
Fevereiro de 2005

Tese submetida à Universidade do Minho para a
obtenção do grau de Doutor no Ramo de Engenharia
de Produção e Sistemas, área de Investigação
Operacional

Trabalho efectuado sob a orientação de
Professor Doutor José Manuel Vasconcelos Valério
de Carvalho
Departamento de Produção e Sistemas da Escola de Engenharia
da Universidade do Minho

Cláudio Manuel Martins Alves

Cutting and Packing:
Problems, Models and Exact Algorithms

Universidade do Minho
Escola de Engenharia

Summary

Different integer programming models and exact algorithms for hard cutting and pack-

ing problems are addressed. We consider in particular the combinatorial problems of

this family that are defined over a single dimension. The optimization procedures rely

on tools from the field of integer programming, namely column generation, cutting

planes and branch-and-bound. Integrating the three into the same algorithm is not

straightforward, and has been used with some success only recently. The combined

method is known as branch-and-price-and-cut. It requires a great part of customiza-

tion, which is directly related to the specific problem that is being tackled.

We consider three variants of the standard one-dimensional Cutting Stock Problem,

and its packing counterpart, the Bin-Packing Problem. We study the case for which

more than a single large object is available, and an optimal cutting or packing has to be

found so as to minimize the total length or capacity used. A related problem, which con-

sists in selecting the best assortment of large objects subject to cardinality constraints,

is also investigated. The problem of maximizing the homogeneity of the plans, and

hence reducing the number of setups involved with its execution, is addressed. This

combinatorial problem is commonly referred to as the Pattern Minimization Problem,

and is particularly hard. We propose to improve an existing model, and describe how

to derive new valid cutting planes for it using an original approach. Finally, we describe

an exact solution algorithm for the Ordered Cutting Stock Problem. This problem has

been formulated recently. It consists in finding the best assignment of small items to

the stock rolls, avoiding breaks among pre-defined lots of items. Three integer pro-

gramming models are presented, along with two families of cutting planes and their

respective separation algorithms.

Different strategies are explored to improve the convergence of the column genera-

tion algorithm, when applied to one-dimensional cutting and packing problems. New

dual cutting planes are presented, and we describe how existing ones can be extended

to the whole branch-and-bound search tree, for a given branching scheme. Alternative

methods based on model aggregation are also explored. Two strategies are proposed.

The first is based on a simple row aggregation scheme, while the second relies on a

more sophisticated double aggregation of rows and columns.

All the procedures proposed were coded and tested. Various computational ex-

i

ii

periments were conducted to evaluate their performance, using, with this purpose,

problem instances from the literature, and randomly generated instances. The results

are presented and discussed throughout the thesis.

Résumé

Au long de cette thèse, nous étudions plusieurs problèmes de découpe et d’empaquetage

dont la difficulté est reconnue. Nous considérons en particulier les problèmes combi-

natoires à une seule dimension. Les algorithmes d’optimisation que nous explorons

s’appuient sur des méthodes du domaine de la programmation entière, notamment la

génération de colonnes, la méthode des plans coupants et la méthode de séparation et

évaluation. L’intégration de ces trois méthodes dans un même algorithme ne s’effectue

pas directement. En fait, cette intégration n’a été réussie avec succès que très récemment.

L’algorithme qui en résulte est connu sous le nom de méthode de séparation, génération

de colonnes et plans coupants. Compte tenu du problème qui est abordé, beaucoup

d’adaptations sont nécessaires pour parvenir à un algorithme performant.

Nous considérons ici les variantes des problèmes standards à une dimension de

découpe et d’empaquetage. Nous étudions le cas dans lequel plusieurs objets de grande

dimension sont disponibles, et une solution optimale doit être trouvée de manière à

minimiser la largeur totale, ou capacité, utilisée. Nous explorons également le problème

qui consiste à choisir le meilleur lot d’objets de grande dimension quand il existe des

restrictions de cardinalité. La maximisation de l’homogénéité des solutions de découpe,

et correspondante minimisation du nombre de changements de patrons de découpe, sont

également étudiées. Ce problème est connu sous le nom de Problème de Minimisation

des Patrons de Découpes, et il est particulièrement difficil. Nous montrons comment un

modèle qui a été récemment proposé peut être amélioré, et nous expliquons comment

dériver des inégalités valides en utilisant une approche originale. Finalement, nous

décrivons un algorithme de résolution exacte pour le problème de découpe ordonnée.

Ce problème a été formulé récemment. Il consiste à trouver la meilleure association

des petits et grands objets en évitant qu’il y ait des cassures entre les lots qui ont été

prédéfinis. Nous proposons trois modèles de programmation entière, ainsi que deux

familles de plans coupants et leurs algorithmes de séparation.

Plusieurs stratégies ayant pour but d’améliorer la convergence de la méthode de

génération de colonnes sont explorées. Nous considérons le cas particulier où cette

méthode est appliquée à des problèmes de découpe et d’empaquetage à une dimension.

Nous présentons de nouveaux plans coupants dans l’espace dual, et nous décrivons

comment étendre d’autres abordages présentés dans la littérature scientifique à l’arbre

iii

iv

généré par la méthode de séparation et d’évaluation, en assumant un schéma de

séparation spécifique. Des méthodes alternatives basées sur l’aggrégation de modèles

sont aussi explorées. Deux méthodes sont proposées. La première est basée sur un

schéma simple d’aggrégation de restrictions, tandis que la seconde s’appuie sur une

aggrégation plus sophistiquée de variables et de restrictions.

Toutes les procédures proposées ont été programmées et testées. Plusieus expériences

computationelles ont été menées pour évaluer leur performance en utilisant, à cet effet,

des instances décrites dans la littérature, et des instances générées aléatoirement. Nous

présentons les résultats obtenus, et nous les discutons tout au long de la thèse.

Resumo

Nesta tese, são apresentados diferentes modelos de programação inteira e algoritmos

de resolução exacta para problemas dif́ıceis de corte e empacotamento. Consideramos

em particular os problemas combinatórios dessa famı́lia numa única dimensão. Os

algoritmos de optimização que exploramos assentam em métodos do domı́nio da pro-

gramação inteira, nomeadamente a geração de colunas, planos de corte e o método de

partição e avaliação sucessivas. Integrar esses três métodos no mesmo algoritmo não

é um exerćıcio directo. Na realidade, isso foi conseguido só muito recentemente. O

algoritmo resultante é designado de partição, geração de colunas e corte. Atendendo

ao problema que é abordado, várias adaptações têm de ser efectuadas.

Consideramos três variantes dos problemas standards de corte e empacotamento

com uma dimensão. Estudamos o caso para o qual mais de um tipo de rolos ou con-

tentores estão dispońıveis, e uma solução óptima tem de ser encontrada de forma a

minimizar a largura ou capacidade total utilizada. Investigamos também um problema

relacionado no qual deve ser escolhido o melhor lote de rolos ou contentores atendendo

a restrições de cardinalidade. O problema no qual se pretende maximizar a homo-

geneidade das soluções de corte ou empacotamento, e dessa forma minimizar o número

de mudanças que ocorrem quando se executa o plano, é analizado. Esse problema

combinatório é também conhecido por Problema da Minimização de Padrões, e é de

dif́ıcil resolução. Propomos melhorar um modelo existente, e descrevemos como derivar

planos de corte válidos usando uma abordagem original. Finalmente, descrevemos um

algoritmo de resolução exacta para o problema de corte ordenado. Esse problema foi

formulado muito recentemente. Consiste em determinar a melhor afectação de itens

aos rolos, evitando interrupções entre lotes pre-definidos de itens. Três modelos de pro-

gramação inteira são apresentados, juntamente com duas famı́lias de planos de corte e

os seus respectivos algoritmos de separação.

Diferentes estratégias para melhorar a convergência do método de geração de colu-

nas são exploradas. Consideramos o caso no qual esse método é aplicado a problemas

de corte e empacotamento a uma dimensão. Novos cortes duais são apresentados,

e descrevemos como cortes que já foram descritos na literatura podem ser extendi-

dos à totalidade da àrvore de partição, assumindo um esquema de partição espećıfico.

Métodos alternativos baseados em agregação de modelos são também explorados. Duas

v

vi

estratégias são propostas. A primeira é baseada num esquema simples de agregação

de restrições, enquanto a segunda assenta num esquema mais sofisticado de restrições

e variáveis.

Todos os procedimentos propostos foram codificados e testados. Várias experiências

computacionais foram levadas a cabo, usando, para isso, instâncias descritas na liter-

atura, e instâncias geradas aleatoriamente. Os resultados são apresentados, e discutidos

ao longo da tese.

Acknowledgments

The concretization of a project is rarely the effect of a single force. My case is not an

exception. I am grateful to many persons and institutions, who played an important

role, direct or indirectly.

First of all, my PhD supervisor, Professor Valério de Carvalho. I want to thank

him for the numerous opportunities he provided me. I can not, and do not, forget the

precious help he gave me right at the beginning of this project, a few years ago. I

would like to thank him for sharing with me his enthusiasm for the field, for allowing

me to present my work on numerous national and international conferences. As all

my PhD colleagues, surely, I appreciated his constant availability. During my years of

post-graduate formation, he has been a real source of stimulus. In the future, he will

be for me the example of how a PhD supervisor should be.

I want to thank also all my colleagues of the Department of Production and Systems

Engineering, specially those of the Operations Research Group, for their suggestions,

for their friendship.

I am grateful to the University of Minho, and its School of Engineering, for providing

me the conditions to realize this work, among which are the three years during which

I was exempted from teaching obligations.

I want to thank the Educational Development Program for Portugal, FSE/PRODEP

Doutoramentos (Concurso no2/5.3/PRODEP/2001), for their grant.

Finally, my private dream team. I want to thank Sónia, surely one of my greatest

supports, for her understanding and encouragement. I want to publicly apologize to

my sister for enduring my jokes, and thank her for her company. Finally, I wish to

thank my parents. It will take too long to enumerate all the reasons that motivate my

gratitude for them, if it is even possible to enumerate them all. I hope only to be able

someday to reward their efforts and sacrifices.

Braga, February 2005

Cláudio Alves

vii

In memory of my grandparents,

To my mother, Beatriz,

To my father, João.

ix

Chercheurs que le néant captive,

Qui, dans l’ombre, avons en passant

La curiosité chétive

Du ciron pour le ver luisant,

Poussière admirant la poussière,

Nous poursuivons obstinément,

Grains de cendre, un grain de lumière

En fuite dans le firmament!

Victor Hugo, Les Contemplations

xi

Contents

Summary i

Acknowledgments vii

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 Scope of the Thesis . 1
1.2 Motivation and Objectives . 2
1.3 Outline . 3

2 Column Generation and 1-Dimensional Cutting and Packing 5
2.1 Large Scale Optimization Problems . 6

2.1.1 Structure . 6
2.1.2 Example: the Cutting Stock Problem 7

2.2 Dantzig-Wolfe Decomposition . 8
2.2.1 Principle . 8
2.2.2 Lagrangean Relaxation . 10
2.2.3 Column Generation Algorithm 10

2.3 Restricted Master Problem . 12
2.3.1 Initialization and Columns Management 12
2.3.2 Cutting Planes . 13
2.3.3 Convergence . 13

2.4 Pricing Subproblem . 14
2.5 Column Generation and Branch-and-Bound 15
2.6 Cutting and Packing Problems: Overview 16
2.7 One-Dimensional Cutting and Packing 19

2.7.1 Models . 19
2.7.2 Algorithms . 22

3 The Multiple Length Cutting Stock Problem 25
3.1 Introduction . 26
3.2 Problem Formulations . 29

3.2.1 A Column Generation Model 29
3.2.2 A Compact Flow Model . 30

3.3 Branch-and-Price . 32
3.3.1 LP Relaxation . 32
3.3.2 Branching Strategy . 33

xiii

xiv CONTENTS

3.3.3 Lower Bounding . 34
3.3.4 Rounding Procedure . 35

3.4 Cutting Planes . 35
3.4.1 The Level Cut . 35
3.4.2 The Feasibility Cuts . 37

3.5 A Note on Node Fathoming . 37
3.6 Computational Experiments . 38
3.7 The Combined Assortment and Trim Loss Minimization Problem . . . 47

3.7.1 Introduction . 47
3.7.2 An Integer Programming Formulation 47
3.7.3 Branch-and-Price . 48
3.7.4 Extending the Level Cut . 49
3.7.5 Computational Experiments . 49

3.8 Conclusion . 50

4 Accelerating Column Generation for Cutting Stock Problems 55
4.1 Introduction . 56
4.2 The Dual Formulation . 57
4.3 Dual-optimal Inequalities . 58

4.3.1 Inequalities on Items’ Dual Variables 59
4.3.2 Inequalities on Rolls’ Dual Variables 59

4.4 Extending the Dual Inequalities to the Whole Branch-and-Bound Tree 63
4.4.1 Validity of the Inequalities on Items’ Dual Variables 63
4.4.2 Validity Conditions . 65
4.4.3 New Dual-Optimal Inequalities 67

4.5 Computational Experiments . 69
4.6 Alternative Aggregation Schemes . 69

4.6.1 A Simple Row Aggregation Scheme 74
4.6.2 Implicit Dual Constraints: a Double Aggregation Scheme 77

4.7 Computational Experiments . 79
4.8 Conclusion . 85

5 The Pattern Minimization Problem 91
5.1 Introduction . 92
5.2 Integer Linear Programming Formulations 94

5.2.1 A Compact Assignment Formulation 95
5.2.2 A Gilmore and Gomory based Model 95
5.2.3 Column Generation Reformulation from Vanderbeck 96
5.2.4 Improving the Model of Vanderbeck 98

5.3 New General Cutting Planes . 99
5.3.1 Superadditive functions . 99
5.3.2 A Class of Valid Inequalities for the Integer Knapsack Polytope 101
5.3.3 Separation Procedures . 106
5.3.4 Improving the Dual Feasible Functions 106

5.4 A Branch-and-Price-and-Cut Algorithm 107
5.4.1 Initialization . 107
5.4.2 Converting the LP Solution . 109
5.4.3 Branching Scheme . 110
5.4.4 The Cutting Plane Procedure 112

CONTENTS xv

5.4.5 The Pricing Subproblem . 114
5.4.6 Node Fathoming . 115

5.5 Computational Results . 116
5.5.1 Instances from the Literature 116
5.5.2 Randomly Generated Instances 120

5.6 Minimizing the Number of Different Patterns with Multiple Stock Lengths120
5.6.1 Problem Formulation . 120
5.6.2 Computational Experiments . 125

5.7 Conclusion . 127

6 The Ordered Cutting Stock Problem 129
6.1 Introduction . 130
6.2 Problem Formulations . 132

6.2.1 An Assignment Model . 134
6.2.2 A Flow Model . 136
6.2.3 Column Generation Reformulation 141

6.3 Subtour Elimination Constraints . 142
6.3.1 Definition . 142
6.3.2 Separation Procedure . 146

6.4 Comb Inequalities . 147
6.4.1 Definition . 147
6.4.2 Separation Procedure . 148

6.5 Pricing Columns in the Column Generation Reformulation 148
6.5.1 Problem Formulation . 148
6.5.2 Dynamic Programming . 150

6.6 Searching for Integer Solutions with Branch-and-Bound 152
6.6.1 Algorithm Overview . 152
6.6.2 Initialization Heuristic . 153
6.6.3 Branching Scheme . 154
6.6.4 Modified Pricing Problem . 155

6.7 Rounding Procedures . 156
6.8 Computational Experiments . 157

6.8.1 Data Sets . 157
6.8.2 Computational Results . 157

6.9 Conclusion . 169

7 Conclusions 171
7.1 Contributions . 171
7.2 Future Research . 172

Bibliography 175

List of Figures

2.1 Outline of column generation algorithms 11

3.1 Graph G for the instance of Example 3.1 31

4.1 Restricted master problem (Example 4.1) 62
4.2 LP master (Example 4.2) . 64
4.3 LP master for the branching node q (Example 4.2) 64
4.4 Restricted master problem (Example 4.3) 76
4.5 Row aggregated LP (Example 4.3) . 76
4.6 Set of feasible patterns (Example 4.5) 80
4.7 Set of patterns after column aggregation (Example 4.5) 80
4.8 Final set of patterns (Example 4.5) . 80

5.1 Graphical representation of u(k) for k = 5 107

6.1 Feasible solution for the instance of Example 6.1 134
6.2 Cutting patterns presented in Example 6.1 138
6.3 Partial LP formulation for the instance of Example 6.1 143
6.4 Graph representation of lot sequences (Example 6.2) 145
6.5 An alternative feasible solution for the instance of Example 6.1 145

xvii

List of Tables

3.1 Computational results for the group vs3 of random instances 41
3.2 Computational results for the group vs5 of random instances 42
3.3 Computational results for the group vs6 of random instances 43
3.4 Computational results for the first group of instances from [90] 44
3.5 Computational results for the second group of instances from [90] . . . 44
3.6 Computational results for the third group of instances from [90] 45
3.7 Computational results for a set of instances used in [13] 46
3.8 Characteristics of the random instances 50
3.9 Computational results for the random instances with m = 20 51
3.10 Computational results for the random instances with m = 30 51
3.11 Computational results for the random instances with m = 40 52
3.12 Computational results for the random instances with m = 50 52

4.1 Computational results with dual inequalities (vs3) 70
4.2 Computational results with dual inequalities (vs5) 71
4.3 Computational results with dual inequalities (vs6) 72
4.4 Computational results with dual inequalities for the instances in [13] . . 73
4.5 Performance of the inequalities on items’ and rolls’ dual variables . . . 82
4.6 Performance of aggregation scheme RA 83
4.7 Computational results for the best 10 instances of each group in Table 4.6 84
4.8 Solution data for the Hard28 instances 86
4.9 Solution data for the t501 instances . 87
4.10 Solution data for the t249 instances . 88

5.1 Measuring the impact of constraint (5.29) 100
5.2 Setups upper bounds with different CSP algorithms 108
5.3 Computational results for instances from the literature 118
5.4 Improvement of the LP optima with the cutting planes described in 5.4.4119
5.5 Computational results for random instances with m = 20 (a) 121
5.6 Computational results for random instances with m = 20 (b) 121
5.7 Computational results for random instances with m = 30 (a) 122
5.8 Computational results for random instances with m = 30 (b) 122
5.9 Computational results for random instances with m = 40 (a) 123
5.10 Computational results for random instances with m = 40 (b) 123
5.11 Computational results for random instances with one and two stock lengths126

6.1 Computational results for random instances with 10 lots (a) 159
6.2 Computational results for random instances with 10 lots (b) 159
6.3 Computational results for random instances with 10 lots (c) 160
6.4 Computational results for random instances with 10 lots (d) 160

xix

xx LIST OF TABLES

6.5 Computational results for random instances with 15 lots (a) 161
6.6 Computational results for random instances with 15 lots (b) 161
6.7 Computational results for random instances with 15 lots (c) 162
6.8 Computational results for random instances with 15 lots (d) 162
6.9 Computational results for random instances with 20 lots (a) 163
6.10 Computational results for random instances with 20 lots (b) 163
6.11 Computational results for random instances with 20 lots (c) 164
6.12 Computational results for random instances with 20 lots (d) 164
6.13 Computational results for random instances with 25 lots (a) 165
6.14 Computational results for random instances with 25 lots (b) 165
6.15 Computational results for random instances with 25 lots (c) 166
6.16 Computational results for random instances with 25 lots (d) 166
6.17 Computational results for random instances with 30 lots (a) 167
6.18 Computational results for random instances with 30 lots (b) 167
6.19 Computational results for random instances with 30 lots (c) 168
6.20 Computational results for random instances with 30 lots (d) 168

Chapter 1

Introduction

1.1 Scope of the Thesis

Many are the experiences that attest the power of mathematical programming tools, in

the most diverse areas. In fact, there is not a clear frontier delimiting the application

domain of mathematical programming. There are reports of applications in different

types of industry, health care, education, computer sciences, services, logistics, among

others. In all these contexts, we always find the same objective: to take the best pos-

sible decisions under various operational constraints. Applying mathematics with this

purpose, modeling the problems so that they can be tackled by solution procedures

adapted to the complexity of the cases, developing these algorithms to ensure an ef-

ficient and effective resolution of the problems, all of this has been approached with

notable success by optimization practitioners. The considerable increase in the com-

puting capacities played an important part in this success. It is now easier to manage

the large volumes of data that are usually associated with real world problems, and

this is clearly not the only benefit.

The solution approaches investigated in this thesis belong to the field of mathemat-

ical programming. We consider in particular problems in which the decisions involved

are discrete, modeled by means of integer variables, and solved using integer program-

ming methods. We restrict our study to exact algorithms whose aim is to find a proven

optimal solution. However, this does not exclude the reference, in some parts of the

text, to heuristic procedures, which are frequently a very good instrument that helps

in improving the efficiency of the whole algorithms. A specific application domain

is addressed here, namely, the cutting and packing area. Apart from their practical

relevance, cutting and packing problems have been used since long to test different

algorithmic approaches. The corresponding integer formulations that have been pro-

posed for the general problems can be used to model many practical activities and

processes.

Column generation, cutting planes and branch-and-bound are general algorithmic

1

2 1. Introduction

tools commonly used to solve large scale integer programming problems. The develop-

ment of a solution algorithm that aggregates these techniques depends on the particular

case that is being studied. It must take into account different aspects of the underlying

models, such as their structure. Along this thesis, different algorithms are proposed

to optimally solve cutting and packing problems with a single dimension, and variants

of the general problem. We describe alternative integer programming models, and ex-

plore ways of improving the efficiency of the solution procedures. All the algorithms

proposed have been implemented, and tested on problem instances from the literature,

and randomly generated instances. We report and discuss the results obtained.

1.2 Motivation and Objectives

Optimization algorithms combining column generation, cutting planes and branch-

and-bound are referred to as branch-and-price-and-cut algorithms. Developing such

algorithms is not straightforward. In fact, they began to be used together not a long

time ago, and they have deserved in the last years a real investment of the research

community. More and more problems are being tackled with these techniques, but they

are still many open problems. The cutting and packing area is an example. There are

practical variants of the standard problems, which are of great interest, and for which

there is no reported attempts of solving them using branch-and-price-and-cut, or that

have not been yet satisfactorily solved using these techniques. Hence, our aim was

to investigate some of these problems, among which are the Multiple Length Cutting

Stock Problem, the Pattern Minimization Problem, or also the Ordered Cutting Stock

Problem, to analyze their structure, to explore alternative models, to derive families of

valid cutting planes, and to finally study the behavior of the resulting algorithms by

converting them into pieces of software.

There are also inherent weaknesses related to the general techniques addressed in

this thesis, namely concerning column generation. It is well known that the column

generation algorithm tends to converge slowly, with the optimal solution improving

very slightly in the last iterations. Many results have been reported in the literature

on attempts to overcome this undesirable characteristic. Some of the solutions proposed

were able to accelerate column generation considerably. However, they were studied

only within restricted contexts, for the linear relaxations of the models. When one is

searching for an optimal integer solution through branch-and-bound, it would be much

more interesting if he could used them along the whole branch-and-bound tree. In

this thesis, this subject is explored. We also analyze alternative techniques, based on

an original approach, to improve the convergence of the column generation algorithm,

when applied specifically to cutting stock and bin-packing problems. Indeed, these

problems have peculiarities that have never been explored, and which can be very

1.3. Outline 3

useful to accelerate column generation.

1.3 Outline

The present thesis is divided in 7 independent chapters, including the present one. Each

chapter is self contained. The work described in each one of them is presented using

a research paper writing style, some parts having already been submitted to scientific

journals. As a consequence, the same subject may be treated in different points of the

text. However, this happens only occasionally.

In Chapter 2, we briefly recall some aspects related to the solution techniques

adopted, and to the family of problems tackled in this thesis, namely cutting and

packing problems. The origin of the column generation algorithm is discussed, the

Dantzig-Wolfe decomposition is described, the relation with lagrangean relaxation is

presented, and the difficulties associated to the implementation of a branch-and-price-

and-cut algorithm are analyzed. Cutting and packing is a vast application area. We

refer to some of the problems that have been studied in the literature, and discuss the

classification systems that were suggested so as to organize the numerous contributions

that have been given so far. We proceed by reviewing the standard problem, which

is the base of the work presented in this thesis. We present the integer programming

models that were proposed in the literature, and we refer to some of the solution

algorithms that have been developed.

Chapter 3 is devoted to the Multiple Length Cutting Stock Problem, and its pack-

ing counterpart, the Variable Sized Bin-Packing Problem. We present a branch-and-

price-and-cut algorithm, which is based on two integer programming models from the

literature that have never been combined in the same procedure. Many computational

results are reported, comparing our approach to the few alternative exact algorithms

described in the literature. We will see that our method clearly outperforms some of

these algorithms. Additionally, the assortment problem is tackled. In practice, the

availability of more than a single stock length frequently gives rise to the problem of

selecting a restricted subset of lengths to order. We extend our algorithm to the case

where the best assortment must be found so as to simultaneously ensure the minimum

trim loss, and we analyze its behavior using various randomly generated instances.

In Chapter 4, we address the question of the convergence of column generation

algorithms, within the scope of one-dimensional cutting and packing problems. We

present new dual-optimal inequalities for the problem with multiple lengths, and prove

their validity. Assuming a branching scheme similar to the one introduced in Chapter

3, we also give the conditions under which a family of valid dual inequalities for the

Cutting Stock Problem, and Bin-Packing Problem, remains valid for a problem in which

certain branching constraints have been enforced. These results allow to use a class of

4 1. Introduction

dual cuts, which are proven to be very effective in accelerating the resolution of the

pure linear relaxation by column generation, in the whole branch-and-bound search

tree. An alternative approach to column generation stabilization is also explored.

We try to take advantage of the prior knowledge concerning the properties of the

optimal dual solutions of the Cutting Stock Problem. Our proposals are based on

model aggregation. A single scheme is first tested, in which only the rows of the linear

models are aggregated. The problem is solved with a two-phase column generation

algorithm. A more sophisticated procedure is then investigated, relying on a double

aggregation of the models. We present this aggregation scheme as an alternative way of

enforcing dual constraints. Computational results are given, for many instances from

the literature, and randomly generated ones.

Chapter 5 is devoted to the Pattern Minimization Problem. We explore a column

generation model that has been recently proposed for this problem, and analyze the

impact of restricting the set of admissible columns both in strengthening the model,

and in improving the solution algorithm. We also use dual feasible functions to generate

cutting planes in order to strengthen a model, which is known to be not very strong.

As far as we know, this is the first reported attempt in deriving cutting planes for the

knapsack polytope using these functions. To further strengthen the models, at each

node of the branch-and-bound tree, we experiment deriving the cutting planes from

surrogate constraints, obtained by combining different types of inequalities. Finally,

the Pattern Minimization Problem is solved with a branch-and-price-and-cut algorithm,

and computational results are reported to measure its efficiency. The algorithm was

also extended to cope with multiple stock lengths.

In Chapter 6, we explore the Ordered Cutting Stock Problem, a problem for which

no exact solution algorithms have ever been proposed. The problem is characterized

by the existence of lots of items that must be cut without any interruption, being a

single stack of end products open at any time. Three integer programming models are

proposed: an assignment model, a flow model and a column generation reformulation.

The latter is strengthened using two families of cutting planes: subtour elimination

constraints and comb inequalities. The details of the pricing subproblem are given, as

long as other aspects related to the final branch-and-price-and-cut algorithm. Random

instances were generated, and used to test the algorithm. Our computational results

are reported at the end of the chapter.

In Chapter 7, we will finish with some final concluding remarks, and give some

directions for future research.

Chapter 2

Column Generation and

1-Dimensional Cutting and Packing

In the field of integer and combinatorial optimization, column generation is for the

time being one of the most efficient solution technique. This optimization method

emerged at the end of the fifties, and since then it experienced different degrees

of interest. To identify the different periods related to column generation, nothing

might be better that referring to the pioneering papers that gave rise to them.

In 1958, the paper from Ford and Fulkerson [46] inspired the theory that would

be formalized later by Dantzig and Wolfe, and referred to as the Dantzig-Wolfe

decomposition method. Fundamentally, the proposal was to solve linear programs

by using explicitly only a fraction of the formulation’s data. Independently, Gilmore

and Gomory [52] presented an application in the Cutting Stock Problem; their paper

would become one of the most cited paper in the field of cutting stock problems.

Many other application papers followed in the same decade. In 1984, Desrosiers et

al. [32] proposed an algorithm for the vehicle routing problem with time windows,

combining successfully column generation with branch-and-bound, a technique that

became known as branch-and-price. Research on exact algorithms based on branch-

and-price began to intensify, enlarging the spectrum of applications. Nowadays,

many efforts are directed towards the resolution of some of the shortcomings inherent

to column generation methods, like accelerating convergence.

The objective of this chapter is essentially to describe the context in which the work

presented in the subsequent chapters evolved, and identify the general difficulties

we must overcome when we want to develop and implement an algorithm based on

column generation, branch-and-bound and cutting planes methods.

Keywords: Column Generation, Branch-and-Bound, Cutting Stock Problems

5

6 2. Column Generation and 1-Dimensional Cutting and Packing

2.1 Large Scale Optimization Problems

Optimization problems that can be expressed as linear or integer linear programs are

said to be large because their translation into this mathematical representation is

done at the cost of a huge number of variables and/or constraints. To deal with such

problems, one has to take into account all the singularities that may characterize them.

For example, in practice, the density of the coefficients matrices for these problems is

typically low. What we observe is that activities or products compete for a restricted

set of resources, and, hence, many of the coefficients in the constraints are zeroes.

Obviously, this data has not to be stored.

A model can be large because the original problem already involves a considerable

number of products, activities or resources, or it can be large because one is using

an alternative reformulation that depends on the complete enumeration of alternative

solutions. These latter models can usually be obtained through a decomposition proce-

dure, and for practical reasons they are frequently approached using column generation

frameworks. Decomposition begins with a compact formulation, and divides the set of

constraints into a set of “easy” constraints, and a set of “hard” constraints. Reformu-

lation results in a model with less rows, but far more columns. This distinction among

the parts of a model is a matter that is directly related to the notion of structure.

Large scale linear programs raise essentially two problems. The first consists in

determining how to deal with a huge volume of data that, even if it can be compacted

and even if the price of computing resources tends to decrease in a regular basis, still

constitutes a real constraint in view of the actual computing capacities. The second

concerns the available solution algorithms. For linear programs, the preferred solution

method is usually the simplex algorithm. Variables that may possibly improve the

current solution are found by pricing out non-basic columns, and choosing one with a

negative reduced cost. This pricing scheme is based on enumeration, and, for models

with an exponential number of columns, it is not computationally viable.

2.1.1 Structure

Certain models can be divided into independent blocks, which are in turn coupled by

constraints, or alternatively by variables (or both). These blocks may be composed by

a set of constraints that may allow them to be solved by dedicated algorithms more

efficiently. For example, we may have blocks comprising the constraints of a shortest

path problem, or a knapsack problem, for example. We can schematize as follows two

of the most common structures found in LP models, those that are within the scope

of our present research.

2.1. Large Scale Optimization Problems 7

(BD1) min z = c1x1 + c2x2 + . . . + cnxn

subject to A0
1x1 + A0

2x2 + . . . + A0
nxn ≥ b0

A1
1x1 ≥ b1

A2
2x2 ≥ b2

. . .

An
nxn ≥ bn

x1 ≥ 0, x2 ≥ 0, . . . xn ≥ 0.

(BD2) min z = c1x1 + c2x2 + . . . + cnxn + dy

subject to A1x1 + B1y ≥ b1

A2x2 + B2y ≥ b2

. . .

Anxn + Bny ≥ bn

x1 ≥ 0, x2 ≥ 0, . . . xn ≥ 0, y ≥ 0.

The independence of the blocks leads to matrices that exhibit a diagonal structure,

with additional coupling elements. In BD1, the coupling is made by constraints that

interrelate the whole set of variables, while in BD2 this coupling is done with variables

with positive coefficients in most of the constraints. Note that the dual of BD2 is a

problem that has the same structure as BD1, and hence, the approaches developed for

BD1 can be extended to the dual of BD2 as well. This structure is commonly referred

to as dual angular [80].

The structure of the coefficient matrices suggests a hierarchical solution approach,

in which the independent blocks and the coupling elements are treated separately.

This separation is interesting only if the problems related to the blocks are easier to

solve alone than together with the other constraints. At a higher level, the coupling

constraints are considered in a problem that is often called the master problem. In

column generation algorithms, information flows between the two levels. The blocks

are solved independently, contributing with a solution that is gathered and evaluated

in the master.

Structure is formally exploited by methods based on decomposition techniques, such

as the Dantzig-Wolfe decomposition, and methods based on Lagrangean relaxation. In

certain cases, the reformulations provide better lower bounds on the integer optima

than the ones obtained with the linear relaxations of the original compact models.

2.1.2 Example: the Cutting Stock Problem

The cutting stock problem is an example of such problems with a diagonal structure,

with blocks of constraints that characterize other related and well-known combinatorial

8 2. Column Generation and 1-Dimensional Cutting and Packing

problems. Kantorovich [76] was the first to propose an integer linear programming

formulation, based on assignment variables as follows.

min
n∑

j=1

yj (2.1)

subject to
n∑

j=1

xij ≥ bi, i = 1, . . . ,m, (2.2)

m∑
i=1

wixij ≤ Wjyj, j = 1, . . . , n, (2.3)

yj ∈ {0, 1}, j = 1, . . . , n, (2.4)

xij ≥ 0 and integer, i = 1, . . . ,m, j = 1, . . . , n. (2.5)

Model (2.1)-(2.5) has binary and general integer variables, with yj representing the

choice of roll j, and xij the number of items of size wi assigned to roll j. Here, the blocks

consist in the knapsack constraints (2.3), one for each roll, while the demand constraints

(2.2) work as the linking constraints. It is well known that knapsack problems are NP-

hard [49]. However, they can be solved very efficiently in practice [88], and hence,

cutting stock problems have been traditionally approached using decomposition based

procedures that take advantage of this special structure.

Model (2.1)-(2.5) also grows very quickly in size. For a small instance with 10 differ-

ent item sizes and 100 available rolls, the model has 1100 variables and 110 constraints,

while for an instance with 100 item sizes and 1000 rolls, the number of variables goes

to 101000 for 1100 constraints. Obviously, it is possible to reduce the size of the model

by computing a better upper bound on the optimum solution cost. This model has

also some practical drawbacks, such as symmetry and a rather poor lower bound, that

make the decomposition based reformulations much more attractive. Here, symmetry

is characterized by the fact that exchanging items between two rolls leads to solutions

that are different in terms of variables’ values, but absolutely the same in practice.

2.2 Dantzig-Wolfe Decomposition

2.2.1 Principle

The Dantzig-Wolfe decomposition procedure described in [25] applies to linear pro-

grams with the following form

(LP) min cx

subject to Ax ≥ b,

x ∈ X,

x ∈ Rn
+.

2.2. Dantzig-Wolfe Decomposition 9

The principle is to replace the second set of constraints by an alternative representation

based on an enumeration of the extreme points and extreme rays of X, using for this

purpose the theorem of Minkowski. Indeed, this theorem states that the points of

the nonempty polyhedron X can be expressed as a convex combination of its extreme

points (set P) and a non-negative combination of its extreme rays (set R), i.e.,

X =

{
x ∈ Rn

+ :
∑
i∈P

λiPi +
∑
i∈R

λiRi,
∑
i∈P

λi = 1, λi ≥ 0, ∀i

}
,

or simply as a convex combination of its extreme points if the polyhedron is bounded.

