure´s dynamic behavior is conditioning and 

dynamic data is obtained from monitoring systems. Therefore, it would be important to test 

the algorithm with a finite element model that includes dynamic analysis. 

The developed framework does not include the component time. It is known that concrete 

parameters vary with time due to shrinkage, creep and hardening effects. Other 

phenomena’s, as relaxation of pre-stress cables, etc., result in a time variant behavior of 

assessed structures. Therefore, it would be worthwhile to incorporate a time variant 

stress-strain law in the developed numerical model. The obtained experimental data would 

be then used to update such law parameters. 

A drawback of this algorithm is still the computational cost, especially when applied to more 

complex structures. Therefore the use of artificial neural networks (ANN) may be useful to 

diminish this cost [195]. In order to use ANN it is important to run the numerical model a few 

times. An ANN can be thus calibrated with obtained results. The reliability of the ANN 

increases with the number of training data. Once trained, the ANN may be used within this 

framework, instead of the numerical model. 

In the application of this framework to composite structures it was verified that the available 

information regarding the steel to concrete interface is scarce. Some of the parameters were 

thus estimated based in experience. This becomes relevant when randomness is considered 
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and the PDF parameters need to be estimated. Therefore, it is important to develop more 

laboratory tests to evaluate the interface parameters variation with geometry, connector type 

and used materials. 

As previously identified, the developed framework requires a permanent accompaniment 

from the user. Therefore, it is important to make it more user friendly by converting the 

developed routines into an executable file. The objective is to introduce each parameter 

value in a friendly way and to run the executable file accordingly, obtaining the requested 

data in an informative way. 

This framework will provide information regarding the assessed structure. This information is 

useful to support any answer on whether an intervention is, or not, required. However, as 

different kinds of maintenance actions exist, it is necessary to develop one other framework 

that supports operators in a decision regarding the best maintenance strategy. Such 

framework would be based in a time variant cost-benefit model, that incorporates the effect 

of each maintenance action in the structure behavior and also the maintenance actions and 

the doing nothing costs. An optimization algorithm may be used to identify the most suitable 

maintenance strategy.  
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Appendix A: Model Identification Routines 

According to what was previously indicated at chapter four, some Matlab® routines [25, 129] 

were developed within the model identification procedure. These routines are linked 

according to Figure A.1, organization chart. The routine es.m refers to the evolutionary 

strategies algorithm [29]. This algorithm was already implemented by Costa and Oliveira [29]. 

Some of the developed routines are provided further. Other routines, such as the 

parameter.m and the constraint_value.m, should be adapted to each situation. 

 

Figure A.1. Organization chart. 
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(1) backanalysis.m 

k=(…); % 1 - ES (Evolutionary Strategies) {,}; 2 - ES (Evolutionary Strategies) {+} 

E=(…); % Tolerance Criterion 

LB=[…]; % Lower Bound (Parameters) 

UB=[…]; % Upper Bound (Parameters) 

x_0=[…]; % Initial Value (Parameters) 

B=[…]; % Other parameters (fixed values) 

nvars=size(…); % Number of parameters 

if k==1 

Problem.ObjFunction='fobj'; 

Problem.LB=LB; 

Problem.UB=UB; 

Options.MaxObj=(…); 

Options.MaxGen=(…); 

Options.Mu=(…); 

Options.Rho=(…); 

Options.Lambda=(…); 

Options.Selection=','; 

Options.CPTolerance=E; 

Options.CPGenTest=(…); 

Options.Verbosity=(…); 

InitialPopulation(1).x=x_0; 

elseif k==2 

Problem.ObjFunction='fobj'; 

Problem.LB=LB; 

Problem.UB=UB; 

Options.MaxObj=(…); 

Options.MaxGen=(…); 

Options.Mu=(…); 

Options.Rho=(…); 

Options.Lambda=(…); 

Options.Selection='+'; 

Options.CPTolerance=E; 

Options.CPGenTest=(…); 

Options.Verbosity=(…); 

InitialPopulation(1).x=x_0; 

end 

[x,fval,RunData]=es(Problem,[…],Options,B,nvars); 

(2) fobj.m 

function f = fobj(x,B,nvars) 

A = convert(x,B,nvars); % Compute A from x (variable) and B (fixed) 

[K,mexp,limd,lim,pd,k,C,R] = run_num(A); 
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P = run_exp(mexp); 

BD = test_num(K,pd); 

BE = test_exp(P,mexp,pd); 

v = limit(BD,BE,mexp,k); 

for u=1:mexp 

% Compute the fitness function value 

difd=0; 

s=size(BD); 

s=s(1); 

m=size(BE{u}); 

m=m(1); 

ad1=min(s,m); 

ad=0; 

% Verify if it is the same comparing point 

if BD(1,1)==BE{u}(1,1) 

% Verify limit displacement 

if BD(1,1)<=limd || BE{u}(1,1)<=limd 

% Check if i tis lower than maximum load 

if BD (1,2)<=v(u) && BE{u}(1,2)<=v(u) 

ad=ad+1; 

difd=difd+sqrt((BD (1,2)-BE{u}(1,2))^2); 

end 

end 

end 

for i=1:ad1-1 

% Verify if it is the same comparing point 

if BD(i+1,1)==BE{u}(i+1,1) 

% Verify limit displacement 

if BD(i+1,1)<=limd || BE{u}(i+1,1)<=limd 

% Check if i tis lower than maximum load 

if BD(i+1,2)<=v(u) && BE{u}(i+1,2)<=v(u) 

ad=ad+1; 

difd=difd+sqrt((BD(i+1,2)-BE{u}(i+1,2))^2); 

end 

end 

end 

end 

bd(u,1)=max(BE{u}(:,2)); 

end 

sum=0; 

for i=1:mexp 

f(i,1)=difd(i,1)/(bd(i,1)*ad(i,1))*R; 

sum=sum+f(i,1)^2; 

end 

f=sqrt(sum)*C; 
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(3) es.m [29] 

function [x, fx, RunData]=es(Problem, InitialPopulation, Options, varargin) 

% Check parameters consistence 

if nargin < 1 

error('ES:AtLeastOneInput','ES requests at least one input (Problem definition).'); 

end 

% If parameters are missing just define them as empty 

if nargin < 3, Options=[]; 

if nargin < 2, InitialPopulation = []; 

end 

end 

% Problem should be a structure 

if ~isstruct(Problem) 

error('ES:StructProblem', 'First parameter must be a struct.'); 

end 

% Do some check-up on the user provided parameters and data 

if ~isfield(Problem,'ObjFunction') || isempty(Problem.ObjFunction) 

error('ES:ObjMissing', 'Objective function name is missing.'); 

end 

% and simple bound for evolution strategies 

if ~isnumeric(Problem.LB) || ~isnumeric(Problem.UB) || isempty(Problem.LB) || isempty(Problem.UB) 

error('ES:Bounds', 'Population relies on finite bounds on all variables.'); 

end 

% Bound arrays must have the same size 

if length(Problem.LB)~=length(Problem.UB) 

error('ES:BoundsSize', 'Lower bound and upper bound arrays length mismatch.'); 

end 

% Compute the number of variables 

if (~isfield(Problem, 'Variables') || isempty(Problem.Variables)) 

Problem.Variables=length(Problem.LB); 

end 

% Check for computed number of variables 

if Problem.Variables<0 || Problem.Variables>length(Problem.LB) 

error('ES:VariablesNumber', 'Number of variables do not agree with bound constraints'); 

end 

% Initialize options – Local options 

MaxGenerations=GetOption('MaxGen',Options,DefaultOpt); 

MaxEvals=GetOption('MaxObj',Options,DefaultOpt); 

Mu=GetOption('Mu', Options, DefaultOpt); 

Rho=GetOption('Rho',Options,DefaultOpt); 

Lambda=GetOption('Lambda',Options,DefaultOpt); 

SelectType=GetOption('SelectType',Options,DefaultOpt); 

RecombIndType=GetOption('RecombIndType',Options,DefaultOpt); 

RecombParType=GetOption('RecombParType',Options,DefaultOpt); 
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RecombScope=GetOption('RecombScope',Options,DefaultOpt); 

SAdaptType=GetOption('SAdaptType',Options,DefaultOpt); 

% Initialize learning coefficients for self-adaptation rules 

Eta1=1/sqrt(2*Problem.Variables); 

Eta2=1/sqrt(2*sqrt(Problem.Variables)); 

% Initialize coefficient for rotation in self-adaptation rules 

Beta=5/180*pi; 

% Inferior bound for step sizes 

Tol=1e-10; 

% Initialize options – Global options 

Problem.Verbose=GetOption('Verbosity', Options, DefaultOpt); 

Problem.Tolerance=GetOption('CPTolerance', Options, DefaultOpt); 

Problem.GenTest=GetOption('CPGenTest', Options, DefaultOpt); 

% Number of objective function calls 

Problem.Stats.ObjFunCounter=0; 

% Generate initial population 

[Problem,ParentPop]=InitPopulation(Problem, InitialPopulation, Mu, varargin{:}); 

% Sort population 

temp=[ParentPop.x ParentPop.f ParentPop.std ParentPop.rot]; 

temp=sortrows(temp,Problem.Variables+1); 

ParentPop.x=temp(:,1:Problem.Variables); 

ParentPop.f=temp(:,Problem.Variables+1); 

ParentPop.std=temp(:,Problem.Variables+2:2*Problem.Variables+1); 

ParentPop.rot=temp(:,2*Problem.Variables+2:2*Problem.Variables+1+Problem.Variables*(Problem.Variables-1)/2); 

if Problem.Verbose 

disp('ES is alive... '); 

% Initialize counters 

Problem.Stats.GenCounter=0; 

% Initialize statistics structures 

Problem.Stats.Best(Problem.Stats.GenCounter+1)=ParentPop.f(1); 

Problem.Stats.Worst(Problem.Stats.GenCounter+1)=ParentPop.f(Mu); 

Problem.Stats.Mean(Problem.Stats.GenCounter+1)=mean(ParentPop.f); 

Problem.Stats.Std(Problem.Stats.GenCounter+1)=std(ParentPop.f); 

% Main cycle of the evolution strategy 

% Stop if the maximum number of iterations or objective function evaluations is reached. 

while(Problem.Stats.GenCounter<MaxGenerations && Problem.Stats.ObjFunCounter<MaxEvals) 

% Stop if the improvement is inferior to the Tolerance in the last generations 

if Problem.Stats.GenCounter>0 && ~mod(Problem.Stats.GenCounter,ceil(Problem.GenTest*MaxGenerations)) && 
abs(Problem.Stats.Best(Problem.Stats.GenCounter+1)-Problem.Stats.Best(Problem.Stats.GenCounter+1-
ceil(Problem.GenTest*MaxGenerations))) < Problem.Tolerance 

disp('Stopping due to objective function improvement inferior to CPTolerance in the last CPGenTest generations'); 

break; 

end 

% Increment generation counter. 