After the substitution, the λi coefficients become the new decision variables. However,

since the number of extreme points and rays is generally exponential, the reformula-

tion will also have an exponential number of columns. For this reason, the original

formulation is also referred to as the compact formulation [126].

The coefficient matrix for the constraints that characterizes the polyhedron X in the

linear program may not have any special property, like unimodularity [105], and hence,

the extreme points of X may be fractional. In the combination formulae, if one uses a

set of integer points of X instead, the LP bound of the resulting reformulation might

be better than the one provided by the compact formulation [31]. This is what happens

with the cutting stock problem. Solving the LP relaxation of the knapsack problems

does not ensure that one will get an integer solution. Alternatively, solving the integer

knapsack subproblems to optimality yields a reformulation with a continuous bound

that is known to be very tight [85].

In [9], the authors give additional reasons that may convince one to prefer these

reformulations. Among them, the problem of symmetry is pointed out. For example,

for the cutting stock problem, the Dantzig-Wolfe decomposition leads to a model where

the reference to the specific roll to which the items are assigned is removed. This

eliminates the inherent symmetry of the compact model (2.1)-(2.5).

To develop their decomposition algorithm for linear programs [25], Dantzig and

Wolfe were inspired by the previous work on multicommodity network flows by Ford

and Fulkerson. The oldest reported papers applying this decomposition are [52, 53, 5].

The decomposition of a linear program leads to a reformulation that is itself com-

posed by non integer variables. When the original problem is in fact an integer problem,

integrality must be enforced by some ways, other than forcing the multipliers of the

combination to be integer, since the original Dantzig-Wolfe decomposition considers

the convex hull of X, and not the convex hull of the integer points in X. Vanderbeck

[124] proposed an alternative based on discretization for the decomposition of integer

programs, based on the principle that the elements of X ∩ Zn can be expressed as a

combination of integer extreme points (P) and integer extreme rays (R) as follows

X ∩ Zn =

{
x ∈ Rn

+ :
∑
i∈P

λiPi +
∑
i∈R

λiRi,
∑
i∈P

λi = 1, λi ≥ 0, and integer, ∀i

}
.

10 2. Column Generation and 1-Dimensional Cutting and Packing

The result is a reformulation that is now a true integer program.

2.2.2 Lagrangean Relaxation

There is a close relation between the formulations obtained with the decomposition

method described above and those obtained by lagrangean relaxation. For an integer

program with the same form as the linear formulation LP given in the previous section,

the lagrangean problem obtained by dualizing the first set of constraints is defined as

follows

zLR(λ) = min cx + λT (b− Ax)

subject to x ∈ X,

x ∈ Zn
+.

Here, the set of Lagrange multipliers λ are nonnegative. Maximizing the optimum

zLR(λ) of the lagrangean problem over all the feasible values of λ gives rise to a so

called lagrangean dual problem.

If we assume that the polyhedron X is bounded, and substitute in the lagrangean

dual problem the constraints that define X by a convexification based on its extreme

points, we get a model whose dual is precisely the one obtained with a Dantzig-Wolfe

decomposition in which only Ax ≥ b is kept in the master. Besides this correspondence

between the models, there is obviously a relation between the lower bounds, as it was

first pointed out by Geoffrion in 1974 [51]. Regarding the quality of the lower bound

provided by the lagrangean dual problem compared to the continuous bound of the

original formulation, similar conclusions apply, in the sense that only a lagrangean

problem that has not the integrality property can lead to an improved lower bound.

2.2.3 Column Generation Algorithm

While the Dantzig-Wolfe decomposition procedure is a reformulation technique, column

generation is the practical optimization method devised to solve the resulting models.

As we already noted, the huge number of columns in these reformulations makes the

use of solution methods such as simplex on the complete models impractical, even for

moderate size problems. With column generation, one deals with only a partial set of

columns at each iteration. In fact, this method allows the enumeration of columns to

be done implicitly, as the revised simplex method already does. The pivoting step of

the simplex method only updates the B−1 matrix, and access to the nonbasic columns

is required only when one has to price out attractive columns. At each step of the

column generation procedure, only a portion of the whole set of columns is kept in the

master. Pricing is done dynamically, taking advantage of the prior knowledge of the

structure of the columns.

2.2. Dantzig-Wolfe Decomposition 11

Figure 2.1: Outline of column generation algorithms

The elements of a column generation algorithm can be schematically divided in

two parts: a restricted master problem, and a set of independent pricing subproblems.

These two components interact with one another. Based on a restricted set of columns,

the master is used to update the dual variables, so as to correctly form the cost formulae

to price the nonbasic columns. In turn, the pricing subproblems use this data to

optimize one or more auxiliary problems in order to find the best nonbasic columns,

or a set of such columns. These subproblems are independent, and are related to the

blocks discussed above. In Figure 2.1, we depict the interaction that occurs in a column

generation algorithm.

Both the column generation algorithm and the subgradient method, which is com-

monly used to solve lagrangean dual problems, are methods based on the iterative

update of the vector of dual variables, or dual multipliers. However, column genera-

tion is now being usually preferred to lagrangean relaxation, since it takes advantage

of the whole information in a better way, yielding algorithms that are robust, and over-

coming the considerable instability of the dual variables and the convergence problems

usually associated to lagrangean relaxation. Recent developments in LP software helps

in making the update of the dual variables, when reoptimizing the LP, a not so heavy

burden.

In his technical review [128], Wilhelm divides the family of column generation

algorithms presented so far in three groups. In the first group, the author puts all

the implementations in which a large set of columns is generated with an auxiliary

model, added to the master, which is in turn optimized. The essential feature of these

algorithms is that the master receives columns only once. As an example, we can cite

the paper of Hoffman and Padberg [66]. In the second group, Wilhelm gathers all the

column generation algorithms in which there is an iterative interaction between the

master and the subproblems, but which are not based on an explicit Dantzig-Wolfe

12 2. Column Generation and 1-Dimensional Cutting and Packing

decomposition of a compact model. The papers from Gilmore and Gomory [52, 53]

are in this category. At last, we have those column generation algorithms which are

effectively based on a Dantzig-Wolfe decomposition, as for example [5, 6].

There is a nice economic interpretation associated to the Dantzig-Wolfe decompo-

sition, and the related solution method, column generation. The whole framework can

be seen as a decentralized decision system. At the top, the master, or coordinator, has

to plan the global operation, managing a set of limited resources. For this purpose,

he/she proposes to the independent subsystems a set of shadow prices to measure the

attractiveness of their products, or activity vectors. The subsystems then reply with

an offer. The master gathers the new proposals, evaluates them, and derives a new set

of prices. And the process repeats until equilibrium is reached, i.e., the subsystems are

no more able to give any interesting proposal, given the prices they receive [80].

2.3 Restricted Master Problem

The master problem is said to be restricted because it does not comprise all the feasible

columns. This definition raises immediately a first problem: how to initialize this

master problem? A further question concerns the way the columns should be managed,

or even how to solve the master problem. In [83], Luebbecke and Desrosiers give a brief

review of some possible solution methods that have been proposed. In the sequel, we

recall some aspects related to the solution of master problems.

2.3.1 Initialization and Columns Management

Initializing the master problem with an auxiliary column that has a high cost, and no

meaning in the context of the practical problem to solve, ensures that there will always

be a feasible basis for the simplex method. This artificial column may be necessary

right at the beginning of the solution process, because there is no more columns in the

master, or at a node of a branch-and-bound search tree, because the respective problem

with the newly added branching constraint is infeasible. The master problem can be

further initialized with a pool of columns obtained with a heuristic. These columns

surely allow column generation to begin with a solution of smaller cost, but they do

not guarantee that column generation will converge faster.

At each step of the column generation process, naturally, the size of the master

becomes larger. In [9], Barnhart et al. suggest removing the nonbasic columns that have

a very negative (very positive, when the master is a minimization problem) reduced

cost.

Regarding the columns that should be added to the master problem, some experi-

ences are reported in the literature. As pointed out in [9], results from [121] indicate

2.3. Restricted Master Problem 13

that when pricing subproblems are hard to solve, columns with negative reduced costs

may be searched for with heuristic procedures, and one should resort to optimization

only if they fail in identifying at least one of these columns. For easy pricing subprob-

lems, exact solutions must be used alternatively. Gilmore and Gomory [53] compared

the computing times solving the subproblems at optimality and heuristically, and con-

cluded that the first strategy leads consistently to less pivoting operations in the master,

and faster convergence.

2.3.2 Cutting Planes

The continuous bound provided by the restricted master problem is essential in al-

gorithms combining column generation and branch-and-bound based on linear pro-

grams. The quality of the bounds of reformulations obtained through Dantzig-Wolfe

decomposition is usually good, but sometimes it is not enough to ensure the success of

branch-and-price algorithms. The Pattern Minimization Problem [123] is an example.

By adding valid cutting planes to the master, one can get a stronger model. However,

caution must be taken since, to report the dual values to the pricing subproblems, the

original structure of these subproblems may be destroyed.

A fundamental aspect of column generation algorithms is the relative easiness with

which the pricing subproblems can be solved. Hard subproblems must be avoided.

Even if they can lead to stronger restricted master problems, allowing one to prune

earlier a branching node, or to find an integer solution faster, the fact that they have

to be solved many times would make the whole algorithm clearly inefficient. Hence,

cutting planes must be chosen in order to keep the subproblems tractable. A possible

way of preserving the tractability of the subproblems is to derive cuts based on the

variables of the original formulation. In [118], Van den Akker et al. give a formal proof

showing the accuracy of this statement, when the structure of the cost coefficients does

not influence the algorithm for the solution of the pricing subproblem.

Deriving valid cutting planes for the master is also referred to as row generation.

This process is dual to the column generation one. Examples of papers reporting on

attempts to combine row and column generation are [6, 92, 8].

2.3.3 Convergence

Solving master problems with column generation generally involves many iterations.

In fact, these processes exhibit a long tail convergence, characterized by a value of

the optimum which is only marginally improved in the last iterations. In [78], Kim

and Nazareth classify the difficulties suffered by column generation algorithms in two

groups: combinatorial and numerical. In the former, the combinatorial structure of

the subproblems’ facets explains the difficulty in finding the optimal convex combina-

14 2. Column Generation and 1-Dimensional Cutting and Packing

tion of extreme points. In the latter, it is the nature of the columns enumerated in

the restricted master problem that causes numerical instabilities. In their paper, the

authors give as an example the case of badly scaled columns.

Degeneracy in linear programs is another combinatorial difficulty that is frequently

pointed out as a major cause of the slow convergence of the column generation pro-

cesses. When degeneracy occurs, many pivoting operations are necessary for the value

of the master problem to begin improving again, and hence, many columns have to be

generated for nothing more than leaving a degenerate extreme point. Furthermore, we

observe in practice large fluctuations of the dual variables. This behavior leads to the

generation of different columns, many of them without any contribution to the optimal

solution.

Different approaches have been devised to improve the convergence of column gen-

eration algorithms. We will review these methods later in Chapter 4, which is fully

dedicated to the issue of convergence.

2.4 Pricing Subproblem

In the simplex method, pricing has a double objective: to verify that the current ba-

sic solution satisfies the optimality conditions, and to select a potentially improving

variable, if this is not the case. In column generation algorithms, pricing out nonbasic

columns that do not belong to the restricted master is done through the resolution

of another optimization problem. The way these subproblems are solved depends on

their particular structure. In [70], the min-cut clustering problem is solved using a set

partitioning master problem, and a mixed integer programming subproblem denoted

by the authors as the knapsack quadratic program. This pricing subproblem is solved

by combining cutting planes with branch-and-bound. However, for pricing subprob-

lems with special structure, like the shortest path problem which arises frequently from

Dantzig-Wolfe decompositions [118, 8], there are usually better algorithms. For sub-

problems that are NP-hard, this situation might still apply. For example, the knapsack

problem for cutting stock problems can be solved efficiently with pseudo-polynomial

algorithms [88, 94]. Constrained versions of the shortest path problem are also solved

as pricing routines for routing problems. For the problem with time windows, efficient

algorithms are given in [31].

Kim and Nazareth [78] suggest solving the pricing subproblems with interior point

methods. The authors claim that using points within the interior of the subproblem

polytope together with some of its extreme points and extreme rays can help in reducing

the difficulties that lead to the slow convergence of column generation algorithms.

There are different aspects related to the implementation of a pricing scheme. The

first concerns the space of variables to inspect (fully or partially), and the number of

2.5. Column Generation and Branch-and-Bound 15

attractive columns one wants to generate, and to add to the restricted master (single

or multiple). A possible way of implementing a partial pricing scheme is to solve the

independent subproblems sequentially until an attractive column is found. On the other

hand, multiple pricing, that consists in adding more than one column per iteration,

can be used not only when there is more than a single independent subproblem, but

also with a single subproblem by choosing the k most attractive columns, for example.

The second aspect has to deal with the scheme adopted to select the nonbasic

column to add to the master among a set of potentially attractive columns. The

simplest scheme consists in selecting the first variable with a negative reduced cost.

This scheme is not very efficient. It usually leads to many pivot operations. The

pricing scheme that is traditionally used consists in selecting the variable with the

most negative reduced cost. This rule was suggested by Dantzig. This scheme does not

necessarily ensure the best improvement of the objective function, since the maximum

value the new variable can reach is not taken into account. In order to improve the

impact on the objective function, Gilmore and Gomory proposed to price out columns

according to a “median” method. The items are divided in two groups, with low and

high demands, respectively, and knapsack subproblems are solved with only the items

of the second group. This allows the corresponding variable in the master to take a

larger value. In fact, the most generic and effective alternative to the Dantzig’s rule

is the steepest edge scheme, which reduces considerably the number of iterations [47].

However, this is also the most expensive computationally. In [83], other pricing schemes

are further described, including deepest cut, lagrangean pricing [82] and lambda pricing

[17].

2.5 Column Generation and Branch-and-Bound

Combining column generation and LP branch-and-bound, with the aim of finding in-

teger optimal solutions, is not straightforward. In fact, the exercise is as difficult

as adding valid cutting planes to the restricted master, and keeping the subproblem

computationally tractable. Almost twenty five years were elapsed before these two

techniques began to be used in a common algorithm [32, 30]. Since then, there have

been many attempts to optimize large scale integer programs using branch-and-price

algorithms [92, 29, 120, 99, 119, 115, 4].

Column generation is necessary at all the nodes of the branch-and-bound search

tree, since the columns enumerated in the restricted master at the root may not be

enough to construct the optimal integer solution. Using column generation only at the

root node, before any branching constraint has been enforced, leads necessarily to ap-

proaches that are heuristic. Furthermore, generating the complete set of columns, as in

[57], is an approach which is admissible only for small size instances. Hence, branching

16 2. Column Generation and 1-Dimensional Cutting and Packing

schemes must be devised so as to be compatible with the pricing subproblems.

A first remark is the fact that branching on the variables of the master must be

avoided. What happens in these cases is simply the regeneration of columns that

are already in the master, forcing the identification in the pricing subproblems of the

second best column, or the third, or even more, depending on the depth of the node in

the branch-and-bound tree.

Many results have been reported in the literature concerning branch-and-price al-

gorithms applied to problems with binary variables [120, 124]. In [120], for example,

the authors solve the binary cutting stock problem, which is characterized by ordered

quantities that are equal to the unit. The master is a set partitioning problem, the

pricing subproblem a knapsack problem, and branching is done on the variables of the

former. Two branches are created whenever the solution of the master is fractional,

and the continuous bound is strictly lower than the incumbent. No formal constraints

are enforced in the master. In fact, the branching constraints are directly reported

to the subproblem. In the left branch, the one associated with the “greater than or

equal to” branching constraint, two of the items are replaced by a single item with the

sum of their sizes. The subproblem loses one row, the subproblem remains a knapsack

problem with an item less. On the other hand, the right branch is much harder, since

the branching constraints impose a reformulation of the original knapsack subproblem.

Concerning branch-and-price with general integer programs, a general framework is

given in [125]. The authors show how to report to the subproblem the dual values

related to the branching constraints, by using additional binary variables.

As happens with cutting planes, branching decisions should be taken on the original

variables in order to keep the master problem compatible with the pricing subproblem

at each node of the branch-and-bound tree. In practice, branching constraints on

original variables partition the set of columns in the restricted master problem. Here,

the compatibility between the branching scheme and the pricing subproblem is related

to how difficult it is to know if a solution of the pricing subproblem belongs or not to

a particular partition.

2.6 Cutting and Packing Problems: Overview

Cutting and packing are processes arising in the most diverse contexts. We find them

for example in manufacturing industries, transportation and information technology.

As a consequence, the subject has been treated by researchers from different fields, as

management science, operations research, computer science and mathematics. A fur-

ther symptom of the importance of the area, and the challenges it raises, is the research

effort involved, which has been of considerable volume. Many original contributions

are given in the literature, some of them gathered in special issues of scientific journals,

2.6. Cutting and Packing Problems: Overview 17

and the topic became a traditional reference in many textbooks for a long time [80, 21].

Cutting and packing problems are combinatorial optimization problems. As hap-

pens with many other problems of this kind, they are easy to state, and difficult to

solve. The standard problem is defined as follows: given a set of small and large ob-

jects, how should the small objects be assigned to the large ones in order to optimize

a given criterion. The typical restrictions to which a cutting or packing plan is sub-

mitted are the impossibility for the small objects to overlap, and the limited capacity

or length of the large objects. Beyond this common definition, there exist many vari-

ations and extensions. Dimensionality, the shapes of the figures and orientation are

some examples. The distinction between cutting and packing operations is already an

evidence of the existence of activities that are different in practice. However, cutting

and packing problems are often treated indistinctly. This is due to the fact that, from

a theoretical standpoint, they are just two ways of looking at the same problem. While

cutting problems are essentially based on the notion of material, packing is related to

the notion of space.

The profusion of results reported in the literature [38], under different taxonomies,

motivated the development of an unifying classification system by Dyckhoff [37], which

allows an easier discussion and comparison of the approaches devised for cutting and

packing problems. The typology suggested sets the frontiers beyond which the increase

in the complexity of the solution approaches is clearly established. Dyckhoff proposed

a classification scheme based on four characteristics, further divided in subtypes as

follows

1. dimensionality

(N) N-dimensional

2. kind of assignment

(B) all large objects and a selection of small objects

(V) a selection of large objects and all small objects

3. assortment of large objects

(O) one large object

(I) many identical large objects

(D) different large objects

4. assortment of small objects

(F) few small objects of different figures

(M) many small objects of many different figures

18 2. Column Generation and 1-Dimensional Cutting and Packing

(R) many small objects of relatively few different figures

(C) many identical small objects

Noting that this typology does not consider the kind of assortment treated by Gilmore

and Gomory [53], i.e., the case in which there are few groups of different stock lengths,

Gradisar et al. [60] suggest adding the following subtype

(G) few groups of identical large objects.

This first drawback of the Dyckhoff’s typology is further discussed in [127], where

other weaknesses of this classification scheme are also described. Apart from this lack

of homogeneity, with this classification scheme, the same cutting or packing problem

can reasonably be assigned to different categories. To overcome these weaknesses, a

new typology has been developed by Waescher et al. [127]. Their aim was to catch

all the characteristics of cutting and packing problems in a classification scheme that

can be widely accepted by researchers. As a way of testing it in practice, the authors

classified almost 300 papers published in the last decade.

As we can see from the typologies proposed in the literature, one of the essential

distinctions that is made among cutting and packing problems is related to the geom-

etry of the objects that are involved. This characteristic affects deeply the complexity

of the solution approaches, mainly because it conditions the degrees of freedom of the

problems. As an example, in one-dimensional problems, nobody has to care about the

items’ orientation. Some constraints on the way the cutting or packing can be done are

enforced frequently, which, in some way, simplify the approaches. Imposing a layered

organization of the small items within the large objects is common. This arises with

two-dimensional problems, as in the so-called Level Packing Problem [81], for example,

and with three-dimensional problems [16]. Gilmore and Gomory [54] already noted

that, in practice, cutting problems with more than one dimension are treated in more

than a single stage. For the two-dimensional case, two series of guillotine cuts are

usually applied on the large objects, producing a set of strips that are subsequently

cut varying by 90o the angle of the guillotine. Another property that brings even more

difficulties is the regularity of the shapes of the small items. Problems of this type,

which are frequent in the leather and textile industries, have been classified under the

designation of “Nesting Problems” [56, 18], among others.

Another key distinction between cutting and packing problems is the general ob-

jective pursued. There are two trends here. The first consists in determining a solution

in order to maximize a global profit directly related to the small items chosen. The

alternative is to obey to supply requirements, and to optimize certain operational costs.

These costs may be related to the waste incurred, or to the trim loss in the case of

cutting processes. As an example of the first type of problems, we can mention the

well known Knapsack Problem [88], with a single dimension, in which a set of small

2.7. One-Dimensional Cutting and Packing 19

items with an associated profit and size have to be chosen such that the capacity of the

knapsack is not exceeded. The standard Cutting Stock Problem belongs to the second

category.

Many extensions to the standard versions of cutting and packing problems are

allowed, some of them having deserved the attention of researchers. The most obvious

is perhaps the availability of different types of large objects. Differences may arise

simply in the length or capacity of these objects, but they can also involve measures of

quality. Another extension is the existence of additional constraints in the cutting and

packing plans, together with the traditional capacity constraints [102]. For example,

the number of pieces that can be cut from a stock roll may be limited to the available

number of cutting knives. Another trend in cutting and packing research has been

to take into account the auxiliary problems that may arise. In cutting environments,

for example, maximizing the similarities among the patterns may help to accelerate

operations, and eventually to reduce the waste related to the positioning of the knives.

The related optimization problem is called the “Setup Minimization Problem”, or,

alternatively, the “Pattern Minimization Problem”. We explore it further in Chapter

5.

In this thesis, we are concerned with one-dimensional cutting and packing problems.

In the sequel, we will concentrate on these specific problems, and briefly recall the

models and algorithms that have been proposed in the literature for the standard case.

2.7 One-Dimensional Cutting and Packing

2.7.1 Models

The standard cutting and packing problems in a single dimension, and whose aim is

to minimize the consumption of resources, are usually referred to as the Cutting Stock

Problem and Bin-Packing Problem, respectively. The linear programming models that

have been proposed for them so far can be divided in four categories: the assignment

formulations, the pattern-oriented formulations, the one-cut formulations and the flow

models. We have already seen the assignment formulation, in Section 2.1.2. Histori-

cally, the model from Gilmore and Gomory [52] followed this assignment formulation

due to Kantorovich [76]. Instead of using a clear reference to each roll or bin, their

model is based on the enumeration of the feasible combinations of items within the

large objects. It is obtained applying a Dantzig-Wolfe decomposition, in which only

the demand constraints (3.2) are kept in the master problem, and it states as follows

min
∑
p∈P

λp (2.6)

subject to
∑
p∈P

aipλp ≥ bi, i = 1, . . . ,m, (2.7)

20 2. Column Generation and 1-Dimensional Cutting and Packing

λp ≥ 0 and integer, p ∈ P. (2.8)

Each column p in the set P represents a cutting or packing pattern, with aip repre-

senting the number of items of size wi that are in this pattern. What is common to all

the patterns in P is the fact that the sum of the corresponding item sizes is less than

or equal to W , the length or capacity of the large object (roll or bin). This column

generation reformulation (this designation is acceptable in practice since a complete

enumeration of the columns is clearly out of question) is better than the assignment

model in critical aspects. First, there is no symmetry in its solution space, as mentioned

in a previous section. Furthermore, its linear programming bound is rather strong. For

most of the instances, the integrality gap is smaller than the unit [85]. Some of them

may have a gap greater than 1, as it is shown in [86], but it seems that it never exceeds

2 [100]. The major drawback of this model comes from its size, which can be tackled

by generating the patterns dynamically.

In the model (2.6)-(2.8), each column is related to an operation (cutting or packing)

which involves a whole large object. In the one-cut models, which have been proposed

for the Cutting Stock Problem in [36, 109], the principle is to determine how to apply a

single cut (a one-cut) on an original or residual piece of material. A one-cut divides the

raw material in two pieces: an ordered item and a residual object. The latter can be

trim loss, a portion to be cut further, or another ordered width. The model proposed

by Dyckhoff considers the case in which different stock lengths are available. In the

sequel, D represents the set of item widths to cut from the stock rolls whose lengths

belong to S = {W1, . . . ,WK}. The set of residual objects whose length is sufficiently

large to cut an item is denoted by R. The decision variables yp,q indicate the number

of times a piece with length p is to be cut so as to produce an item of width q, and a

residual object of width p− q. The zk variables indicate the number of stock rolls with

lengths Wk that are used. The Dyckhoff’s model is presented next.

min
K∑

k=1

Wkzk (2.9)

subject to

zk +
∑

p∈D:p+q∈S∪R

yp+q,p ≥
∑

p∈D:p<q

yq,p, ∀q ∈ S, (2.10)∑
p∈S∪R:p>q

yp,q +
∑

p∈D:p+q∈S∪R

yp+q,p ≥
∑

p∈D:p<q

yq,p + Nq, ∀q ∈ (D ∪R) \ S, (2.11)

yp,q ≥ 0 and integer, p ∈ S ∪R, q ∈ D, q < p, (2.12)

zk ≥ 0 and integer, k = 1, . . . , K. (2.13)

Inequalities (2.10) are the definition constraints for the variables zk. In (2.11), the value

Nq stands for the demand of q, when this is an ordered item, or 0 if this is a residual

2.7. One-Dimensional Cutting and Packing 21

piece of material. To cut an ordered item from a roll of length Wk, we must use one of

the stock rolls available, or cut any other piece of material so as to produce a roll with

this length. This constraint is formulated as (2.10). The satisfaction of the demand

for an item of width wi, and/or the satisfaction of the needs for residual objects with

the same width, is guaranteed by cutting explicitly this width from a larger piece, or

implicitly by generating a residual piece of material with this desired width (constraints

(2.11)). An advantage of this formulation is that the number of variables is not as big

as in the model of Gilmore and Gomory, but it is still pseudo-polynomial as the number

of constraints. Furthermore, it has symmetry.

The last models are based on flow variables. The first model that we recall here, and

which is due to Valério de Carvalho [114, 115], represents each integer position within

the large object as a node in a graph, say G, and an item placed at a certain distance

from the left border as an arc between the two nodes associated to the initial and final

position of this item. That explains the designation “position indexed models” used in

[116]. For an arc set denoted by A, and arc flow variables xij between two nodes i and

j belonging to A, we can formulate this model as follows

min. z (2.14)

subject to

−
∑

(i,j)∈A

xij +
∑

(j,l)∈A

xjl =


z, if j = 0,

0, if j = 1, . . . ,W − 1,

−z, if j = W ,

(2.15)

∑
(i,i+wd)∈A

xi,i+wd
≥ bd, d = 1, . . . ,m, (2.16)

xij ≥ 0 and integer, ∀(i, j) ∈ A. (2.17)

This model is equivalent to the one of Gilmore and Gomory [115], and, hence, the

continuous bounds are the same. As in the one-cut models, it is not completely free of

symmetry, even if some restrictions on the arc set A can considerably reduce it. The

number of constraints, which is pseudo-polynomial, is its major weakness. In [115], the

author proposes to generate the flow conservation constraints only as needed.

The second flow model, suggested in [28] for the Bin-Packing Problem, consists in

an analogy with vehicle routing problems. A decision whether to pick an object or

not, and place it in a vehicle with a limited capacity, models each packing operation.

Here, the vehicles are the large objects, and the clients and their corresponding loads

represent the small items. Initially, the vehicles are empty. Their tours begin in a

depot represented by a node o, and end at the same depot, represented by a different

node d. The items are represented by a node, belonging to a set N . The set of arcs,

22 2. Column Generation and 1-Dimensional Cutting and Packing

representing valid sequences of items, is denoted by A. There are two types of variables:

the binary xk
ij indicate whether the vehicle k, k = 1, . . . , K, uses arc (i, j) or not, i.e.,

whether there is, in the corresponding bin, an item of size wj that follows another item

of size wi; the W k
i variables represent the capacity used by vehicle k when it leaves

the node i. The resulting model is nonlinear. For the case of a homogeneous fleet of

vehicles (identical bins), this formulation states as follows

min.
∑
k∈K

∑
(o,j)∈Ak

xk
oj (2.18)

subject to∑
k∈K

∑
j:(i,j)∈Ak

xk
ij = 1, ∀i ∈ N, (2.19)

∑
(i,j)∈Ak

xk
ij −

∑
(i,j)∈Ak

xk
ji = 0, ∀i ∈ Nk, k = 1, . . . , K, (2.20)

xk
ij(W

k
i + wj −W k

j) ≤ 0, ∀(i, j) ∈ Ak, k = 1, . . . , K, (2.21)

wi ≤ W k
i ≤ W, ∀i ∈ V k, k = 1, . . . , K, (2.22)

xk
ij ∈ {0, 1}, ∀(i, j) ∈ Ak, k = 1, . . . , K. (2.23)

As noted in [116], the nonlinearities can easily be dealt with, by applying a Dantzig-

Wolfe decomposition in which only (2.19) is kept in the master problem.

2.7.2 Algorithms

In [23], Coffman et al. give a comprehensive survey on the various approximation algo-

rithms that have been proposed for the Bin-Packing Problem, and which are applicable

to the Cutting Stock Problem as well. The authors explore the worst-case and average

behaviors of the different algorithms. In [39, 40], other approaches are studied which

are based on the theory of evolutionary algorithms. The considerable investment on

heuristic approaches is motivated by the fact that both problems are well known to be

NP-hard.

The MTP algorithm of Martello and Toth [88] is among the exact approaches pro-

posed for the Bin-Packing Problem. Their approach is enumerative, based on branch-

and-bound, and combines lower bounding strategies with heuristic methods at each

node. Scholl et al. [104] report better results using a branch-and-bound procedure

with a new branching scheme, reduction procedures, lower bounds, and heuristics, as

a tabu search procedure, among others. As we can see, the fast computation of strong

lower bounds is important in these approaches. Schwerin and Waescher [106], and

later Fekete and Schepers [42], proposed alternative lower bounds for the Bin-Packing

Problem.

2.7. One-Dimensional Cutting and Packing 23

Linear programming based algorithms have achieved an appreciable success in solv-

ing exactly the cutting stock and bin-packing problems. The pioneers were Gilmore

and Gomory [52, 53], who combined column generation with rounding to obtain near

optimal solutions. More recent attempts resort to cutting planes [101], or to combining

column generation with branch-and-bound [120, 122, 114, 115, 27, 26].

Chapter 3

The Multiple Length Cutting Stock

Problem

Many heuristic approaches have been devised and described throughout the litera-

ture for the multiple length cutting stock problem. On the opposite, there have been

only a few results reported regarding attempts to exactly solve this problem. In fact,

results for exact solution algorithms appeared only very recently. In the sequel, we

investigate the efficiency of a branch-and-price-and-cut algorithm, developed using

two equivalent models. The whole procedure consists on the execution of column

generation at each node of a branch-and-bound tree, and a further strengthening

process based on two families of valid cutting planes. To measure its efficiency, we

tested our algorithm using different instances from the literature.

In practical applications, when many stock lengths are available, a common problem

that arises is the one of selecting the subset of lengths that will be used. This

problem is known as the assortment problem. Here, we consider the simultaneous

optimization of the cutting plan and selection of the stock lengths. To designate

the resulting problem, we use the name “combined assortment and trim loss

minimization problem”. The branch-and-price-and-cut algorithm developed was

extended to this problem. Many computational results are reported for a set of

randomly generated instances.

Keywords: Multiple Length Cutting Stock Problem, Column Generation, Cutting

Planes, Branch-and-Price-and-Cut, Combined Assortment and Trim Loss Minimiza-

tion Problem

25

26 3. The Multiple Length Cutting Stock Problem

3.1 Introduction

In this chapter, we are concerned with a generalization of the thoroughly studied stan-

dard cutting stock problem, in which multiple stock lengths are available instead of a

single one. This is a natural extension, but not the only one which has deserved the at-

tention of the research community. Indeed, further distinctions can be made among the

rolls. There is for example reported research regarding problems where the rolls have

different quality grades [111]. In these problems, the feasibility of a cutting pattern

is not only conditioned by the length of the roll, but also by the quality requirements

of the orders. These are problems that arise frequently in the paper, wood and steel

industries [97]. For different stock rolls, there may be also different production or dis-

tribution centers, in different locations. Haessler and Sweeney gave a formulation for

a related problem, namely the cutting stock problem with multiple lengths and freight

costs [63].

With different stock lengths, and consequently a greater choice of feasible cutting

patterns, one can naturally expect to obtain better solutions in terms of material usage

than one would get with only one stock length. This intuitive statement is defended

by Gilmore and Gomory in one of their pioneering papers [53]. The authors gave com-

putational evidence that supports this idea. However, finding such improved solutions

requires solving an optimization problem with a somewhat harder cost function. The

integer round-up property, formally described by Marcotte [85], no longer applies to

the cutting stock problem with multiple stock lengths, in which the cost of a roll is

proportional to its length.

Additional constraints may also be considered. Rolls’ availability may be limited for

example. Sometimes, this is the principal motivation for using different stock lengths.

The maximum number of rolls that can be used may also be bounded. In this case, the

decision problem is twofold. The problem of selecting the best set of cutting patterns

arises only after one has decided which stock lengths to use [64]. This problem is

referred to as the combined assortment and trim loss minimization problem.

The Multiple Length Cutting Stock Problem (MLCSP) is NP-hard [49]. Unless

P=NP, no absolute approximation scheme can be devised that solves it in fully poly-

nomial time. As a consequence, most of the research effort has been initially devoted to

the development of heuristics and approximation algorithms for which only worst-case

performance could be guaranteed. In [53], Gilmore and Gomory applied their column

generation algorithm to a problem called the Machine Balance Problem, and studied

the effect of stock lengths. Roodman [98] found near optimal integer solutions using a

procedure based on the solution of the LP relaxation, complemented by heuristically

generated columns. Recently, Holthaus [67] presented a heuristic method in which col-

umn generation was combined with rounding and fixing algorithms and other methods

3.1. Introduction 27

to solve the residual problem. Additional heuristic procedures can be found in [58, 59].

Other publications address the Variable Sized Bin-Packing Problem (VSBP), which

is, in the bin-packing literature, the counterpart of the MLCSP. The difference between

the VSBP and the MLCSP is essentially in the levels of demand. Friesen and Langston

[48] present three approximation algorithms, with asymptotic worst-case performance

bounds of 2, 3
2

and 4
3
, respectively. Murgolo [91] describes a fully polynomial asymptotic

approximation scheme, and, more recently, Chu and La [20] derive four approximation

algorithms with absolute worst-case performance of 2, 2, 3 and 2+ln 2, respectively.

There are also some interesting results regarding the solvability of problems with

special properties. In a recent paper, Kang and Park [75] present two greedy algorithms

that solve to optimality the VSBP with divisible item and bin sizes. Their approach

is based on the well-known First-Fit and Best-Fit Decreasing algorithms. The bin

types are chosen one by one, and the items are packed using the FFD or BFD scheme,

starting from the largest and repacking iteratively the items to the second largest bin,

and so on. The resulting heuristics are designated by Iterative First-Fit Decreasing and

Iterative Best-Fit Decreasing. For the case in which only the bin sizes are divisible, the

authors show that the solution given by their algorithms is never worse than 11
9
z∗ + 44

9
,

for an optimal solution of value z∗. For the general case, the algorithms give a solution

which is never greater than 3
2
z∗+1. Furthermore, the authors present a counterexample

that refutes a prior conjecture from Coffman et al. [22], stating that a modified version

of the FFD algorithm could give optimal solutions to the VSBP in which the item sizes

are divisible and the bin sizes are multiples of all the item sizes.