Problem.Stats.GenCounter=Problem.Stats.GenCounter+1; 
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% Define the recombination scope 

switch RecombScope 

case 'H' 

list=create_group(Mu,Rho,0); 

case 'N' 

list=create_group(Mu,Rho,1); 

otherwise 

error('ES:Invalid recombination scope option', 'Define: H for Hemaphrodite; N for Not hemaphrodite.'); 

end 

% Recombination 

switch RecombParType 

case 'D' 

% Discrete Recombination for search parameters 

for i=1:Mu 

for j=1:Problem.Variables 

i1=randint(1,1,[1 Rho]); 

RecPop.std(i,j)=ParentPop.std(list(i1),j); 

end 

if Problem.Variables*(Problem.Variables-1)/2>0 

for j=1:Problem.Variables*(Problem.Variables-1)/2 

i2=randint(1,1,[1 Rho]); 

RecPop.rot(i,j)=ParentPop.rot(list(i2),j); 

end 

end 

end 

case 'I' 

% Intermediate Recombination for search parameters 

for i=1:Mu 

for j=1:Problem.Variables 

for k=1:Rho 

RecPop.std(i,j)=sum(ParentPop.std(list(k),j),1); 

end 

RecPop.std(i,j)=RecPop.std(i,j)/Rho; 

end 

for j=1:Problem.Variables*(Problem.Variables-1)/2 

for k=1:Rho 

RecPop.rot(i,j)=sum(ParentPop.rot(list(k),j),1); 

end 

RecPop.rot(i,j)=RecPop.rot(i,j)/Rho; 

end 

end 

otherwise 

error('ES:Invalid parameters recombination option', 'Define: D for Discrete recombination; I for Intermediate recombination.'); 

end 

switch RecombIndType 
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case 'D' 

% Discrete Recombination for individuals 

for i=1:Mu 

for j=1:Problem.Variables 

i1=randint(1,1,[1 Rho]); 

RecPop.x(i,j)=ParentPop.x(list(i1),j); 

end 

end 

case 'I' 

% Intermediate Recombination for individuals 

for i=1:Mu 

for j=1:Problem.Variables 

for k=1:Rho 

RecPop.x(i,j)=sum(ParentPop.x(list(k),j),1); 

end 

RecPop.x(i,j)=RecPop.x(i,j)/Rho; 

end 

end 

otherwise 

error('ES:Invalid individual recombination option', 'Define: D for Discrete recombination; I for Intermediate recombination.'); 

end 

% Gaussian mutation for parameters 

for i=1:Mu 

lognormal=Eta1*randn(1); 

for j=1:Problem.Variables 

prev_std=RecPop.std(i,j); 

switch SAdaptType 

case 'I' 

% Isotropic rule 

RecPop.std(i,j)=RecPop.std(i,j)*exp(lognormal); 

case {'N','R'} 

% Nonisotropic rule 

RecPop.std(i,j)=RecPop.std(i,j)*exp(lognormal + Eta2*randn(1)); 

otherwise 

error('ES:Invalid auto-adaptation option', 'Define: I for Isotropic; N for Nonisotropic; R for Nonisotropic with rotation.'); 

end 

% Test if inferior bound for step sizes is reached 

if (RecPop.std(i,j)<Tol || (max(abs(RecPop.x(i,:)))~=0 && RecPop.std(i,j)/max(abs(RecPop.x(i,:)))<Tol)) 

RectPop.std(i,j)=prev_std; 

end 

end 

% Rotations mutation 

for j=1:Problem.Variables*(Problem.Variables-1)/2 

RecPop.rot(i,j)=RecPop.rot(i,j)+Beta*randn(1); 

% Reflect rotations for -pi to pi 
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if abs(RecPop.rot(i,j))>pi 

RecPop.rot(i,j)=RecPop.rot(i,j)-2*pi*sign(RecPop.rot(i,j)); 

end 

end 

end 

% Gaussian mutation of individuals 

for i=1:Lambda 

if SAdaptType~='R' 

% Isotropic or nonisotropic 

OffPop.x(i,:)=RecPop.x(mod(i-1,Mu)+1,:)+RecPop.std(mod(i-1,Mu)+1,:).*randn(1,Problem.Variables); 

OffPop.std(i,:)=RecPop.std(mod(i-1,Mu)+1,:); 

else 

% Nonisotropic with rotation 

pos=1; 

RR=eye(Problem.Variables); 

for (k1=1:Problem.Variables-1) 

for (k2=k1+1:Problem.Variables) 

R=eye(Problem.Variables); 

R(k1,k1)=cos(RecPop.rot(mod(i-1,Mu)+1,pos)); 

R(k2,k2)=cos(RecPop.rot(mod(i-1,Mu)+1,pos)); 

R(k1,k2)=-sin(RecPop.rot(mod(i-1,Mu)+1,pos)); 

R(k2,k1)=-R(k1,k2); 

pos=pos+1; 

RR=R*RR; 

end 

end 

% Compute step sizes with rotations 

OffPop.x(i,:)=RecPop.x(mod(i-1,Mu)+1,:)+RecPop.std(mod(i-1,Mu)+1,:).*randn(1,Problem.Variables)*RR; 

OffPop.std(i,:)=RecPop.std(mod(i-1,Mu)+1,:); 

end 

if Problem.Variables*(Problem.Variables-1)/2>0 

OffPop.rot(i,:)=RecPop.rot(mod(i-1,Mu)+1,:); 

end 

% Project points into feasible region 

OffPop.x(i,:)=Bounds(OffPop.x(i,:),Problem.LB(1:Problem.Variables),Problem.UB(1:Problem.Variables)); 

[Problem,OffPop.f(i,:)]=ObjEval(Problem, OffPop.x(i,:), varargin{:}); 

end 

% Select the best from Mu+Lambda individuals or Lambda individuals 

switch SelectType 

case '+' 

if Problem.Variables*(Problem.Variables-1)/2>0 

temp=[ParentPop.x ParentPop.f ParentPop.std ParentPop.rot;OffPop.x OffPop.f OffPop.std OffPop.rot]; 

else 

temp=[ParentPop.x ParentPop.f ParentPop.std;OffPop.x OffPop.f OffPop.std]; 

end 
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case ',' 

if Problem.Variables*(Problem.Variables-1)/2>0 

temp=[OffPop.x OffPop.f OffPop.std OffPop.rot]; 

else 

temp=[OffPop.x OffPop.f OffPop.std]; 

end 

otherwise 

error('ES:Invalid selection option', 'Define: + for plus selection; , for comma selection.'); 

end 

if Problem.Verbose 

% The new population is sorted again 

temp=sortrows(temp,Problem.Variables+1); 

ParentPop.x=temp(1:Mu,1:Problem.Variables); 

ParentPop.f=temp(1:Mu,Problem.Variables+1); 

ParentPop.std=temp(1:Mu,Problem.Variables+2:2*Problem.Variables+1); 

ParentPop.rot=temp(1:Mu,2*Problem.Variables+2:2*Problem.Variables+1+Problem.Variables*(Problem.Variables-1)/2); 

% Statistics 

Problem.Stats.Best(Problem.Stats.GenCounter+1)=ParentPop.f(1); 

Problem.Stats.Worst(Problem.Stats.GenCounter+1)=ParentPop.f(Mu); 

Problem.Stats.Mean(Problem.Stats.GenCounter+1)=mean(ParentPop.f); 

Problem.Stats.Std(Problem.Stats.GenCounter+1)=std(ParentPop.f); 

end 

% End of main cycle 

% Print if it was stopped due to the maximum of iterations or objective function evaluations 

if Problem.Stats.GenCounter>=MaxGenerations || Problem.Stats.ObjFunCounter>=MaxEvals 

disp('Maximum number of iterations or objective function evaluations reached'); 

end 

% return leader position and objective function value 

x=ParentPop.x(1,:); 

fx=ParentPop.f(1); 

RunData=Problem.Stats; 

return; 

function list=create_group(m,r,t) 

if t==1 

listall=1:m; 

for k=1:r 

element=randint(1,1,[1 length(listall)]); 

list(k)=listall(element); 

listall=setdiff(listall,listall(element)); 

end 

else 

list=randint(1,r,[1 m]); 

end 

return 

function out=randint(m,n,range) 



 
304 

 

range = sort(range); 

% Calculate the range the distance for the random number generator 

distance = range(2) - range(1); 

% Generate the random numbers. 

r = floor(rand(m, n) * (distance+1)); 

% Offset the numbers to the specified value. 

out = ones(m,n)*range(1); 

out = out + r; 

return 

function [Problem,Population]=InitPopulation(Problem, InitialPopulation, Size, varargin) 

% Check if user provides a valid initial population 

if ~isempty(InitialPopulation) && ~isstruct(InitialPopulation) 

error('ES:InitPopulation:InitialPopulation', 'Initial population must be defined in a structure.'); 

else 

% Check for size 

if length(InitialPopulation)>Size 

% User provided an initial population greater than the parent population size 

error('ES:InitPopulation:InitialPopulationSize', 'Initial population size must be inferir to Mu.'); 

end 

% Copy the initial population for the population and initialize them 

for i=1:length(InitialPopulation) 

Population.x(i,:)=Bounds(InitialPopulation(i).x,Problem.LB(1:Problem.Variables),Problem.UB(1:Problem.Variables)); 

[Problem,Population.f(i)]=ObjEval(Problem, Population.x(i,:), varargin{:}); 

end 

end 

% Define initial step sizes based on independent uniform distributions 

Population.std=ones(Size,1)*sqrt((Problem.UB-Problem.LB).^2/(12*Problem.Variables)); 

% Initial rotations are zero 

Population.rot=zeros(Size,Problem.Variables*(Problem.Variables-1)/2); 

% Compute the centroid for initial population creation 

if ~isempty(InitialPopulation) 

centroid=sum(InitialPopulation(:).x,1)/length(InitialPopulation) 

else 

centroid=sum(Problem.UB+Problem.LB,1)/2; 

end 

% Randomly generate the remaining population 

for i=length(InitialPopulation)+1:Size 

Population.x(i,:)=Problem.LB(1:Problem.Variables)+(Problem.UB(1:Problem.Variables)-
Problem.LB(1:Problem.Variables)).*rand(1,Problem.Variables); 

for j=1:Problem.Variables 

Population.x(i,j)=centroid(j)+Population.std(i,j)*randn(1); 

end 

% Project into feasible region 

Population.x(i,:)=Bounds(Population.x(i,:),Problem.LB(1:Problem.Variables),Problem.UB(1:Problem.Variables)); 

[Problem,Population.f(i)]=ObjEval(Problem, Population.x(i,:), varargin{:}); 
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end 

Population.f=Population.f'; 

return; 

function X=Bounds(X, L, U) 

for i=1:length(X) 

if X(i)<L(i) 

X(i)=L(i); 

end 

if X(i)>U(i) 

X(i)=U(i); 

end 

end 

return 

function [Problem,ObjValue] = ObjEval(Problem, x, varargin) 

try 

ObjValue=feval(Problem.ObjFunction, x, varargin{:}); 

% update counter 

Problem.Stats.ObjFunCounter=Problem.Stats.ObjFunCounter+1; 

catch 

error('ES:ObjectiveError',['Cannot continue because user supplied objective function', ' failed with the following error:\n%s'], 
lasterr) 

end 

return; 

function [Value]=GetOption(Option, Options, DefaultOpt) 

% Check for user provided options 

if isempty(Options) || ~isstruct(Options) 

% User does not provides options 

Value=DefaultOpt.(Option); 

return; 

end 

% Try the option provided by user 

try 

Value=Options.(Option); 

catch 

Value=[]; 

end 

% Option not provided by user 

if isempty(Value) 

Value=DefaultOpt.(Option); 

end 

return 

(4) run_num.m 

function [K,mexp,limd,lim,pd,k,C,R] = run_num(A) 
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[…]=parameter(A); % generate model parameters 

data(…); % generate ATENA input file 

M=processment; 

K=matrix_num(M); 

end 

(5) data.m 

function Data(…) 

dadosf…=fopen('file_….txt','w'); % open file.txt to write 

fprintf(dadosf…, …); % write on file.txt 

fclose(dados…); % close file.txt 

system('type file_01.txt > file.txt'); % construct ATENA input file.txt 

system('type file_....txt >> file.txt'); 

delete file_....txt; % delete generated file.txt 

end 

(6) processment.m 

function M=processment 

system('"…" file.txt results.txt'); % run ATENA 

system('"…" -f numeric_processment.awk.txt results.txt > processed.txt'); % run GAWK 

M=csvread('processed.txt'); % read obtained results in MATLAB 

delete ….txt; % delete generated files 

end 

(7) matrix_num.m 

function K=matrix_num(M) 

[k,q]=size(M); 

K(1,…)=0; 

for u=1:k 

K(u+1,…)=M(u,…); % generate matrix K with results 

end 

end 

(8) test_num.m 

function BD = test_num(K,pd) 

% Number of lines from matrix BD 

k=size(K(:,:)); 

k=k(1); 

q=max(K(:,1)); 

v=round(q/pd); 

if mod(v,2)==0 
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if v*pd<q 

o=v+1; 

else 

o=v; 

end 

else 

o=v; 

end 

% Computing BD from K using one discretization by steps (interpolation) 

BD(1,1)=0; 

BD(2,1)=pd; 

for t=2:o-1 

for j=1:k-1 

if((K(j+1,1)==BD(t,1))) 

BD(t,2)=K(j+1,2); 

end 

if((K(j+1,1)-BD(t,1))*(K(j,1)-BD(t,1))<0) 

BD(t,2)=(K(j+1,2)-K(j,2))/(K(j+1,1)-K(j,1))*(BD(t,1)-K(j,1))+K(j,2); 

break; 

end 

end 

if(t<o-1) 

BD(t+1,1)=BD(t,1)+pd; 

end 

end 

end 

(9) run_exp.m 

function P = run_exp(mexp) 

P=cell(mexp,1); 

for u=1:mexp 

% read each experimental data 

q1=(['experimental',int2str(u),'.txt']); 

q2=(['experimental_result',int2str(u),'.txt']); 

t1=(['system(''"…" -f introduction_comma.awk.txt ', q1, ' > ', q2, ' '')']); % run GAWK 

t2=(['system(''"…" -f experimental_processement.awk.txt ', q1, ' > ', q2, ' '')']); % run GAWK 

K=(['csvread(''', q2, ''')']); % read experimental data in MatLab 

P{u}=eval(K); % read each registered data 

t3=(['delete ',q2]); % delete each register 

end 

end 
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(10) matrix_exp.m 

function Q=matrix_exp(P,u,,limd,flim) 

e=size(P{u,1}); 

e1=e(1); 

w=1; 

flag=0; 

Q{u,1}(1,1)=0; 

Q{u,1}(1,2)=0; 

while w+1<=e1 && flag==0 && P{u,1}(w,1)<=limd && P{u,1}(w,3)<=flim 

Q{u,1}(w+1,1)=P{u,1}(w+1,1); 

Q{u,1}(w+1,2)=P{u,1}(w+1,3); 

w=w+1; 

end 

end 

 (11) test_exp.m 

function BE = test_exp(P,mexp,pd) 

BE=cell(mexp,1); 

for u=1:mexp 

% Number of lines from matrix BE 

k=size(P{u}); 

k=k(1); 

q=max(P{u}(:,1)); 

v=round(q/pd); 

if mod(v,2)==0 

if v*pd<q 

o=v+1; 

else 

o=v; 

end 

else 

o=v; 

end 

% Computing BE from P using one discretization by steps (interpolation) 

BE{u}(1,1)=0; 

BE{u}(2,1)=pd; 

for t=2:o-1 

for j=1:k-1 

if((P{u}(j+1,1)==BE{u}(t,1))) 

BE{u}(t,2)=P{u}(j+1,2); 

end 

if((P{u}(j+1,1)-BE{u}(t,1))*(P{u}(j,1)-BE{u}(t,1))<0) 

BE{u}(t,2)=(P{u}(j+1,2)-P{u}(j,2))/(P{u}(j+1,1)-P{u}(j,1))*(BE{u}(t,1)-P{u}(j,1))+P{u}(j,2); 
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break; 

end 

end 

if(t<o-1) 

BE{u}(t+1,1)=BE{u}(t,1)+pd; 

end 

end 

end 

end 

(12) limit.m 

function v = limit(BD,BE,mexp,k) 

v=zeros(mexp,1); 

for i=1:mexp 

v1=max(BD(:,2)); 

v2=max(BE{i}(:,2)); 

v3=max(v1,v2); 

v(i)=k*v3; 

end 

end 
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Appendix B: Probabilistic Analysis Routines 

According to what was previously indicated at chapter four, some Matlab® routines [25, 129] 

were developed within the probabilistic analysis of structures. These routines are linked 

according to Figure B.1, organization chart. The routines lhs_iman_n.m, mchol.m, latin_hs.m 

and ranking.m refer to the Latin Hypercube sampling algorithm [173]. This algorithm was 

already implemented by Stein [173]. Some of the developed routines are provided further. 

Other routines, such as the parameter.m and the plot.m, should be adapted to each situation. 

 

Figure B.1. Organization chart. 
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(1) run.m 

nsample = (…); % Number of parameters to be generated 

xmean=[…]; % Parameter mean value 

xsd=[…]; % Parameter standard deviation 

corr=[…]; % Correlation matrix 

B=[…]; % Deterministic parameters 

presults=run(xmean,xsd,corr,nsample,B); 

function presults=run(xmean,xsd,corr,nsample,B) 

z=lhs_iman_n(xmean,xsd,corr,nsample); % Random parameter generation (z) 

ANM=cell(nsample,1); 

for i=1:nsample 

A=Convert(z,B,i); % Compute A from z (variable) and B (fixed) 

[…]=parameter(A); % generate model parameters 

data(…); % generate ATENA input file 

M=processment; 

AN=matrix_num(M); 

ANM{i}(:,:)=AN(:,:); 

end 

% Computing maximum load 

FMAX=max(ANM{1}(:,1)); 

for i=1:nsample 

FM(i)=max(ANM{i}(:,1)); 

FMAX1=max(ANM{i}(:,1)); 

if FMAX1>=FMAX 

FMAX=FMAX1; 

end 

end 

[muhat,sigmahat]=normfit(FM); 

mean=muhat; 

stdev=sigmahat; 

interval=norminv([0.025,0.975],mean,stdev); 

flim=k*FMAX; 

% Compute the confidence intervals 

for i=1:nsample 

BD= test_num(ANM,i,pd); 

end 

p=size(BD{1}(:,:)); 

p1=p(1); 

for i=1:nsample 

p=size(BD{i}(:,:)); 

p=p(1); 

if p>=p1 

p1=p; 
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end 

end 

for i=1:nsample 

FT{1,1}(i)=0.0; 

end 

for j=2:p1 

for i=1:nsample 

p=size(BD{i}(:,:));  

p=p(1); 

if p>=j && BD{i}(j,1)<=limd && BD{i}(j,2)<=flim && BD{i}(j,2)~=0 

FT{j,1}(i)=BD{i}(j,2); 

end 

end 

end 

q=size(FT); 

q1=q(1); 

for i=1:nsample 

q=size(FT{i}(:)); 

q=q(1); 

if q>=q1 

q1=q; 

end 

if q<q1 

q1=q; 

end 

end 

for j=2:q1 

[muhat,sigmahat]=normfit(FT{j}(:)); 

mn(j)=muhat; 

st(j)=sigmahat; 

int(j,:)=norminv([0.025,0.975],muhat,sigmahat); 

end 

for i=1:q1 

LB(i,1)=pd*(i-1); 