Only recently, results have been reported on attempts to develop computationally

practical exact algorithms. In his PhD thesis [90], Monaci addresses the VSBP. He

describes various lower bounding procedures, some of them trivial and others more so-

phisticated, and presents three heuristics, namely a First-Fit type algorithm, a greedy

algorithm, and an improved version of this greedy procedure, called the diving algo-

rithm. The author also developed a local search routine to improve iteratively a given

solution. Exact solutions are found using a branch-and-bound algorithm with a simple

branching rule proposed by Martello and Toth for the bin-packing problem [88]. Node

selection is done following a best-bound first strategy. In each branching node, an item

is assigned to either one of the opened bins or to a new one, and heuristic solutions

are computed using the greedy and diving algorithm. Local search is finally applied to

improve these solutions. The branching nodes are given a penalty value that depends

on how far these final solutions are from the compulsive assignment of items to bins

given by the branching scheme. Computational experiments are reported for a set of

300 instances, with a maximum of 5 different rolls and 500 items. The algorithm was

able to solve 78% of the instances within a time limit of 15 minutes for each.

Another exact approach was proposed recently by Belov and Scheithauer, in [13].

28 3. The Multiple Length Cutting Stock Problem

The authors combine Chvátal-Gomory cutting planes with column generation, bring-

ing to the latter some added complexity. In order to price a new column correctly,

the coefficients in the enumerated cuts must be anticipated. This leads to a pricing

subproblem that becomes a general IP problem without any special structure, much

harder than a knapsack problem, and which has to be solved by branch-and-bound.

The authors also give a rounding heuristic, based on the sequential value correction

method, which seems to be essential to the success of their overall algorithm. Their

paper reports on an extensive set of computational experiments.

In this chapter, we explore an exact branch-and-price-and-cut algorithm for the

MLCSP relying on two formulations described in the literature, and show through

comparative experiments that it is possible to get better results than those published

recently with an algorithm that does not rely on any sophisticated rounding scheme.

As a matter of fact, our algorithm was able to solve all the instances tested by Monaci,

and to improve the results obtained on some instances used in [13]. In the sequel,

we present the main features of this algorithm, like the branching scheme, the cutting

planes and the ways early node termination is performed. A prior remark is that the

pricing subproblem is not drastically modified by the branching scheme adopted, and

can still be solved in pseudo-polynomial time. In practice, it is solved very efficiently.

Column generation is at the heart of our solution approach for the MLCSP, and

many others referred to above. The model it solves, which results from a Dantzig-Wolfe

decomposition of a compact formulation [119, 116], is stronger, and leads to improved

lower bounds. However, it is well known that column generation procedures suffer

from slow convergence induced by undesirable behaviors such as the primal degeneracy

and the excessive oscillations of the dual variables. We do not approach the topic of

stabilized column generation in this chapter. The next chapter will be fully devoted to

it instead.

A final remark concerning the extensive research that is reported for the online

version of the VSBP has to be done. This problem arises when the items arrive one by

one, and the decision about where to pack them must be taken immediately. In a recent

paper, Seiden et al. [108] give lower and upper bounds for the problem, along with

solution algorithms. In [130], Zhang analyzes the worst-case performance of the First-

Fit Decreasing scheme applied to the online VSBP. Other references to this problem

may also be found in [24, 79, 107].

This chapter is organized as follows. We first review the IP formulations for the

MLCSP, and describe next the details of the branch-and-bound procedure. The cutting

planes which were used to strengthen the model are then described. The results of our

computational experiments are reported afterwards. The second part of this chapter

is devoted to the combined assortment and trim loss minimization problem. The

algorithm previously introduced is extended, and its behavior analyzed with different

3.2. Problem Formulations 29

computational experiments.

3.2 Problem Formulations

3.2.1 A Column Generation Model

In the Multiple Length Cutting Stock Problem, we are given K types of stock rolls

with integer lengths Wk, such that Wk 6= Wk′ , for all k 6= k′, and m sets of items with

sizes wi, i = 1, . . . ,m. We consider the case in which the availability of a stock roll

of the kth class is limited to Bk units. The item demands are denoted by bi, and may

be greater than the unit. Throughout this chapter, we will assume that the items and

the rolls are sorted in order of decreasing sizes and lengths, respectively. The objective

analyzed here is to find the cutting plan which minimizes the sum of the roll lengths, or

equivalently, the trim loss. Note that, due to the availability constraints on the stock

rolls, a particular instance of the problem may not have a feasible solution.

The formulation presented next is an extension of the well known model for the stan-

dard Cutting Stock Problem proposed by Gilmore and Gomory. This model was used

by the authors to formulate their Machine Balance Problem [53]. For any moderate

size instance, this model has a huge set of columns, or decision variables. This forbids

solutions based on complete enumerations, such as the one proposed by Goulimis, in

[57]. The model used instead relies on a restricted set of columns, which is completed

dynamically by other columns that may be useful. This results in a so called column

generation model, which can be stated as follows

min
K∑

k=1

∑
p∈P k

Wkλ
k
p (3.1)

subject to
K∑

k=1

∑
p∈P k

ak
ipλ

k
p ≥ bi, i = 1, . . . ,m, (3.2)

∑
p∈P k

λk
p ≤ Bk, k = 1, . . . , K, (3.3)

λk
p ≥ 0 and integer, k = 1, . . . , K, p ∈ P k. (3.4)

For a stock roll of length Wk, there is a set of feasible cutting patterns, which is denoted

by P k. In formulation (3.1)-(3.4), each column represents a feasible cutting pattern for

one of the stock lengths. It consists in a vector (ak
1p, a

k
2p, . . . , a

k
mp; . . . , 1, . . .)

T , in which

ak
ip denotes the number of items i cut from a roll of length Wk. The cutting pattern

usages are the only decision variables, and are denoted by λk
p.

30 3. The Multiple Length Cutting Stock Problem

Constraints (3.2) ensure the satisfaction of the demands for each item, whereas the

rolls’ availability constraints are represented by (3.3). Instead of “greater than or equal

to” inequalities in (3.2), one might prefer equality constraints since we consider here

the simple case where demand is to be met exactly and overproduction is discarded as

waste. However, as shown in [52], it is always possible to recover a solution of equal

cost in which demand is met exactly, i.e., with the slack variables in (3.2) equal to

0. On the other hand, with equality constraints, the dual problem has variables that

are not restricted in sign. When inequalities are used, part of this dual space is cut,

leading to column generation algorithms that converge faster. Restricting the dual

solution space is a nice feature as will become clear in the next chapter, and therefore

we will keep our demand constraints defined as inequalities.

The previous model can be obtained applying a Dantzig-Wolfe decomposition to an

extended version of the Kantorovich model [76] for the MLCSP, or alternatively to the

flow model described in [116]. Both are compact or original models [126]. The former

relies on assignment variables and is known for its poor LP bound and symmetry. The

flow model gives an LP lower bound which is equivalent to the one obtained with (3.1)-

(3.4). However, the set of flow conservation constraints may be quite large, and even

when these constraints are only enumerated as needed, they may still be a burden for

any solution algorithm. This makes the column generation model (3.1)-(3.4) one of

the most referenced to and used models for the CSP, and also for the MLCSP. In this

chapter, we take advantage of both the column generation and flow models. In the

following section, we briefly describe the latter.

3.2.2 A Compact Flow Model

In [115], an alternative compact model with flow variables was described for the CSP.

As happens with the Gilmore and Gomory model, its extension to the MLCSP case is

straightforward [116]. The model is defined over a graph with as many vertices as the

length of the largest roll plus one. Each vertex represents a discrete position within the

roll, and each arc the placement of an item in a precise area. A cutting pattern consists

in an uninterrupted concatenation of arcs starting at vertex 0, the left border of the

roll, and ending in vertex Wk. The flow over this sequence of arcs is the respective

pattern usage.

Formally, let G = (V, A) be the graph, with V the set of vertices and A the set of

arcs. Within the arc set, there are item and loss arcs. For an item arc, say (i, j), we

have (i, j) ∈ A, if 0 ≤ i < j ≤ W1, and j − i = wd, for any 1 ≤ d ≤ m. Remember

that W1 is the size of the largest roll. The loss arcs are unit length arcs representing

the unused portions of the rolls. The graph G has O(mW1) arcs, and exactly W1 + 1

vertices.

A pattern is defined as a set of items that are cut in a roll of a certain length. Given

3.2. Problem Formulations 31

a set of items, there can be many different ways of placing them. As a consequence,

without any further restrictions to A, the flow model may be highly symmetric. Dif-

ferent reduction criteria can be applied to reduce this symmetry, as those proposed in

[115]. Loss arcs, for example, are left for the end of the roll. An ordering of the arcs

according to their lengths is also recommended. The following example illustrates the

flow model for a simple instance of the MLCSP.

Example 3.1 Consider an instance with a set of rolls of lengths 7, 5 and 4, and

items of sizes 3, 3, 3, 2 and 2. The rolls’ availability are 1, 1 and 3, for each length,

respectively. The total size of the ordered items is
∑

d wdbd = 13, for a total roll length

of
∑

k WkBk = 24. The complete graph G is depicted in Figure 3.1. The set of arcs is

the one obtained after applying the reduction criteria referred to above. �

s s s s s s s s0 1 2 3 4 5 6 7

I I

I I I I

I I I I I

Figure 3.1: Graph G for the instance of Example 3.1

The corresponding IP formulation is as follows.

min.
K∑

k=1

Wkzk (3.5)

subject to

−
∑

(i,j)∈A

xij +
∑

(j,l)∈A

xjl =


∑K

k=1 zk, if j = 0,

−zk, for j = Wk, k = 1, . . . , K,

0, otherwise,

(3.6)

∑
(i,i+wd)∈A

xi,i+wd
≥ bd, d = 1, . . . ,m (3.7)

zk ≤ Bk, k = 1, . . . , K, (3.8)

xij ≥ 0 and integer, ∀(i, j) ∈ A, (3.9)

zk ≥ 0 and integer, k = 1, . . . , K. (3.10)

The MLCSP is formulated as a minimum weighted flow problem in G, with additional

constraints for the item demands (3.7) and rolls’ availability (3.8). Flow conservation is

imposed through the constraints (3.6). The flow variables are denoted by xij, whereas

zk denotes the number of rolls with length Wk used.

According to the flow decomposition principle (see [1]), a set of arc flows in G can

be decomposed into a set of path and cycle flows. Cycles in G may be defined by

considering K additional feedback arcs starting at positions Wk, k = 1, . . . , K, and

ending at vertex 0.

32 3. The Multiple Length Cutting Stock Problem

Formulation (3.5)-(3.8) has O(W1 + m + K) constraints, a number which depends

on the length of the largest roll. As referred to in [116], its main value comes from its

compatibility with branch-and-price frameworks. Branching schemes relying on this

model can be devised without inducing any important change to the structure of the

original pricing subproblems.

3.3 Branch-and-Price

In this section, we review the main features of the branch-and-price part of the overall

algorithm investigated here. We begin by describing the elements of the LP problem

solved to obtain the continuous bounds at the nodes of the branching tree. We proceed

with the description of the branching scheme, the presentation of the bounds computed

along the solution process, and a reference to the simple rounding procedure used.

3.3.1 LP Relaxation

The problem solved at the nodes of the branch-and-bound tree is the LP relaxation

of (3.1)-(3.4). Given the dimension of this model, it is more efficient to use it to

compute the LP bound rather than the flow model. The number of constraints of a

linear program is indeed an important parameter that may condition the efficiency

of computational methods. In [10], the average empirical complexity of the simplex

method was estimated to be O(m2n), being m and n the number of constraints and

decision variables, respectively. The increase is quadratic in the number of constraints.

Being a complete enumeration of the columns impracticable, we resort to a partial

enumeration of the pattern set, and deal with a so called restricted master problem.

A solution to the latter is an upper bound on the LP optimum. After the master is

optimized, K pricing subproblems are solved to identify those columns with a negative

reduced cost that may enter the basis and provide a better cost solution. At the root

node of the branch-and-bound tree, we solve K pricing subproblems per iteration of

the column generation procedure using the MT1 algorithm from Martello and Toth

[88]. In the remaining nodes, we use dynamic programming because of the specific

branching constraints that are enforced. In this case, a single run of the algorithm is

enough to solve these K subproblems. Only the most attractive pattern for each stock

length is added to the master. When there are no more attractive columns, column

generation stops. We do not consider any scheme for removing the columns in the

master. Once they are added, they are not removed anymore.

The first restricted master problem is initialized with an artificial column that

ensures its feasibility, whatever the branching node. Infeasibility may occur at the

beginning if the initialization heuristic fails to find a valid solution, or after a branching

3.3. Branch-and-Price 33

constraint or a cutting plane has been enforced. This column has coefficients equal to

the right hand side of the “greater than or equal to” constraints, and zeroes for the

other types of constraints. The problem may be infeasible only for the restricted set

of enumerated columns, or for the whole set of patterns. In the first case, the artificial

variable will begin with a positive value and attractive columns will certainly be found.

In the last case, the artificial variable will remain positive, and the cost of the solution

must be chosen such that the corresponding node can be pruned by bound. In fact,

the cost of the artificial column must be at least equal to the incumbent.

Besides the artificial column, the LP master is initialized with a set of patterns

given by an extension of the First Fit Decreasing packing heuristic. The rolls are

chosen (opened) in order of decreasing lengths, and the items are placed, also in order of

decreasing sizes, in the first opened roll into which they fit, or, if there is no space in any

of them, in a new one. Rolls’ availabilities are taken into account. As a consequence,

the heuristic may fail to find a solution.

Only minimal (or complete [110]) patterns are considered. For these patterns, the

space that is unfulfilled is always smaller than the size of the smallest item. This is

a true restriction on the set of permissible patterns, that forbids the use of equality

demand constraints.

3.3.2 Branching Strategy

In [123], Vanderbeck suggests that branching should be done on columns sharing an

identical property that can easily be identified in the pricing subproblem. A possible

way of defining a partition of the columns is to select them according to the precise

items that are in the corresponding patterns, or alternatively according to the position

of an item within the roll, if an ordering of the items is previously assumed. The latter

partitioning rule leads to a branching scheme on the flow variables of formulation

(3.5)-(3.10). We will use it, since it does not induce any important modification to

the original knapsack subproblems. After solving the LP relaxation of (3.1)-(3.4), a

fractional solution can be converted into a set of flows, an arc or a set of arcs with

fractional flows identified, and a branching constraint enforced back in the Gilmore

and Gomory model.

When branching on the flow variables, many different schemes may be devised.

Ideally, a branching scheme should be such that the resulting branch-and-bound search

tree is balanced and free of symmetry. In a balanced tree, the set of feasible solutions

in a parent node is clearly different from the feasible region of all its descendants. On

the other hand, with an unbalanced tree, one of the branching nodes has almost the

same set of solutions as its parent node. In these circumstances, we can not expect

to progress a lot. Symmetry is another major cause of ineffectiveness of branch-and-

bound algorithms. There is symmetry when different assignment of values to variables

34 3. The Multiple Length Cutting Stock Problem

lead to solutions that are identical in practice. Branching, whose principal aim is to

exclude a given fractional solution, does not ensure that this solution will appear again

in a deeper node. Our branching scheme is based on a selection of the columns of the

model of Gilmore and Gomory, which is made by converting the continuous solution at

a node into an equivalent solution of the arc-flow model, using a pre-defined ordering

among the items. As we already mentioned, the LP model of Gilmore and Gomory

has no symmetry.

To ensure a reasonably balanced tree, we developed a branching scheme with two

levels. On the first level, we branch on fractional zk variables of model (3.5)-(3.10),

choosing the one that corresponds to the largest roll. Since there is a subproblem for

each stock length, taking into account the dual variables for the resulting branching

constraints is straightforward. If none of these variables is fractional, the solution

may be still non integer. In this case, branching is done on the second level, on the

item arcs. Among the fractional ones, we choose the leftmost arc, and break ties by

selecting the arc that corresponds to the largest item. When the pricing subproblems

are solved with dynamic programming, we can infer the position of an item within the

knapsack, directly from the usual states which register the capacity used. Hence, we

can easily apply the dual values of the branching constraints on the item arcs. However,

this branching scheme prevents us from using other algorithms along the branch-and-

bound tree, which may be computationally more efficient, such as the MT1 algorithm

from Martello and Toth [88].

Another point of the branching scheme that has to be defined is the search strategy,

i.e., the order in which the nodes are selected. We know that branch-and-bound ends

when the global upper and lower bounds are equal. In an algorithm, we can choose

one of two strategies: we may privilege a fast improvement of the global lower bound,

or alternatively we may direct the search so as to find an improved feasible integer

solution as quickly as possible. The only way of improving the global lower bound is

to strengthen the weakest LP relaxation. Hence, in this case, the node to select is the

one with the lowest LP bound. This strategy is known as the best bound or best first

search. To improve the incumbent, the best is to “dive” in the tree, and use the so

called depth first search strategy. Alternatively, the two strategies can be combined in

a hybrid search. The computational experiments that we have conducted indicate that

the depth first search strategy provides very satisfactory results.

3.3.3 Lower Bounding

Its name makes it very clear: branch-and-bound is an optimization method that relies

essentially on bounding techniques. With this principle in mind, besides the usual node

fathoming that is made by comparing the LP optimum with the incumbent, the upper

bound, we can avoid some unnecessary computations by comparing the LP values, or

3.4. Cutting Planes 35

other bounds described in the literature, with the global lower bound.

Sometimes, one can stop the column generation procedure at a certain branch-

and-bound node before the LP optimum is reached. Let zLB be the global integer

lower bound, and zw the optimal LP value obtained at a node w for a specific set of

enumerated columns. If zw is less than zLB, the node cannot obviously be fathomed, but

the column generation procedure can be stopped, since zLB − 1 is clearly unreachable.

A lower bound that is easy to compute, and traditionally used, is the Farley’s

bound [41], which gives a lower bound on the optimum of the LP master. It is used to

fathom a node without having to solve the master to optimality. Let zw
F be the best,

the greatest, Farley’s bound computed at a node w. If zw
F is greater than or equal to

the incumbent, the node will never produce any improving solution, and therefore it

can be fathomed. This bound is computed using the LP value of the master and the

reduced cost of the last most attractive column. Another fast way to compute a lower

bound is the one due to Lasdon [80], which also relies on the columns with the most

negative reduced costs and on the value of the master.

3.3.4 Rounding Procedure

After an optimal LP solution is available, some simple rounding operations may help

in finding an integer solution better than the incumbent. Hence, we devised a rounding

scheme that is used in each branching node when column generation stops, and the

separation algorithms to be described later does not identify any violated cutting plane.

Taking into account the restriction on the rolls’ availability, the positive variables

that have a fractional part greater than a parameterized value are rounded up (0.5,

in our implementation). The other variables are rounded down. After this step, there

may be items whose supply exceeds the demand. Iteratively, we choose a pattern with

excess items, remove the items that are in excess, and we try to transfer the remaining

items to a smaller roll. Since there may have more than a single pattern with excess

items, we select the one that leads to the greatest saving. This step ends when there are

no more items in excess, or when we are not able to transfer a pattern to a smaller roll

anymore. Each pattern that is not complete is treated as an opened roll. The heuristic

proceeds by assigning the remaining items in a FFD manner. Experiments have shown

that, although this is a very basic scheme, improved incumbents are frequently found.

3.4 Cutting Planes

3.4.1 The Level Cut

A solution to the MLCSP consists in an optimal combination of stock rolls with integer

lengths. With a continuous bound derived from the LP relaxation of (3.1)-(3.4) that we

36 3. The Multiple Length Cutting Stock Problem

will denote by zw
LP for a branching node w, we can hence compute a possibly stronger

integer lower bound by finding the first integer combination of stock lengths greater

than or equal to zw
LP . Let this bound be denoted by zw

IP . Its exact value is the solution

of the following problem

zw
IP = min

K∑
k=1

Wkyk (3.11)

subject to
K∑

k=1

Wkyk ≥ dzw
LP e , (3.12)

yk ≤ Bk, k = 1, . . . , K, (3.13)

yk ≥ 0 and integer, k = 1, . . . , K. (3.14)

The MLCSP has not the integer round-up property, and zw
IP may indeed be greater

than dzw
LP e.

From this point forward, we will call “level cut” to the corresponding inequality

enforced in the master. There are two different ways of introducing it in formulation

(3.1)-(3.4). The first is by stating that the trim loss has to appear somewhere in the

cutting plan:

K∑
k=1

∑
p∈Pk

(
Wk −

m∑
i=1

wia
k
ip

)
λk

p ≥ zw
IP −

m∑
i=1

wibi.

Alternatively, we can set the bound on the total stock lengths used as follows

K∑
k=1

∑
p∈Pk

Wkλ
k
p ≥ zw

IP .

Instead of solving problem (3.11)-(3.14), we compute zw
IP using a reformulation into

a model with binary variables of the knapsack problems’ family as described in [88].

Let first K ′ =
∑K

k=1 Bk, y′k, k = 1, . . . , K ′, be the decision variables of model (3.11)-

(3.14) expressed with binary variables instead of general integer ones, and ȳ′k be the

complement of the latter, i.e. ȳ′k = 1 − y′k. The bound zw
IP can then be obtained as

follows

zw
IP = min.

{
K′∑
k=1

Wky
′
k :
∑

k

Wky
′
k ≥ dzw

LP e, y′ ∈ BK′

}
=

= min.

{
K′∑
k=1

Wk(1− ȳ′k) :
K′∑
k=1

Wk(1− ȳ′k) ≥ dzw
LP e, ȳ′ ∈ BK′

}
=

= max.

{
K′∑
k=1

Wkȳ
′
k −

K′∑
k=1

Wk :
K′∑
k=1

Wkȳ
′
k ≤

K′∑
k=1

Wk − dzw
LP e, ȳ′ ∈ BK′

}
.

This bounded knapsack problem is sometimes referred as the value independent knap-

sack problem or subset sum problem. It has profit coefficients equal to the weights of

3.5. A Note on Node Fathoming 37

the items. At the root node, we used the code presented in Martello and Toth [88] to

solve it. In the other branching nodes, dynamic programming may be required, since

we try to take advantage of the particular branching constraints that are enforced to

strengthen the level cut. This matter is further discussed in Section 3.5.

3.4.2 The Feasibility Cuts

Another family of valid inequalities that can be used for the MLCSP are the feasibility

cuts used by Vanderbeck in [122] for the case of a single stock length. These cuts are

based on the fact that any set of items must obviously fit in a integer combination of

rolls whose total length is at least immediately greater than the total size of the items.

Here, we will derive feasibility cuts based on a single item size, since in this case the

dual variables of the corresponding constraints in the master are easily reported to the

pricing subproblem.

When multiple stock lengths are available, we compute the right-hand-side of the

feasibility cuts using the stock rolls in decreasing order of their lengths. If the avail-

ability of the largest roll k = 1 is enough to cope with all the items of size wi, we will

have

K∑
k=1

∑
p∈Pk:ak

ip>0

λk
p ≥

 bi⌊
W1

wi

⌋
 .

On the other hand, if the following holds bi⌊
W1

wi

⌋
 > B1,

and the availability of the roll with size W2 is enough to cut the remaining part that

does not fit in the rolls of length W1, the following cut will be enforced

K∑
k=1

∑
p∈Pk:ak

ip>0

λk
p ≥ B1 +


bi −B1

⌊
W1

wi

⌋
⌊

W2

wi

⌋
 ,

and so forth. Following this scheme, we derive m feasibility cuts, one for each item

size.

3.5 A Note on Node Fathoming

Depending on the set of branching constraints that are enforced at a node, some

improvements can be introduced: the level cut described above may eventually be

strengthened, or the node may be fathomed without having to solve any pricing sub-

problem. These situations are described next.

38 3. The Multiple Length Cutting Stock Problem

For a node w, let lk be the greatest lower bound imposed on the zk variables of

formulation (3.5)-(3.10). If there is no such branching constraint for a stock length k,

we will have implicitly lk = 0. Let also zUB be the value of the current incumbent. If

the following inequality holds ∑
k∈K

lkWk ≥ zUB, (3.15)

the node will surely never lead to an improving solution. It can then be fathomed.

If this comparison is made before the node is created, computational savings result

by preventing the storage and handling of the data structures for an uninteresting

problem. Similarly, let uk be an upper bound imposed through a branching constraint

on variable zk. Again, if no branching constraint is enforced at node w on zk, we will

have uk = Bk. If the following holds∑
k∈K

ukWk < zw
IP ,

the problem is infeasible, and the corresponding node can also be avoided.

When lower bounds lk are effectively enforced at a node w on the zk variables, for

a subset of stock rolls say K ′, the level cut may possibly be strengthened if the value

of its right hand side zw
IP depends on a combination of rolls that does not include one,

or more, of the rolls in K ′. Hence, prior to the resolution of the first LP relaxation of

this node w, we recompute zw
IP taking into account these compulsory rolls, compare it

with the incumbent, and proceed with column generation only if the node cannot be

pruned.

For a node w, if there is a lower bound lij enforced on an arc (i, j) such that i > W2,

the second largest roll, there will be implicitly an identical constraint on the z1 variable.

If this lower bound dominates the other bounds that might have been imposed on z1,

it must be used instead, in order to evaluate the feasibility of the node quickly, or to

strengthen the level cut. Generally, if i ≤ W2, we will not be able to anticipate to

which precise roll will the items go, but we can still derive a general lower bound for

the zk variables with Wk > i that can be used in (3.15) together with the length of the

smallest roll greater than i.

3.6 Computational Experiments

We coded our algorithm using the C++ language, and used the CPLEX Callable

Library (version 6.5) [69] to implement some of the optimization subroutines. The

experiments were run on a 700 MHz PentiumIII with 128 MBytes of RAM.

We consider three different sets of instances. In the first set, the roll lengths and item

sizes are random values drawn from an uniform distribution in the intervals [100,150]

3.6. Computational Experiments 39

and [20,100], respectively. The rolls’ availability is bounded, and the demands are

typically small. The second set is composed by 300 instances with a maximum of 5

different stock lengths. These instances were generated by Monaci that used them

to evaluate the performance of his exact algorithm [90]. This set is further divided

in three groups according to the intervals in which the item sizes vary, respectively

[1,100], [20,100] and [50,100]. The roll lengths are integer values belonging to the set

{60,80,100,120,150}. No restrictions are imposed on the availability of the rolls. The

final set of instances is due to Belov and Scheithauer [13]. We consider the instances for

the basic problem type described in this paper. The instances have at most 4 different

roll lengths, with the largest reaching 10000 units and the smallest 5000. On average,

these instances have 100 different items with demands varying between 1 and 100.

In the subsequent tables, we employ the following notation

. m: number of different item sizes;

. m′: total number of items (m′ =
∑

i wibi);

. k: number of different roll lengths;

. colsIN : number of columns before column generation;

. spLP : number of pricing subproblems solved before branching;

. colsLP : number of generated columns during the resolution of the LP relaxation;

. spBB: number of pricing subproblems solved in the branch-and-bound phase;

. colsBB: number of generated columns in the branch-and-bound phase;

. nodBB: number of branching nodes covered during branch-and-bound;

. tPP : time in seconds spent with preprocessing (FFD type heuristic);

. tLP : solution time in seconds for the LP relaxation;

. tBB: time in seconds spent with branch-and-bound;

. tTOT : total computing time in seconds;

. zwb: total size of the ordered items;

. zWB: total roll length that is available;

. zLP cost of the LP solution;

. z∗: value of the optimum integer solution.

40 3. The Multiple Length Cutting Stock Problem

Tables 3.1, 3.2 and 3.3 provide the computational results obtained with the 60

random instances. There are 20 instances divided in three groups, namely vs3, vs5 and

vs6. Due to their random nature and the constraints on the availability of the rolls,

the generated problems may be infeasible. This is what happens with the instance

vs516. For these sets of instances, the roll lengths are quite diversified. In the first

and second sets, the total roll length available is not much larger than the total size of

the items, while in the third set, there is a greater choice of rolls in which to cut the

ordered items. As a consequence, for vs6, both the differences zLP − zwb and z∗ − zLP

are tiny, and cutting plans can be found that have almost no trim loss.

Sometimes, the optimum integer solution is found without having to resort to

branch-and-bound. In fact, two cases arise: the solution to the LP relaxation of (3.1)-

(3.4) is already integer (vs611, vs305 and vs315), or the integer optimum is obtained af-

ter strengthening the LP relaxation with the valid inequalities presented above (vs300,

vs501 and vs509). Usually, for the instances in the latter case, the integer optimum is

equal to zWB, and all the capacity is used to cut the items.

The average computing times are very small, barely greater than one second for

vs5. The same instances were solved using the LP relaxation of the arc flow model at

each node of the branch-and-bound tree through a procedure very similar to the one

described in [115], and the results were clearly worse.

Tables 3.4, 3.5 and 3.6 illustrate the average results obtained with the 300 instances

of Monaci. The results are presented as in [90]. Within a time limit of 900 seconds,

Monaci was able to solve only 78% of the instances, while with the algorithm described

in this chapter, all the instances were solved to optimality in less than 5 seconds, on

average. Even more surprising is the fact that half the instances of the last set are

solved without resorting to branch-and-bound, only with the simple rounding heuristic

presented above.

The last results are compiled in Table 3.7. From a set of 50 instances, 90% were

solved to optimality within a time limit of 900 seconds. Only the computational results

for these instances are listed. On average, they take half a minute to solve. The number

of branching nodes visited is at most 242, for the 35th instance. For the 5 instances

that were not solved, we were able to get a proven optimality gap extremely small.

On average, this gap is never greater than 0.0025%, and is obtained after 12.5 seconds

spent in 10.7 branching nodes, on average.

3.7. The Combined Assortment and Trim Loss Minimization Problem 41

N
a
m

e
m

K
co

ls
I
N

sp
L

P
co

ls
L

P
sp

B
B

co
ls

B
B

n
od

B
B

t P
P

t L
P

t B
B

t T
O

T
z w

b
z L

P
z
∗

z W
B

v
s3

00
17

9
12

12
88

0
0

0
0.

06
0.

03
0.

00
0.

09
12

69
12

76
.4

2
13

71
13

71

v
s3

01
17

9
10

15
11

2
14

1
12

1
10

0
0.

06
0.

05
1.

04
1.

15
10

30
10

30
.0

0
10

31
14

50

v
s3

02
16

11
12

11
79

0
0

0
0.

05
0.

06
0.

00
0.

11
12

56
12

71
.6

2
13

53
13

53

v
s3

03
19

11
11

14
13

1
1

0
1

0.
05

0.
06

0.
00

0.
11

10
68

10
68

.0
0

10
68

12
89

v
s3

04
15

11
12

13
94

7
3

6
0.

06
0.

05
0.

06
0.

17
11

42
11

44
.1

3
11

77
13

18

v
s3

05
19

10
12

16
12

8
0

0
0

0.
06

0.
05

0.
00

0.
11

11
64

11
71

.0
0

11
71

12
83

v
s3

06
17

11
12

13
10

4
6

9
4

0.
05

0.
06

0.
05

0.
16

12
45

12
48

.8
8

12
59

14
08

v
s3

07
18

11
11

12
91

1
0

1
0.

06
0.

05
0.

00
0.

11
10

49
10

49
.0

0
10

71
13

51

v
s3

08
18

9
12

20
12

3
6

3
5

0.
05

0.
11

0.
00

0.
16

11
76

11
79

.4
4

11
82

13
86

v
s3

09
17

9
12

13
81

0
0

0
0.

05
0.

06
0.

00
0.

11
12

80
12

94
.2

5
13

85
13

85

v
s3

10
19

9
12

15
10

5
2

0
2

0.
05

0.
05

0.
00

0.
10

11
82

11
83

.9
4

12
03

13
50

v
s3

11
18

10
12

14
94

49
43

40
0.

05
0.

06
0.

28
0.

39
12

42
12

47
.5

5
12

58
13

58

v
s3

12
20

10
12

14
10

1
1

0
1

0.
05

0.
06

0.
05

0.
16

11
99

11
99

.2
5

12
22

13
67

v
s3

13
20

11
12

17
12

1
16

9
16

2
11

9
0.

05
0.

06
1.

10
1.

21
11

73
11

73
.4

0
11

78
13

12

v
s3

14
17

9
11

15
10

9
11

7
8

0.
06

0.
05

0.
06

0.
17

12
01

12
08

.6
7

12
14

13
42

v
s3

15
19

8
12

16
89

0
0

0
0.

05
0.

06
0.

00
0.

11
12

98
13

44
.0

0
13

44
13

44

v
s3

16
19

11
11

15
13

0
32

8
22

6
25

2
0.

05
0.

06
2.

74
2.

85
10

94
10

94
.0

0
10

95
13

54

v
s3

17
17

11
12

7
61

0
0

0
0.

05
0.

06
0.

00
0.

11
12

75
13

91
.0

0
13

91
13

91

v
s3

18
18

10
12

12
81

0
0

0
0.

06
0.

05
0.

00
0.

11
12

73
13

07
.9

4
13

14
13

14

v
s3

19
18

10
12

11
86

46
73

35
0.

06
0.

05
0.

28
0.

39
12

29
12

34
.0

0
12

43
13

58

av
g.

17
.9

0
10

.0
0

11
.7

0
13

.7
5

10
0.

40
38

.4
0

32
.3

5
28

.7
0

0.
05

0.
06

0.
28

0.
39

11
92

.2
5

12
05

.8
2

12
26

.5
0

13
54

.2
0

T
ab

le
3.

1:
C

om
p
u
ta

ti
on

al
re

su
lt
s

fo
r

th
e

gr
ou

p
v
s3

of
ra

n
d
om

in
st

an
ce

s

42 3. The Multiple Length Cutting Stock Problem

N
a
m

e
m

K
cols

I
N

sp
L

P
cols

L
P

sp
B

B
cols

B
B

n
od

B
B

tP
P

tL
P

tB
B

tT
O

T
z
w

b
z
L

P
z
∗

z
W

B

v
s500

26
14

17
21

222
2

0
2

0.11
0.08

0.02
0.21

1869
1869.96

1891
2039

v
s501

25
12

17
17

134
0

0
0

0.05
0.06

0.00
0.11

1833
1837.07

1924
1924

v
s502

25
14

16
15

189
4

24
2

0.09
0.07

0.05
0.21

1668
1668.00

1668
1883

v
s503

27
13

16
16

180
56

155
36

0.11
0.10

0.71
0.92

1626
1626.00

1628
1940

v
s504

23
15

17
14

172
378

298
295

0.04
0.09

4.84
4.97

1798
1798.00

1798
2042

v
s505

26
13

17
16

150
5

1
4

0.05
0.06

0.06
0.17

1734
1734.85

1753
1900

v
s506

24
13

17
20

186
4

0
4

0.11
0.11

0.06
0.28

1830
1834.30

1889
2037

v
s507

25
15

17
17

194
4

4
2

0.09
0.12

0.05
0.26

1792
1792.00

1831
1975

v
s508

29
15

16
16

206
43

93
36

0.16
0.09

0.55
0.80

1700
1700.00

1704
2024

v
s509

24
15

17
16

180
0

0
0

0.11
0.07

0.00
0.18

1885
1891.13

1958
1958

v
s510

28
12

17
17

142
0

0
0

0.05
0.11

0.00
0.16

1872
1880.67

1904
1904

v
s511

26
16

17
15

178
72

56
48

0.08
0.05

0.66
0.79

1832
1832.65

1836
1963

v
s512

24
14

17
15

155
0

0
0

0.05
0.10

0.00
0.15

1865
1872.38

1938
1938

v
s513

26
13

16
16

175
8

12
7

0.12
0.13

0.11
0.36

1759
1759.00

1760
1994

v
s514

27
14

17
17

197
0

0
0

0.09
0.14

0.00
0.23

1781
1781.00

1804
1952

v
s515

25
12

16
15

154
160

179
120

0.11
0.11

1.63
1.85

1716
1716.00

1718
1966

v
s517

26
13

17
16

140
0

0
0

0.10
0.12

0.00
0.22

1882
1884.35

1945
1945

v
s518

26
15

16
13

180
713

550
570

0.05
0.07

10.63
10.75

1644
1644.00

1644
1886

v
s519

27
15

17
13

155
22

53
13

0.07
0.11

0.22
0.40

1825
1825.00

1825
1941

av
g.