UB(i,1)=pd*(i-1); 

LB(i,2)=int(i,1); 

UB(i,2)=int(i,2); 

end 

% Plot the confidence intervals  

Q=run_exp(mexp,limd,flim,LB,UB); 

BE=test_exp(Q,mexp,pd,limd,flim); 

for i=1:mexp 

BEF(i)=max(BE{i}(:,2)); 

end 

r=size(BE{1}(:,:)); 
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r1=r (1); 

for i=1:mexp 

r=size(BE{i}(:,:)); 

r=r(1); 

if r>=r1 

r1=r; 

end 

if r<r1 

r11=r; 

end 

end 

% Compute the gap between numeric and experimental data 

% Index 0 

for i=1:mexp 

s1=min(q1,r1); 

countn1=0; 

countn0(i,1)=s1; 

for j=1:s1 

if BE{i,1}(j,2)>=LB(j,2) && BE{i,1}(j,2)<=UB(j,2) 

countn1=countn1+1; 

end 

end 

index0(i,1)=countn1/countn0(i,1)*100; 

end 

% Index 1 

for i=1:mexp 

s1=min(q1,r1); 

countn1=0; 

index1(i,1)=0.0; 

if s1>=1 

countn0(i,1)=s1; 

for j=2:s1 

P=normcdf(BE{i,1}(j,2),mn(j,1),st(j,1)); 

p(i,j)=(abs(P-0.5)/0.5)*stdev/mean; 

p1(i,j)=(1-p(i,j))*100; 

countn1=countn1+p1(i,j); 

end 

index1(i,1)=countn1/countn0(i,1); 

else 

index1(i,1)=0.0; 

end 

end 

% Maximum applied load 

% Index 0 

index0=zeros(mexp,1); 
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for i=1:mexp 

if BEF(i,1)>=interval(1) && BEF(i,1)<=interval(2) 

index0(i,1)=100; 

else 

index0(i,1)=0; 

end 

end 

% Index 1 

index1=zeros(mexp1,1); 

for i=1:mexp 

P=normcdf(BEF(i,1),mean,stdev); 

p(i,1)=(abs(P-0.5)/0.5)*stdev/mean; 

index1(i,1)=(1-p(i,1))*100; 

end 

% Obtained results 

presults=struct(…); 

end 

(2) lhs_iman_n.m [173] 

function z=lhs_iman_n(xmean,xsd,corr,nsample,ntry) 

% LHS with correlation, normal distribution - Method of Iman & Conover 

nvar=length(xmean); 

if(nargin==4), ntry=1; end; 

% induce data with correlation 

[L,D,E]=mchol(corr); 

%P = chol(corr+E)'; 

P=L*sqrt(D); 

xm=zeros(1,nvar); 

xs=ones(1,nvar); 

R=latin_hs(xm,xs,nsample,nvar); 

T = corrcoef(R); 

[L,D,E]=mchol(T);   

%Q=chol(T+E)'; 

Q=L*sqrt(D); 

S = P * inv(Q); 

RB= R*S'; 

amin=realmax; 

for il=1:ntry 

for j=1:nvar 

[r,id]=ranking(RB(:,j)); 

[RS,id]=sort(R(:,j)); 

z(:,j) = RS(r).*xsd(j)+xmean(j);  

end 

ae=sum(sum(abs(corrcoef(z)-corr))); 
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if(ae<amin), 

zb=z; 

amin=ae; 

end; 

end 

z=zb; 

(3) mchol.m [173] 

function [L,D,E,pneg]=mchol(G) 

n=size(G,1); 

gamma=max(diag(G)); 

zi=max(max(G-diag(diag(G)))); 

nu=max([1,sqrt(n^2-1)]); 

beta2=max([gamma, zi/nu, 1.0E-15]); 

C=diag(diag(G)); 

L=zeros(n); 

D=zeros(n); 

E=zeros(n); 

for j=1:n, 

bb=[1:j-1]; 

ee=[j+1:n]; 

if (j > 1), 

L(j,bb)=C(j,bb)./diag(D(bb,bb))'; 

end; 

if (j >= 2), 

if (j < n),  

C(ee,j)=G(ee,j)-(L(j,bb)*C(ee,bb)')'; 

end; 

else 

C(ee,j)=G(ee,j); 

end; 

if (j == n) 

theta(j)=0; 

else 

theta(j)=max(abs(C(ee,j))); 

end; 

D(j,j)=max([eps,abs(C(j,j)),theta(j)^2/beta2]'); 

E(j,j)=D(j,j)-C(j,j); 

ind=[j*(n+1)+1 : n+1 : n*n]'; 

C(ind)=C(ind)-(1/D(j,j))*C(ee,j).^2; 

end; 

ind=[1 : n+1 : n*n]'; 

L(ind)=1; 

if ((nargout == 4) & (min(diag(C)) < 0.0)) 
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[m,col]=min(diag(C)); 

rhs=zeros(n,1); 

rhs(col)=1; 

pneg=L'\rhs; 

else 

pneg=[]; 

end; 

return 

(4) latin_hs.m [173] 

function s=latin_hs(xmean,xsd,nsample,nvar) 

ran=rand(nsample,nvar); 

s=zeros(nsample,nvar); 

for j=1: nvar 

idx=randperm(nsample); 

P=(idx'-ran(:,j))/nsample; % probability of the cdf 

s(:,j) = xmean(j) + ltqnorm(P).* xsd(j); % this can be replaced by any inverse distribution function 

end 

(5) ranking.m [173] 

function [r,i]=ranking(x)    

n=length(x); 

[s,i]=sort(x); 

r(i,1)=[1:n]'; 

(6) data.m 

function data(…) 

dadosf…=fopen('file_….txt','w'); % open file.txt to write 

fprintf(dadosf…, …); % write on file.txt 

fclose(dados…); % close file.txt 

system('type file_01.txt > file.txt'); % construct ATENA input file.txt 

system('type file_....txt >> file.txt'); 

delete file_....txt; % delete generated file.txt 

end 

(7) processment.m 

function M=processment 

system('"…" file.txt results.txt'); % run ATENA 

system('"…" -f numeric_processment.awk.txt results.txt > processed.txt'); % run GAWK 

M=csvread('processed.txt'); % read obtained results in MATLAB 

delete ….txt; % delete generated files 
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end 

(8) matrix_num.m 

function AN=matrix_num(M) 

[k,q]=size(M); 

AN(1,…)=0; 

for u=1:k 

AN(u+1,…)=M(u,…); % generate matrix K with results 

end 

end 

(9) test_num.m 

function BD=test_num(ANM,i,pd) 

% Number of lines from matrix BD 

q=max(ANM{i}(:,1)); 

v=round(q/pd); 

if mod(v,2)==0 

if v*pd<q 

o=v+1; 

else 

o=v; 

end 

else 

o=v; 

end 

% Computing BD from ANM using one discretization by steps (interpolation) 

[k,l]=size(ANM{i}(:,:)); 

BD{i}(1,1)=0; 

BD{i}(2,1)=pd; 

for t=2:o-1 

for j=1:k-1 

if((ANM{i}(j+1,1)==BD{i}(t,1))) 

BD{i}(t,2)=ANM{i}(j+1,2); 

end 

if((ANM{i}(j+1,1)-BD{i}(t,1))*(ANM{i}(j,1)-BD{i}(t,1))<0) 

BD{i}(t,2)=(ANM{i}(j+1,2)-ANM{i}(j,2))/(ANM{i}(j+1,1)-ANM{i}(j,1))*(BD{i}(t,1)-ANM{i}(j,1))+ANM{i}(j,2); 

break; 

end 

end 

if(t<o-1)  

BD{i}(t+1,1)=BD{i}(t,1)+pd; 

end 

end 
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end 

(10) run_exp.m 

function Q=run_exp(mexp,limd,flim,LB,UB) 

P=cell(mexp,1); 

L1=cell(mexp,1); 

% read each experimental data 

for u=1:mexp 

q1=(['experimental',int2str(u),'.txt']); 

q2=(['resultado_experimental',int2str(u),'.txt']); 

t2=(['system(''"…" -f introduction_comma.awk.txt ', q1, ' > ', q2, ' '')']); % run GAWK 

t3=(['system(''"…" -f experimental_processment.awk.txt ', q1, ' > ', q2, ' '')']); % run GAWK 

K=(['csvread(''', q2, ''')']); % read experimental data in MatLab 

P{u,1}=eval(K); % read each registered data 

Q=matrix_exp(P,u,limd,flim); 

t4=('Plot(Q,u,LB,UB)'); % Plot each register 

eval(t4); 

t5=(['delete ',q2]); % delete each register 

end 

end 

(11) matrix_exp.m 

function Q=matrix_exp(P,u,,limd,flim) 

e=size(P{u,1}); 

e1=e(1); 

w=1; 

flag=0; 

Q{u,1}(1,1)=0; 

Q{u,1}(1,2)=0; 

while w+1<=e1 && flag==0 && P{u,1}(w,1)<=limd && P{u,1}(w,3)<=flim 

Q{u,1}(w+1,1)=P{u,1}(w+1,1); 

Q{u,1}(w+1,2)=P{u,1}(w+1,3); 

w=w+1; 

end 

end 

(12) test_exp.m 

function BE=test_exp(Q,mexp,pd,limd,flim); 

BE=cell(mexp,1); 

for u=1:mexp 

% Number of lines from matrix BE 

k=size(P{u,1}); 
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k=k(1); 

q=max(P{u,1}(:,1)); 

v=round(q/pd); 

if mod(v,2)==0 

if v*pd<q 

o=v+1; 

else 

o=v; 

end 

else 

o=v; 

end 

% Computing BE from P using one discretization by steps (interpolation) 

BE{u,1}(1,1)=0; 

BE{u,1}(2,1)=pd; 

for t=2:o-1 

for j=1:k-1 

if((P{u,1}(j+1,1)==BE{u,1}(t,1))) 

BE{u,1}(t,2)=P{u,1}(j+1,2); 

end 

if((P{u,1}(j+1,1)-BE{u,1}(t,1))*(P{u,1}(j,1)-BE{u,1}(t,1))<0) 

BE{u,1}(t,2)=(P{u,1}(j+1,2)-P{u,1}(j,2))/(P{u,1}(j+1,1)-P{u,1}(j,1))*(BE{u,1}(t,1)-P{u,1}(j,1))+P{u,1}(j,2); 

break; 

end 

end 

if(t<o-1)  

BE1{u,1}(t+1,1)=BE1{u,1}(t,1)+pd; 

end 

end 

end 

BE=cell(mexp,1); 

for u=1:mexp 

k=size(BE1{u,1}(:,:)); 

k=k(1); 

for i=1:k 

if BE1{u,1}(i,1)<=limd && BE1{u,1}(i,2)<=flim 

BE{u,1}(i,1)=BE1{u,1}(i,1); 

BE{u,1}(i,2)=BE1{u,1}(i,2); 

end 

end 

end 
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Appendix C: Bayesian Inference Routines 

According to what was previously indicated at chapter four, some Matlab® routines [25, 129] 

were developed within the Bayesian inference procedure [15]. These routines are linked 

according to Figure C.1, organization chart. The routine matbugs.m establishes the interface 

between Matlab® [25, 129] and WinBugs® [111] software. Some of the developed routines 

are provided further. Other routines, such as the plotbugsmu.m, plotbugssigma.m, 

plotbugsmusigma.m and the plotbugswbl.m, should be adapted to each situation. 

 

Figure C.1. Organization chart. 
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(1) run.m 

function res=run 

[data,winbugs_model,flq]=read; % Read data 

if flq==0 

test(winbugs_model); % Perform the check-up of Winbugs model parameters 

res=winbugs(data,winbugs_model,flq); % Run Winbugs 

elseif flq==1 

test(winbugs_model); % Perform the check-up of Winbugs model parameters 

res=weibull(winbugs_model,data,flq); % Run Winbugs with Weibull distribution 

end 

end 

(2) read.m 

function [data,winbugs_model,flq]=read 

% Read data file 

fid = fopen('data.txt'); 

dt = textscan(fid, ' %f'); 

fclose(fid); 

% Convert data 

data(:,:)=dt{1}(:,:); 

data=data'; 

% Read Winbugs parameters 

fid = fopen('winbugs_parameters.txt'); 

wb = textscan(fid, '%s %f'); 

fclose(fid); 

% Convert Winbugs parameters (structure) 

winbugs_model.(…)=wb{2}(…); 

% Weibull analysis 

flq=winbugs_model.wbl; 

end 

(3) test.m 

function test(winbugs_model) 

if (…) % Test Winbugs parameters 

% Display on Matlab 

error('Error in WinBugs_Model Parameters'); 

end 

end 

(4) winbugs.m 

function res=winbugs(data,winbugs_model,flq) 
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[P,flp,flc,flk,flu]=convert(data,winbugs_model); % Convert Winbugs parameters 

if flp==0 

[N,PL,mean2,std2,x]=calcbugs(P,flc); 

% Run WinBugs 

stats=winbugsmu(N,PL,std2,winbugs_model); 

% Compute stats and random distribution functions 

[res,pdfNormal1,pdfNormal2,pdfNormal3,pdfNormal4]=calcbugsmu(stats,N,mean2,std2,x,winbugs_model,flk,flc); 

if flq==0 

% Plot random distribution functions 

plotbugsmu(pdfNormal1,pdfNormal2,pdfNormal3,pdfNormal4,x); 

end 

elseif flp==1 

[N,PL,mean2,std2,x]=calcbugs(P,flc); 

% Run Winbugs 

stats=winbugssigma(N,PL,mean2,winbugs_model); 

% Compute stats and random distribution functions 

[res,pdfNormal1,pdfNormal2,pdfNormal3,f_x_4]=calcbugssigma(stats,N,mean2,std2,x,winbugs_model,flk,flc); 

if flq==0 

% Plot random distribution functions 

plotbugssigma(pdfNormal1,pdfNormal2,pdfNormal3,f_x_4,x,flu); 

end 

elseif flp==2 

[N,PL,mean2,std2,x]=calcbugs(P,flc); 

% Run WinBugs 

stats=winbugsmusigma(N,PL,flk,winbugs_model); 

% Compute stats and random distribution functions 

[res,pdfNormal11,pdfNormal12,pdfNormal2,pdfNormal4,f_x_3,f_x_5]= 

calcbugsmusigma(stats,N,mean2,std2,x,winbugs_model,flk,flc); 

if flq==0 

% Plot random distribution functions 

plotbugsmusigma(pdfNormal11,pdfNormal12,pdfNormal2,pdfNormal4,f_x_3,f_x_5,x,flu); 

end 

end 

end 

(5) convert.m 

function [P,flp,flc,flk,flu]=convert(data,winbugs_model) 

P=data; 

flp=winbugs_model.par; 

flc=winbugs_model.log; 

flk=winbugs_model.prior; 

flu=winbugs_model.graph; 

end 
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(6) calcbugs.m 

function [N,PL,mean2,std2,x]=calcbugs(P,flc) 

p=size(P); 

q=p(2); 

N=q; 

x=0:0.1:1000; 

if flc==0 

PL=P; 

mean2=mean(PL); 

std2=std(PL,1); 

elseif flc==1 

PL=log(P); 

mean2=mean(PL); 

std2=std(PL,1); 

end 

end 

(7) winbugsmu.m, winbugssigma.m, winbugsmusigma.m 

function stats=winbugsmu(N,PL,std2,winbugs_model) 

mean1=winbugs_model.mean; 

tau1=winbugs_model.std^(-2); 

dataStruct = struct('N', N, income', PL, ‘sigma', std2, 'mean', mean1, 'taum', tau1); 

S.mu = 0; 

initStructs = S; 

[~,stats] = matbugs(dataStruct, fullfile(pwd, 'normal_mu.txt'), 'init', initStructs, 'view', winbugs_model.view, 'nburnin', 
winbugs_model.nburnin, 'nsamples', winbugs_model.nsamples, 'thin', winbugs_model.thin, 'monitorParams', {'mu'}, 'Bugdir', 
'…', 'DICstatus',winbugs_model.dic); 

end 

function stats=winbugssigma(N,PL,mean2,winbugs_model) 

alfa1=winbugs_model.alfa; 

beta1=winbugs_model.beta; 

dataStruct = struct('N', N, 'income', PL, 'mu', mean2, 'alfa', alfa1, 'beta', beta1); 

S.tau = 1; 

initStructs = S; 

[~, stats] = matbugs(dataStruct, fullfile(pwd, 'normal_tau.txt'), 'init', initStructs, 'view', winbugs_model.view, 'nburnin', 
winbugs_model.nburnin, 'nsamples', winbugs_model.nsamples, 'thin', winbugs_model.thin, 'monitorParams', {'tau'}, 'Bugdir', 
'…', 'DICstatus',winbugs_model.dic); 

end 

function stats=winbugsmusigma(N,PL,flk,winbugs_model) 

mean1=winbugs_model.mean; 

tau1=winbugs_model.std^(-2); 

alfa1=winbugs_model.alfa; 

beta1=winbugs_model.beta; 
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if flk==0 

dataStruct = struct('N', N, 'income', PL, 'mean', mean1, 'taum', tau1, 'alfa', alfa1, 'beta', beta1); 

S.mu = 0; 

S.tau = 1; 

initStructs = S; 

[~,stats] = matbugs(dataStruct, fullfile(pwd, 'normal_mu_tau.txt'), init', initStructs, 'view', winbugs_model.view, 'nburnin', 
winbugs_model.nburnin, 'nsamples', winbugs_model.nsamples, 'thin', winbugs_model.thin, 'monitorParams', {'mu','tau'}, 
'Bugdir', '…', 'DICstatus',winbugs_model.dic); 

elseif flk==1 

N0=winbugs_model.n0; 

dataStruct = struct('N', N, 'income', PL, 'mean', mean1, 'alfa', alfa1, 'beta', beta1, 'N0', N0); 

S.mu = 0; 

S.tau = 1; 

initStructs = S; 

[~, stats] = matbugs(dataStruct, fullfile(pwd, 'normal_mu_tau_conj.txt'), 'init', initStructs, 'view', winbugs_model.view, 'nburnin', 
winbugs_model.nburnin, 'nsamples', winbugs_model.nsamples, 'thin', winbugs_model.thin, 'monitorParams', {'mu','tau'}, 
'Bugdir', '…', 'DICstatus',winbugs_model.dic); 

end 

end 

(8) matbugs.m (by Kevin Murphy and Maryam Mahdaviani, August 2005: 

http://code.google.com/p/matbugs/) 

function [samples, stats, structArray] = matbugs(dataStruct, bugsModel, varargin) 

% MATBUGS a Matlab interface for WinBugs 

[openBUGS, junk] =  process_options(varargin, 'openBUGS', 0); 

if openBUGS 

Bugdir = '…'; 

else 

Bugdir = '…'; 

end 

if isunix 

wine=1; 

pathPrefix='z:'; 

else 

wine=0; 

pathPrefix=''; 

end 

[initStructs, Bugdir, nChains, view, workingDir, nBurnin, nSamples, monitorParams, thin, blocking, refreshrate, DICstatus, 
openBUGS, junk] = process_options(varargin, 'init', {}, 'Bugdir', Bugdir, 'nChains', 3, 'view', 0, 'workingDir', fullfile(pwd,'tmp'), 
'nBurnin', 1000, 'nSamples', 5000, 'monitorParams', {}, 'thin', 1, 'blocking', 1, 'refreshrate',100, 'DICstatus',0, 'openBUGS', 0); 

if 0 % length(initStructs) ~= nChains 

error(['init structure does not match number of chains ', sprintf('(%d)', nChains)]); 

end 

if ~exist(workingDir, 'dir') 

mkdir(pwd, 'tmp'); 

end 
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log_filename = fullfileKPM(workingDir, 'log.txt'); 

his_filename = fullfileKPM(workingDir, 'history.txt'); 

if wine 

scriptFile = [Bugdir,filesep,'script.txt']; 

else 

scriptFile = [Bugdir,'\','script.txt']; 

end 

bugsModel = strrep(bugsModel, '\', '/'); 

codaFile = fullfileKPM(workingDir, 'coda'); 

fid = fopen(scriptFile,'w'); 

if (fid == -1) 

error(['Cannot open ', scriptFile]); 

end 

fprintf(fid, 'display(''log'') \n'); 