25.74
13.84

16.68
16.05

173.11
77.42

75.00
59.95

0.09
0.09

1.03
1.21

1784.79
1786.65

1811.47
1958.47

T
ab

le
3.2:

C
om

p
u
tation

al
resu

lts
for

th
e

grou
p

v
s5

of
ran

d
om

in
stan

ces

3.7. The Combined Assortment and Trim Loss Minimization Problem 43

N
a
m

e
m

K
co

ls
I
N

sp
L

P
co

ls
L

P
sp

B
B

co
ls

B
B

n
od

B
B

t P
P

t L
P

t B
B

t T
O

T
z w

b
z L

P
z
∗

z W
B

v
s6

00
18

14
13

14
12

5
76

62
56

0.
11

0.
06

0.
43

0.
60

12
79

12
80

.8
0

12
82

20
39

v
s6

01
19

12
12

15
13

6
44

66
28

0.
05

0.
05

0.
28

0.
38

11
15

11
15

.0
0

11
15

19
34

v
s6

02
17

12
11

11
11

0
19

8
16

1
15

2
0.

06
0.

05
1.

43
1.

54
10

31
10

31
.0

0
10

32
20

45

v
s6

03
18

15
12

13
16

2
17

45
10

0.
05

0.
11

0.
05

0.
21

11
15

11
15

.0
0

11
15

19
35

v
s6

04
19

12
13

13
13

3
76

96
47

0.
05

0.
05

0.
49

0.
59

11
38

11
38

.0
0

11
38

19
01

v
s6

05
17

14
13

13
12

3
39

41
26

0.
06

0.
00

0.
22

0.
28

12
74

12
76

.0
0

12
77

20
09

v
s6

06
18

16
11

11
14

5
5

12
4

0.
05

0.
06

0.
05

0.
16

10
84

10
84

.0
0

10
84

19
83

v
s6

07
19

13
12

13
15

0
3

12
1

0.
05

0.
11

0.
00

0.
16

11
28

11
30

.0
0

11
30

19
91

v
s6

08
17

15
12

15
13

2
3

3
1

0.
05

0.
06

0.
05

0.
16

12
23

12
24

.5
6

12
25

19
96

v
s6

09
17

14
12

13
12

8
88

14
0

60
0.

05
0.

06
0.

48
0.

59
11

69
11

72
.0

0
11

72
20

19

v
s6

10
19

14
12

11
12

8
3

5
2

0.
05

0.
05

0.
00

0.
10

11
77

11
77

.0
0

11
77

20
45

v
s6

11
19

15
11

9
11

8
0

0
0

0.
05

0.
06

0.
00

0.
11

10
82

10
82

.0
0

10
82

19
58

v
s6

12
17

12
12

16
13

4
77

59
54

0.
06

0.
05

0.
44

0.
55

12
16

12
16

.9
0

12
20

19
71

v
s6

13
19

12
13

12
99

14
19

9
0.

11
0.

05
0.

06
0.

22
12

62
12

63
.1

7
12

64
20

16

v
s6

14
19

15
12

15
16

7
34

70
21

0.
05

0.
05

0.
22

0.
32

11
14

11
14

.0
0

11
14

19
38

v
s6

15
15

14
11

9
10

0
4

10
3

0.
05

0.
06

0.
05

0.
16

10
71

10
71

.0
0

10
71

20
83

v
s6

16
17

13
13

12
10

9
29

57
16

0.
06

0.
05

0.
17

0.
28

12
06

12
08

.9
4

12
12

20
16

v
s6

17
17

14
11

10
11

0
2

8
1

0.
06

0.
05

0.
00

0.
11

11
37

11
37

.0
0

11
37

20
41

v
s6

18
20

15
13

10
12

4
26

22
16

0.
11

0.
05

0.
17

0.
33

12
58

12
60

.0
0

12
60

19
55

v
s6

19
18

13
13

11
10

3
3

4
2

0.
05

0.
06

0.
05

0.
16

12
09

12
12

.0
0

12
13

19
08

av
g.

17
.9

5
13

.7
0

12
.1

0
12

.3
0

12
6.

80
37

.0
5

44
.6

0
25

.4
5

0.
06

0.
06

0.
23

0.
35

11
64

.4
0

11
65

.4
2

11
66

.0
0

19
89

.1
5

T
ab

le
3.

3:
C

om
p
u
ta

ti
on

al
re

su
lt
s

fo
r

th
e

gr
ou

p
v
s6

of
ra

n
d
om

in
st

an
ce

s

44 3. The Multiple Length Cutting Stock Problem

m m′ K colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT

22.00 25 3 14.60 23.50 52.20 22.30 18.70 11.60 0.12 0.08 0.13 0.33

38.30 50 3 26.60 37.90 98.30 12.40 13.90 6.10 0.21 0.19 0.11 0.51

62.30 100 3 45.30 45.30 129.80 16.90 22.90 9.00 0.52 0.35 0.33 1.20

86.80 200 3 69.60 63.90 185.60 38.30 43.60 23.50 0.97 0.70 1.32 3.00

98.80 500 3 89.30 70.10 203.80 29.40 14.30 24.50 1.70 1.07 2.00 4.76

22.40 25 5 18.10 21.60 68.90 7.80 6.30 4.50 0.10 0.08 0.05 0.23

39.10 50 5 31.90 35.90 125.30 3.60 3.00 1.80 0.32 0.19 0.04 0.56

61.80 100 5 53.20 38.50 165.40 16.30 22.20 7.80 0.76 0.31 0.28 1.35

85.60 200 5 76.10 47.40 216.80 16.70 23.40 11.30 1.48 0.57 0.53 2.58

98.50 500 5 93.30 52.00 245.70 10.00 4.40 9.00 2.19 0.86 0.59 3.64

Table 3.4: Computational results for the first group of instances from [90]

m m′ K colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT

21.60 25 3 17.30 21.30 46.30 9.50 7.00 5.00 0.12 0.07 0.04 0.23

36.90 50 3 29.10 46.90 99.50 13.00 10.80 6.30 0.25 0.20 0.08 0.52

58.70 100 3 49.80 71.40 168.00 15.40 14.40 6.00 0.61 0.44 0.17 1.21

73.10 200 3 65.60 73.10 198.10 15.50 11.90 9.00 1.03 0.61 0.33 1.97

80.00 500 3 77.00 61.40 173.30 23.40 16.20 17.20 1.47 0.84 0.68 2.99

22.20 25 5 21.80 20.60 55.80 4.10 3.90 1.70 0.14 0.06 0.02 0.21

37.40 50 5 36.30 44.20 119.30 14.20 8.60 7.30 0.40 0.19 0.12 0.71

57.50 100 5 56.00 66.00 189.20 28.20 15.80 16.80 0.86 0.42 0.40 1.67

73.70 200 5 72.90 62.60 232.60 23.20 23.30 11.40 1.44 0.56 0.50 2.51

79.70 500 5 79.30 64.90 245.80 20.30 13.90 15.30 1.79 0.72 0.62 3.13

Table 3.5: Computational results for the second group of instances from [90]

3.7. The Combined Assortment and Trim Loss Minimization Problem 45

m m′ K colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT

19.40 25 3 20.40 23.60 39.50 0.70 0.40 0.30 0.15 0.05 0.01 0.20

30.70 50 3 31.70 41.70 76.50 8.80 5.40 4.40 0.29 0.11 0.04 0.44

44.80 100 3 45.80 74.00 138.00 55.30 8.70 46.80 0.60 0.25 0.48 1.34

49.30 200 3 50.30 82.20 163.80 90.10 7.70 83.30 0.71 0.34 0.95 2.00

50.00 500 3 51.00 74.44 155.33 61.56 6.00 56.89 0.99 0.32 0.59 1.90

18.50 25 5 19.50 23.70 38.60 0.00 0.00 0.00 0.11 0.04 0.00 0.15

31.60 50 5 32.60 43.80 79.60 0.00 0.00 0.00 0.34 0.12 0.00 0.46

43.30 100 5 44.30 58.00 122.20 0.00 0.00 0.00 0.54 0.23 0.00 0.77

49.50 200 5 50.50 68.30 160.80 0.00 0.00 0.00 0.73 0.31 0.00 1.04

50.00 500 5 51.00 71.20 164.80 0.00 0.00 0.00 0.77 0.32 0.00 1.09

Table 3.6: Computational results for the third group of instances from [90]

46 3. The Multiple Length Cutting Stock Problem

Inst m K colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT

2 100 3 102 107 288 0 0 0 0.98 1.13 0.00 2.11
4 99 4 117 134 421 8 0 8 1.13 1.80 5.77 8.69
5 100 4 104 131 451 0 0 0 0.95 1.44 0.00 2.39
6 99 4 104 146 497 64 35 44 0.95 1.61 45.33 47.89
7 99 4 105 136 422 47 8 43 1.14 1.49 35.17 37.80
8 99 3 105 99 263 20 9 15 1.20 0.38 14.47 16.05
9 100 4 112 121 411 38 13 31 0.94 1.28 23.97 26.19

10 99 4 110 112 409 7 2 5 1.02 1.39 4.61 7.01
11 98 4 100 114 380 12 0 12 1.13 0.81 6.13 8.06
12 98 4 123 137 434 49 15 41 1.41 1.74 39.11 42.25
14 99 4 110 118 378 5 0 5 1.19 1.31 2.62 5.12
15 100 4 111 124 437 15 9 10 0.89 5.08 10.69 16.65
16 100 3 110 187 472 23 0 23 1.27 3.47 19.03 23.76
17 100 2 118 152 302 25 7 20 1.11 2.28 19.77 23.17
18 100 3 101 121 343 12 0 12 0.97 2.06 9.18 12.22
19 99 4 107 126 378 16 6 13 1.16 0.86 11.20 13.22
20 99 4 113 134 458 82 43 64 1.74 2.03 66.28 70.06
21 98 4 104 107 371 11 7 8 0.80 1.61 8.13 10.53
22 99 3 104 123 333 14 0 14 1.05 0.91 7.85 9.80
23 98 4 109 127 432 30 1 29 0.95 4.06 22.75 27.77
24 99 4 109 61 225 0 0 0 1.09 0.33 0.00 1.42
25 100 4 112 161 487 29 9 25 1.25 1.66 22.08 24.98
27 99 4 111 98 335 6 0 6 0.92 1.14 2.73 4.80
28 98 3 104 122 306 27 2 25 0.73 1.17 29.70 31.61
29 99 4 121 142 508 8 0 8 0.94 2.95 6.84 10.73
30 99 4 117 127 437 63 27 52 1.23 2.40 51.50 55.14
31 99 4 106 96 328 14 3 11 0.72 0.94 8.03 9.69
32 99 4 106 113 406 53 21 40 1.16 1.01 47.38 49.55
33 98 4 116 104 360 42 29 33 1.22 0.56 19.30 21.08
34 100 4 111 145 470 53 12 47 1.41 2.42 55.44 59.26
35 100 4 111 187 612 298 96 242 1.06 6.45 313.83 321.34
36 100 4 117 105 395 30 13 24 1.13 2.87 23.79 27.79
37 100 4 114 115 396 76 30 61 1.11 1.72 59.98 62.81
38 100 4 120 95 342 4 0 4 1.14 1.11 2.83 5.08
39 98 4 107 118 417 2 0 2 0.91 1.11 0.91 2.92
40 99 4 107 126 420 8 0 8 1.27 1.42 5.13 7.83
41 100 4 111 164 513 159 60 125 1.17 1.48 117.77 120.42
42 98 3 99 230 402 0 0 0 1.06 1.12 0.00 2.19
43 99 4 108 134 352 41 12 32 1.27 0.86 34.69 36.81
44 99 4 110 92 321 11 1 10 1.23 0.66 7.48 9.37
45 100 4 110 76 232 5 10 5 1.13 0.25 3.85 5.22
46 99 2 99 45 63 16 2 15 0.88 0.06 11.92 12.86
47 98 4 101 104 344 5 3 4 0.95 0.94 3.61 5.50
48 98 4 104 168 525 20 0 20 0.97 2.55 14.44 17.96
49 99 4 105 102 363 56 35 41 1.08 1.31 48.42 50.81

avg. 99.11 3.76 109.00 124.13 387.53 33.42 11.56 27.49 1.09 1.67 27.64 30.40

Table 3.7: Computational results for a set of instances used in [13]

3.7. The Combined Assortment and Trim Loss Minimization Problem 47

3.7 The Combined Assortment and Trim Loss Min-

imization Problem

3.7.1 Introduction

A problem that is directly related to the multiple length cutting stock problem is the

one of selecting from a set of possible stock lengths the assortment that will be used in

the cutting plan. Hinxman [64] distinguished between the assortment and the trim loss

minimization problem, but both can be addressed in the same problem. In this chapter,

we will extend the approach described above for the MLCSP to the problem that we

will here designate by combined assortment and trim loss minimization problem. After

describing the modifications done to the algorithm, we report on the results obtained

for various random instances.

In [64], Hinxman surveyed the main solution approaches devised for the assortment

problem. In their majority, these approaches are based on dynamic programming. The

number of recent publications regarding this problem is not high. Another dynamic

programming algorithm was proposed by Baker [7] for a special case. More recently,

Holthaus [68] investigated the impact of having assortments with more than one stock

length, analyzing many problem instances.

3.7.2 An Integer Programming Formulation

Extending the column generation model (3.1)-(3.4) to the combined assortment and

trim loss minimization problem is straightforward. A set of binary variables, one for

each stock length, has to be added to the model, and a new constraint is enforced, in

order to limit to K ′ the number of different lengths that can be effectively used in the

cutting plan. The resulting model is as follows

min
K∑

k=1

∑
p∈P k

Wkλ
k
p (3.16)

subject to
K∑

k=1

∑
p∈P k

ak
ipλ

k
p ≥ bi, i = 1, ...,m, (3.17)

∑
p∈Pk

λk
p ≤ Bkµk, k = 1, ..., K, (3.18)

K∑
k=1

µk ≤ K ′, (3.19)

λk
p ≥ 0, and integer, k = 1, . . . , K, p ∈ P k, (3.20)

µk ∈ {0, 1}, k = 1, . . . , K. (3.21)

48 3. The Multiple Length Cutting Stock Problem

For the problems without constraints on the number of available rolls (3.18), the

LP bound provided by this model is typically weak. These constraints are a first way

of getting a stronger model, but to further strengthen the model we essentially rely on

an adaptation of the level cut described above.

Model (3.16)-(3.21) is tackled with column generation, in a way very similar to

the one used for the MLCSP. The LP master has K additional columns related to the

binary variables, but to price out an attractive pattern, we still have to solve a knapsack

problem. The values for the dual variables associated to the constraint (3.19) have no

incidence in the dual price of the columns that represent cutting patterns, since these

columns have a null coefficient in this constraint.

Before describing the modifications for the computation of the level cut, we first

present the details of the branching scheme employed.

3.7.3 Branch-and-Price

At each node of the branch-and-bound tree, we solve the LP relaxation of (3.16)-(3.21).

We start with a model that has one artificial column, K columns for the binary variables

as referred above, and a set of initial columns, generated using a FFD heuristic that

only takes into account the K ′ largest stock lengths.

An optimal LP solution may be fractional because of its pattern frequencies, or

because one or more of the binary variables is neither 0 nor 1. More than K ′ of the µk

variables may even be non-negative. We will first branch on these variables. Branching

on the µk variables does never affect the pricing subproblem, so we can freely define

any branching constraint on them. If, say, µk is fractional, two nodes are created with

one of the following branching constraints

µk = 0, (3.22)

and

µk = 1. (3.23)

With (3.22), the stock length is excluded from the set of possible rolls, and hence, it can

be simply removed from the instance. With (3.23), what we force is the accounting of k

as an used stock length. However, in practice, this stock length may not be used. What

we guarantee is that only K ′ − 1 stock lengths other than k can effectively be used.

If all the variables µk are integer, we proceed with the branching scheme described in

Section 3.3.2. The LP solution is converted into a set of flows in the arc flow model,

and the zk variables are checked for integrality, followed by variables xij.

The node selection is done in a depth first manner. At most two nodes are created

when branching, and the one with (3.23) or a “greater than or equal to” branching

constraint is selected first.

3.7. The Combined Assortment and Trim Loss Minimization Problem 49

At the root node, there are still K knapsack subproblems to solve per iteration of

the column generation procedure. For the other nodes, even the ones where constraints

of type (3.22) are enforced, attractive patterns can still be found in a single run of a

dynamic programming algorithm.

3.7.4 Extending the Level Cut

In the combined assortment and trim loss minimization problem, the items have to be

assigned to a set of rolls from a bounded subset of the available stock lengths. Hence,

the cost of a solution must correspond to a non-negative combination of at most K ′

different stock lengths. This fact helps in getting stronger level cuts.

At each node of the branch-and-bound tree, the right hand side of the level cut is

computed with a dynamic programming algorithm. In the state space, the number of

stock lengths used to reach a specific level must now be registered. Therefore, we have

states defined as the pairs (n, level), where n is the number of stock lengths used, and

level identifies a reachable length obtained by combining no more than K ′ different

stock lengths.

In the computational implementation of our dynamic programming algorithm, the

lengths for which there is a branching constraint of type (3.23) are treated first. In-

cluding the lengths in this situation to the combination is not compulsory, but the

transition between two states in the stages associated to these lengths is always done

from a state (n, l1) to another state (n + 1, l2), with l1 not necessarily different from

l2. The lengths for which a branching constraint of type (3.22) has been enforced are

removed from the instance, and obviously they are not considered in the computation

of the level cut.

3.7.5 Computational Experiments

A set of computational experiments were conducted on 160 random instances. These

tests were performed on a 3GHz Pentium IV computer with 512MBytes of RAM.

To generate the test problems, we used the CUTGEN1 generator described in [50],

with a seed equal to 1994. Sixteen groups of ten instances were used. Their main

characteristics are summarized in Table 3.8. The instances have at most 50 different

item sizes and between 5 and 20 stock lengths in the interval [100, 300]. The average

demand per item type is always 10 units. Hence, for the instances with m = 50, for

example, there will be a total of 500 items to cut from the rolls. In the subsequent

tables, m represents the parameter of the CUTGEN1 generator that is related to the

number of item sizes, while m is the real average number of different item sizes in the

instances.

50 3. The Multiple Length Cutting Stock Problem

Set m K v1 v2 b

1 20 5 0.1 0.8 10
2 10
3 15
4 20
5 30 5 0.1 0.8 10
6 10
7 15
8 20
9 40 5 0.1 0.8 10

10 10
11 15
12 20
13 50 5 0.1 0.8 10
14 10
15 15
16 20

Table 3.8: Characteristics of the random instances

For each problem set, our algorithm was run four times. In the first run, all the K

stock lengths can be used, and the problems reduce to the MLCSP. In the remaining

three runs, we restrict the set of stock lengths to 75%, 50% and 25% of K, respec-

tively. In the subsequent tables, the column designated by K ′ identifies the respective

percentage of permitted stock lengths.

Tables 3.9, 3.10, 3.11 and 3.12 report on the average computational results obtained

with each problem set. Note that these averages do not take into account the instances

that were not solved within a time limit of 900 seconds. In 640 problems to solve, our

algorithm found an optimal integer solution within the time limit in 97% of the cases.

Column opt indicates the number of instances solved to optimality within each set.

On average, the computing times are rather small, and some of the high values that

appear are essentially due to a very small number of instances in the sets for which the

algorithm performed poorly.

3.8 Conclusion

The cutting stock problem with multiple lengths is harder than the standard prob-

lem. With more stock lengths available, there are also more feasible cutting patterns.

Furthermore, the continuous bound given by the column generation model is not as

tight as the one for the cutting stock problem, for which the integer round-up property

applies. An interesting work would be to study possible extensions of this round-up

property to the problem with multiple lengths.

3.8. Conclusion 51

Set m K K ′ colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT opt

1 17.20 5.00 100 23.80 15.00 60.70 13.20 6.50 11.50 0.02 0.01 0.10 0.13 10

17.20 5.00 75 23.80 15.00 60.70 30.40 33.60 21.30 0.02 0.01 0.15 0.17 10

17.20 5.00 50 23.80 15.00 60.70 36.60 31.50 26.40 0.02 0.01 0.14 0.17 10

17.20 5.00 25 23.80 15.00 60.70 83.80 46.20 62.80 0.02 0.01 0.17 0.20 10

2 17.20 10.00 100 28.80 10.30 87.50 33.80 43.00 28.10 0.02 0.01 0.71 0.75 10

17.20 10.00 75 28.80 10.30 87.50 41.60 93.20 29.50 0.02 0.01 0.62 0.65 10

17.20 10.00 50 28.80 10.30 87.50 55.50 125.90 31.50 0.02 0.01 0.39 0.42 10

17.20 10.00 25 28.80 10.30 87.50 72.10 150.40 35.70 0.02 0.01 0.32 0.35 10

3 17.20 15.00 100 33.80 10.00 130.70 54.50 112.50 44.00 0.02 0.02 2.15 2.19 10

17.11 15.00 75 33.67 10.00 130.56 57.67 137.00 43.33 0.02 0.02 1.59 1.63 9

17.20 15.00 50 33.80 10.00 130.70 99.80 239.80 57.80 0.03 0.02 1.39 1.44 10

17.20 15.00 25 33.80 10.00 130.70 139.40 263.40 83.20 0.02 0.02 1.03 1.08 10

4 17.20 20.00 100 38.80 9.20 161.10 86.40 190.50 71.50 0.02 0.04 5.53 5.59 10

16.88 20.00 75 38.88 9.13 159.00 97.00 242.88 73.38 0.02 0.02 4.21 4.25 8

17.20 20.00 50 38.80 9.20 161.10 362.50 268.40 262.70 0.03 0.03 7.70 7.75 10

17.22 20.00 25 38.78 9.56 168.00 162.89 499.22 80.00 0.02 0.03 1.81 1.86 9

Table 3.9: Computational results for the random instances with m = 20

Set m K K ′ colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT opt

5 25.00 5.00 100 33.50 15.80 70.90 26.70 30.00 19.60 0.05 0.02 0.30 0.36 10

25.00 5.00 75 33.50 15.80 70.90 43.00 68.70 24.40 0.05 0.01 0.29 0.36 10

25.00 5.00 50 33.50 15.80 70.90 37.50 58.10 19.70 0.05 0.02 0.19 0.26 10

25.00 5.00 25 33.50 15.80 70.90 118.00 146.00 59.50 0.05 0.01 1.34 0.60 10

6 25.00 10.00 100 38.50 12.30 112.30 51.80 77.70 42.40 0.05 0.03 1.78 1.85 10

25.00 10.00 75 38.50 12.30 112.30 68.50 160.70 46.90 0.04 0.03 1.56 1.63 10

25.00 10.00 50 38.50 12.30 112.30 152.30 296.20 83.40 0.04 0.03 1.71 1.78 10

25.00 10.00 25 38.50 12.30 112.30 130.80 288.30 58.80 0.05 0.03 0.98 1.06 10

7 25.00 15.00 100 43.50 11.30 153.90 255.90 201.60 234.70 0.05 0.05 15.76 15.86 10

25.00 15.00 75 43.50 11.30 153.90 99.90 316.70 72.50 0.05 0.04 4.58 4.68 10

25.00 15.00 50 43.44 11.00 149.56 1030.67 547.56 710.22 0.05 0.05 25.46 25.56 9

25.00 15.00 25 43.50 11.30 153.90 291.40 862.10 132.40 0.06 0.04 4.05 4.15 10

8 25.00 20.00 100 48.50 10.60 191.40 111.00 332.80 87.10 0.05 0.07 10.96 11.07 10

25.00 20.00 75 48.50 10.60 191.40 126.30 468.80 93.00 0.05 0.07 8.39 8.50 10

24.63 20.00 50 48.00 10.13 182.00 223.63 619.50 118.88 0.05 0.07 6.97 7.09 8

25.00 20.00 25 48.50 10.60 191.40 765.00 1552.10 418.60 0.05 0.07 17.54 17.66 10

Table 3.10: Computational results for the random instances with m = 30

52 3. The Multiple Length Cutting Stock Problem

Set m K K ′ colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT opt

9 30.00 5.00 100 37.40 18.70 86.20 47.00 52.40 35.40 0.06 0.02 0.88 0.96 10

30.00 5.00 75 37.40 18.70 86.20 41.70 64.80 27.30 0.06 0.02 0.55 0.63 10

30.00 5.00 50 37.40 18.70 86.20 182.00 132.60 139.70 0.07 0.02 1.70 1.78 10

30.00 5.00 25 37.40 18.70 86.20 115.00 169.70 48.50 0.06 0.02 0.48 0.56 10

10 30.00 10.00 100 42.40 13.70 126.70 123.70 186.30 96.70 0.06 0.04 6.23 6.34 10

30.00 10.00 75 42.40 13.70 126.70 130.40 337.80 81.70 0.06 0.05 4.36 4.47 10

30.00 10.00 50 42.40 13.70 126.70 145.80 367.40 67.80 0.06 0.04 2.33 2.43 10

30.00 10.00 25 42.40 13.70 126.70 228.60 490.20 102.80 0.06 0.03 2.37 2.47 10

11 30.11 15.00 100 47.33 13.11 181.33 1015.00 389.22 972.22 0.06 0.08 98.82 98.96 9

30.00 15.00 75 47.40 13.00 179.70 252.50 598.70 177.10 0.06 0.06 16.40 16.52 10

30.00 15.00 50 47.40 13.00 179.70 311.50 751.90 151.70 0.06 0.08 9.62 9.76 10

30.00 15.00 25 47.40 13.00 179.70 2063.10 1568.10 1624.00 0.06 0.09 53.15 53.29 10

12 30.11 20.00 100 52.33 12.78 234.89 188.89 603.44 137.67 0.06 0.12 26.42 26.60 9

29.88 20.00 75 52.25 13.13 241.75 209.25 756.38 141.13 0.06 0.12 19.69 19.88 8

29.71 20.00 50 52.14 12.00 219.14 310.71 1003.43 148.57 0.06 0.11 14.46 14.63 7

29.78 20.00 25 52.44 12.11 221.56 556.89 2724.89 196.89 0.07 0.11 17.41 17.58 9

Table 3.11: Computational results for the random instances with m = 40

Set m K K ′ colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT opt

13 36.10 5.00 100 43.60 20.30 95.40 65.80 60.60 50.30 0.07 0.03 1.68 1.79 10

36.10 5.00 75 43.60 20.30 95.40 83.50 131.60 49.80 0.08 0.03 1.36 1.46 10

36.10 5.00 50 43.60 20.30 95.40 1129.70 189.20 1039.20 0.08 0.03 20.27 20.37 10

36.10 5.00 25 43.60 20.30 95.40 112.70 191.90 41.40 0.08 0.03 0.57 0.68 10

14 36.10 10.00 100 48.60 15.50 144.30 148.40 262.80 112.90 0.08 0.06 10.71 10.84 10

36.10 10.00 75 48.60 15.50 144.30 134.50 346.80 82.90 0.08 0.06 6.45 6.59 10

36.00 10.00 50 48.56 15.44 143.67 257.89 587.56 111.78 0.08 0.07 5.31 5.45 9

36.10 10.00 25 48.60 15.50 144.30 393.50 873.50 159.40 0.08 0.06 5.80 5.94 10

15 35.78 15.00 100 53.44 14.56 199.22 203.67 412.89 145.78 0.08 0.24 27.22 27.55 9

36.10 15.00 75 53.60 14.70 200.20 278.80 688.60 170.30 0.08 0.26 26.45 26.79 10

35.89 15.00 50 53.00 14.56 197.56 1011.56 1017.33 737.78 0.08 0.24 60.25 60.56 9

36.10 15.00 25 53.60 14.70 200.20 1522.90 1937.90 819.10 0.08 0.18 55.86 56.12 10

16 36.10 20.00 100 58.60 14.50 263.00 273.40 624.80 192.20 0.09 0.46 57.43 57.99 10

35.78 20.00 75 58.33 13.78 247.78 400.89 1195.78 221.89 0.10 0.45 49.30 49.84 9

36.10 20.00 50 58.60 14.50 263.00 768.40 1746.50 368.00 0.10 0.38 50.07 50.54 10

36.00 20.00 25 58.22 14.67 265.56 994.33 4125.00 312.00 0.09 0.30 40.76 41.15 9

Table 3.12: Computational results for the random instances with m = 50

3.8. Conclusion 53

The arc flow model has already been used in a branch-and-price framework to solve

the standard cutting stock problem. However, in the algorithm described in [115], the

formulation for the master has a considerable number of constraints. To deal with the

size of the model, constraints are considered only if they are really necessary. A similar

scheme was tested with instances of the multiple length cutting stock problem, but it

was clearly outperformed by the algorithm explored in this chapter. In fact, using the

Gilmore-Gomory formulation for the master, and deriving a branching scheme from an

arc flow model results in a branch-and-price algorithm for the cutting stock problem

with multiple stock lengths that also proved to be more efficient than other exact

algorithms presented so far.

Experiments have also shown that the combined assortment and trim loss mini-

mization problem can be solved with very satisfactorily results, with an extension of

our previous branch-and-price algorithm. The main element contributing to these re-

sults is the adaptation of the level cut to a problem in which there is a restriction on

the total number of different stock lengths that can be used.

Chapter 4

Accelerating Column Generation

for Cutting Stock Problems

Column generation algorithms suffer from the well known tailing off effect, or long

tail convergence. Typically, in the initial iterations, the value of the optimum is

quickly improved, and then the process considerably slows down as it goes to its

last iterations. A reason that is commonly pointed out to justify this phenomenon

is the instability of the dual variables. Hence, much of the methods that have

been proposed to accelerate column generation algorithms tries to stabilize them,

in order to avoid their erratic behavior. A method that achieved this stabilization

with an appreciable success consists in adding extra primal columns to the LP

master, corresponding to feasible dual inequalities [117]. Until now, this method has

been applied only to LP relaxations, without any interface with branch-and-bound

frameworks. In this chapter, we extend the use of a family of dual inequalities for the

standard cutting stock problem to a whole branch-and-bound tree, and we present

new dual inequalities for the multiple length cutting stock problem. Computational

results are given attesting the efficacy of the procedures.

We also propose an alternative way of enforcing inequalities in the dual by aggre-

gating parts of the primal model. Row aggregation, and a double aggregation of

rows and columns are explored. Extensive computational experiments are reported

on randomly generated instances, and instances from the literature.

Keywords: Column Generation, Branch-and-Bound, Cutting Stock Problem,

Multiple Length Cutting Stock Problem, Convergence, Dual-Optimal Inequalities,

Model Aggregation

55

56 4. Accelerating Column Generation for Cutting Stock Problems

4.1 Introduction

Many of the algorithms for single and multiple length cutting stock problems presented

in the literature rely on column generation, processes that are known to converge slowly

due to primal degeneracy and the excessive oscillations of the dual variables. In the

last years, many efforts have been devoted to the topic of stabilized column generation,

resulting in different methods that we briefly recall in the sequel. In this chapter, we

explore two different stabilization techniques: one based on enforcing valid inequalities

in the dual model, and another based on model aggregation.

Usually, stabilization may be achieved by restricting once the admissible dual solu-

tion space or, alternatively, by guiding the progress of the dual variables. The boxstep

method of Marsten et al. [87] follows this latter strategy by drawing fixed-size boxes

around the solutions of the dual restricted master problem. The trust region method

[74] uses a similar concept but relies on box constraints whose sizes may be dynamically

updated. From the primal standpoint, these methods solve successively a restricted

master problem in which slack and surplus variables are penalized.

In [35], du Merle et al. extend this approach by imposing additional constraints

to these variables. They suggest strategies to set the box sizes and report promising

results on air transportation and location problems. Other methods, such as bundle

[65] and analytic center cutting plane methods [34], have been used to prevent the

excessive variations of the dual variables.

Recent publications have shown how to reduce the instability of column generation

when applied to cutting stock or bin-packing problems. Valério de Carvalho [117]

proposes adding a polynomial number of columns (i.e., dual inequalities) prior to the

solution of the first restricted master problem. He derives a family of dual inequalities

and proves that they are weak dual-optimal inequalities in the sense introduced by

Ben Amor et al. [15], that is, they do not exclude any dual-optimal solution. Since

primal feasibility may be lost when the corresponding primal columns are considered

in the master, Ben Amor et al. [15] suggest perturbing the right hand side of the dual

inequalities by small amounts, forcing the respective columns to have null values in any

optimal solution. Furthermore, they show that the aggregation into single constraints

of items with the same size leads to a substantial acceleration of the overall solution

process.

In their models for packing and cutting problems, researchers have since long con-

sidered the principle of aggregation. This was already a way of implicitly restricting the

dual space by enforcing equality between some dual variables. In fact, we know that

there always exists an optimal solution in which items of identical sizes have correspond-

ing dual variables with the same value. In practice, this equality extends frequently

to other items with nearly the same size. This phenomenon was early pointed out

4.2. The Dual Formulation 57

by Gilmore and Gomory [53], who explore it only to reduce the size of the knapsack

subproblems.

Accelerating the resolution of the LP relaxation is an important matter, since this

is a way of getting good lower bounds in less time. However, being able to extend

the stabilization techniques to all the nodes of a branching tree is far more interesting.

Indeed, in a branch-and-price framework the tailing off effect does not occur only at

the root node. In this chapter, we study how this extension can be done. We show that

adding to the LP master the columns for some dual inequalities may relax the primal

problem, and we state the conditions that these dual inequalities must satisfy in order

to remain valid at a specific branching node. New valid dual-optimal inequalities that

take into account the dual variables of the branching constraints are also described.

Additionally, dual inequalities are given for the multiple length cutting stock problem,

and their relative strength is discussed.

We proceed by exploring the principle of model aggregation as an alternative way

of controlling the progress of the dual variables. Two algorithms based on the iterative

resolution of aggregated models are proposed. The first is a simple two-steps procedure

that starts by solving a row aggregated LP resulting from the juxtaposition of the

original items. The second is an iterative algorithm that solves a sequence of smaller

size approximations obtained through a double aggregation of variables and constraints.

This aggregation scheme amounts to imposing equality constraints between some dual

variables. Note that these aggregation strategies rely essentially on items, which allows

us to use them for the standard cutting stock problem.

This chapter is organized as follows. The mathematical formulation for the dual

of the multiple length cutting stock problem is presented next. In Section 4.3, we

review the dual inequalities introduced in [117], which still apply to the case of mul-

tiple lengths, and we describe new valid dual inequalities. In Section 4.4, we study

the extension of some dual-optimal inequalities to all the nodes of a branching tree.