if openBUGS 

fprintf(fid, 'modelCheck(''%s'')\n',[pathPrefix,bugsModel]); 

else 

fprintf(fid, 'check(''%s'')\n',[pathPrefix,bugsModel]); 

end 

if ~isempty(dataStruct) 

dataFile = fullfileKPM(workingDir, 'data.txt'); 

dataGen(dataStruct, dataFile); 

if openBUGS 

fprintf(fid, 'modelData(''%s'')\n', [pathPrefix,dataFile]); 

else 

fprintf(fid, 'data(''%s'')\n', [pathPrefix,dataFile]); 

end 

end 

if openBUGS 

fprintf(fid, 'modelCompile(%u) \n', nChains); 

else 

fprintf(fid, 'compile(%u) \n', nChains); 

end 

initfileN = size(initStructs,2); 

for i=1:initfileN 

initFileName = fullfileKPM(workingDir, ['init_', num2str(i) '.txt']); 

dataGen(initStructs(i), initFileName) 

if openBUGS, 

fprintf(fid, 'modelInits(''%s'', %u)\n', [pathPrefix,initFileName], i); 

else 

fprintf(fid, 'inits (%u, ''%s'')\n', i, [pathPrefix,initFileName]); 

end 

end 

if 0 

fprintf(fid, 'blockfe(1)\n');  
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end 

fprintf(fid, 'refresh(%u) \n', refreshrate); 

if openBUGS 

fprintf(fid, 'modelGenInits() \n'); 

fprintf(fid, 'modelUpdate(%u, TRUE)\n', nBurnin); 

else 

fprintf(fid, 'gen.inits() \n'); 

fprintf(fid, 'update(%u)\n', nBurnin); 

end 

if isempty(monitorParams) 

if openBUGS 

fprintf(fid, 'samplesSet ("*")\n'); 

else 

fprintf(fid, 'set (*)\n'); 

end 

else 

for i=1:length(monitorParams) 

if openBUGS 

fprintf(fid, 'samplesSet (%s)\n', strrep(monitorParams{i}, '_', '.')); 

else 

fprintf(fid, 'set (%s)\n', strrep(monitorParams{i}, '_', '.')); 

end 

end 

end 

if DICstatus; fprintf(fid, 'dic.set()\n'); 

if openBUGS 

fprintf(fid, 'samplesThin(%u)\n', thin); 

fprintf(fid, 'modelUpdate(%u)\n', nSamples); 

fprintf(fid, 'samplesCoda("*", ''%s'')\n',  [pathPrefix,codaFile]); 

fprintf(fid, 'samplesStats("*")\n'); 

fprintf(fid, 'samplesDensity("*")\n'); 

fprintf(fid, 'samplesHistory("*")\n'); 

else 

fprintf(fid, 'thin.updater(%u)\n', thin); 

fprintf(fid, 'update(%u)\n', nSamples); 

fprintf(fid, 'coda(*, ''%s'')\n',  codaFile); 

fprintf(fid, 'stats(*)\n'); 

end 

if DICstatus; fprintf(fid, 'dic.stats()\n #endDIC'); 

if openBUGS 

fprintf(fid, 'samplesHistory("*", ''%s'')\n', his_filename); 

fprintf (fid, 'modelSaveLog(''%s'')\n',  log_filename); 

else 

fprintf(fid, 'history(*, ''%s'')\n', his_filename); 

fprintf (fid, 'save (''%s'')\n',  log_filename); 
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end 

if (view == 0) 

if openBUGS 

fprintf(fid, 'modelQuit("y")\n'); 

else 

fprintf(fid, 'quit() \n'); 

end 

end 

fclose(fid); 

if openBUGS 

f = fullfile(Bugdir, 'winbugs.exe'); 

else 

if wine 

f = fullfile(Bugdir, 'WinBUGS14.exe'); 

else 

f = fullfile(Bugdir, 'Winbugs14.exe'); 

end 

end 

str = ['"',f,'" /PAR script.txt']; 

dos(str); 

if openBUGS 

codaIndex = [codaFile, 'CODAindex.txt']; 

else 

codaIndex = [codaFile, 'Index.txt']; 

end 

for i=1:nChains 

if openBUGS 

codaF = [codaFile, 'CODAchain', num2str(i), '.txt']; 

else 

codaF = [codaFile, num2str(i), '.txt']; 

end 

S = bugs2mat(codaIndex, codaF); 

structArray(i) = S; 

end 

samples = structsToArrays(structArray); 

stats = computeStats(samples); 

if DICstatus; 

DICstats = getDICstats(workingDir); 

stats.DIC = DICstats;  

end 

if nChains == 1 

disp('EPSR not calculated (only one chain)'); 

end 

end 

function dataGen(dataStruct, fileName) 
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if nargin<2 

error(['This function needs two arguments']); 

end 

fieldNames = fieldnames(dataStruct); 

Nparam = size(fieldNames, 1); 

fid = fopen(fileName, 'w'); 

if fid == -1 

error(['Cannot open ', fileName ]); 

end 

fprintf(fid,'list('); 

for i=1:Nparam 

fn = fieldNames(i); 

fval = fn{1}; 

val = getfield(dataStruct, fval); 

[sfield1, sfield2]= size(val); 

msfield = max(sfield1, sfield2); 

newfval = strrep(fval, '_', '.'); 

if ((sfield1 == 1) && (sfield2 == 1)) 

fprintf(fid, '%s=%G',newfval, val); 

elseif ((length(size(val)) == 2) && ((sfield1 == 1) || (sfield2 == 1))) 

fprintf(fid, '%s=c(',newfval); 

for j=1:msfield 

if (isnan(val(j))) 

fprintf(fid,'NA'); 

else 

fprintf(fid,wb_strval(val(j))); 

end 

if (j<msfield) 

fprintf(fid, ', '); 

else 

fprintf(fid, ')'); 

end 

end 

else 

valsize = size(val); 

alldatalen = prod(valsize); 

if length(valsize)<3 

alldata = reshape(val', [1, alldatalen]); 

elseif length(valsize)==3 

clear valTransp 

for j=1:valsize(3) 

valTransp(j,:,:)=val(:,:,j)'; 

end 

alldata=valTransp(:)'; 

else 
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['Error: 4D and higher dimensional arrays not accepted'] 

return 

end 

fprintf(fid, '%s=structure(.Data=c(', newfval); 

for j=1:alldatalen 

if (isnan(alldata(j))) 

fprintf(fid,'NA'); 

else 

fprintf(fid,wb_strval(alldata(j))); 

end 

if (j < alldatalen) 

fprintf(fid,','); 

else 

fprintf(fid,'), .Dim=c(', alldata(j)); 

end 

end 

for j=1:length(valsize) 

if (j < length(valsize)) 

fprintf(fid, '%G,', valsize(j)); 

else 

fprintf(fid, '%G))', valsize(j)); 

end 

end 

end 

if (i<Nparam) 

fprintf(fid, ', '); 

else 

fprintf(fid, ')\n'); 

end 

end 

fclose(fid); 

end 

function s = wb_strval(v) 

s = sprintf('%G', v); 

if strfind(s, 'E') 

if length(strfind(s, '.')) == 0 

s = strrep(s, 'E', '.0E'); 

end 

s = strrep(s, 'E+0', 'E+'); 

s = strrep(s, 'E-0', 'E-'); 

end 

end 

function f = fullfileKPM(varargin) 

f = fullfile(varargin{:}); 

f = strrep(f, '\', '/'); 
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end 

function A = structsToArrays(S) 

C = length(S); 

fld = fieldnames(S); 

A = []; 

for fi=1:length(fld) 

fname = fld{fi}; 

tmp = getfield(S(1), fname); 

sz = size(tmp); 

psz = prod(sz); 

data = zeros(C, psz); 

for c=1:C 

tmp = getfield(S(c), fname); 

%data = cat(1, data, tmp); 

data(c,:) = tmp(:)'; 

end 

if sz(2) > 1 % vector or matrix variable 

data = reshape(data, [C sz]); 

end 

A = setfield(A, fname, data); 

end 

end 

function [Rhat, m, s] = EPSR(samples) 

[n m] = size(samples); 

meanPerChain = mean(samples,1); 

meanOverall = mean(meanPerChain); 

if m > 1 

B = (n/(m-1))*sum( (meanPerChain-meanOverall).^2); 

varPerChain = var(samples); 

W = (1/m)*sum(varPerChain); 

vhat = ((n-1)/n)*W + (1/n)*B; 

Rhat = sqrt(vhat/(W+eps)); 

else 

Rhat = nan; 

end 

m = meanOverall; 

s = std(samples(:)); 

end 

function stats = computeStats(A) 

fld = fieldnames(A); 

N = length(fld); 

stats = struct('Rhat',[], 'mean', [], 'std', []); 

for fi=1:length(fld) 

fname = fld{fi}; 

samples = getfield(A, fname); 
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sz = size(samples); 

clear R m s 

Nchains = sz(1); 

Nsamples = sz(2); 

st_mean_per_chain = mean(samples, 2); 

st_mean_overall   = mean(st_mean_per_chain, 1); 

if Nchains > 1 

B = (Nsamples/Nchains-1) * sum((st_mean_per_chain - repmat(st_mean_overall, [Nchains,1])).^2); 

varPerChain = var(samples, 0, 2); 

W = (1/Nchains) * sum(varPerChain); 

vhat = ((Nsamples-1)/Nsamples) * W + (1/Nsamples) * B; 

Rhat = sqrt(vhat./(W+eps)); 

else 

Rhat = nan; 

end 

samp_shape = size(squeeze(st_mean_overall)); 

reshape_target = [Nchains * Nsamples, samp_shape]; 

reshaped_samples = reshape(samples, reshape_target); 

st_std_overall = std(reshaped_samples); 

if ~isnan(Rhat) 

stats.Rhat = setfield(stats.Rhat, fname, squeeze(Rhat)); 

end 

squ_mean_overall = squeeze(st_mean_overall); 

st_mean_size = size(squ_mean_overall); 

if (length(st_mean_size) == 2) && (st_mean_size(2) == 1) 

stats.mean = setfield(stats.mean, fname, squ_mean_overall'); 

else 

stats.mean = setfield(stats.mean, fname, squ_mean_overall); 

end 

stats.std = setfield(stats.std, fname, squeeze(st_std_overall)); 

end 

end 

function DICstats = getDICstats(workingDir) 

DICstats = []; 

FIDlog = fopen([workingDir '\log.txt'],'r'); 

ct = 0; 

test = 0; 

endloop = 0; 

while 1 

tline = fgets(FIDlog); 

if tline == -1; break; end 

if endloop; break; end 

if strfind(tline,'dic.set cannot be executed');  

DICstats.error = 'DIC monitor could not be set by WinBUGS'; 

end 
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if size(tline,2)>6 

if strcmp(tline(1:5),'total'); endloop = 1; end; 

end 

if size(tline,2)>2 

if strcmp(tline(1:3),'DIC'); test = 1; end 

end 

if test  

ct=ct+1; 

if ct >= 4 

A = sscanf(tline,'%*s %f %f %f %f'); 

S = sscanf(tline, '%s %*f %*f %*f %*f'); 

DICstats.S.(…) = A(…); 

end 

end 

end 

fclose(FIDlog) 

end 

function S=bugs2mat(file_ind,file_out,dir) 

if nargin>2, 

file_ind=[dir '/' file_ind]; 

file_out=[dir '/' file_out]; 

end 

ind=readfile(file_ind); 

data=load(file_out); 

Nvars=size(ind,1); 

S=[]; 

for k=1:Nvars 

[varname,indexstr]=strtok(ind(k,:)); 

varname=strrep(varname,'.','_'); 

indices=str2num(indexstr); 

if size(indices)~=[1 2] 

error(['Cannot read line: [' ind(k,:) ']']); 

end 

sdata = size(data); 

samples=data(indices(1):indices(2),2); 

varname(varname=='[')='('; 

varname(varname==']')=')'; 

leftparen=find(varname=='('); 

outstruct=varname; 

if ~isempty(leftparen) 

outstruct=sprintf('%s(:,%s',varname(1:leftparen-1),varname(leftparen+1:end)); 

end 

eval(['S.' outstruct '=samples;']); 

end 

end 
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function T=readfile(filename) 

f=fopen(filename,'r'); 

if f==-1, fclose(f); error(filename); end 

i=1; 

while 1 

clear line; 

line=fgetl(f); 

if ~isstr(line), break, end 

n=length(line); 

T(i,1:n)=line(1:n); 

i=i+1; 

end 

fclose(f); 

end 

function [varargout] = process_options(args, varargin) 

n = length(varargin); 

if (mod(n, 2)) 

error('Each option must be a string/value pair.'); 

end 

if (nargout < (n / 2)) 

error('Insufficient number of output arguments given'); 

elseif (nargout == (n / 2)) 

warn = 1; 

nout = n / 2; 

else 

warn = 0; 

nout = n / 2 + 1; 

end 

varargout = cell(1, nout); 

for i=2:2:n 

varargout{i/2} = varargin{i}; 

end 

nunused = 0; 

for i=1:2:length(args) 

found = 0; 

for j=1:2:n 

if strcmpi(args{i}, varargin{j}) 

varargout{(j + 1)/2} = args{i + 1}; 

found = 1; 

break; 

end 

end 

if (~found) 

if (warn) 

warning(sprintf('Option ''%s'' not used.', args{i})); 
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args{i} 

else 

nunused = nunused + 1; 

unused{2 * nunused - 1} = args{i}; 

unused{2 * nunused} = args{i + 1}; 

end 

end 

end 

if (~warn) 

if (nunused) 

varargout{nout} = unused; 

else 

varargout{nout} = cell(0); 

end 

end 

end 

(9) calcbugsmu.m, calcbugssigma.m, calcbugsmusigma.m 

function [res,pdfNormal1,pdfNormal2,pdfNormal3,pdfNormal4]=calcbugsmu(stats,N,mean2,std2,x,winbugs_model,flk,flc) 

mean1l=winbugs_model.mean; 

std1l=winbugs_model.std; 

mean2l=mean2; 

std2l=std2; 

mean3l=stats.mean.mu; 

std3l=stats.std.mu; 

mean4l=mean3l; 

if flk==0 

if (N+1)<0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

std4l=std3l*sqrt(N+1); 

end 

elseif flk==1 

if std1l==0 || std3l==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

lambda=1/std2l^2; 

lambdan=1/std3l^2; 

end 

if  (lambdan+lambda)==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

lambdau=lambda*lambdan/(lambdan+lambda); 

end 
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if (lambdau^-1)<0 || lambdau==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

std4l=sqrt(lambdau^-1); 

end 

end 

if flc==0 

mean(…)=mean(…); 

std(…)=std(…); 

elseif flc==1 

mean(…)=exp(mean(…)+std(…)^2/2); 

if (exp(2*mean(…)+std(…)^2)*(exp(std(…)^2)-1))<0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

std(…)=sqrt(exp(2*mean(…)+std(…)^2)*(exp(std(…)^2)-1)); 

end 

end 

pdfNormal(…)=normpdf(x,mean(…),std(…)); 

interval(…)=norminv([0.025,0.975],mean(…),std(…)); 

res.prior.par_mu.mean=mean1; 

res.prior.par_mu.std=std1; 

res.prior.par_mu.int=interval1; 

res.likelihood.mean=mean2; 

res.likelihood.std=std2; 

res.likelihood.int=interval2; 

res.posterior.par_mu.mean=mean3; 

res.posterior.par_mu.std=std3; 

res.posterior.par_mu.int=interval3; 

res.posterior.pop.mean=mean4; 

res.posterior.pop.std=std4; 

res.posterior.pop.int=interval4; 

end 

function [res,pdfNormal1,pdfNormal2,pdfNormal3,f_x_4]=calcbugssigma(stats,N,mean2,std2,x,winbugs_model,flk,flc) 

alfa1=winbugs_model.alfa; 

beta1=winbugs_model.beta; 

if winbugs_model.beta==0 || (winbugs_model.alfa/winbugs_model.beta^2)<0 || beta1==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

mean1l=winbugs_model.alfa/winbugs_model.beta; 

std1l=sqrt(winbugs_model.alfa/winbugs_model.beta^2); 

b1=1/beta1; 

end 

mean2l=mean2; 

std2l=std2; 
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mean3l=stats.mean.tau; 

std3l=stats.std.tau; 

if std3l==0 || mean3l==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

alfa3=(mean3l/std3l)^2; 

b3=std3l^2/mean3l; 

end 

if flk==0 

mean4l=mean2l; 

if std3l==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

alfa4=2*(mean3l/std3l)^2; 

end 

if ((mean3l/std3l^2)/((mean3l/std3l)^2))<0 || (alfa4/(alfa4-2))<0 || std3l==0 || (alfa4-2)==0 || ((mean3l/std3l)^2)==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

lambda4=(mean3l/std3l^2)/((mean3l/std3l)^2); 

std4l=sqrt(lambda4)*sqrt(alfa4/(alfa4-2)); 

end 

elseif flk==1 

mean4l=mean2l; 

alfa4=2*alfa1+N; 

if 1/(alfa3*b3)<0 || (alfa3*b3)==0 || (alfa4/(alfa4-2))<0 || (alfa4-2)==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

lambda4=1/(alfa3*b3); 

std4l=sqrt(lambda4)*sqrt(alfa4/(alfa4-2)); 

end 

end 

Y=gamrnd(alfa3,b3,1e6,1); 

z=size(Y); 

z=z(1); 

for i=1:z 

Y1(i,1)=1/sqrt(Y(i,1)); 

end 

mean3l=mean(Y1); 

std3l=std(Y1); 

phat=gamfit(Y1); 

alfa3=phat(1,1); 

b3=phat(1,2); 

if flc==0 

mean(…)=mean(…); 

std(…)=std(…); 
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elseif flc==1 

mean(…)=exp(mean(…)+std(…)^2/2); 

if (exp(2*mean(…)+std(…)^2)*(exp(std(…)^2)-1))<0 

error('Error in WinBugs_Model Parameters'); % display on the matlab 

else 

std(…)=sqrt(exp(2*mean(…)+std(…)^2)*(exp(std(…)^2)-1)); 

end 

end 

pdfNormal1=gampdf(x,alfa1,b1); 

pdfNormal2=normpdf(x,mean2,std2);  

pdfNormal3=gampdf(x,alfa3,b3); 

interval1=gaminv([0.025,0.975],alfa1,b1); 

interval2=norminv([0.025,0.975],mean2,std2); 

interval3=gaminv([0.025,0.975],alfa3,b3); 

dist=ProbDistUnivParam('tlocationscale',[mean4,std4,alfa4]); 

f_x_4=random(dist,5000,1); 

flo=mean4-tpdf(0.025,alfa4)*std4; 

fup=mean4+tpdf(0.025,alfa4)*std4; 

interval4=[flo,fup]; 

res.prior.par_sigma.mean=mean1; 

res.prior.par_sigma.std=std1; 

res.prior.par_sigma.int=interval1; 

res.likelihood.mean=mean2; 

res.likelihood.std=std2; 

res.likelihood.int=interval2; 

res.posterior.par_sigma.mean=mean3; 

res.posterior.par_sigma.std=std3; 

res.posterior.par_sigma.int=interval3; 

res.posterior.pop.mean=mean4; 

res.posterior.pop.std=std4; 

res.posterior.pop.int=interval4; 

end 

function [res,pdfNormal11,pdfNormal12,pdfNormal2,pdfNormal4,f_x_3,f_x_5] 