The specific branch-and-bound framework introduced in the previous chapter is as-

sumed. New valid dual inequalities are also described, and followed by intermediate

computational results given at this point to illustrate the impact of using dual cuts in

a whole branching tree. Section 4.6 is devoted to the topic of aggregation. Extensive

computational results are finally reported in Section 4.7.

4.2 The Dual Formulation

Most of the results presented in this chapter are based on the dual model for the LP

relaxation of (3.1)-(3.4). In the sequel, we hence review the main elements of this dual

problem. Let ui, i = 1, . . . ,m, and vk, k = 1, . . . , K, be the dual variables associated

respectively to the demand constraints (3.2) and to the rolls’ availability constraints

58 4. Accelerating Column Generation for Cutting Stock Problems

(3.3) of the column generation model for the MLCSP presented in the previous chapter.

For ease of presentation, we will frequently refer to the ui and vk variables respectively

as the items’ and rolls’ dual variables.

Based on the complementary slackness conditions, we can give an interesting inter-

pretation to the items’ dual variables. If the rolls’ availability was unbounded, the ui

variables would represent the exact ideal sizes the items should have in order to fulfill

the rolls selected in the primal solution. By “ideal”, we mean that with these “dual

sizes” the optimal cutting plan will have no trim loss. In the bounded case, when

the availability constraints are effective, the vk variables relax the dual knapsack con-

straints to some point. Let P denote the LP primal formulation related to (3.1)-(3.4).

The dual formulation D of P follows.

(D) max
m∑

i=1

uibi +
K∑

k=1

vkBk (4.1)

subject to
m∑

i=1

ak
ipui + vk ≤ Wk, k = 1, . . . , K, p ∈ P k, (4.2)

ui ≥ 0, i = 1, . . . ,m, (4.3)

vk ≤ 0, k = 1, . . . , K. (4.4)

The ui variables are positive in the dual formulation since they are related to de-

mand constraints that are expressed in the primal as “greater than or equal to” con-

straints. On the other hand, with “less than or equal to” rolls’ availability constraints,

the vk variables can only be non-positive. The column generation model (3.1)-(3.4)

has an exponential number of columns. As a consequence, the dual model (4.1)-(4.4)

has an exponential number of constraints. In the dual, the generic column generation

algorithm can be viewed as a cutting plane procedure [77].

4.3 Dual-optimal Inequalities

In [117], Valério de Carvalho introduced a certain concept of dual cuts, columns in the

primal that do not affect the optimal value as long as a solution to the original problem

can be recovered at no cost with those columns at the zero level. Later on, Ben Amor

et al. [15] used the term dual-optimal inequalities and distinguished between weak and

deep inequalities. In the former, no optimal solution of the original formulation is

excluded, whereas the deep inequalities may cause the rejection of some alternative

dual-optimal solutions.

The cuts presented in [117] apply to the multiple length cutting stock problem. We

recall them briefly in Section 4.3.1. In Section 4.3.2, we introduce new types of weak

4.3. Dual-optimal Inequalities 59

and deep dual-optimal inequalities specially devised for the multiple length cutting

stock problem.

4.3.1 Inequalities on Items’ Dual Variables

If we observe the values of an optimal solution to (4.1)-(4.4), the ordering of the items’

dual variables will be quite evident. After all, the items’ dual variables are subject to

constraints whose coefficients are directly related to the set of item sizes. This leads

to an ordering that is completely dependent on the size of the items. Let S be the set

of items of size ws, such that
∑

s∈S ws ≤ wi, for some i = 1, ...,m. The relation can be

expressed as follows

−ui +
∑
s∈S

us ≤ 0, i = 1, ...,m, ∀S. (4.5)

Depending on the cardinality of S, different types of dual inequalities may be defined.

The result is an exponential number of valid constraints. Adding these inequalities

to D leads to a so-called extended formulation. In the primal, the respective columns

allow an item in a pattern to be exchanged by a combination of other items with smaller

or equal total size.

Valério de Carvalho showed that any optimal solution to the non-extended formu-

lation verifies inequalities (4.5), and hence they are weak dual-optimal inequalities.

These results remain even in the case of the multiple length cutting stock problem.

Extensions to the proofs are straightforward and, so, we omit them. During the suc-

cessive resolutions of the restricted master problems in a column generation process,

since the columns are not completely enumerated, these inequalities are frequently

violated. Therefore, the inclusion of a bounded number of such cuts is opportune.

Furthermore, it has the additional advantage of reducing primal degeneracy.

4.3.2 Inequalities on Rolls’ Dual Variables

Let De (P e) correspond to D (P , the linear programming relaxation of (3.1)-(3.4))

extended with additional inequalities on the vk dual variables (primal columns, respec-

tively).

(P e) min cλ + fπ (De) max ub + vB

Aλ ≥ b uA + vE ≤ c

Eλ + Fπ ≤ B vF ≤ f

λ, π ≥ 0 u ≥ 0, v ≤ 0

A family of dual inequalities can be stated using the following argument: a cutting

60 4. Accelerating Column Generation for Cutting Stock Problems

pattern associated to some roll can always be reassigned to another larger roll at a

cost that equals the difference between the two lengths. In the primal, this operation

is allowed by including columns with a +1 in row m + k, a −1 in row m + k′ and a

cost of Wk −Wk′ , k = 1, . . . , K − 1, k′ = 2, . . . , K, and Wk > Wk′ . In the dual, we will

be inserting cuts with the form

vk − vk′ ≤ Wk −Wk′ , k = 1, . . . , K − 1, k′ = 2, . . . , K, and Wk > Wk′ . (4.6)

Let (λ̃, π̃) be a valid solution for P e. In the case where Fπ̃ 6= 0, λ̃ may be infeasible for

P , as illustrated in Example 4.1. The next proposition and the corollary that follows

show that the LP lower bounds of P and P e remain the same.

Proposition 4.1 Given a feasible solution (λ̃, π̃) to P e, we can always recover a fea-

sible solution to P with an equal or lower cost.

Proof: Let AE and NF be the subset of columns in P e associated to the patterns and to

the dual inequalities (4.6), respectively. Starting with (λ̃, π̃), the following step-by-step

procedure shows how to build a solution expressed only as a nonnegative combination

of feasible cutting patterns. To clarify the presentation, the k index was dropped from

the columns (ak
1r, ..., a

k
mr; e

k
1r, ..., e

k
Kr)

T of P e.

for k := K, ..., 2

Let AE be the subset of columns (a1r, ..., amr; e1r, ..., eKr)
T of AE with λ̃r > 0

and an unit coefficient in row m + k (ekr = 1).

Let NF be the subset of columns NFj = (0, ..., 0; ..., 1, ...,−1, ...)T from NF with

π̃j > 0, a cost of fj units, the −1 occurring at position m + k and the +1 at

position sj.

for all j : NFj ∈ NF

while π̃j > 0 and
∑

r:AEr∈AE λ̃r > Bk

Select a column (a1r, ..., amr; ..., esjr, ..., ekr, ...)
T from AE with λ̃r > 0

AEnew = (a1r, ..., amr; ..., esjr + 1, ..., ekr − 1, ...)T . This column has a

cost of Wk + fj; λnew is the associated primal variable.

if (π̃j > λ̃r)

π̃j := π̃j − λ̃r, λnew := λ̃r and λ̃r := 0

else

λ̃r := λ̃r − π̃j , λnew := π̃j and π̃j := 0

end if

Add AEnew to P e and update the solution with λnew

4.3. Dual-optimal Inequalities 61

end while

if π̃j > 0, π̃j := 0

end for

end for

The final solution is valid for P e, and has all the columns referring to the dual inequal-

ities (4.6) at the zero level. Therefore, we get a feasible solution for P . If condition

π̃j > 0 at the end of the algorithm is true at least once, the resulting solution will have

a cost lower than the original one (λ̃, π̃). Otherwise, the cost remains the same. �

Corollary 1 Since P e is a relaxation of P , the optimal solutions of P and P e have

the same cost.

We prove next that inequalities (4.6) are in fact weak dual-optimal inequalities.

Proposition 4.2 Any primal-dual optimal solution pair to (P,D) satisfies inequalities

(4.6).

Proof: Consider an optimal primal-dual solution pair λ∗ and (u∗, v∗) to P and D,

respectively, and let Ak
r = (ak

1r, ..., a
k
mr)

T and Ek
r = (..., 1, ...)T , the +1 occurring at

position k, be the elements of a column in P with λk
r > 0 in λ∗. This column has a

null reduced cost, i.e., Wk − u∗.Ak
r − v∗.Ek

r = 0. A pattern with the same items reas-

signed to a larger roll k′ is still a valid pattern. Let Ak′

r′ and Ek′

r′ be the elements of the

corresponding column. We have Wk′ − u∗.Ak′

r′ − v∗.Ek′

r′ ≥ 0. Subtracting the reduced

costs, we get Wk′ − Wk − u∗.(Ak′

r′ − Ak
r) − v∗.(Ek′

r′ − Ek
r) = Wk′ − Wk − v∗k′ + v∗k ≥ 0.

Thus, v∗k′ − v∗k ≤ Wk′ − Wk. The result holds no matter what roll k′ is considered as

long as Wk′ > Wk. Consider now the case in which roll k is never used in the optimal

solution λ∗. By the complementary slackness condition, v∗k will equal 0 and, since the

v variables in D are null or negative, for all the k′ such that Wk′ > Wk, inequality

vk′ − vk ≤ Wk′ −Wk holds. �

Example 4.1 Consider an instance with a set W of rolls, W = (7, 7, 5, 4, 4, 4), and

a set w of items, w = (3, 3, 3, 2, 2, 2, 1, 1). A possible restricted master problem com-

prising the set of linearly independent dual inequalities associated to (4.6) (π̃1, π̃2) is

illustrated in Figure 4.1. A solution (λ̃,π̃) with λ̃
1

1, λ̃
2

1, λ̃
2

2 and π̃1 equal to one and

the other variables equal to zero is feasible for the extended model. However, λ̃ is in-

feasible for the non-extended model since the limit on rolls with length 5 is exceeded. �

62 4. Accelerating Column Generation for Cutting Stock Problems

λ
1

1 λ
1

2 λ
2

1 λ
2

2 λ
3

1 λ
3

2 π1 π2

wi =3 2 1 1 ≥ 3

2 3 1 2 2 ≥ 3

1 1 1 1 1 ≥ 2

Wk =7 1 1 1 ≤ 2

5 1 1 -1 1 ≤ 1

4 1 1 -1 ≤ 3

7 7 5 5 4 4 2 1

Figure 4.1: Restricted master problem (Example 4.1)

We can strengthen D even more using the following constraints where ε is a small

positive value

vK ≥ WK −W1 − ε, (4.7)

v1 ≥ min

{
W1 −

⌈
W1

Wi

⌉
×Wi

∣∣∣∣ i = 1, ..., K

}
− ε. (4.8)

Proposition 4.3 Let (λ̃
∗
; π∗

1, π
∗
2) be an optimal solution to P e

′
, the extended version

of P with the additional columns corresponding to (4.7) and (4.8). If P is feasible,

then π∗
1 = π∗

2 = 0 and λ̃
∗

is optimal to P .

Proof: The proof is made by contradiction. If π∗
1 is positive, then

∑pK

r=1 λ̃
∗
Kr > BK and

π∗
1 = BK −

∑pK

r=1 λ̃
∗
Kr. Otherwise, π∗

1 can be made equal to zero; the total cost will be

reduced without affecting the solution feasibility. When π∗
1 > 0, a set of items is cut at

the cost of π∗
1WK +π∗

1(W1−WK +ε) = π∗
1(W1 +ε). Since P e is a relaxation of P and P

is feasible, a solution must exist with these items reassigned to some of the other rolls.

In the worst case, the patterns where these items are included remain unchanged and

go to the largest roll leading to a cost of π∗
1W1, which contradicts the fact of (λ̃

∗
; π∗

1, π
∗
2)

being a lower cost solution. When π∗
2 > 0, some patterns are assigned to extra units of

the largest roll. The respective items must fit in at least one combination of dW1/Wie
rolls of length Wi, i = 1, ..., K. The cost incurred in P e for using an extra unit of the

largest roll is greater than the cost of the worst combination where these items may

fit. Therefore, if P is feasible, a lower cost solution exists and (λ̃
∗
; π∗

1, π
∗
2) can not be

optimal. �

With these inequalities, the dual variables are confined to a fixed and non empty

box defined before starting column generation. This box strictly contains an optimal

dual solution. Furthermore, instances were found with alternative optimal solutions

4.4. Extending the Dual Inequalities to the Whole Branch-and-Bound Tree 63

violating constraints (4.7) and (4.8), which indicates that these are deep dual-optimal

inequalities. In the literature, there is evidence that points to a better efficiency of

column generation when this kind of boxes are used [14].

Moving all the items from a roll to another empty roll leads to an increase of the

unused space equal to the difference between the roll lengths, which, if it is big enough,

may be fulfilled with other items. However, this operation does not translate into valid

inequalities. In fact, if we consider adding items’ dual variables to (4.6), the result will

be a true relaxation of P with a poorer lower bound.

4.4 Extending the Dual Inequalities to the Whole

Branch-and-Bound Tree

In [117], the author proved the validity of the inequalities (4.5) for the dual of the

standard cutting stock problem, a model very similar to (4.1)-(4.4). Extending these

proofs to the case of multiple stock lengths is immediate. The effect of the extra

columns on the linear programming relaxation was studied, but no allusion was made

about how they can be used within a branch-and-bound framework. In this section,

we fill this gap by stating the conditions under which a cut from this family remains

valid at a node of a branch-and-bound tree. Here, we consider specifically a branch-

and-bound framework based on the following conditions: at each node of the tree, the

LP relaxation of (3.1)-(3.4) is solved, and branching constraints are derived from an

equivalent arc flow model.

As in the previous section, we will use here the terminology (P e, De) to identify

the primal-dual pair of problems, extended with extra columns and valid inequalities,

respectively. It should be clear from the context which precise inequalities are really

enforced. The primal variables for the patterns continue to be denoted by λk
i as in

(3.1)-(3.4). Sometimes, to simplify the presentation, we will drop the k index that

identifies the stock length, when it is not absolutely necessary. The extra variables in

the primal for the dual inequalities will be denoted by πi.

4.4.1 Validity of the Inequalities on Items’ Dual Variables

Consider the family of dual inequalities (4.5). At a node of the branch-and-bound tree,

adding the columns associated to these cuts to the LP master P may cause the violation

of some branching constraints. To illustrate our assertion, we use the following simple

example.

Example 4.2 Consider an instance that has a set W = (7, 5) of stock lengths with

availabilities B = (5, 5), and a set w = (4, 3, 2) of item sizes with demands b = (2, 5, 2).

64 4. Accelerating Column Generation for Cutting Stock Problems

The complete LP master P is given in Figure 4.2.

λ
1

1 λ
1

2 λ
1

3 λ
1

4 λ
1

5 λ
2

1 λ
2

2 λ
2

3

wi =4 1 1 1 ≥ 2

3 1 2 1 1 ≥ 5

2 1 2 3 1 2 ≥ 2

Wk =7 1 1 1 1 1 ≤ 5

5 1 1 1 ≤ 5

7 7 7 7 7 5 5 5

Figure 4.2: LP master (Example 4.2)

The optimum for this LP problem has a cost of 27.5 units, for a possible set of pattern

frequencies of 2, 0.5 and 2 for λ
1

1 , λ
1

3 and λ
2

2 , respectively, and 0 for the other columns.

Following the conversion scheme described in the previous chapter, we can convert this

solution into the following set of arc flows: 2 units of flow in the arc (0, 4), 2 units in

(4, 7), 2.5 units in (0, 3), 0.5 units in (3, 6) and 2 units in (3, 5).

Assume now that the branching constraint x0,3 ≤ 0 on the arc (0, 3) is enforced

in one of the branching nodes, say q. According to the branching scheme devised in

Chapter 3, this should not be the branching constraint to enforce at this point. We use

it here because it perfectly illustrates how a primal column related to a dual inequality

of type (4.5) can lead to solutions that implicitly violate branching constraints. Figure

4.3 shows the resulting LP master. For this node, the optimal solution happens to be

integer and has a cost of 40 units, with λ
1

1= 5 and λ
2

3= 1.

λ
1

1 λ
1

2 λ
1

3 λ
1

4 λ
1

5 λ
2

1 λ
2

2 λ
2

3

wi =4 1 1 1 ≥ 2

3 1 2 1 1 ≥ 5

2 1 2 3 1 2 ≥ 2

Wk =7 1 1 1 1 1 ≤ 5

5 1 1 1 ≤ 5

x0,3 1 1 1 ≤ 0

7 7 7 7 7 5 5 5

Figure 4.3: LP master for the branching node q (Example 4.2)

If the dual inequality u1 ≥ u2 was enforced in the dual of the LP master and kept

in all the nodes of the branching tree, the optimal solution in node q would not have a

cost of 40 units anymore, but a cost of 29.17 units, and would be given by the following

pattern frequencies: λ
1

1= 3.5 and λ
1

5=
2
3
. Additionally, the extra primal column would

4.4. Extending the Dual Inequalities to the Whole Branch-and-Bound Tree 65

have a value of 1.5 units. If we do not take into account the effect of the extra column

for now, converting this new solution into a set of arc flows gives: x0,4 = x4,7 = 3.5 and

x0,2 = x2,4 = x4,6 = 2
3
. Apparently, the branching constraint seems to be respected,

but this is not the case. Indeed, for this set of pattern frequencies, what the extra

column does in practice by having a positive value is to replace an item with a size of

4 units by another item with 3 units of size, in the pattern related to λ
1

1 . The resulting

pattern is the same as the one associated to λ
1

3 , and hence, we do have a positive flow

in the arc (0, 3).

For the branching node q, the model with the extra column is a true relaxation of

P . The dual interpretation is that the inequality is not valid for the dual problem D. �

We can summarize as follows the reason why some branching constraints may be

violated when dual inequalities of type (4.5) are considered. In the primal, these cuts

translate into columns that allow an item in a pattern to be interchanged with other

items, which have a smaller or equal total size. The problem is that we can not restrict

the set of patterns from which these operations take place. Hence, combining a pattern

Pi with a column related to a dual cut of type (4.5) can result in a pattern Pj with one

of the following characteristics:

. pattern Pj has a +1 coefficient in the row of a branching constraint imposed on

an arc (s, t), but the corresponding path in the graph G of the arc flow model

obtained with our conversion scheme does not include this arc;

. pattern Pj has a null coefficient in the branching constraint on an arc (s, t), when

the corresponding path in G does in fact include this arc (this is the case that

arises in Example 4.2).

If pattern Pi and the primal column for some dual inequality of type (4.5) have positive

values, the flow over (s, t) might not be correctly accounted. Consequently, while a

branching constraint on (s, t) seems to be respected, in practice it might not be.

4.4.2 Validity Conditions

Some of the inequalities (4.5) may remain valid, depending on the specific set of arcs

on which a branching constraint has been enforced. The following Proposition states

the sufficient conditions that guarantee the validity of these dual cuts at a node q of

the branch-and-bound tree.

Proposition 4.4 For all the arcs (s, t) of G on which at least one branching constraint

has been enforced at node q, and for an item i and a subset S of the item sizes such

66 4. Accelerating Column Generation for Cutting Stock Problems

that wi ≥
∑

l∈S wl, if at least one of the following conditions applies

t− s > wi, (4.9)∑
{l∈S:wl>t−s}

wl > s, (4.10)

then ui ≥
∑

l∈S ul will be a valid dual-optimal inequality at node q.

Proof: Let (λ̃, π̃) be a feasible solution to the extended primal problem P e, resulting

from P plus the columns for the dual inequalities (4.5) that satisfy condition (4.9),

(4.10) or both. We can show that an optimal solution to P e can be mapped into an

equal cost solution to P composed by a set of columns that are feasible for P . Let n be

the number of branching constraints enforced at the node q, AER the set of columns

for the patterns in P (A represents the pattern’s coefficients, E the coefficients in the

rolls’ availability constraints and R the coefficients in the branching constraints), F

the columns associated to the dual inequalities and Jq the set of arcs with a branching

constraint at the node q. To perform the mapping, we follow the step-by-step proce-

dure described below.

for i := 1, ...,m− 1

Let AER be the subset of columns (a1p, a2p, ..., amp; e1p, ..., eKp; r1p, ..., rnp)
T in

the extended problem P e, with a positive value λ̃p > 0 and such that aip > 0.

Let F be the subset of columns (...,−1, ..., 1, ..., 1, ...; ..., 0, ...; ..., 0, ...)T that cor-

responds to the dual cuts with a positive value in π̃ and a −1 in row i. For a

column Fj, the elements +1 occur at the positions s1
j ,...,s

|S|
j .

for all j : F j ∈ F

p := 1

while p ≤ |AER| and π̃j > 0

AERp = (..., aip, ..., as1
jp, ..., as

|S|
j p

, ...; e1p, ..., eKp; r1p, ..., rnp)
T

if aip > 0

AERnew = (..., 0, ..., as1
jp+aip, ..., as

|S|
j p

+aip, ...; e1p, ..., eKp; r1p, ..., rnp)
T

Let λnew be the primal variable related to AERnew.

The cost of AERnew remains equal to the cost of AERp.

For an arc (s, t) ∈ Jq, if (s, t) belongs to the path in G for AERp,

then for all the indexes d of the related branching constraints, we

will have rdp = 1, otherwise rdp = 0.

For an arc (s, t) ∈ Jq and F j, if condition (4.9) applies, two situa-

tions may arise: (s, t) belongs (does not belong) to the path related

4.4. Extending the Dual Inequalities to the Whole Branch-and-Bound Tree 67

to AERp, and in this case it will (will not) belong to the path for

AERnew, since the removal of the item i from AERp and addition

of the items of S affects only the arcs of AERp at the right of (s, t).

For an arc (s, t) ∈ Jq and F j, if (4.10) applies, then (s, t) can not

belong to AERp. Since s ≥ 0, at least one item l of S is such

that wl > t − s, otherwise (4.10) would not be satisfied. Conse-

quently, wi > t − s and the arc for item i, say (si, ti), appears

in the path for AERnew at the left of the arcs for the items with

size t − s. Even if si = 0, no arc will never begin at position s.

Since
∑

{l∈S:wl>t−s} wl > s, the path for AERnew will have no arc

beginning at position s.

if (π̃j > aipλ̃p)

π̃j := π̃j − aipλ̃p, λnew := λ̃p and λ̃p := 0

else

λ̃p := λ̃p − π̃j/aip , λnew := π̃j/aip and π̃j := 0

end if

Add AERnew to P e with λnew.

end if

p := p + 1

end while

end for

end for

At the end of the procedure, all the primal variables for the dual inequalities will

have a null value. The new solution satisfies all the constraints of the problem, and is

composed by valid columns, i.e. columns with correct coefficients in the rows associated

to the branching constraints. All the operations are done at no cost, and, so, the

solution is also optimal for the original primal problem P . With dual inequalities

satisfying one of the conditions stated above, the feasible solution space for De still

includes at least one optimal dual solution to D, and hence these inequalities are dual-

optimal at the branching node q. �

4.4.3 New Dual-Optimal Inequalities

In the nodes of the branching tree, a new family of valid dual inequalities can be used

relating the dual variables for the demand constraints with the ones for the branching

restrictions. These inequalities are presented in the following Proposition.

68 4. Accelerating Column Generation for Cutting Stock Problems

Proposition 4.5 For a branching node q, let Hq and Gq be respectively the set of

“greater than or equal to” and “less than or equal to” branching constraints. The

dual variables for the lth constraint related to Hq and Gq are denoted respectively by

hl
(s,t) and gl

(s,t), with (s, t) identifying the arc on which the constraint is enforced. For

the branching node q, and for a single item i and subset of item sizes S such that

wi ≥
∑

l∈S wl, the following dual inequalities

ui +
∑

{l∈Hq :t−s≤wi}

hl
s,t ≥

∑
l∈S

ul +
∑

{l∈Gq :t−s≤wi}

gl
s,t, i = 1, ...,m, ∀S. (4.11)

are valid dual-optimal inequalities for the dual problem D.

Proof: The proof consists essentially in a sequence of steps similar to the ones used

in the proof of Proposition 4.4. The column for the dual inequality denoted by F j in

Proposition 4.4 has now the form

(...,−1, ..., 1, ..., 1, ...; ..., 0, ...; ...,−1, ...,−1, ..., 1, ..., 1, ...)T ,

i.e. this column has non-negative coefficients in some of the rows corresponding to

the branching constraints. The elements −1 in the rows for these constraints occur at

positions m+K+y1
j , m+K+y2

j , ..., m+K+y
|Y |
j , with Y = {l : l ∈ Hq and t−s ≤ wi}.

In turn, the elements +1 in the rows for the branching constraints are in positions

m + K + z1
j , m + K + z2

j , ..., m + K + z
|Z|
j , with Z = {l : l ∈ Gq and t − s ≤ wi}.

The new pattern AERnew takes the form

(..., 0, ..., as1
jp + aip, ..., as

|S|
j p

+ aip, ...; e1p, ..., eKp;

..., ry1
j p − aip, ..., ry

|Y |
j p

− aip,

..., rz1
j p + aip, ..., rz

|Z|
j p

+ aip)
T ,

In AERnew, if for example ryl
jp − aip < 0, since this element can only occur in the row

for a “greater than or equal to” branching constraint, we can set it to zero. The result-

ing solution with the updated column AERnew will continue to satisfy the branching

constraint yl
j. The same can be done to all the negative elements of AERnew.

Similarly, if rzl
jp + aip > 1, since such an element can only occur in the rows for

“less than or equal to” branching constraints, setting it to 1 will result in a solution

that still satisfies the branching constraint zl
j.

Finally, if rzl
jp + aip > 1, but the arc associated to the branching constraint zl

j does

not belong to the path in G for AERnew, this element is set to 0. Again, this situation

only arises in rows for “less than or equal to” constraints, and, so, this operation does

not affect the feasibility of the new solution.

In all cases, we are always able to recover from AERnew a column valid in P without

changing its cost, nor the feasibility of the whole solution. �

4.5. Computational Experiments 69

4.5 Computational Experiments

To evaluate the impact of using dual-optimal inequalities in the whole branch-and-

bound tree, we repeated part of the tests described in Section 3.6 with the randomly

generated instances, and the set of 50 instances tested in [13]. The experiments were

conducted in the same conditions.

Tables 4.1, 4.2, 4.3 and 4.4 illustrate the computational results obtained when dual

inequalities are applied in all the branching nodes. The columns have the same meaning

as in Section 3.6, except for colsIN that now represents the number of initial columns

in the master that are patterns or columns related to dual inequalities.

On average, the results obtained when dual inequalities are extended to the whole

branch-and-bound tree are significantly better. Besides the reduction in the number

of pricing subproblems solved at the root node and the number of generated columns,

there is also a drastic reduction in the number of branching nodes explored. For the

group of instances vs3, for example, an average of 7.55 nodes were necessary, versus

28.70 without dual cuts. For the instances tested in [13], the reduction of branching

nodes amounts to almost 70%, while the computing time is divided by two. For these

instances, we were also able to solve 94% of the instances tested in [13], while only 90%

were solved when dual inequalities were not used.

4.6 Alternative Aggregation Schemes

In the past, aggregation and disaggregation techniques were essentially used to deal

with problems coming from memory space restrictions. These difficulties were becom-

ing even more constraining as researchers were trying to solve problems with a growing

level of precision. By concentrating on a restricted but sufficiently representative set of

data, one will also expect to see the computational burden reduced. Rogers et al. [96]

gave a comprehensive survey on the contributions made in the field and synthesized

the different elements of an aggregation/disaggregation process.

In this section, we describe two alternative aggregation schemes. The goal is to

accelerate the search for an optimal solution through column generation by solving

sequences of easier approximations, i.e., aggregated problems. Here, aggregation is

seen as an implicit form of controlling the dual variables.

The methods rely exclusively on item aggregation and, therefore, they can be ap-

plied to the standard cutting stock problem. In Section 4.6.1, we develop a simple

two-phase column generation algorithm that starts by solving a row aggregated model

that corresponds to a problem with larger items. In Section 4.6.2, an iterative algo-

rithm is presented that takes advantage of the phenomenon of identical prices, early

pointed out by Gilmore and Gomory [53], using smaller LPs where both variables and

70 4. Accelerating Column Generation for Cutting Stock Problems

N
a
m

e
m

K
cols

I
N

sp
L

P
cols

L
P

sp
B

B
cols

B
B

n
od

B
B

tP
P

tL
P

tB
B

tT
O

T
z
w

b
z
L

P
z
∗

z
W

B

v
s300

17
9

37
10

61
0

0
0

0.00
0.01

0.00
0.01

1269
1276.42

1371.00
1371

v
s301

17
9

36
12

82
107

107
73

0.02
0.02

0.15
0.19

1030
1030.00

1031.00
1450

v
s302

16
11

40
7

57
0

0
0

0.00
0.02

0.00
0.02

1256
1271.62

1353.00
1353

v
s303

19
11

41
11

85
1

0
1

0.01
0.03

0.00
0.04

1068
1068.00

1068.00
1289

v
s304

15
11

32
5

40
13

31
7

0.00
0.01

0.01
0.02

1142
1144.13

1177.00
1318

v
s305

19
10

41
8

68
0

0
0

0.02
0.02

0.00
0.04

1164
1171.00

1171.00
1283

v
s306

17
11

34
9

85
6

21
4

0.02
0.04

0.00
0.06

1245
1248.88

1259.00
1408

v
s307

18
11

38
7

64
1

0
1

0.00
0.02

0.00
0.02

1049
1049.00

1071.00
1351

v
s308

18
9

39
9

66
12

19
8

0.00
0.02

0.00
0.02

1176
1179.44

1182.00
1386

v
s309

17
9

40
7

42
0

0
0

0.00
0.01

0.00
0.01

1280
1294.25

1385.00
1385

v
s310

19
9

38
8

54
0

0
0

0.00
0.01

0.00
0.01

1182
1183.94

1203.00
1350

v
s311

18
10

39
15

94
46

25
38

0.00
0.02

0.06
0.08

1242
1247.55

1258.00
1358

v
s312

20
10

42
9

77
14

30
9

0.02
0.02

0.05
0.09

1199
1199.25

1222.00
1367

v
s313

20
11

43
8

77
3

13
1

0.00
0.03

0.00
0.03

1173
1173.40

1178.00
1312

v
s314

17
9

38
11

68
7

8
6

0.00
0.03

0.00
0.03

1201
1208.67

1214.00
1342

v
s315

19
8

42
10

62
0

0
0

0.00
0.02

0.00
0.02

1298
1344.00

1344.00
1344

v
s316

19
11

41
8

75
5

13
2

0.00
0.03

0.00
0.03

1094
1094.00

1095.00
1354

v
s317

17
11

39
7

61
0

0
0

0.00
0.02

0.00
0.02

1275
1391.00

1391.00
1391

v
s318

18
10

40
11

86
0

0
0

0.01
0.03

0.00
0.04

1273
1307.94

1314.00
1314

v
s319

18
10

40
8

68
2

10
1

0.00
0.02

0.00
0.02

1229
1234.00

1243.00
1358

av
g.

17.90
10.00

39.00
9.00

68.60
10.85

13.85
7.55

0.01
0.02

0.01
0.02

1192.25
1205.82

1226.50
1354.20

T
ab

le
4.1:

C
om

p
u
tation

al
resu

lts
w

ith
d
u
al

in
eq

u
alities

(v
s3)

4.6. Alternative Aggregation Schemes 71

N
a
m

e
m

K
co

ls
I
N

sp
L

P
co

ls
L

P
sp

B
B

co
ls

B
B

n
od

B
B

t P
P

t L
P

t B
B

t T
O

T
z w

b
z L

P
z
∗

z W
B

v
s5

00
26

14
60

10
11

7
1

0
1

0.
01

0.
02

0.
00

0.
03

18
69

18
69

.9
6

18
91

.0
0

20
39

v
s5

01
25

12
58

8
68

0
0

0
0.

02
0.

01
0.

00
0.

03
18

33
18

37
.0

7
19

24
.0

0
19

24

v
s5

02
25

14
56

11
12

6
6

30
2

0.
01

0.
02

0.
00

0.
03

16
68

16
68

.0
0

16
68

.0
0

18
83

v
s5

03
27

13
58

8
88

42
96

28
0.

02
0.

01
0.

28
0.

31
16

26
16

26
.0

0
16

28
.0

0
19

40

v
s5

04
23

15
47

10
11

8
22

5
13

9
16

9
0.

02
0.

01
0.

76
0.

79
17

98
17

98
.0

0
17

98
.0

0
20

42

v
s5

05
26

13
60

6
64

4
13

3
0.

02
0.

02
0.

00
0.

04
17

34
17

34
.8

5
17

53
.0

0
19

00

v
s5

06
24

13
57

8
89

0
0

0
0.

01
0.

01
0.

00
0.

02
18

30
18

34
.3

0
18

89
.0

0
20

37

v
s5

07
25

15
58

7
88

5
29

3
0.

02
0.

02
0.

00
0.

04
17

92
17

92
.0

0
18

31
.0

0
19

75

v
s5

08
29

15
63

10
13

2
37

82
29

0.
02

0.
02

0.
22

0.
26

17
00

17
00

.0
0

17
04

.0
0

20
24

v
s5

09
24

15
59

8
10

0
0

0
0

0.
02

0.
02

0.
00

0.
04

18
85

18
91

.1
3

19
58

.0
0

19
58

v
s5

10
28

12
65

8
73

0
0

0
0.

01
0.

02
0.

00
0.

03
18

72
18

80
.6

7
19

04
.0

0
19

04

v
s5

11
26

16
61

14
17

5
12

3
92

86
0.

02
0.

03
0.

45
0.

50
18

32
18

32
.6

5
18

36
.0

0
19

63

v
s5

12
24

14
53

5
54

0
0

0
0.

02
0.

01
0.

00
0.

03
18

65
18

72
.3

8
19

38
.0

0
19

38

v
s5

13
26

13
58

10
10

9
19

17
17

0.
02

0.
02

0.
09

0.
13

17
59

17
59

.0
0

17
60

.0
0

19
94

v
s5

14
27

14
61

7
82

2
14

1
0.

03
0.

02
0.

00
0.

05
17

81
17

81
.0

0
18

04
.0

0
19

52

v
s5

15
25

12
55

9
93

58
93

46
0.

01
0.

02
0.

25
0.

28
17

16
17

16
.0

0
17

18
.0

0
19

66

v
s5

17
26

13
57

5
49

0
0

0
0.

02
0.

01
0.

00
0.

03
18

82
18

84
.3

5
19

45
.0

0
19

45

v
s5

18
26

15
59

10
13

1
95

18
8

60
0.

02
0.

02
0.

63
0.

67
16

44
16

44
.0

0
16

44
.0

0
18

86

v
s5

19
27

15
64

10
12

3
2

13
1

0.
02

0.
02

0.
00

0.
04

18
25

18
25

.0
0

18
25

.0
0

19
41

av
g.

25
.7

4
13

.8
4

58
.3

7
8.

63
98

.8
9

32
.5

8
42

.4
2

23
.4

7
0.

02
0.

02
0.

14
0.

18
17

84
.7

9
17

86
.6

5
18

11
.4

7
19

58
.4

7

T
ab

le
4.

2:
C

om
p
u
ta

ti
on

al
re

su
lt
s

w
it

h
d
u
al

in
eq

u
al

it
ie

s
(v

s5
)

72 4. Accelerating Column Generation for Cutting Stock Problems

N
a
m

e
m

K
cols

I
N

sp
L

P
cols

L
P

sp
B

B
cols

B
B

n
od

B
B

tP
P

tL
P

tB
B

tT
O

T
z
w

b
z
L

P
z
∗

z
W

B

v
s600

18
14

40
11

102
59

30
45

0.02
0.01

0.13
0.16

1279
1280.80

1282.00
2039

v
s601

19
12

37
11

98
0

0
0

0.01
0.01

0.00
0.02

1115
1115.00

1115.00
1934

v
s602

17
12

35
10

94
190

144
146

0.02
0.03

0.39
0.44

1031
1031.00

1032.00
2045

v
s603

18
15

41
8

95
28

48
16

0.02
0.01

0.08
0.11

1115
1115.00

1115.00
1935

v
s604

19
12

41
8

77
12

29
5

0.00
0.01

0.03
0.04

1138
1138.00

1138.00
1901

v
s605

17
14

36
9

99
11

15
6

0.00
0.02

0.00
0.02

1274
1276.00

1277.00
2009

v
s606

18
16

39
7

96
2

16
1

0.00
0.01

0.00
0.01

1084
1084.00

1084.00
1983

v
s607

19
13

39
8

84
2

6
1

0.01
0.01

0.00
0.02

1128
1130.00

1130.00
1991

v
s608

17
15

39
12

108
8

9
5

0.01
0.02

0.00
0.03

1223
1224.56

1225.00
1996

v
s609

17
14

40
12

129
68

108
44

0.02
0.01

0.18
0.21

1169
1172.00

1172.00
2019

v
s610

19
14

41
8

86
12

18
8

0.01
0.02

0.02
0.05

1177
1177.00

1177.00
2045

v
s611

19
15

40
7

87
12

37
6

0.00
0.01

0.02
0.03

1082
1082.00

1082.00
1958

v
s612

17
12

38
13

103
77

73
54

0.01
0.02

0.12
0.15

1216
1216.90

1220.00
1971

v
s613

19
12

45
10

62
4

10
2

0.01
0.02

0.00
0.03

1262
1263.17

1264.00
2016

v
s614

19
15

43
11

113
45

74
27

0.00
0.02

0.08
0.10

1114
1114.00

1114.00
1938

v
s615

15
14

36
8

92
5

19
3

0.00
0.01

0.00
0.01

1071
1071.00

1071.00
2083

v
s616

17
13

39
12

93
38

44
26

0.00
0.02

0.08
0.10

1206
1208.94

1212.00
2016

v
s617

17
14

35
7

76
6

13
3

0.00
0.02

0.01
0.03

1137
1137.00

1137.00
2041

v
s618

20
15

43
10

104
23

17
15

0.03
0.02

0.01
0.06

1258
1260.00

1260.00
1955

v
s619

18
13

42
11

87
4

3
2

0.01
0.02

0.00
0.03

1209
1212.00

1213.00
1908

av
g.

17.95
13.70

39.45
9.65

94.25
30.30

35.65
20.75

0.01
0.02

0.06
0.08

1164.40
1165.42

1166.00
1989.15

T
ab

le
4.3:

C
om

p
u
tation

al
resu

lts
w

ith
d
u
al

in
eq

u
alities

(v
s6)

4.6. Alternative Aggregation Schemes 73

Inst m K colsIN spLP colsLP spBB colsBB nodBB tPP tLP tBB tTOT

2 100 3 297 88 220 3 0 3 0.97 2.96 2.73 6.66
4 99 4 311 99 303 1 0 1 1.13 1.41 0.63 3.17
5 100 4 298 111 363 0 0 0 0.97 1.33 0.00 2.30
6 99 4 299 124 413 7 1 6 0.95 1.47 9.71 12.13
7 99 4 300 107 325 7 0 7 1.13 1.20 6.66 8.99
8 99 3 300 80 201 8 5 6 1.22 0.41 8.50 10.13
9 100 4 309 108 346 25 5 21 0.91 1.19 29.78 31.88

10 99 4 303 98 344 0 0 0 1.00 1.28 0.00 2.28
11 98 4 293 99 324 0 0 0 1.13 1.06 0.00 2.19
12 98 4 314 118 339 26 11 22 1.41 1.44 29.64 32.49
14 99 4 305 107 339 7 0 7 1.17 1.48 8.69 11.34
15 100 4 307 112 393 6 1 5 0.88 1.92 6.99 9.79
16 100 3 307 155 366 26 3 24 1.28 6.49 39.79 47.56
17 100 2 315 142 282 15 2 14 1.13 8.78 15.73 25.64
18 100 3 298 117 314 3 0 3 0.97 5.99 2.72 9.68
19 99 4 297 79 250 3 0 3 1.14 0.64 2.02 3.80
20 99 4 307 125 419 1 0 1 1.09 2.16 0.53 3.78
21 98 4 297 86 300 8 0 8 0.81 1.45 10.42 12.68
22 99 3 299 100 256 4 0 4 1.03 0.81 4.22 6.06
23 98 4 301 102 334 5 2 3 0.94 2.36 4.76 8.06
24 99 4 302 52 192 0 0 0 1.06 0.30 0.00 1.36
25 100 4 309 129 390 23 1 22 1.23 1.39 25.85 28.47
26 100 3 303 130 356 9 0 9 0.75 2.23 11.92 14.90
27 99 4 303 75 258 0 0 0 0.94 0.95 0.00 1.89
28 98 3 297 93 247 4 0 4 0.73 1.34 5.25 7.32
29 99 4 315 120 418 7 0 7 0.94 3.34 9.79 14.07
30 99 4 312 104 348 3 0 3 1.24 1.95 3.45 6.64
31 99 4 301 81 270 25 3 22 0.70 1.13 23.88 25.71
32 99 4 301 90 279 10 4 8 1.14 1.03 16.50 18.67
33 98 4 306 76 242 16 1 16 1.20 0.62 11.11 12.93
34 100 4 308 115 375 17 8 13 1.39 2.41 26.14 29.94
35 100 4 306 172 537 5 0 5 1.08 7.92 9.83 18.83
36 100 4 313 95 350 8 3 6 1.13 2.25 9.38 12.76
37 100 4 307 99 333 3 0 3 1.09 1.42 2.92 5.43
38 100 4 316 71 261 0 0 0 1.13 0.89 0.00 2.02
39 98 4 300 101 350 0 0 0 0.89 1.07 0.00 1.96
40 99 4 302 95 307 1 0 1 1.27 1.38 1.44 4.09
41 100 4 308 130 377 81 30 65 1.16 1.56 122.29 125.01
42 98 3 291 184 318 0 0 0 1.72 1.39 0.00 3.11
43 99 4 302 111 253 0 0 0 1.22 0.81 0.00 2.03
44 99 4 301 74 243 12 5 10 1.22 1.00 17.03 19.25
45 100 4 305 72 227 3 7 2 1.25 0.19 1.72 3.16
46 99 2 292 30 46 11 4 9 1.05 0.03 14.48 15.56
47 98 4 292 81 256 4 1 3 0.95 0.75 4.08 5.78
48 98 4 296 153 449 36 2 34 0.97 2.72 52.81 56.50
49 99 4 299 89 298 16 3 15 1.08 1.30 24.52 26.90
50 99 4 303 129 434 1 0 1 0.94 3.11 1.84 5.89

avg. 99.13 3.74 303.13 104.43 315.85 9.57 2.17 8.43 1.08 1.92 12.34 15.34

Table 4.4: Computational results with dual inequalities for the instances in [13]

74 4. Accelerating Column Generation for Cutting Stock Problems

constraints have been aggregated. The resulting doubly aggregated models give a good

approximation to the disaggregated problems.

4.6.1 A Simple Row Aggregation Scheme

When the number of items per roll in a multiple length cutting stock problem is high,

the resulting high density LP matrix favors the occurrence of primal degeneracy. If

we were able to anticipate some of the item combinations of an optimal solution,

larger items could be defined and density could be reduced. However, finding the right

combination is difficult to achieve, and, so, we will approach this problem heuristically.

We solve the multiple length cutting stock problem by column generation in two

steps. In the first, the items of the original problem are combined pairwise, leading to

an approximation P ra of P . Since we are restricting the original solution space, we get

an upper bound to the optimal solution of P ; its quality will be as good as our guess

for the item combination. Note that the quality of the approximation will certainly

tend to decrease if greater combinations are tried. In the second step, we guarantee

the convergence to the optimal solution of P by solving P starting with the columns

of the last restricted master problem relative to P ra, properly disaggregated. We use

the simple scheme RA to aggregate the items of the original problem.

Aggregation scheme RA

Let wra and bra be respectively the set of item sizes and demands of the aggregated

problem. Initially, wra = ∅ and bra = ∅.

Let b, indexed by i, represent the set of demands of the original problem and q be the

number of positive values in b.

i := 1

while i ≤ m and q ≥ 2

while bi > 0 and q ≥ 2

Choose an item of the original problem with size wj, j = i + 1, ...,m, and

bj > 0 such that:

min{Wk − (wi + wj) | Wk − (wi + wj) > 0, k = 1, ..., K } ≤ Wk′ − (wi + wl),

∀ k′ = 1, ..., K, l = i + 1, ...,m, bl > 0 and Wk′ − (wi + wl) > 0

if (bj ≥ bi)

bj := bj − bi, bra
new := bi and bi := 0

else

bi := bi − bj, bra
new := bj and bj := 0

end if

4.6. Alternative Aggregation Schemes 75

Add size wi + wj to wra with a demand of bra
new units, if it does not already

exist, or increment by bra
new its demand, otherwise.

i := i + 1

end while

end while

if bi > 0, add wi to wra with a demand of bi units if it does not already exist or incre-

ment by bi its demand, otherwise.

Clearly, the total number of items (
∑|wra|

i=1 bra
i) decreases, while the number of dif-

ferent types of items in the aggregated problem will only be smaller compared to the

original problem if equality bj = bi holds or if bi is equal to 0 in the last step. Since the

combination of items with the same size is not allowed, the number of different types

of items will never increase.

An item is combined with a smaller one if the difference between the sum of their

sizes and the length of the smallest roll where this combination fits is the minimum

over all the possible combinations that include the first item. With such a criterion, if

an item i goes with an item j, item i + 1 will frequently be combined with the item

j− 1, particularly if wi +wj is almost equal to wi+1 +wj−1. This type of association is

frequent in optimal solutions, where some of the patterns differ only in a small number

of items. The unused space within a pattern is used to cope with the small difference

between pairs of items. These pairs finally appear in very similar patterns. Another

interesting point is the fact that the dual inequalities of Section 4.3 are particularly

efficient in terms of stabilization for instances with groups of almost identical items.

The rows of P are subject to an equivalent aggregation process. The following

example illustrates the steps followed by the aggregation scheme.

Example 4.3 Consider an instance with a set of item sizes w = (90, 59, 58, 57, 25, 20)

and demands b = (5, 5, 7, 3, 7, 1). Ten rolls with lengths 160, 120 and 100 are available.

Figure 4.4 illustrates a possible restricted master problem. The aggregation proceeds

as follows. We start with wra = ∅ and bra = ∅. Five units of w1 = 90 are initially

aggregated to 5 other units of w5=25, leading to wra = (115) and bra = (5). The 5

units left in W2 = 120, the smallest roll where an item of size 115 fits, are the smallest

unused space over all the other combinations that include w1. Subsequently, 5 items

of size 59 are combined 5 items of size 58 (wra = (117, 115), bra = (5, 5)), 2 items of

size 58 with 2 items of size 57 (wra = (127, 115), bra = (5, 7)), 1 item of size 57 with 1

item of size 25 (wra = (117, 115, 82), bra = (5, 7, 1)), and finally 1 item of size 25 with

1 item of size 20 (wra = (117, 115, 82, 45), bra = (5, 7, 1, 1)). The aggregated problem

has 4 different types of items for a total demand of 14 units, corresponding to half the

28 items of the original problem.

76 4. Accelerating Column Generation for Cutting Stock Problems

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10 λ11 λ12 λ13

wi =90 1 1 1 ≥ 5

59 2 1 1 1 1 ≥ 5

58 1 2 1 1 1 1 ≥ 7

57 1 1 1 1 1 ≥ 3

25 2 1 1 1 1 1 1 1 2 ≥ 7

20 1 1 2 ≥ 1

Wk =160 1 1 1 1 1 1 1 ≤ 10

120 1 1 1 1 ≤ 10

100 1 1 ≤ 10

Figure 4.4: Restricted master problem (Example 4.3)

λra
1 λra

8 λra
9 λra

12 λra
13

wi =117 1 ≥ 5

115 1 1 ≥ 7

82 1 ≥ 1

45 1 2 ≥ 1

Wk =160 1 ≤ 10

120 1 1 ≤ 10

100 1 1 ≤ 10

Figure 4.5: Row aggregated LP (Example 4.3)

The item aggregation leads to a similar row aggregation in P . Figure 4.5 shows the

result for the restricted master problem of Figure 4.4. A column in P will have an

associated column in the aggregated model only if all the items of the corresponding

pattern can be combined among them according to the item aggregation defined by

RA. Thus, the first column in Figure 4.4 will have a counterpart in the aggregated

LP, while the second will not. For the latter, the unique item of size 90 combines

with the item of size 25 and the remaining item of size 25 goes with the item of size

20. The disaggregation process is straightforward. Note that a column of the aggre-

gated formulation may generate one or more columns for the disaggregated problem. �

Besides the sparser density of the aggregated problem, which reduces its degeneracy,

this problem is also easier to solve for other obvious reasons. The set of valid cutting

patterns is smaller compared to the original problem. Fewer items are needed to fulfill

the rolls and their demands are also lower. The column generator subproblems are then

solved faster. Moreover, the disaggregation cost is not high. The effectiveness of the

4.6. Alternative Aggregation Schemes 77

algorithm depends on the quality of the item combination. We are looking for a good set

of initial columns to start the resolution of the original problem by column generation,

and we expect that the effort to find them will be essentially concentrated in the first

phase, where a simpler and less degenerated problem is solved. The computational

experiments presented in Section 4.7 show that for some instances this algorithm brings

some appreciable improvements.

4.6.2 Implicit Dual Constraints: a Double Aggregation Scheme

The optimal solutions of cutting stock problems have an interesting characteristic:

items that are almost identical have dual variables that are frequently equal. Gilmore

and Gomory ([53]) already experienced this phenomenon of identical prices in various

stages of the column generation algorithm, for low and high waste problems. They

give an explanation based on the fact that the unused space in some cutting patterns

belonging to the basis allows some of their items to be interchanged.

In formulations where a demand constraint is defined for each single item, there

exists an optimal solution with equal dual variables for the items of the same size.

This result is well known. Ben Amor et al. ([15]) report computational results where

it is shown that convergence is improved when a unique constraint per item size is

considered. What happens is that the dual variables of identical items are forced to be

equal. In this section, we propose an algorithm that solves successive approximations

obtained by imposing these equality constraints to items with different sizes. From the

problem definition standpoint, items with nearly the same size are replaced by a single

item with a size equal to the average size of the original items. This operation amounts

to aggregating columns followed by a constraint aggregation. A column of the aggre-

gated model will correspond to a set of columns with more rows in the disaggregated

model. The following example illustrates this correspondence.

Example 4.4 Remember the problem of Example 4.3. Patterns (0, 1, 1, 0, 0, 0; 0, 1, 0)T ,

(0, 1, 0, 1, 0, 0; 0, 1, 0)T and (0, 0, 1, 1, 0, 0; 0, 1, 0)T of λ9, λ10 and λ11, respectively, differ

in a single item. There are other patterns that differ from the previous in a single

item such as (0, 2, 0, 0, 0, 0; 0, 1, 0)T , (0, 0, 2, 0, 0, 0; 0, 1, 0)T and (0, 0, 0, 2, 0, 0; 0, 1, 0)T .

If we replace the items of size 59, 58 and 57 by an item with size 58 (the average of 59,

58 and 57) and a demand of 15 units, the pattern (0, 2, 0, 0; 0, 1, 0)T in the aggregated

model will now stand for all the aforementioned patterns. �

The aggregation scheme is now described more formally. We define an equivalence

group Gl as the set of successive items i, i+1, ..., i+ |Gl| such that wi−wi+1 ≤ ∆. Let

mda be the total number of equivalence groups in the original problem for some positive

value ∆. We have mda ≤ m. Two patterns AE1 and AE2 are said to be adjacent if

78 4. Accelerating Column Generation for Cutting Stock Problems

they relate to the same roll length and if AE1 is obtained from AE2, and vice versa, by

replacing some items of AE2 each one with an item belonging to the same equivalence

group. The columns of P , the original formulation, are divided in groups of adjacent

patterns, say AEr, r = 1, ..., p. The aggregated model P da results from the aggregation

of columns and rows within each set AEr defined by the following linear operations

T . AEr . Sr,

where T is a mda × m block triangular matrix and Sr is a |AEr| × 1 column vector,

r = 1, ..., p. There is a unit coefficient in row l and column i of T iff i ∈ Gl. All the

elements of Sr are equal to 1/|AEr|.
The question now is which size should have the mda items of the aggregated problem,

one per each original equivalence group, such that all the columns in P da (and no others)

are feasible patterns. According to the aggregation scheme, these item sizes depend

on each column of P da and, in particular, on the original set of adjacent columns

AEr in P that originate them. A way to have a unique size for each of the mda

items is to make the equivalence groups coincide with the set of dual variables that

are equal in an optimal dual solution and to set the sizes equal to the optimal dual

values accordingly. However, an optimal dual solution is rarely available beforehand.

Searching for a set of sizes such that all the columns in P da are feasible starting with

a set of predefined equivalence groups is not guaranteed to succeed. In fact, such sizes

may not exist. The alternative consists in using approximate sizes. Setting the size

of ith item, i = 1, ...,mda, equal to the size of the smallest item in Gi leads to an

aggregated problem that is a relaxation of P . On the other hand, if we choose the size

of the largest item in Gi, P da will be a restriction of P . We chose to use the first integer

value lower than the average size of the items in Gi, i = 1, ...,mda. The consequence is

that some columns of P may not have a representation in the resulting P da.

Example 4.5 Consider an instance with a set of items w = (80, 70, 60, 55, 43, 38, 33, 20, 16)

to be cut from rolls of length 100. Figure 4.6 shows the complete set of feasible pat-

terns for this instance. With ∆ = 5, five equivalence groups can be defined: G1 = (80),

G2 = (70), G3 = (60, 55), G4 = (43, 38, 33) and G5 = (20, 16). They lead to the 7

different sets of adjacent columns identified in Figure 4.6.

Figure 4.7 and 4.8 illustrate the result of the successive column and row aggregation, re-

spectively. The new set of items for the aggregated problem is wda = (80, 70, 57, 38, 18).

For the pattern (0, 0, 1, 1, 0)T , which replaces the columns of AE1, the size of the item

that stands for those of G4 should be 37 ((1/5×43+2/5×38+2/5×33)/(1/5+2/5+

2/5)), while for the pattern (0, 0, 0, 2, 1)T this size should be 36.6 ((3/9 × 43 + 7/9 ×
38 + 8/9× 33)/2).

By using the averages for each equivalence group, pattern (0, 0, 0, 0, 0, 0, 3, 0, 0)T can

4.7. Computational Experiments 79

no longer be represented in the aggregated model (3×38 > 100) and the aggregation of

(0, 0, 0, 0, 2, 0, 0, 0, 0)T results in a pattern (0, 0, 0, 2, 0)T that has enough waste to cope

with another item. Note that it is convenient for the items of an equivalence group to

appear in quite similar patterns. This situation is likely to appear when the item sizes

are relatively near. Imagine for example including the items of size 80 and 70 in the

same equivalence group. Items of size 66 cannot combine with items of size 38, and,

hence, this choice will increase the number of patterns that cannot be represented in

the aggregated model. �

This aggregation can be done repeatedly. A problem P can be aggregated using

∆ = ∆1, leading to an aggregated problem P da
1 that can in turn be aggregated with

∆ = ∆2, and so on. Disaggregation is applied to P da
i to recover the set of original

adjacent columns of P da
i−1 or P if i = 1.

To solve P , we use a n-phase algorithm that solves the sequence P da
n−1, P da

n−2,. . . ,

P by column generation. A limit is imposed in the number of items in each equiv-

alence group. Ideally, this control should be made through the parameters ∆i. The

columns in the final restricted master problem of P da
i are partially disaggregated. For

each column that is not in the basis, only one column of the original set of adjacent

columns is generated. For those that are in the basis, we generate a subset of origi-

nal columns keeping the coefficients of the aggregated column. Therefore, if pattern

(0, 0, 0, 2, 1)T in Example 4.5 is in the optimal solution, only (0, 0, 0, 0, 0, 2, 0, 1, 0)T ,

(0, 0, 0, 0, 0, 0, 2, 1, 0)T , (0, 0, 0, 0, 0, 2, 0, 0, 1)T and (0, 0, 0, 0, 0, 0, 2, 0, 1)T will be gener-

ated. The resolution of P da
i−1 starts with this initial set of disaggregated columns. An

artificial column with a high cost guarantees the feasibility of the disaggregated master

problem. The nth iteration consists in solving the original problem P starting with the

disaggregated columns of P da
1 .

4.7 Computational Experiments

We report the results of three groups of tests performed on randomly generated in-

stances and other well known instances from the literature. We compare the effective-

ness of the different approaches based on the number of column generation iterations

and the total computing time.

A starting set of columns was computed through a FFD heuristic, in which rolls were

filled in order of decreasing lengths. An artificial column was added to the restricted

master problem for the case the heuristic does not provide a valid solution due to

the rolls’ availability constraints. The knapsack subproblems were solved using the

mt1r procedure of Martello and Toth [88]. At most one column per stock length was

generated in each iteration.

80 4. Accelerating Column Generation for Cutting Stock Problems

wi = 80 1 1

70 1 1

60 1 1 1 1

55 1 1 1 1 1

43 1 1 1 1 2

38 1 1 2 2 1 1 1

33 1 1 2 2 1 1 1 1 3

20 1 1 1 1 2 2 1 1

16 1 1 1 1 1 2 2 1 1

Figure 4.6: Set of feasible patterns (Example 4.5)

wi = 80 1

70 1

60 2/5 1/2

55 3/5 1/2

43 1/5 3/9 2

38 2/5 7/9

33 2/5 8/9 3

20 4/9 1 1/2 1/2

16 5/9 1 1/2 1/2

Figure 4.7: Set of patterns after column aggregation (Example 4.5)

wi = 80 1

70 1

57 1 1

38 1 2 2

18 1 2 1 1

Figure 4.8: Final set of patterns (Example 4.5)

4.7. Computational Experiments 81

Our computational experiments were conducted on a 700 MHz Pentium III with

128 Mb of RAM under Windows ME operating system. The algorithms were coded

using C++ and CPLEX 6.5 [69].

Table 4.5 illustrates the relative performance of the dual inequalities introduced in

Section 4.3. A comparison is made among the standard column generation algorithm,

column generation with the additional dual inequalities (4.5), and column generation

considering inequalities (4.5), (4.6), (4.7) and (4.8). Dual inequalities were added before

the first resolution of the LP relaxation with a small perturbation of their right hand

side for (4.5) and (4.6), so that the respective columns are at the zero level in the final

solution. To limit the number of columns inserted, the maximum cardinality of S has

been set to |S| = 2. Only one column per item was considered when |S| = 2. The

tests were carried out on a set of randomly generated problems inspired in the triplets

instances from the OR-library [11]. For these instances of the related variable sized

bin-packing problem, the solution consists in rolls receiving exactly three items. The

only difference between the triplets instances of the OR-library and our test-problems

is that a limited number of bins with various capacities are now considered. Six groups

of 50 instances each were generated with m ranging from 100 to 180 and K from 5

to 15. The items have integer sizes between 100 and 360, while the roll lengths vary

between 400 and 720.

Table 4.5 shows the average computing time in seconds (tlp), and the average num-

ber of column generation iterations (splp) obtained with the three alternative strategies.

A percentage of reduction (% red) in time and iterations is indicated, comparing the

standard column generation algorithm to the other two methods.

The inequalities on items’ dual variables seem to have only a limited impact on

those instances. The set of inequalities imposed on the rolls’ dual variables appears as

a good complement to reach an interesting level of stabilization. For the first group

of instances, which is also the harder, with an average number of iterations of 162.6,

the combined application of these dual inequalities yields a reduction of approximately

50% in the computing time and in the number of subproblems solved. Note that

the instances were generated such that the constraints on rolls’ availability were truly

effective. Indeed, dual inequalities (4.6), (4.7) and (4.8) will be stronger when these

restrictions are tighter. In practice, we will surely found many problems with this

characteristic.

In Table 4.6, we report the average computational results obtained for a subset of

the instances used in a recent publication of Belov and Scheithauer [13]. These results

illustrate the impact of the two-phase algorithm based on the aggregation scheme RA

of Section 4.6.1 (procedure RA, for short) compared to the standard column generation

algorithm with and without the dual inequalities discussed in this article. We chose

15 groups of 50 instances each, with m = 100 and m = 150, and a number of stock

82 4. Accelerating Column Generation for Cutting Stock Problems

m k Strategy splp % red tlp % red

Standard Column Generation 162.6 16.9

168.0 5.0 Ineq. on Items’ Dual Variables 132.1 18.8 14.7 13.0

Ineq. on Items and Rolls’ Dual Variables 80.0 50.8 8.7 48.5

Standard Column Generation 50.8 3.2

102.6 11.0 Ineq. on Items’ Dual Variables 49.5 2.6 3.5 -9.4

Ineq. on Items and Rolls’ Dual Variables 35.4 30.3 2.4 25.0

Standard Column Generation 72.3 7.6

128.0 11.0 Ineq. on Items’ Dual Variables 64.2 11.2 7.4 2.6

Ineq. on Items and Rolls’ Dual Variables 45.5 37.1 4.8 36.8

Standard Column Generation 85.9 13.2

152.8 11.0 Ineq. on Items’ Dual Variables 78.6 8.5 13.6 -3.0

Ineq. on Items and Rolls’ Dual Variables 54.6 36.4 8.2 37.9

Standard Column Generation 108.0 25.2

177.9 11.0 Ineq. on Items’ Dual Variables 98.1 9.2 25.4 -0.8

Ineq. on Items and Rolls’ Dual Variables 64.2 40.6 14.8 41.3

Standard Column Generation 87.0 24.7

179.5 15.0 Ineq. on Items’ Dual Variables 84.1 3.3 26.4 -6.9

Ineq. on Items and Rolls’ Dual Variables 62.7 27.9 18.3 25.9

Table 4.5: Performance of the inequalities on items’ and rolls’ dual variables

lengths varying between 2 and 10.

With procedure RA, the reduction in the number of column generation iterations

achieved with dual inequalities is almost always duplicated. For one group of instances

(m = 99.40 and K = 3.80), the improvement reaches 36.2%. The computing time does

not generally decrease in the same proportion. However, there exists an appreciable

number of instances for which the RA procedure gives very good results. In Table

4.7, we compile the results obtained with the best 10 instances within each group.

This represents 20% of the initial instances. Surprisingly, we are able to cut between

43.3% and 83.5% of the column generation iterations and, even with the disaggregation

overhead, the total computing time is reduced by up to 71.4%. In some runs of the

column generation algorithm with dual inequalities, we observe an increase of the

computing time. This situation is due to a limited number of instances for which the

mt1r algorithm finds some difficulties.

In all the experiments conducted, the n-phase algorithm of Section 4.6.2 (we will

also refer to it as procedure DA) yields far more regular results than those achieved

with procedure RA. To illustrate this conclusion, we present the results obtained with

a set of well known bin-packing instances for which procedure RA gave only marginal

improvements. Three problem sets are considered. The Hard28 problems consists in

4.7. Computational Experiments 83

m k Strategy splp % red tlp % red
Standard Column Generation 135.3 11.7

99.10 3.70 Dual Inequalities 110.9 18.0 5.4 53.8
Procedure RA + Dual Ineq. 86.1 36.4 5.1 56.4
Standard Column Generation 121.0 8.6

99.08 4.00 Dual Inequalities 100.9 16.6 5.3 38.4
Procedure RA + Dual Ineq. 82.2 32.1 6.1 29.1
Standard Column Generation 102.3 10.4

99.08 3.98 Dual Inequalities 84.3 17.6 4.7 54.8
Procedure RA + Dual Ineq. 68.6 32.9 5.1 51.0
Standard Column Generation 121.3 5.1

99.08 3.73 Dual Inequalities 99.0 18.4 5.3 -3.9
Procedure RA + Dual Ineq. 78.9 35.0 5.6 -9.8
Standard Column Generation 119.8 8.8

99.08 4.00 Dual Inequalities 99.7 16.8 5.3 39.8
Procedure RA + Dual Ineq. 80.8 32.6 5.5 37.5
Standard Column Generation 136.9 7.3

99.03 3.87 Dual Inequalities 106.3 22.4 4.4 39.7
Procedure RA + Dual Ineq. 80.6 41.1 3.4 53.4
Standard Column Generation 128.1 2.4

99.10 3.74 Dual Inequalities 101.4 20.8 2.7 -12.5
Procedure RA + Dual Ineq. 81.7 36.2 2.2 8.3
Standard Column Generation 125.2 3.6

99.10 3.74 Dual Inequalities 100.4 19.8 3.9 -8.3
Procedure RA + Dual Ineq. 80.6 35.6 3.4 5.6
Standard Column Generation 123.1 4.3

99.08 3.78 Dual Inequalities 100.7 18.2 5.5 -27.9
Procedure RA + Dual Ineq. 79.8 35.2 4.5 -4.7
Standard Column Generation 98.8 6.3

99.31 3.77 Dual Inequalities 74.7 24.4 2.4 61.9
Procedure RA + Dual Ineq. 44.6 54.9 1.8 71.4
Standard Column Generation 81.7 1.4

99.40 3.80 Dual Inequalities 60.5 25.9 1.3 7.1
Procedure RA + Dual Ineq. 31.0 62.1 0.7 50.0
Standard Column Generation 104.0 6.8

99.23 6.23 Dual Inequalities 84.0 19.2 7.0 -2.9
Procedure RA + Dual Ineq. 64.2 38.3 5.6 17.6
Standard Column Generation 182.8 17.2

148.50 3.74 Dual Inequalities 144.4 21.0 15.5 9.9
Procedure RA + Dual Ineq. 110.7 39.4 13.8 19.8
Standard Column Generation 220.6 46.0

148.47 3.77 Dual Inequalities 176.0 20.2 20.5 55.4
Procedure RA + Dual Ineq. 141.4 35.9 18.9 58.9
Standard Column Generation 85.0 8.4

99.09 8.67 Dual Inequalities 71.2 16.2 7.8 7.1
Procedure RA + Dual Ineq. 59.8 29.6 7.7 8.3

Table 4.6: Performance of aggregation scheme RA

84 4. Accelerating Column Generation for Cutting Stock Problems

m k Strategy splp % red tlp % red
Standard Column Generation 104.4 2.7

99.10 3.50 Dual Inequalities 85.3 18.3 3.6 -33.3
Procedure RA + Dual Ineq. 42.1 59.7 2.0 25.9
Standard Column Generation 103.0 3.2

99.00 4.00 Dual Inequalities 83.0 19.4 3.0 6.3
Procedure RA + Dual Ineq. 51.4 50.1 2.3 28.1
Standard Column Generation 94.9 4.1

99.00 4.00 Dual Inequalities 79.0 16.8 3.3 19.5
Procedure RA + Dual Ineq. 51.2 46.0 2.6 36.6
Standard Column Generation 94.3 2.5

99.00 3.60 Dual Inequalities 74.2 21.3 3.3 -32.0
Procedure RA + Dual Ineq. 41.4 56.1 2.2 12.0
Standard Column Generation 105.8 3.0

99.00 4.00 Dual Inequalities 86.0 18.7 2.9 3.3
Procedure RA + Dual Ineq. 54.2 48.8 2.1 30.0
Standard Column Generation 91.3 1.7

99.00 3.80 Dual Inequalities 72.3 20.8 1.8 -5.9
Procedure RA + Dual Ineq. 38.4 57.9 1.1 35.3
Standard Column Generation 100.2 1.5

99.00 3.60 Dual Inequalities 77.6 22.6 2.3 -53.3
Procedure RA + Dual Ineq. 43.6 56.5 1.3 13.3
Standard Column Generation 97.1 1.9

99.00 3.60 Dual Inequalities 75.4 22.3 2.8 -47.4
Procedure RA + Dual Ineq. 40.6 58.2 1.4 26.3
Standard Column Generation 91.8 2.2

98.90 3.60 Dual Inequalities 74.6 18.7 2.9 -31.8
Procedure RA + Dual Ineq. 39.7 56.8 1.8 18.2
Standard Column Generation 86.7 1.6

99.20 3.80 Dual Inequalities 65.7 24.2 1.4 12.5
Procedure RA + Dual Ineq. 17.7 79.6 0.5 68.8
Standard Column Generation 86.5 1.4

99.30 3.80 Dual Inequalities 65.9 23.8 1.3 7.1
Procedure RA + Dual Ineq. 14.3 83.5 0.4 71.4
Standard Column Generation 88.1 3.4

99.10 6.30 Dual Inequalities 70.7 19.8 3.5 -2.9
Procedure RA + Dual Ineq. 40.0 54.6 2.1 38.2
Standard Column Generation 147.0 7.7

148.40 3.80 Dual Inequalities 116.2 21.0 11.2 -45.5
Procedure RA + Dual Ineq. 64.4 56.2 5.3 31.2
Standard Column Generation 171.3 9.2

148.50 3.70 Dual Inequalities 129.3 24.5 8.7 5.4
Procedure RA + Dual Ineq. 77.9 54.5 8.3 9.8
Standard Column Generation 79.2 6.0

99.30 9.00 Dual Inequalities 66.0 16.7 5.8 3.3
Procedure RA + Dual Ineq. 44.9 43.3 4.6 23.3

Table 4.7: Computational results for the best 10 instances of each group in Table 4.6

4.8. Conclusion 85

28 instances originally generated by J. Schoenfield [103]. As we can see in Table 4.8,

the standard column generation algorithm takes on average 532.4 iterations, which is

a considerable number. The two remaining problem sets are the t501 and t249 triplet

instances from the already mentioned OR-library [11].

With the instances of the Hard28 set, we were able to control the number of items in

each equivalence group using only the parameters ∆i. In fact, considering a 4 iteration

process, equivalence groups with more than 5 items were rare. This is an a priori

guarantee that the time needed to perform the disaggregation will never be high. With

the triplet instances, the situation is different. Item sizes differ only in small amounts

and, for example, an aggregation with ∆ = 1 leads to a high number of items going to

the same equivalence group. Therefore, the maximum number of items per equivalence

group was restricted to 5 elements. Since the number of column generation iterations

achieved with dual inequalities is reasonably low, we tested a 2 iterations procedure.

In Table 4.8, 4.9 and 4.10, we present the results obtained with standard column

generation, column generation using dual inequalities on the items’ dual variables and

procedure DA. In the latter, dual inequalities were also added to the aggregated master

problems. In the next comments, we will denote these procedures by SCG, CG-DI and

DA-DI, respectively.

With procedure DA-DI, the number of column generation iterations needed to reach

the optimal solution decreases significantly. Compared to CG-DI, the percentage of

reduction is approximately 50% for the three sets of instances. The number of columns

in the final restricted master problem increases, but these extra columns are generated

faster via the disaggregation processes. Indeed, the computational results show that it

is more efficient to perform a restricted disaggregation rather than generating columns

by solving a knapsack problem, whatever the algorithm we choose. For the three sets

of instances, the average computing times decreases with procedure DA-DI. For the

Hard28 set, standard column generation needs 532.4 iterations, on average, and runs in

8.9 seconds. With CG-DI, we get the optimal solution 16.9% faster. Procedure DA-DI

almost doubles this value with a time reduction of 32.6%. For the t501 set, CG-DI

yields a reduction of 32.8%, while procedure DA-DI improves this value in 25.2%. The

maximum reduction in the computing time is achieved for the instance t501 02 with

69.2%. For this instance, procedure CG-DI yields a reduction of 25.6%. With problems

growing in size and complexity, this tendency in time reduction will surely become even

more significant.