=calcbugsmusigma(stats,N,mean2,std2,x,winbugs_model,flk,flc) 

alfa11=winbugs_model.alfa; 

beta11=winbugs_model.beta; 

if winbugs_model.beta==0 || (winbugs_model.alfa/winbugs_model.beta^2)<0 || beta11==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

mean11l=winbugs_model.alfa/winbugs_model.beta; 

std11l=sqrt(winbugs_model.alfa/winbugs_model.beta^2); 

b11=1/beta11; 

end 

mean12l=winbugs_model.mean; 
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std12l=winbugs_model.std; 

mean2l=mean2; 

std2l=std2; 

mean3l=stats.mean.mu; 

std3l=stats.std.mu; 

mean4l=stats.mean.tau; 

std4l=stats.std.tau; 

if std4l==0 || mean4l==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

alfa4=(mean4l/std4l)^2; 

b4=std4l^2/mean4l; 

end 

mean5l=mean3l; 

if flk==0 

if std4l==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

alfa3=2*(mean4l/std4l)^2; 

alfa5=2*(mean4l/std4l)^2; 

lambda3=std3l^(-2)*alfa3/(alfa3-2); 

end 

if (alfa5+2)==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

lambda5=lambda3/(alfa5+2); 

end 

if (lambda5^(-1)*(alfa5/(alfa5-2)))<0 || lambda5==0 || (alfa5-2)==0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

std5l=sqrt(lambda5^(-1)*(alfa5/(alfa5-2))); 

end 

elseif flk==1 

N0=winbugs_model.n0; 

alfa3=2*alfa11+N; 

alfa5=alfa3; 

if (std3l^2*(N+N0+1))<0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

std5l=sqrt(std3l^2*(N+N0+1)); 

end  

end 

Y=gamrnd(alfa4,b4,1e6,1); 

z=size(Y); 

z=z(1); 
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Y1=zeros(z,1); 

for i=1:z 

Y1(i,1)=1/sqrt(Y(i,1)); 

end 

mean4l=mean(Y1); 

std4l=std(Y1); 

phat=gamfit(Y1); 

alfa4=phat(1,1); 

b4=phat(1,2); 

if flc==0 

mean(…)=mean(…); 

std(…)=std(…); 

elseif flc==1 

mean(…)=exp(mean(…)+std(…)^2/2); 

if (exp(2*mean(…)+std(…)^2)*(exp(std(…)^2)-1))<0 

error('Error in WinBugs_Model Parameters'); % display on Matlab 

else 

std(…)=sqrt(exp(2*mean(…)+std(…)^2)*(exp(std(…)^2)-1)); 

end 

end 

pdfNormal11=gampdf(x,alfa11,b11); 

pdfNormal12=normpdf(x,mean12,std12); 

pdfNormal2=normpdf(x,mean2,std2); 

dist=ProbDistUnivParam('tlocationscale',[mean3,std3,alfa3]); 

f_x_3=random(dist,5000,1); 

flo_3=mean3-tpdf(0.025,alfa3)*std3; 

fup_3=mean3+tpdf(0.025,alfa3)*std3; 

pdfNormal4=gampdf(x,alfa4,b4); 

dist=ProbDistUnivParam('tlocationscale',[mean5,std5,alfa5]); 

f_x_5=random(dist,5000,1); 

flo_5=mean5-tpdf(0.025,alfa5)*std5; 

fup_5=mean5+tpdf(0.025,alfa5)*std5; 

interval11=gaminv([0.025,0.975],alfa11,b11); 

interval12=norminv([0.025,0.975],mean12,std12); 

interval2=norminv([0.025,0.975],mean2,std2); 

interval3=[flo_3,fup_3]; 

interval4=gaminv([0.025,0.975],alfa4,b4); 

interval5=[flo_5,fup_5]; 

res.prior.par_sigma.mean=mean11; 

res.prior.par_sigma.std=std11; 

res.prior.par_sigma.int=interval11; 

res.prior.par_mu.mean=mean12; 

res.prior.par_mu.std=std12; 

res.prior.par_mu.int=interval12; 

res.likelihood.mean=mean2; 



 
341

 

res.likelihood.std=std2; 

res.likelihood.int=interval2; 

res.posterior.par_mu.mean=mean3; 

res.posterior.par_mu.std=std3; 

res.posterior.par_mu.int=interval3; 

res.posterior.par_sigma.mean=mean4; 

res.posterior.par_sigma.std=std4; 

res.posterior.par_sigma.int=interval4; 

res.posterior.pop.mean=mean5; 

res.posterior.pop.std=std5; 

res.posterior.pop.int=interval5; 

end 

(10) weibull.m 

function res=weibull(winbugs_model,data,flq) 

datain=data; % Convert initial data 

par=matrix_in(winbugs_model); % Read values from prior distribution 

for i=1:2 

[data,winbugs_model,parmean,parstd]=wbl(datain,winbugs_model,par,i); % Weibull conversion of registered data 

parmean_upp(i)=parmean(i); 

parstd_upp(i)=parstd(i); 

res=winbugs(data,winbugs_model,flq); % Run Winbugs analysis 

[data_up,p]=matrix_up(winbugs_model,res,i); % Generation of normal data for posterior population 

p_upd(:,i)=p(:,i); 

data_upp{i}(:,:)=data_up{i}(:,:); 

end 

n1=0; 

for i=1:2 

p=size(data_upp{i}(:,:)); % Determine size of posterior parameter data 

n=p(2); 

if n>=n1 

n1=n; 

end 

end 

sumalfa=0; 

sumbeta=0; 

for j = 1:n1 

NS=winbugs_model.n; % Determine number of computed values 

Q{j}(:,:)=wblrnd(data_upp{…}(:,i),data_upp{…}(:,i),1,NS); % Generation of posterior population data 

mn{j}(:,:)=wblfit(Q{j}(:,:)); % Curve fitting with Weibull distribution of posterior population 

sumalfa=sumalfa+mn{j}(…); 

sumbeta=sumbeta+mn{j}(…); 

end 

% Determine Weibull parameters for prior, likelihood and posterior 
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par(…)=winbugs_model.meana; 

par(…)=winbugs_model.meanb; 

res.prior.pop.alfa=par(…); 

res.prior.pop.beta=par(…); 

res.likelihood.pop.alfa=parmean_upp(…); 

res.likelihood.pop.beta=parmean_upp(…); 

res.posterior.pop.alfa=sumalfa/n1; 

res.posterior.pop.beta=sumbeta/n1; 

x=0:0.1:1000; 

% Determine distribution for prior, likelihood and posterior 

pdfNormal1=wblpdf(x,res.prior.pop.alfa,res.prior.pop.beta); 

[a1,b1]=wblstat(res.prior.pop.alfa,res.prior.pop.beta); 

res.prior.pop.mean=a1; 

res.prior.pop.std=sqrt(b1); 

interval1=wblinv([0.025,0.975],res.prior.pop.alfa,res.prior.pop.beta); 

res.prior.pop.int=interval1; 

% Likelihood 

% Posterior 

% Plot Weibull distribution 

plotbugswbl(pdfNormal1,pdfNormal2,pdfNormal3,x); 

% Results for mean and std of each parameter 

res.prior.alfa.(…)=winbugs_model.(…); 

% Zeros Restriction 

X=wblrnd(res.prior.pop.alfa,res.prior.pop.beta,1e6,1); 

censored=(X<0); 

p=wblfit(X,censored); 

p(…)=p(…); 

[a,b]=wblstat(…); 

res.prior.pop.truncated.(…)=p(…); 

X=wblrnd(res.likelihood.pop.alfa,res.likelihood.pop.beta,1e6,1); 

censored=(X<0); 

p=wblfit(X,censored); 

p(…)=p(…); 

[a,b]=wblstat(…); 

res.likelihood.pop.truncated.(…)=p(…); 

X=wblrnd(res.posterior.pop.alfa,res.posterior.pop.beta,1e6,1); 

censored=(X<0); 

p=wblfit(X,censored); 

p(…)=p(…); 

[a,b]=wblstat(…); 

res.likelihood.pop.truncated.(…)=p(…); 

% Reliability Value 

n=((…)-0.005)/0.005+1; 

X_Prior=cell(2); 

for i=1:n 
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P=0.005*i; 

a=res.prior.pop.alfa; 

b=res.prior.pop.beta; 

X_Prior{1}(i,1)=P; 

X_Prior{1}(i,2)=wblinv(P,a,b); 

a=res.prior.pop.truncated.alfa; 

b=res.prior.pop.truncated.beta; 

X_Prior{2}(i,1)=P; 

X_Prior{2}(i,2)=wblinv(P,a,b); 

end 

% Likelihood 

% Posterior 

end 

end 

(11) matrix_in.m 

function par=matrix_in(winbugs_model) 

% Read values from prior distribution 

par(…,...)=winbugs_model.(…); 

end 

(12) wbl.m 

function [data,winbugs_model,parmean,parstd]=wbl(datain,winbugs_model,par,i) 

% Compute prior values for mean of distribution alfa and beta 

winbugs_model.mean=par(…); 

% Compute prior values for standard deviation of distribution alfa and beta 

winbugs_model.std=par(…); 

% Determine n0 values 

winbugs_model.n0=par(…); 

% Curve fitting with Weibull distribution of likelihood 

[meanh,inth]=wblfit(datain); 

parmean(i)=meanh(…); 

x1=abs(inth(…)-meanh(…)); 

x2=abs(inth(…)-meanh(…)); 

parstd(i)=(x1+x2)/2; 

% Data generation according to Normal distribution 

NS=winbugs_model.n; 

data=normrnd(parmean(i),parstd(i),1,NS); 

end 

(13) matrix_up.m 

function [data_up,p]=matrix_up(winbugs_model,res,i) 
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% Compute population distribution for each parameter 

p(…)=res.posterior.pop.(…); 

% Generation of Normal data values for parameter 

NS=winbugs_model.n; 

data_up{i}(:,:)=normrnd(p(…),p(…),1,NS); 

end 
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Appendix D: WinBugs Models 

According to what was previously indicated at chapter four, it is presented the three 

developed models to run in WinBugs® software [111], within the Bayesian inference 

procedure [15]. The following situations were, respectively, considered: 

(1) unknown mean (µ) and known variance (σ2) – mu.txt 

model 

{ 

for(i in 1:N){ 

income[i]~dnorm(mu,tau)} 

mu~dnorm(mean,taum) 

tau<-pow(sigma,-2) 

} 

(2) unknown mean (µ) and variance (σ2) with Jeffrey’s prior – mu_tau_jeff.txt 

model 

{ 

for(i in 1:N){ 

income[i]~dnorm(mu,tau)} 

mu~dnorm(mean,taum) 

tau~dgamma(alfa,beta) 

} 

(3) unknown mean (µ) and variance (σ2) with conjugate prior – mu_tau_conj.txt 

model 

{ 

for(i in 1:N){ 

income[i]~dnorm(mu,tau)} 

mu~dnorm(mean,tau.mu) 

tau~dgamma(alfa,beta) 

tau.mu<-tau*N0 

} 
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