4.8 Conclusion

In this chapter, we analyzed different strategies to stabilize and accelerate column

generation in the context of multiple length cutting stock problems, and variable sized

86 4. Accelerating Column Generation for Cutting Stock Problems

Standard Dual Inequalities procedure DA +

Problem m CG Dual Inequalities

splp tlp splp % red tlp % red splp % red tlp % red

bpp14 136 472 6.1 290 38.6 4.6 24.6 142 69.9 3.2 47.5

bpp832 139 497 6.9 317 36.2 5.4 21.7 172 65.4 5.6 18.8

bpp40 144 594 9.2 369 37.9 10.9 -18.5 199 66.5 8.2 10.9

bpp360 148 419 5.3 207 50.6 3.4 35.8 53 87.4 1.7 67.9

bpp645 141 561 8.4 344 38.7 6.2 26.2 174 69.0 4.3 48.8

bpp742 148 394 4.7 229 41.9 3.9 17.0 87 77.9 3.5 25.5

bpp766 143 521 7.3 363 30.3 6.3 13.7 187 64.1 5.4 26.0

bpp60 144 518 7.1 292 43.6 4.8 32.4 161 68.9 4.5 36.6

bpp13 161 682 12.6 413 39.4 9.5 24.6 260 61.9 9.9 21.4

bpp195 161 596 10.9 446 25.2 13.7 -25.7 282 52.7 9.6 11.9

bpp709 160 550 9.3 379 31.1 10.5 -12.9 182 66.9 6.9 25.8

bpp785 163 679 13.2 459 32.4 10.9 17.4 251 63.0 8.9 32.6

bpp47 158 476 7 220 53.8 3.9 44.3 104 78.2 3.4 51.4

bpp181 157 546 8.4 363 33.5 7.1 15.5 176 67.8 5.9 29.8

bpp359 164 417 5.9 252 39.6 4.9 16.9 142 65.9 4.2 28.8

bpp485 163 552 9 329 40.4 6.8 24.4 166 69.9 5.7 36.7

bpp640 165 396 5.3 211 46.7 4.1 22.6 53 86.6 2.4 54.7

bpp716 158 383 4.8 206 46.2 3.8 20.8 86 77.5 2.9 39.6

bpp119 173 629 12.5 371 41.0 9.2 26.4 274 56.4 10.9 12.8

bpp144 173 548 10.4 354 35.4 9.2 11.5 185 66.2 7.3 29.8

bpp561 177 598 12.4 414 30.8 11.5 7.3 273 54.3 9.9 20.2

bpp781 174 606 12.5 374 38.3 10.5 16.0 167 72.4 6.5 48.0

bpp900 173 632 12.6 403 36.2 10.5 16.7 168 73.4 6.3 50.0

bpp175 185 528 9.3 264 50.0 6.2 33.3 154 70.8 6.6 29.0

bpp178 178 608 11.7 357 41.3 9.1 22.2 248 59.2 10.4 11.1

bpp419 189 673 14.5 390 42.1 11.2 22.8 201 70.1 7.9 45.5

bpp531 175 443 6.7 220 50.3 4.7 29.9 55 87.6 2.4 64.2

bpp814 179 388 5.7 208 46.4 4.3 24.6 68 82.5 3.0 47.4

average 161.8 532.4 8.9 323.0 39.3 7.4 16.9 166.8 68.7 6.0 32.6

Table 4.8: Solution data for the Hard28 instances

4.8. Conclusion 87

Standard Dual Inequalities procedure DA +

Problem m CG Dual Inequalities

splp tlp splp % red tlp % red splp % red tlp % red

t501 00 190 173 11.3 104 39.9 7.5 33.6 44 74.6 5.3 53.1

t501 01 192 152 9.6 87 42.8 6.6 31.3 38 75.0 4.3 55.2

t501 02 190 174 11.7 100 42.5 8.7 25.6 43 75.3 3.6 69.2

t501 03 199 169 15.7 103 39.1 14.1 10.2 55 67.5 5.7 63.7

t501 04 195 168 11.4 96 42.9 12.4 -8.8 44 73.8 6.0 47.4

t501 05 195 182 12.3 96 47.3 7.4 39.8 54 70.3 4.5 63.4

t501 06 196 180 12.4 96 46.7 7.4 40.3 44 75.6 6.1 50.8

t501 07 192 168 10.8 91 45.8 6.7 38.0 38 77.4 4.4 59.3

t501 08 196 170 11.4 103 39.4 8.0 29.8 47 72.4 4.4 61.4

t501 09 189 155 9.8 96 38.1 7.2 26.5 42 72.9 3.8 61.2

t501 10 190 165 10.6 92 44.2 6.8 35.8 39 76.4 4.7 55.7

t501 11 195 178 12.0 102 42.7 7.9 34.2 44 75.3 6.1 49.2

t501 12 189 172 10.9 91 47.1 6.5 40.4 48 72.1 5.0 54.1

t501 13 198 187 13.1 104 44.4 8.3 36.6 47 74.9 6.3 51.9

t501 14 203 190 14.4 95 50.0 7.7 46.5 45 76.3 4.8 66.7

t501 15 197 181 13.0 102 43.6 8.1 37.7 39 78.5 6.1 53.1

t501 16 198 176 11.9 95 46.0 7.2 39.5 48 72.7 6.0 49.6

t501 17 196 171 12.0 92 46.2 7.7 35.8 43 74.9 3.7 69.2

t501 18 193 189 12.4 99 47.6 7.4 40.3 52 72.5 4.1 66.9

t501 19 192 182 11.6 95 47.8 7.0 39.7 50 72.5 5.7 50.9

average 194.3 174.1 11.9 97.0 44.3 8.0 32.8 45.2 74.0 5.0 58.0

Table 4.9: Solution data for the t501 instances

88 4. Accelerating Column Generation for Cutting Stock Problems

Standard Dual Inequalities procedure DA +

Problem m CG Dual Inequalities

splp tlp splp % red tlp % red splp % red tlp % red

t249 00 134 146 4.2 82 43.8 2.5 40.5 48 67.1 2.1 50.0

t249 01 140 151 4.5 87 42.4 3.8 15.6 49 67.5 2.1 53.3

t249 02 139 152 4.5 89 41.5 2.9 35.6 46 69.7 2.2 51.1

t249 03 142 150 4.5 75 50.0 2.5 44.4 48 68.0 2.3 48.9

t249 04 134 136 3.5 76 44.1 2.3 34.3 42 69.1 2.0 42.9

t249 05 145 158 5.0 80 49.4 2.8 44.0 41 74.1 3.0 40.0

t249 06 138 148 4.1 84 43.2 2.7 34.1 47 68.2 1.6 61.0

t249 07 137 136 3.8 80 41.2 2.6 31.6 42 69.1 2.9 23.7

t249 08 139 153 4.5 93 39.2 4.8 -6.7 43 71.9 2.0 55.6

t249 09 141 155 5.0 92 40.7 3.2 36.0 41 73.5 1.8 64.0

t249 10 140 146 4.0 83 43.2 2.7 32.5 49 66.4 2.4 40.0

t249 11 141 149 4.3 83 44.3 2.8 34.9 38 74.5 2.2 48.8

t249 12 141 146 4.2 83 43.2 2.9 31.0 42 71.2 2.0 52.4

t249 13 141 153 4.6 84 45.1 2.8 39.1 42 72.5 2.0 56.5

t249 14 145 157 5.1 103 34.4 3.8 25.5 54 65.6 2.3 54.9

t249 15 142 145 4.3 80 44.8 2.6 39.5 49 66.2 1.9 55.8

t249 16 144 151 4.6 81 46.4 2.8 39.1 43 71.5 2.2 52.2

t249 17 145 158 4.9 92 41.8 3.2 34.7 43 72.8 2.3 53.1

t249 18 138 144 4.1 82 43.1 2.7 34.1 48 66.7 1.6 61.0

t249 19 136 137 3.6 77 43.8 2.6 27.8 41 70.1 1.9 47.2

average 140.1 148.6 4.4 84.3 43.3 3.0 31.8 44.8 69.9 2.1 52.3

Table 4.10: Solution data for the t249 instances

4.8. Conclusion 89

bin-packing problems. Some of the prescribed methods are directly applicable to the

standard cutting stock problem (bin-packing problem, respectively), the well known

special case where only one stock length is available.

New weak and deep dual-optimal inequalities were introduced. We showed that they

are a good complement to the dual inequalities imposed on items’ dual variables. Their

number is limited, and so we can normally enumerate them all before the resolution of

the first master problem.

An important contribution of this chapter is the application of dual inequalities in

all the branching nodes of the branch-and-bound tree. Prior results have shown the

potential of dual inequalities in stabilizing and accelerating column generation algo-

rithms. However, these results are limited to the LP relaxation part of the cutting

stock problem. We have shown how to extend them to all the branching nodes, and we

also gave new valid dual inequalities where the dual variables for the branching con-

straints are taken into account. Computational experiments were conducted indicating

a significant reduction in the total computing time and the number of branching nodes.

Additionally, we explored the idea of aggregation to control the progress of the

dual variables and thus accelerate the resolution of the master problems. Procedure

RA, despite its extreme simplicity, gave very interesting results, but was outperformed

by the more sophisticated n-phase algorithm of Section 4.6.2. This latter procedure

forces sets of dual variables to be equal during its various stages. The respective

approximations are solved by column generation with reduced tailing-off, which leads

to an overall process with better convergence properties.

To evaluate the performance of these approaches, extensive computational exper-

iments were carried out on various sets of randomly generated instances and other

instances found in the literature. The appreciable improvements achieved allow us to

claim the effectiveness of the strategies based on aggregation.

Chapter 5

The Pattern Minimization Problem

After an optimal cutting plan has been devised, one might want to further reduce

the operational costs by minimizing the number of setups associated to this plan. A

setup operation occurs each time a different cutting pattern begins to be produced.

The related optimization problem is known as the Pattern Minimization Problem,

and it is particularly hard to solve exactly. In this chapter, we explore different

techniques to strengthen the formulation proposed by Vanderbeck [123]. We use the

dual feasible functions described in [42] to derive valid superadditive inequalities for

the integer knapsack polytope, from different constraints of the model, including

surrogate constraints. We also propose a method to improve these cuts, when all

the coefficients are known, or alternatively, when one can easily predict them. We

developed an integrated branch-and-price-and-cut algorithm, which allows one to

derive stronger cuts by combining the branching constraints with other constraints

of the model. Besides, it is also important to note that our branching scheme ensures

convergence. The computational experiments were conducted using the instances

tested in [123], plus an additional set of randomly generated instances.

We also explored the extension of the algorithm to the case in which multiple stock

lengths are available. As for the standard case, the cutting plan must not consume

more resources than the optimal plan, and, hence, an upper bound is enforced on

the total stock length required. Computational results are reported at the end of

the chapter.

Keywords: Pattern Minimization Problem, Column Generation, Surrogate Con-

straints, Dual Feasible Functions, Cutting Planes, Branch-and-Price-and-Cut

91

92 5. The Pattern Minimization Problem

5.1 Introduction

Trim loss has been traditionally considered as the primary objective of cutting stock

problems, but other costs may also be relevant. A setup cost, for example, is incurred

each time we move from a pattern to a different one in a cutting plan. These changes

take time. The knives must be repositioned to fit the next pattern. As a consequence,

waste may be generated since various trial runs may be needed to reach the right

positions. Finding a good pattern sequencing may minimize these costs by limiting

the movements of the knives. This latter problem is referred to in the cutting stock

literature as the Knife Change Minimization Problem; it is particularly hard to solve.

In this chapter, we address the former problem of minimizing the number of setups or

Pattern Minimization Problem (PMP).

Pattern minimization can be tackled with three different priorities: as a primary

objective (this is quite rare), combined with the objective of trim loss minimization

or as a secondary objective. Making it the main objective of the cutting plan may

result in solutions with an increased material usage. In the case of an unlimited (or

at least non restrictive) supply of raw material, an obvious solution consists in cutting

one item per stock roll. This gives an upper bound equal to the number of different

items ordered. Solutions generated using a combined trim loss and setups minimization

objective seem to better fit the reality of industrial applications. The cutting plans

produced with such an objective take clearly into account the trade-off between waste

and setups, and only if the cost of the raw material is really insignificant will the number

of setups be individually minimized. Setups can also be minimized in a second phase

restricting the number of stock rolls to use to its minimum possible value obtained by

solving the corresponding cutting stock problem. Alternatively, a higher value may

be chosen. The number of patterns in the solution of the cutting stock problem is an

upper bound on the number of setups.

The Pattern Minimization Problem is strongly NP-hard even when the correspond-

ing cutting stock problem has a trivial solution [89]. There are many references con-

cerning heuristic approaches. One of the oldest is perhaps from Haessler [61, 62], who

developed a sequential heuristic procedure. A list of candidate patterns is first gener-

ated. Patterns are then sequentially added to the solution, selecting first those that

have smaller waste and higher frequencies. The number of different patterns in the LP

solutions is reduced, which makes the rounding of fractional solutions easier.

Other researchers tried to reduce the number of setups starting with a given solution

by combining two or more patterns. Allwood and Goulimis [3], Johnston [72, 73] and

Diegel [33] developed such algorithms. Foerster and Waescher [44] proposed recently

the KOMBI heuristic, which allows many types of combinations.

Chen et al. [19] proposed a slight variation of the basic simulated annealing algo-

5.1. Introduction 93

rithm to solve a nonlinear model with two-sided demand constraints, different sizes

of raw material, load balancing between the cutting machines and a combined trim

loss and pattern minimization objective. The authors compared their algorithm to the

standard simulated annealing using a small size instance (4 machine roll sizes and 4

ordered items), and performing an extensive statistical analysis of the effects of the

parameters. They obtained better objective values in less time. Teghem et al. [112]

used also a simulated annealing algorithm for the problem of printing book covers with

fixed and variable costs.

Umetani et al. [113] proposed an iterated local search metaheuristic. The neigh-

borhood is defined by switching one of the cutting patterns from the current solution.

The authors devised an adaptive pattern generation heuristic and, in fact, restrict this

neighborhood to the set of patterns it generates. The new pattern frequencies are com-

puted with a heuristic based on the nonlinear Gauss-Seidel method. Since the number

of setups is fixed, these frequencies are computed such that the sum of squares of the

deviations from the demands is minimized. The algorithm was compared to the sequen-

tial heuristic procedure of Haessler and to the KOMBI heuristic. The computational

experiments conducted indicate a comparable performance.

Goulimis [57] solved the cutting stock problem with two-sided demand constraints

using branch-and-bound and cutting planes. He focused on a set of small instances

for which the complete set of cutting patterns can be generated in reasonable time.

Setups were minimized afterwards, combining patterns using an approach inspired on

Johnston [72].

Vanderbeck [123] solved the problem for a fixed number of stock sheets, with all

the stocks having the same size. He used a model where columns are patterns with an

associated multiplicity, and derived a branch-and-price-and-cut algorithm. The model

has an exponential number of columns. Each valid cutting pattern is replicated until

the maximum multiplicity that ensures that no more items than those demanded are

included. Unless the instances are very small, the problem can only be tackled by

column generation. The subproblem is originally nonlinear, but it can be solved as a

sequence of integer bounded knapsack problems.

Even if it improves the LP bound of the compact assignment formulation, the

lower bound of the model of Vanderbeck remains quite weak. In part, this is due to

what the author called LP cheating, i.e., columns with a large multiplicity getting

preferentially fractional values in the LP solutions. For a set of real-life instances, the

author experienced an integrality gap of 33.5%. He then resorted to general cutting

planes to strengthen the linear relaxation. Two superadditive functions were used

to derive valid inequalities from single rows, namely the demand constraints and the

constraint on the maximum number of stock sheets used. A proof is given showing

that these cuts can be stronger than the rank 1 Chvátal-Gomory cuts. The integrality

94 5. The Pattern Minimization Problem

gap is finally reduced to 13.8%. The gap would certainly be even more reduced if facet

defining cover inequalities could be used, but the changes induced to the subproblem

would make it intractable.

LP based branch-and-bound is used to find integer solutions. Subsets of columns

are selected for branching using 7 different rules. Branching begins with the columns

that have a higher multiplicity and a fractional total sum. Fixing first these variables

leads to a faster improvement of the lower bounds. However, all these rules do not

ensure convergence to an integer optimal solution.

Belov [12] considered the combined trim loss and pattern minimization problem.

He used an extension of the Gilmore and Gomory model [52] for the standard cut-

ting stock problem, which has more constraints than columns. Since this is a weaker

column generation reformulation of the compact assignment formulation, the author

strengthened it using a bound on the pattern frequencies similar to that of Vanderbeck

for the pattern multiplicities. He showed that the resulting LP bound is equal to the

one given by the formulation finally used by Vanderbeck. To make his model compu-

tationally more tractable, Belov removed all the binary variables and corresponding

definition constraints and introduced a nonlinear objective function that accounts for

the material costs. The objective function is linearly relaxed giving a model with a

weak LP bound. The proposed algorithm failed to solve 8 of the 16 instances tested

by Vanderbeck, while Vanderbeck was unable to close the integrality gap for only 4 of

them.

In this chapter, we analyze an exact branch-and-price-and-cut algorithm for the

latter version of PMP. In Section 5.2, the different formulations for the problem are

reviewed. In Section 5.2.4, we will show how the largest pattern multiplicity can be

reduced in the model of Vanderbeck, and the impact it has on the respective LP

bound. We proceed by describing how one of these models, the one due to Vanderbeck

[123], can be strengthened, and how to derive cutting planes from the constraints of

the model using for the first time the dual feasible functions discussed in [42]. Some

enhancements to our cutting plane procedure are finally described. They rely on the

principle of surrogate constraints. Additionally, we extended our algorithm to cope

with multiple stock lengths.

5.2 Integer Linear Programming Formulations

In this section, we present three possible IP formulations for the PMP. An instance of

the PMP consists in a set of items with sizes wi and a demand of bi units, i = 1, . . . ,m,

and rolls of length W . Here, we consider the item sizes ordered by decreasing sizes,

from w1, the largest, to wm, the smallest. The optimal solution of the corresponding

cutting stock problem is denoted by zCSP . We consider this value as an upper bound

5.2. Integer Linear Programming Formulations 95

on the number of rolls over which the cutting patterns can be distributed.

5.2.1 A Compact Assignment Formulation

The PMP can be formulated as an integer assignment problem with nonlinear con-

straints as follows

min

zCSP∑
k=1

yk (5.1)

subject to
zCSP∑
k=1

zkxik = bi, i = 1, . . . ,m, (5.2)

zCSP∑
k=1

zk ≤ zCSP , (5.3)

zk ≤ zCSP yk, k = 1, . . . , zCSP , (5.4)
m∑

i=1

wixik ≤ Wyk, k = 1, . . . , zCSP , (5.5)

xik ≥ 0 and integer, i = 1, . . . ,m, k = 1, . . . , zCSP , (5.6)

yk ∈ {0, 1}, k = 1, . . . , zCSP , (5.7)

zk ≥ 0 and integer, k = 1, . . . , zCSP . (5.8)

This model was proposed by Vanderbeck in [123]. The nonlinearities are in the demand

constraints (5.2). Variables xik denote the number of items i in pattern k, while zk is

the number of times pattern k is used. Variables yk are binary and take the value 1 if

pattern k is used, and 0 otherwise. Since the objective is to minimize the sum of these

yk variables and zk are general integer variables, two patterns k1 and k2 with k1 6= k2

belonging to an optimal solution will be necessarily different. The number of patterns

is limited to zCSP units through constraint (5.3). Constraints (5.5) are the knapsack

constraints. This model is compact; it has exactly 2zCSP + mzCSP variables. In the

following sections, we review two possible column generation decompositions for it.

5.2.2 A Gilmore and Gomory based Model

The first column generation formulation is largely inspired on the model from Gilmore

and Gomory for the cutting stock problem [52]. A column in this reformulation remains

an exact cutting pattern, and is now associated to a binary variable in order to keep

track of the exact number of different patterns used. Formally, this model is obtained

96 5. The Pattern Minimization Problem

by keeping in the master problem constraints (5.2)-(5.4) as follows

min
∑
p∈P

µp (5.9)

subject to∑
p∈P

aipλp = bi, i = 1, . . . ,m, (5.10)∑
p∈P

λp ≤ zCSP , (5.11)

λp ≤ µp min
i=1,...,m

⌊
bi

aip

⌋
, p ∈ P, (5.12)

λp ≥ 0 and integer, p ∈ P, (5.13)

µp ∈ {0, 1}, p ∈ P. (5.14)

being P the pattern set. Coefficients aip indicate the number of items i in pattern p,

variables λp denote the usage of pattern p, and µp are 1 if pattern p is used, and 0

otherwise. Constraints (5.5) go to the pricing subproblem, which remains a knapsack

problem.

Model (5.9)-(5.14) has an exponential number of columns and constraints. In [12],

Belov solved a relaxation where constraints (5.12) are dropped, but did not really suc-

ceed in solving many of the instances tested in [123]. In [123], Vanderbeck described a

weaker version of (5.9)-(5.14), where the coefficient in the right hand side of (5.12) is

replaced by a larger upper bound on the number of rolls. He also proposed a compu-

tationally more tractable decomposition, which, according to a result from Belov [12],

provides an LP bound equivalent to the one obtained with (5.9)-(5.14).

5.2.3 Column Generation Reformulation from Vanderbeck

In this chapter, we consider an alternative column generation model obtained by keep-

ing in the master only the constraints (5.2) and (5.3). This decomposition yields a

nonlinear pricing subproblem, which can be linearized by fixing one of its variables.

Each column of the master is now a pattern replicated as many times as given by the

column multiplicity. The master problem states as follows

min
∑
p∈P

ub(Pp)∑
n=1

λpn (5.15)

subject to∑
p∈P

ub(Pp)∑
n=1

naipλpn = bi, i = 1, . . . ,m, (5.16)

∑
p∈P

ub(Pp)∑
n=1

nλpn ≤ zCSP , (5.17)

λpn ∈ {0, 1}, p ∈ P, n = 1, . . . , ub(Pp). (5.18)

5.2. Integer Linear Programming Formulations 97

The λpn variables are double indexed, with p indicating the original pattern in P , and

n the number of replications of this pattern. Value n is also denoted as the multiplicity

of the column. The maximum admissible multiplicity for a pattern p in P is given by

ub(Pp) = min
i=1,...,m

⌊
bi

aip

⌋
.

The pricing subproblem is the following nonlinear knapsack problem

max n

(
m∑

i=1

πixi + ρ

)
(5.19)

subject to
m∑

i=1

wixi ≤ W, (5.20)

nxi ≤ bi, (5.21)

n ∈ {1, . . . , nmax}, (5.22)

xi ≥ 0 and integer, (5.23)

being nmax a global upper bound on the patterns multiplicities, and π and ρ the vector

of dual variables for the demand constraints (5.16) and the constraint on the number

of rolls (5.17), respectively. Vanderbeck suggests the following value for nmax

nmax = min
{

zCSP − z + 1, max
i

bi

}
,

where z is a given lower bound on the minimum number of setups. The nonlinearities

of (5.19)-(5.23) can be easily avoided by considering a sequence of bounded integer

knapsack problems with a fixed multiplicity n

max
m∑

i=1

πixi (5.24)

subject to
m∑

i=1

wixi ≤ W, (5.25)

xi ≤ min

{⌊
W

wi

⌋
,

⌊
bi

n

⌋}
, i = 1, . . . ,m, (5.26)

xi ≥ 0 and integer. (5.27)

Vanderbeck already noticed that, sometimes, it is not necessary to enumerate all the

possible values of n, since an optimal solution to (5.24)-(5.27) may remain optimal for

successive values of n. However, depending on the extra constraints that may be en-

forced in the master (branching constraints or cutting planes), a complete enumeration

may be unavoidable.

98 5. The Pattern Minimization Problem

5.2.4 Improving the Model of Vanderbeck

When an upper bound is settled on the number of rolls, as it is the case, we can easily

derive an upper bound on the total waste that can be produced by a cutting plan.

Following this idea, the model of Vanderbeck can be improved by excluding from the

set of admissible patterns those with an excessively high value of waste. Here, excessive

means greater than

l = zCSP W −
m∑

i=1

wibi, (5.28)

which is precisely the amount of waste generated by a cutting plan with zCSP rolls.

Indeed, these patterns will never be part of any optimal integer solution to the corre-

sponding PMP. However, unless this is explicitly enforced, the corresponding columns

can be generated and appear with a fractional value in the optimal solution of the LP

relaxations. The following new constraint is added to the pricing subproblem to avoid

generating these invalid cutting patterns

n

(
W −

m∑
i=1

wixi

)
≤ l. (5.29)

Restricting the set of valid columns strengthens the model (5.15)-(5.18), but as

computational results will show, the main value of the loss constraint (5.29) seems to

be elsewhere. In fact, this constraint may help in reducing the value of nmax, and

expectably, the number of knapsack problems that have to be solved to price out the

attractive columns.

If a model with constraints (5.24)-(5.27) and (5.29) is infeasible for n = n1, this

can only be due to (5.29), since at least the null solution is always valid for (5.24)-

(5.27). This means that there is no arrangement of items such that the unused space

in the knapsack is between 0 and W −
⌊

l

n1

⌋
. Clearly, the knapsack problems related

to multiplicities greater than n1 are also infeasible. Increasing n reduces the upper

bounds on the item frequencies and the interval on which the pattern waste must be.

If a solution exists for a multiplicity n2 > n1, this solution will be feasible for the

problem with multiplicity n1. These conclusions lead to the following reformulation of

nmax

nmax = min
{

zCSP − z + 1, max
i

bi, n
′
}

, (5.30)

where n′ is the solution of the following problem

n′ = max n (5.31)

subject to
m∑

i=1

wixi ≥ W −
⌊

l

n

⌋
, (5.32)

5.3. New General Cutting Planes 99

m∑
i=1

wixi ≤ W, (5.33)

xi ≤ min

{⌊
W

wi

⌋
,

⌊
bi

n

⌋}
, i = 1, . . . ,m, (5.34)

n ≥ 0 and integer, (5.35)

xi ≥ 0 and integer, i = 1, . . . ,m. (5.36)

The maximum multiplicity of a cutting pattern, denoted above by ub(Pp), can be

restated as

ub(Pp) = min

{
min

i=1,...,m

⌊
bi

aip

⌋
,

⌊
l

W −
∑m

i=1 wiaip

⌋}
.

To evaluate the impact of the new constraint (5.29), we solved the LP relaxation

of (5.15)-(5.18) for the instances in [123], with and without this constraint. Table 5.1

summarizes the results. Column Waste lists, for each instance, the waste generated by

the optimal solution of the corresponding cutting stock problem. Column kpLP reports

the total number of knapsack problems solved. The number of generated columns

(colsLP), the maximum multiplicity among the added columns (mult) and the optimal

LP solution (zLP) are also reported. For these instances, the LP bound improves only

0.4%, on average, a value that is quite insignificant. On the other hand, the number

of column generation subproblems solved is significantly reduced. While 880 knapsack

problems are needed on average to reach the optimal LP solution, with constraint

(5.29) this value goes down to 585, a saving of almost 34%. Furthermore, there are

13% less columns generated and the maximum multiplicity of the newly generated

columns decreases almost 30%.

5.3 New General Cutting Planes

Clearly, constraint (5.29) is not enough to improve the LP bound given by the linear

relaxation of (5.15)-(5.18) satisfactorily. A poor lower bound compromises the chances

of a branch-and-bound algorithm. In this section, we explore a new family of valid

inequalities used to strengthen model (5.15)-(5.18). Based on the theory of superaddi-

tive functions, we prove their validity, and show than they can outperform the cuts of

Vanderbeck [123]. Before describing these inequalities, we briefly recall the underlying

theory of superadditive functions.

5.3.1 Superadditive functions

In [93], Nemhauser and Wolsey proved that valid inequalities for Zn∩
{
x ∈ Rn

+ : Ax ≤ b
}

can be derived applying a function F : D ⊆ Rm → R1 over all the coefficients of a

100 5. The Pattern Minimization Problem

Without constraint (5.29) With constraint (5.29)

Name Waste kpLP colsLP mult zLP kpLP colsLP mult zLP

kT03 3088 110 30 31 4.77 99 26 31 4.77

kT05 102108 120 42 25 5.65 114 42 15 5.65

kT01 274 160 34 13 2.00 95 22 10 2.10

kT02 16575 468 114 13 15.93 461 112 13 15.93

kT04 36703 295 86 9 6.71 253 100 8 6.74

d16p6 36693 295 86 9 6.71 253 100 8 6.74

7p18 3826 264 44 84 3.74 155 32 56 3.74

d33p20 39905 869 160 13 6.05 583 136 8 6.18

12p19 526 643 98 13 2.88 489 90 12 2.89

d43p21 39764 1204 210 17 7.86 1018 202 13 7.86

kT06 1981 833 76 37 1.72 472 54 32 1.75

kT07 4990 1061 104 55 2.86 640 78 36 2.86

14p12 190500 1230 118 50 3.72 766 98 29 3.75

kT09 699 1577 130 94 3.65 1203 118 64 3.65

11p4 19000 1775 124 85 2.47 806 72 57 2.48

30p0 2562 3176 238 61 5.50 1946 194 36 5.51

avg. 31199.63 880.00 105.88 38.06 5.14 584.56 92.25 26.75 5.16

Table 5.1: Measuring the impact of constraint (5.29)

single constraint. For this purpose, F must be superadditive and nondecreasing. Su-

peradditivity is defined over set D as follows. If F is such that

F (x) + F (y) ≤ F (x + y), ∀x, y, x + y ∈ D,

then F is a superadditive function. On the other hand, F is nondecreasing over D if

x ≤ y ⇒ F (x) ≤ F (y), ∀x, y ∈ D.

It follows that any nondecreasing linear function can generate valid inequalities.

Superadditive functions can also be obtained by the composition of other super-

additive functions. The inequalities generated by a superadditive function are called

superadditive valid inequalities. The maximal inequalities for Zn ∩
{
x ∈ Rn

+ : Ax ≤ b
}

are necessarily superadditive valid inequalities.

In [123], Vanderbeck gives a set of valid superadditive inequalities for S = {x ∈
Nn :

∑
i aixi ≤ b, a ∈ Nn, b ∈ N, ai ≤ b, ∀i}. Using the superadditive function

F γ(z) = max

{
0,

⌈
γz

b

⌉
− 1

}
, with γ ∈ {2, . . . , b}, he derives the inequalities

∑
i

(⌈
γai

b

⌉
− 1

)
xi ≤ γ − 1, (5.37)

5.3. New General Cutting Planes 101

and uses them to strengthen the linear relaxation of (5.15)-(5.18). In the following

section, we describe different sets of superadditive functions that can yield stronger

inequalities for S.

5.3.2 A Class of Valid Inequalities for the Integer Knapsack

Polytope

The term “dual feasible function” was originally used by Lueker [84]. It denotes a

function f : [0, 1] → [0, 1], such that for S ⊆ [0, 1], the following holds∑
x∈S

x ≤ 1 ⇒
∑
x∈S

f(x) ≤ 1.

Quite recently, Fekete and Schepers [42] used different dual feasible functions to derive

fast lower bounds for bin-packing problems. We will show that these functions are

also superadditive and nondecreasing, and can consequently be used to generate valid

inequalities for integer knapsack polytopes. To the best of our knowledge, dual feasible

functions have never been used for this purpose.

All the dual feasible functions described in [42] are based on rounding. The first

one slightly improves a function proposed earlier by Lueker. Denoting it by u(k), we

can state it as follows

u(k) : [0, 1] → [0, 1]

x 7→

{
x, for (k + 1)x ∈ Z,
b(k+1)xc

k
, otherwise,

with k ∈ N. Function u(k) is clearly nondecreasing. Its superadditivity is proved next.

Proposition 5.1 Function u(k) is superadditive over [0, 1], for k ∈ N.

Proof: Let x, y, and x + y be nonnegative real values belonging to R+ ∩ [0, 1]. For

(k + 1)(x + y) /∈ Z, we have

u(k)(x + y) =
b(k + 1)(x + y)c

k
=

=

{
b(k+1)xc

k
+ b(k+1)yc

k
, if (k + 1)(x + y)− (b(k + 1)xc+ b(k + 1)yc) < 1,

b(k+1)xc
k

+ b(k+1)yc
k

+ 1
k
, if (k + 1)(x + y)− (b(k + 1)xc+ b(k + 1)yc) ≥ 1.

Hence, the following cases may arise:

1. (k+1)x ∈ Z and (k+1)y /∈ Z: since (k+1)(x+y) /∈ Z and b(k+1)xc
k

= (k+1)x
k

> x,

we have

u(k)(x) + u(k)(y) = x +
b(k + 1)yc

k
< u(k)(x + y);

102 5. The Pattern Minimization Problem

2. (k + 1)x /∈ Z, (k + 1)y /∈ Z and (k + 1)(x + y) /∈ Z: we have

u(k)(x) + u(k)(y) =
b(k + 1)xc

k
+
b(k + 1)yc

k
≤ u(k)(x + y);

Additionally, we may consider the following cases:

1. (k + 1)x ∈ Z and (k + 1)y ∈ Z: this implies (k + 1)(x + y) ∈ Z, and

u(k)(x) + u(k)(y) = x + y = u(k)(x + y);

2. (k + 1)x /∈ Z, (k + 1)y /∈ Z and (k + 1)(x + y) ∈ Z: this implies

(k + 1)(x + y)− (b(k + 1)xc+ b(k + 1)yc) = 1,

Rearranging the terms, we get

x + y =
b(k + 1)xc

k
+
b(k + 1)yc

k
+

1− (x + y)

k
.

Since x + y must be in R+ ∩ [0, 1], we have finally

u(k)(x) + u(k)(y) =
b(k + 1)xc

k
+
b(k + 1)yc

k
≤ x + y = u(k)(x + y).

�

With the next proposition, we show that u(k) generates valid superadditive inequalities

that are at least as strong as (5.37).

Proposition 5.2 For S = {x ∈ Nn :
∑

i aixi ≤ b, a ∈ Nn, b ∈ N, ai ≤ b, ∀i} and

k ∈ N, the following inequality ∑
i

u(k)
(ai

b

)
xi ≤ 1 (5.38)

is equivalent or dominates (5.37).

Proof: Let zi = ai

b
and, without loss of generality, assume that k = γ − 1. Inequalities

(5.37) can be rewritten as follows ∑
i

dγzie − 1

γ − 1
xi ≤ 1.

For γzi /∈ Z, we have dγzie−1
γ−1

= bγzic
γ−1

= b(k+1)zic
k

= u(k)(zi). On the other hand, for

γzi ∈ Z, we have u(k)(zi) = zi ≥ dγzie−1
γ−1

, since zi ≤ 1 and

dγzie − 1

γ − 1
=
d(k + 1)zie − 1

k
=

(k + 1)zi − 1

k
= zi +

zi

k
− 1

k
.

�

5.3. New General Cutting Planes 103

Another dual feasible function discussed in [42] is the one that formalizes the proce-

dure developed by Martello and Toth [88] to derive the well known L2 lower bound for

bin-packing. This function is also superadditive and nondecreasing, but the inequali-

ties it generates for S = {x ∈ Nn :
∑

i aixi ≤ b, a ∈ Nn, b ∈ N, ai ≤ b, ∀i} can now be

weaker or stronger than (5.37), depending on the coefficients ai and b of the original

knapsack constraint. We denote this function by u
(ε)
1 ; its definition follows

u
(ε)
1 : [0, 1] → [0, 1]

x 7→


0, for x < ε,

x, for ε ≤ x ≤ 1− ε,

1, for x > 1− ε,

with ε ∈
[
0, 1

2

]
.

Proposition 5.3 Function u
(ε)
1 is superadditive over [0, 1], for ε ∈ [0, 1

2
].

Proof: Let x, y, x + y ∈ R+ ∩ [0, 1] and consider the following three cases:

1. x + y < ε : in this case, we have u
(ε)
1 (x + y) = 0 and, since x < ε and y < ε, the

following holds

u
(ε)
1 (x) + u

(ε)
1 (y) = 0 = u

(ε)
1 (x + y);

2. ε ≤ x + y ≤ 1− ε : then x ≤ 1− ε, y ≤ 1− ε, and consequently

u
(ε)
1 (x) + u

(ε)
1 (y) ≤ x + y = u

(ε)
1 (x + y);

3. x + y > 1− ε : since ε ≤ 1
2

and x + y ∈ [0, 1], if x > 1− ε, then y < ε and

u
(ε)
1 (x) + u

(ε)
1 (y) = 1 = u

(ε)
1 (x + y),

otherwise

u
(ε)
1 (x) + u

(ε)
1 (y) ≤ x + y ≤ 1 = u

(ε)
1 (x + y).

�

The following example shows through two different simple cases that, sometimes, in-

equalities (5.37) can be dominated by the following inequalities generated with u
(ε)
1 for

S = {x ∈ Nn :
∑

i aixi ≤ b, a ∈ Nn, b ∈ N, ai ≤ b, ∀i}∑
i

u
(ε)
1

(ai

b

)
xi ≤ 1. (5.39)

We also show that the converse may be true.

104 5. The Pattern Minimization Problem

Example 5.1 For S = {x ∈ N2 : 50x1 + 52x2 ≤ 100} and ε = 0.5, we obtain the valid

superadditive inequality 0.5x1 +x2 ≤ 1 applying u
(ε)
1 on the single knapsack constraint

of S (u
(ε)
1 is applied on the coefficients normalized to 1, i.e., divided by the right-hand

side of the original inequality). It is easy to confirm that there is no γ ∈ [2, 100] for

(5.37) leading to a stronger inequality. Consider now S = {x ∈ N2 : 10x1+19x2 ≤ 100}.
With γ = 11, we have an inequality of type (5.37) with the form 0.1x1 + 0.2x2 ≤ 1,

while with u
(ε)
1 we are unable to generate any cut stronger than 0.1x1 + 0.19x2 ≤ 1,

i.e., the original inequality. �

The last dual feasible function is defined with a parameter ε in the range [0, 1
2
(, and

is denoted by u
(ε)
2 .

u
(ε)
2 : [0, 1] → [0, 1]

x 7→


0, for x < ε,

1
bε−1c , for ε ≤ x < 1

2
,

1
2
, for x = 1

2
,

1− b(1−x)ε−1c
bε−1c , for x > 1

2
.

Using a small example, we show that u
(ε)
2 is not superadditive for all the values of ε in

[0, 1
2
(. However, we can prove that it is superadditive for a smaller interval for ε.

Example 5.2 Let ε in u
(ε)
2 be equal to 0.1. For x = 0.15 and y = 0.15, we have

u
(ε)
2 (x) + u

(ε)
2 (y) = 0.2 > u

(ε)
2 (x + y) = 0.1,

which clearly violates the superadditivity condition. �

Proposition 5.4 Function u
(ε)
2 is superadditive over [0, 1], for ε ∈)1

4
, 1

2
(.

Proof: Consider the following four cases:

1. x + y < ε : then x < ε, y < ε and

u
(ε)
2 (x) + u

(ε)
2 (y) = 0 = u

(ε)
2 (x + y);

2. ε ≤ x + y < 1
2

: then x < 1
2

and y < 1
4

(or vice versa). We have u
(ε)
2 (x) ≤ 1

bε−1c ,

u
(ε)
2 (y) = 0, since ε > 1

4
, and hence

u
(ε)
2 (x) + u

(ε)
2 (y) ≤ 1

bε−1c
= u

(ε)
2 (x + y);

5.3. New General Cutting Planes 105

3. x + y = 1
2

: if x = 1
2
, then y = 0 (or vice versa), and

u
(ε)
2 (x) + u

(ε)
2 (y) =

1

2
= u

(ε)
2 (x + y).

On the other hand, if x < 1
2
, then y < 1

4
, (or vice versa); u

(ε)
2 (x) ≤ 1

bε−1c ≤
1
2
,

u
(ε)
2 (y) = 0, and hence

u
(ε)
2 (x) + u

(ε)
2 (y) ≤ 1

2
= u

(ε)
2 (x + y);

4. x + y > 1
2

: with ε ∈)1
4
, 1

2
(, we have

2

bε−1c
≤ 1− b(1− (x + y))ε−1c

bε−1c
= u

(ε)
2 (x + y) ≤ 1,

and hence, superadditivity is proven for the cases where x and y are both strictly

less than 1
2
. If x and y are both equal to 1, we have

u
(ε)
2 (x) + u

(ε)
2 (y) = 1 = u

(ε)
2 (x + y)

For x > 1
2

and y < ε, we have

u
(ε)
2 (x) + u

(ε)
2 (y) = 1− b(1− x)ε−1c

bε−1c
≤ 1− b(1− (x + y))ε−1c

bε−1c
= u

(ε)
2 (x + y),

The remaining case is when x > 1
2

and ε ≤ y < 1
2
. We have

b(1− (x + y))ε−1c = b(1− x)ε−1 − yε−1c ≤ b(1− x)ε−1 − 1c = b(1− x)ε−1c − 1,

and hence

u
(ε)
2 (x) + u

(ε)
2 (y) = 1− b(1− x)ε−1c

bε−1c
+

1

bε−1c
≤ 1− b(1− (x + y))ε−1c

bε−1c
.

�

Once more, u
(ε)
2 is clearly nondecreasing and, for ε ∈)1

4
, 1

2
(, the following inequalities it

generates for S = {x ∈ Nn :
∑

i aixi ≤ b, a ∈ Nn, b ∈ N, ai ≤ b, ∀i}∑
i

u
(ε)
2

(ai

b

)
xi ≤ 1, (5.40)

can dominate or be dominated by inequalities (5.37), as is shown in the following

example.

Example 5.3 For a set S = {x ∈ N2 : 10x1 +19x2 ≤ 100}, function u
(ε)
2 with ε ∈)1

4
, 1

2
(

produces no useful valid inequality. However, for the set S = {x ∈ N2 : 270x1+745x2 ≤
1000} and ε = 0.26, u

(ε)
2 yields the inequality 1

3
x1 + x2 ≤ 1, which is stronger than any

inequality of type (5.37). �

106 5. The Pattern Minimization Problem

5.3.3 Separation Procedures

Let S = {x ∈ Nn :
∑

i aixi ≤ b, a ∈ Nn, b ∈ N, ai ≤ b, ∀i}, and x∗ be a point in

the convex hull of S. To find an inequality of type (5.38) violated by x∗, we simply

search sequentially for a value of k from 1 up to 3b, and check the validity of x∗ for the

corresponding inequality. The separation procedures for (5.39) and (5.40) are a little

more sophisticated.

For (5.39), we adopted a separation procedure inspired on [88]. Let w be the set

composed by the elements of a = (a1, a2, . . . , an) in decreasing order, i.e., wi ≥ wi+1,

for i = 1, . . . , n− 1, and let i∗ = min
{
i ∈ [1, . . . , n] : wi ≤ 1

2

}
. Violated inequalities of

type (5.39) are searched sequentially starting with ε = wi∗ and ending with ε = wn.

We search for violated inequalities of type (5.40) by selecting ε in u
(ε)
2 from a set S ′

composed by the following values:

. 0.5-% ;

. ai, for ai ∈ a = (a1, a2, . . . , an) and ai < 1
2

;

. 1
p
, for p ∈ N ;

. 1−ai

p
, for ai ∈ a = (a1, a2, . . . , an), ai > 1

2
and p ∈ N.

The values of S ′ are selected in decreasing order. Coefficient p is a parameter and ρ is

a small positive value. In our implementation, we restrict p to 30 units.

5.3.4 Improving the Dual Feasible Functions

In the context of bin-packing problems, the essential property of dual feasible functions

can be stated as follows: applying a dual feasible function to the item sizes of any

feasible packing solution, the resulting item sizes must continue to fit together in the

same bin. These functions are based on rounding: while some of the item sizes are

increased, others are decreased accordingly. Given a set S ⊆ [0, 1] of item sizes to pack

on a bin of normalized capacity 1, if all the elements of S are known a priori, it may

be possible to obtain a better set of transformed sizes, depending on the elements of

S. We show how this can be done using an example.

Example 5.4 Consider the function u(k) with k = 5 represented in Figure 5.1. A loss

zone [42] is a subinterval of [0, 1] for which u(k)(x) < x. Win zones correspond to those

intervals where u(k)(x) > x. In Figure 5.1, loss and win zones are the areas in dark

and light grey, respectively. Let S ⊆ [0, 1] be such that S ∩ [1
6
, 1

5
] = ∅. In this case, the

elements of S ∩ [4
5
, 5

6
] can be rounded up to 1 instead of 0.8, which is the value given

by u(k)(x). Indeed, items with sizes between 4
5

and 5
6

can only be combined with items

of size lower or equal to 1
5

and, for x < 1
6
, u(k)(x) = 0. The corresponding loss zone

5.4. A Branch-and-Price-and-Cut Algorithm 107

Figure 5.1: Graphical representation of u(k) for k = 5

becomes a win zone. For the same reasons, if S ∩ [1
6
, 1

5
] = ∅ and S ∩ [1

3
, 2

5
] = ∅, the

elements of S ∩ [3
5
, 2

3
] can be raised up to 4

5
instead of 3

5
. Using a similar reasoning,

other cases could have been identified allowing a loss zone to become a win zone. �

This observation can be used to obtain eventually stronger valid inequalities for knap-

sack polytopes, as long as all the coefficients of the original knapsack constraints are

known, or can easily be predicted. In this thesis, we are precisely interested in the other

cases, where enumerating the complete set of the knapsack constraint coefficients is im-

practical, and where prediction is difficult. For this reason, we will not go into further

details here.

5.4 A Branch-and-Price-and-Cut Algorithm

In this section, we describe the main features of our branch-and-price-and-cut algo-

rithm. After reviewing some aspects of the master problem initialization, we present the

mapping scheme used to convert a solution from the column generation model (5.15)-

(5.18) into a feasible solution of a compact arc flow model for PMP. Our branching

scheme relies on this latter model. We pursue with our branching strategy, the com-

plete description of our cutting plane procedure, and the general pricing subproblem

solved at the nodes of the branch-and-bound tree.

5.4.1 Initialization

The set of admissible patterns for any practical cutting stock problem is exponential.

Replicating a pattern in order to reflect a multiplicity (as is done in (5.15)-(5.18))

increases even more this already huge set. Therefore, one can only deal with a restricted

108 5. The Pattern Minimization Problem

master problem, which is common with column generation reformulations, and the

problem of selecting a pool of initial columns arises.

The first LP master related to (5.15)-(5.18) is initialized with an artificial column

and the patterns that are in the optimal basis of the corresponding cutting stock

problem. Note that this solution could certainly be improved by using one of the

combination heuristics discussed in Section 5.1. The artificial column receives a high

cost and coefficients equal to the right hand side of the constraints.

The algorithm used to solve the standard cutting stock problem is not of minor

importance. Besides providing the optimal number of stock rolls, which is a parameter

for the version of the PMP we are considering, it also provides an upper bound on the

minimum number of setups, a starting incumbent. This upper bound is given by the

number of different patterns that compose the optimal cutting plan, and its value may

vary among different algorithms. As an illustration, in Table (5.2), we compare the

bounds given by Vanderbeck in [123] with those obtained for the same instances with

the algorithm for the multiple length cutting stock problem described in Chapter 3.

Our algorithm gave on average slightly better results (16.5 vs 20.1). In the forthcoming

computational experiments, we will resort to this algorithm.

Name Vanderbeck [123] MLCSP Algorithm from

Chapter 3

kT03 8 6

kT05 12 11

kT01 7 6

kT02 66 20

kT04 20 16

d16p6 17 14

7p18 8 8

d33p20 17 17

12p19 15 15

d43p21 28 26

kT06 13 15

kT07 13 16

14p12 24 18

kT09 17 24

11p4 17 24

30p0 40 28

avg. 20.1 16.5

Table 5.2: Setups upper bounds with different CSP algorithms

5.4. A Branch-and-Price-and-Cut Algorithm 109

5.4.2 Converting the LP Solution

The PMP can also be formulated as a flow problem over an acyclic digraph G, with

three indexes flow variables. This is an alternative compact formulation to the assign-

ment model discussed above. As for the multiple length cutting stock problem, we will

base our branching scheme on this model, defining a comparable conversion rule to

translate a LP solution to the column generation model (5.15)-(5.18) into a set of arc

flows.

Graph G is composed by W + 1 nodes, one more than the length W of the stock

rolls. A unit flow going through an arc of G represents an item placed in a precise

area of the roll, which appears in a pattern with a given multiplicity. The minimum

number of different patters is given by the minimum weighted flow in G with additional

constraints. Our arc flow model for the PMP states follows

min
nmax∑
n=1

zn (5.41)

subject to

−
∑

(r,s)∈An

xn
rs +

∑
(s,t)∈An

xn
st =


zn, for if s = 0,

−zn, for s = W ,

0, otherwise,

∣∣∣∣∣∣∣ n = 1, . . . , nmax, (5.42)

nmax∑
n=1

∑
(r,r+wi)∈An

nxn
r,r+wi

= bi , i = 1, . . . ,m, (5.43)

xn
rs ≥ 0 and integer, n = 1, . . . , nmax, ∀(r, s) ∈ An, (5.44)

zn ≥ 0 and integer, n = 1, . . . , nmax. (5.45)

There is an arc set An for each multiplicity n from 1 up to the maximum nmax, as

defined in (5.30). The conservation of flow occurs among the arcs of the same set An.

It is enforced by the constraints (5.42). Variables xn
rs denote the flow on arc (r, s) of

An, while zn, n = 1, . . . , nmax, represent the number of patterns with multiplicity n

used. The loss constraint described in Section 5.2.4 is enforced by restricting in each

An the set of loss arcs, those with a unit size. Note that although the variables of

(5.15)-(5.18) are binary, the variables of the arc flow model (5.41)-(5.45) are general

integer variables.

Any pattern or column in (5.15)-(5.18) can be mapped into different sets of arc

flows in G, and so does an LP solution to (5.15)-(5.18). In order to associate a single

path in G for each specific column of the master, so that we can easily define sets of

columns with a common property to branch, we define the following mapping rule. A

column with multiplicity n maps into an ordered sequence of arcs in An, starting at

node 0, the left border of the roll. Items are converted into arcs in order of decreasing

110 5. The Pattern Minimization Problem

sizes, and then, for two arcs (r, s) and (t, u) belonging to the path, we have r > t

implies s− r ≥ u− t. The loss arcs are left for the end of the roll.

5.4.3 Branching Scheme

Before describing our cutting plane procedure, we introduce first the details of our

branching scheme. This is motivated by the fact that cutting planes are derived not

only from the constraints of the LP relaxation of (5.15)-(5.18), but also from the

branching constraints.

Whenever cutting planes are not enough to close the integrality gap, we resort to

branch-and-bound. Branching on the variables of the LP formulation related to (5.15)-

(5.18) is inappropriate, since, to avoid column regeneration, the pricing procedure

should not return the optimal solution, but rather the second best solution, or even

more, depending on the depth of the node. Such a branching scheme modifies the

subproblem, making it clearly intractable. A major requirement for a branching scheme

is to be compatible with the subproblem. Convergence is obviously another crucial

matter. In [123], Vanderbeck proposes for the PMP a list of branching rules based on

hyperplanes. Even if, in practice, the author does not report any situation in which

a fractional solution could not be excluded, his branching scheme does not guarantee

convergence to an optimal integer solution. Branching on the arc flow variables of

(5.41)-(5.45) does not induce any intractable modification to the pricing subproblem,

and has the added benefit of guaranteed convergence.

Any mapping of a continuous solution to the relaxation of (5.15)-(5.18) into an

equivalent solution for the LP relaxation of (5.41)-(5.45) yields, at least, one fractional

variable. Here, we consider branching on one of these variables. When the solution of

the LP master is fractional and the corresponding node can not be pruned by bounding,

we convert the fractional solution into a set of arc flows using the mapping scheme

described above. A variable xn
rs with a fractional value is then selected for branching,

and two nodes are created with the following branching constraints

xn
rs ≤ bxn

rsc , (5.46)

and

xn
rs ≥ dxn

rse . (5.47)

These constraints are easily enforced in the LP master. All the columns with multi-

plicity n that map into a path with an arc (r, s) have a +1 coefficient in the branching

constraint. With this branching strategy, we avoid the problem of symmetry, where

solutions that are essentially the same appears in different branches of the tree.

When certain of these branching constraints are imposed, the LP lower bound can

eventually be tightened. Consider, for example, the branching constraint xn
rs ≥ lb with

5.4. A Branch-and-Price-and-Cut Algorithm 111

W − s < wi, for all i = 1, . . . ,m, i.e., no item can be placed at position s. That means

that part of the total waste (precisely lb × n(W − s)) will surely be concentrated on

patterns with multiplicity n. Hence, among the patterns with multiplicities n′ 6= n,

only those with a waste equal to or lower than⌊
l − lb× n(W − s)

n′

⌋
need to be generated in this node and its descendants. The patterns that are already

in the master and violate this condition can be just removed.

At node w, the restricted master consists in the following LP

min
∑
p∈P ′

∑
n∈N ′

p

λpn (5.48)

subject to
∑
p∈P ′

∑
n∈N ′

p

naipλpn = bi, i = 1, ...,m, (5.49)

∑
p∈P ′

∑
n∈N ′

p

nλpn ≤ zCSP , (5.50)

∑
p∈P ′

∑
n∈N ′

p

cipnλpn ≤ 1, ∀i ∈ C, (5.51)

∑
{p∈P ′: n∈N ′

p}

grs
pnλpn ≤ ubn

rs, ∀(r, s, n) ∈ Gw, (5.52)

∑
{p∈P ′: n∈N ′

p}

grs
pnλpn ≥ lbn

rs, ∀(r, s, n) ∈ Hw, (5.53)

0 ≤ λpn ≤ 1, p ∈ P ′, n ∈ N ′
p. (5.54)

The restricted set of patterns are denoted by P ′. Set N ′
p denotes the multiplicities for

pattern p that are in the LP master. The set of branching constraints (5.46) and (5.47)

enforced at a node w of the branch-and-bound tree correspond respectively to Gw and

Hw. The right hand side of the branching constraints on an arc (r, s) with multiplicity

n in Gw and Hw are respectively ubn
rs and lbn

rs. Coefficients grs
pn are binary. They are

equal to 1 if column pn maps into a path with the arc (r, s) of An, and equal to 0

otherwise. Cutting planes are represented by constraints (5.51), with C being the cut

set and cipn the coefficient of column pn in cut i. In the next section, cutting planes

are discussed in further details.

Usually, columns with high multiplicities have fractional values in optimal LP so-

lutions. Hence, we select for branching the variable corresponding to the leftmost arc

with the higher multiplicity. Ties are broken by choosing the largest arcs. In order to

favor a faster improvement of the incumbent, we used a depth-first strategy to select

the next branching node to explore.

112 5. The Pattern Minimization Problem

5.4.4 The Cutting Plane Procedure

Once the column generation process is complete, if the solution is not already integer

and the smallest integer greater than or equal to the LP bound is strictly lower than the

incumbent, we search for violated cuts before resorting to branching. Cutting planes

of type (5.38), (5.39) and (5.40) are derived from three different sets of constraints:

. the constraint on the maximum number of rolls (5.50);

. the demand constraints (5.49);

. an additional waste constraint.

In fact, instead of using the exact constraint on the number of rolls as defined in (5.50),

we generate cuts based on the following surrogate constraint∑
p∈P ′

∑
n∈N ′

p

(n− 1)λpn ≤ zCSP − LBw, (5.55)

where LBw is the lower bound on the number of setups at a node w of the branch-

and-bound tree. The surrogate constraint (5.55) results from the combination of (5.17)

with ∑
p∈P ′

∑
n∈N ′

p

λpn ≥ LBw.

Note that LBw is always the best known lower bound for node w. As a consequence,

some of the cuts may be valid for that node w and its descendants, but not for the other

nodes, those with an eventually smaller lower bound on the number of setups. Using

this surrogate constraint may lead to stronger cuts. Indeed, the coefficients of the left

hand side of (5.17) are decreased by only one unit, while its right hand side is usually

decreased by a greater value. The ratio between the coefficients of the constraint and

its right hand side increases, and we can expect to get cuts with greater coefficients

in general. The superadditive inequalities (5.38), (5.39) and (5.40) derived from (5.55)

take the following form

∑
p∈P ′

∑
n∈N ′

p

u(k)

(
n− 1

zCSP − LBw

)
λpn ≤ 1, k ∈ N, (5.56)

∑
p∈P ′

∑
n∈N ′

p

u
(ε)
1

(
n− 1

zCSP − LBw

)
λpn ≤ 1, ε ∈ [0,

1

2
], (5.57)

∑
p∈P ′

∑
n∈N ′

p

u
(ε)
2

(
n− 1

zCSP − LBw

)
λpn ≤ 1, ε ∈)

1

4
,
1

2
(. (5.58)

5.4. A Branch-and-Price-and-Cut Algorithm 113

Using the same principle, we combine the branching constraints (5.47) at a node w

with the demand constraints (5.16) to derive the following surrogate constraints∑
p∈P ′

∑
n′∈N ′

p

(n′aip −
∑

(r,r+wi,n′)∈Hw

gr,r+wi

pn′)λpn′ ≤ bi −
∑

(r,r+wi,n)∈Hw

⌈
lbn

r,r+wi

⌉
,

i = 1, . . . ,m. (5.59)

Note that if two or more branching constraints of type (5.47) were enforced in a single

arc at node w, Hw only registers the last one, the constraint with the higher right hand

side. At the root node, we have Hw = ∅, and (5.59) reduces to the original demand

constraint. The deeper a node is in the tree, the stronger will be the cuts. Again,

constraints (5.59) are only valid on the nodes for which all the respective branching

constraints are enforced. Let

aipn′ = n′aip −
∑

(r,r+wi,n′)∈Hw

gr,r+wi

pn′ , and bi −
∑

(r,r+wi,n)∈Hw

⌈
lbn

r,r+wi

⌉
,

for p ∈ P ′, n′ ∈ N ′
p and i = 1, . . . ,m. From (5.59), we derive the following inequalities

∑
p∈P ′

∑
n′∈N ′

p

u(k)

(
aipn′

b′i

)
λpn′ ≤ 1, k ∈ N, i = 1, ...,m, (5.60)

∑
p∈P ′

∑
n′∈N ′

p

u
(ε)
1

(
aipn′

b′i

)
λpn′ ≤ 1, ε ∈ [0,

1

2
], i = 1, ...,m, (5.61)

∑
p∈P ′

∑
n′∈N ′

p

u
(ε)
2

(
aipn′

b′i

)
λpn′ ≤ 1, ε ∈)

1

4
,
1

2
(, i = 1, ...,m. (5.62)

An additional set of cuts can be derived from the following constraint on the total

waste ∑
p∈P ′

∑
n∈N ′

p

lpnλpn ≤ l.

Coefficients lpn are the total amount of waste associated to the n copies of pattern

p. This constraint is implicit in the master. It is induced by the demand constraints

and the constraint on the number of rolls. However, it might help in deriving violated

inequalities with the following form∑
p∈P ′

∑
n∈N ′

p

u(k)

(
lpn

l

)
λpn ≤ 1, k ∈ N, (5.63)

∑
p∈P ′

∑
n∈N ′

p

u
(ε)
1

(
lpn

l

)
λpn ≤ 1, ε ∈ [0,

1

2
], (5.64)

∑
p∈P ′

∑
n∈N ′

p

u
(ε)
2

(
lpn

l

)
λpn ≤ 1, ε ∈)

1

4
,
1

2
(. (5.65)

114 5. The Pattern Minimization Problem

Among all the cuts presented above, a single cut, the most violated one, is added

to the LP master in each iteration. The cutting plane procedure repeats until no more

inequalities, violated in more than 0.0001, can be identified. The separation procedure

is the one described in 5.3.3 for the general cuts (5.38), (5.39) and (5.40).

5.4.5 The Pricing Subproblem

The pricing subproblem solved at the root node consists in (5.24)-(5.27) with the

additional loss constraint discussed in Section 5.2.4. At a node w of the branch-and-

bound tree, the general reduced cost formula for a column pn is given by

rcpn = 1− n

(
m∑

i=1

πiaip + ρ

)
−
∑
j∈Cw

1

σjf
1
j

(
n− 1

zCSP − LBw

)
−

∑
(j,i)∈Cw

2

τ jf
2
j

(
aipn

b′i

)
−

−
∑
j∈Cw

3

υjf
3
j

(
lpn

l

)
−

∑
(r,s,n)∈Gw

φn
rsg

rs
pn +

∑
(r,s,n)∈Hw

ϕn
rsg

rs
pn. (5.66)

According to the originating constraint of the LP master, the sets of valid cuts enforced

at node w are denoted by Cw
1 , Cw

2 and Cw
3 , for (5.56)-(5.58), (5.60)-(5.62) and (5.63)-

(5.65), respectively. Vectors σ, τ and υ are the corresponding dual variables, while

π, ρ, φ and ϕ denote the dual variables for the demand constraints, the constraint

on the number of rolls and the branching constraints (5.52) and (5.53), respectively.

Functions f 1
j , f 2

j and f 3
j represent the specific dual feasible function (u(k)(x), u

(ε)
1 (x) or

u
(ε)
2 (x), with k and ε depending on the value of j) used to derive the jth cut in Cw

1 , Cw
2

and Cw
3 , respectively.

The pricing subproblem remains a nonlinear knapsack problem, which can be solved

as a sequence of linear knapsack problems by fixing the multiplicity. For a multiplicity

n, we can formulate the resulting pricing problem as an equivalent longest path problem

in an acyclic digraph G′ as follows

max
∑

(r,s)∈A′

crsxrs +
∑
j∈Cw

3

υjf
3
j

(
loss

l

)
(5.67)

subject to

−
∑

(r,s)∈A′

xrs +
∑

(s,t)∈A′

xst =


1, for if s = 0,

−1, for s = W ,

0, otherwise,

(5.68)

∑
(r,r+wi)∈A′

xr,r+wi
≤ min

{⌊
W

wi

⌋
,

⌊
bi

n

⌋}
, i = 1, . . . ,m, (5.69)

loss = W −
∑

(r,s)∈A′\A′
loss

xrs(s− r) ≤
⌊

l

n

⌋
, (5.70)

xrs ≥ 0 and integer,∀(r, s) ∈ A′, (5.71)

loss ≥ 0 and integer. (5.72)

5.4. A Branch-and-Price-and-Cut Algorithm 115

Within the arc set A′, the subset of loss arcs is denoted by A′
loss. The arc cost crs

follows from (5.66).

At the root node, when there are no cutting planes in the master yet, we do not

have to solve (5.67)-(5.72) for all the possible values of n. Let x∗ be the knapsack rep-

resentation of the optimal solution to (5.67)-(5.72), with x∗
i being the optimal number

of items i in the knapsack. An optimal solution x∗ for a given multiplicity n remains

optimal up to

n∗ = min
i

{⌊
bi

x∗
i

⌋
,

⌊
l

W −
∑

i wix∗
i

⌋}
, (5.73)

and therefore, (5.67)-(5.72) is solved only for n = 1 and the successive multiplicities

given by (5.73). With branching constraints but no cuts in the master, we apply a

similar scheme. When the cuts described in Section 5.4.4 are enforced in the master, we

resort to a complete enumeration of the multiplicities n. Recall that the loss constraint

(5.70) leads already to a significant reduction on the number of pricing subproblems

that are solved in practice. Dynamic programming is finally used to solve (5.67)-(5.72).

When there are no more attractive columns, column generation stops with a proof

of the optimality for the current solution of the LP master. In fact, column generation

can be stopped before this optimal solution is reached if, for example, the first integer

greater than the current LP solution is equal or lower than the best known lower bound

for the integer PMP on that specific node. The Farley’s bound [41] is also computed

after each column generation iteration to eventually prune the node if the given lower

bound is equal or greater than the incumbent.

5.4.6 Node Fathoming

A simple inspection of a node may help to accelerate branch-and-bound, by allowing

one to anticipate the infeasibility of the corresponding problem, or by allowing to prune

it by computing first a lower bound.

Consider a node w of the branch-and-bound tree with a set Hw of branching con-

straints of type (5.47), and let Hw
1 = {(r, s, n) ∈ Hw : W − s < wm}, with wm being

the size of the smallest item. If the following holds∑
(r,s,n)∈Hw

1

n× lbn
rs × (W − s) > l,

node w can be pruned, since the branching constraints force a solution with more waste

than the maximum waste of the optimal CSP solution.

Based on the branching constraints at a node w, we can calculate a lower bound on

the number of different patterns by two different ways. Let Hw
2n be the maximal set of

116 5. The Pattern Minimization Problem

branching constraints (5.47) for node w, such that two pairs (r1, s1, n) and (r2, s2, n)

belong to Hw
2n if they both belong to Hw and s1− r1 + s2− r2 > W . As a consequence,

the arcs in Hw
2n will appear necessarily in different patterns. If

nmax∑
n=1

∑
(r,s,n)∈Hw

2n

lbn
rs ≥ zinc, (5.74)

with zinc being the value of the current incumbent, node w can be pruned, since it

surely leads to a non improving solution. On the other hand, if

nmax∑
n=1

∑
(r,s,n)∈Hw

2n

n× lbn
rs > zCSP , (5.75)

node w is infeasible, and can therefore be pruned in anticipation. A second lower bound

can be computed as follows

nmax∑
n=1

max
(r,s,n)∈Hw

lbn
rs,

since max
(r,s,n)∈Hw

lbn
rs is a lower bound on the number of patterns with multiplicity n. The

node can eventually be pruned by comparing the bound with zinc and zCSP , as in (5.74)

and (5.75) respectively.

5.5 Computational Results

Two sets of computational experiments were carried out on a 3.0 GHz Pentium IV

computer with 512 MB of RAM, using CPLEX 6.5 with default settings. The first

set of instances is due to Goulimis and Vance [119], and was used by Vanderbeck

in [123]. Some of these instances come from real-life problems. The computational

results show that our approach improves in some aspects the exact method proposed

by Vanderbeck. Additionally, some experiments were performed on a set of randomly

generated instances.

5.5.1 Instances from the Literature

Table 5.3 summarizes the computational results obtained with the instances used in

[123]. The columns that are listed have the following interpretation

. Name identifies the instance;

. m is the number of different items;

. spLP is the number of subproblems solved at the root node;

5.5. Computational Results 117

. colsLP is the number of columns generated at the root node;

. spBB is the total number of subproblems solved at the nodes of the branch-and-

bound tree, excluding the root node;

. colsBB is the number of columns generated during branch-and-bound;

. nodBB is the number of nodes of the branch-and-bound tree, apart from the root

node;

. cuts is the total number of cutting planes added in the course of the algorithm;

. BBP is the initial lower bound obtained by solving the corresponding bin-packing

instance;

. zbc
LP is the LP optimum before any cut is added;

. zac
LP is the LP optimum after cuts are applied;

. LB is the best lower bound obtained in the course of the algorithm;

. UB is the value of the best incumbent;

. CSP is the number of different patterns given by the solution of the corresponding

cutting stock problem (the values were obtained using the algorithm for the

MLCSP discussed in Chapter 3);

. K is the number of stocks rolls that minimizes trim loss;

. tLP is the total computing time spent at the root node;

. tBB is the total time spent at the nodes of the branch-and-bound tree, after the

root node;

. tTOT is the total computing time.

The maximum computing time was limited to 2 hours. The algorithm solved success-

fully 13 of the 16 instances, while Vanderbeck only closed the optimality gap for 12 of

them. However, we were still unable to find the optimal solution or prove the optimal-

ity of the incumbent for instances kT09, 11p4 and 30p0 within the limit of 2 hours.

For these instances, the number of different item sizes, the size of each item compared

to the length of the stock rolls and the value of the demands make the set of feasible

cutting patterns relatively big. Furthermore, the optimum number of stock rolls is also

high, allowing a greater diversity of patterns. Using the loss constraint described in

Section 5.2.4 may help in reducing the set of cutting patterns, but for these instances

this is still not enough.

118 5. The Pattern Minimization Problem

N
a
m

e
m

sp
L

P
cols

L
P

sp
B

B
cols

B
B

n
od

B
B

cu
ts

B
B

P
z

bc
L

P
z

a
c

L
P

L
B

U
B

C
S

P
K

tL
P

tB
B

tT
O

T

1
k
T

03
7

70
64

0
0

0
46

3
4.77

5.50
6

6
6

66
0.14

0.00
0.14

2
k
T

05
10

55
46

157
87

65
62

4
5.65

8.00
9

9
11

47
2.80

8.38
11.17

3
k
T

01
5

36
35

14
14

1
57

1
2.1

2.61
3

3
6

14
0.27

0.08
0.35

4
k
T

02
24

121
119

93
61

26
69

13
15.93

18.00
18

18
20

66
0.62

1.17
1.78

5
k
T

04
16

201
166

356
281

88
113

6
6.74

7.88
9

9
16

38
2.49

11.16
13.66

6
d
16p

6
16

202
173

199
144

53
107

6
6.74

7.90
9

9
14

38
6.02

6.21
12.23

7
7p

18
7

65
53

587
437

193
170

2
3.74

4.90
6

6
8

91
2.57

43.31
45.88

8
d
33p

20
23

147
146

1253
1202

114
123

5
6.18

6.70
8

8
17

29
17.08

209.03
226.11

9
12p

19
12

98
96

1035
1004

63
167

2
2.89

3.90
5

5
15

23
15.84

135.59
151.43

10
d
43p

21
32

211
207

767
732

69
177

7
7.86

8.72
10

10
26

40
31.33

194.53
225.85

11
k
T

06
9

160
131

645
602

11
309

1
1.75

2.78
4

4
15

51
144.25

758.76
903.01

12
k
T

07
11

157
155

3458
3367

168
477

2
2.86

3.64
5

5
16

65
69.22

3393.52
3462.74

13
14p

12
14

140
119

112
110

5
178

2
3.75

4.22
5

5
18

56
40.71

34.32
75.03

14
k
T

09
14

138
136

3656
3574

175
313

2
3.65

4.95
5

6
24

110
128.98

7071.31
7200.29

15
11p

4
11

225
223

2135
2068

65
372

1
2.48

3.91
4

5
24

101
197.40

7002.88
7202.28

16
30p

0
26

313
311

2051
2043

28
294

4
5.51

6.66
7

8
28

90
265.92

6935.61
7201.53

av
g.

14.8
146.2

136.3
1032.4

982.9
70.3

189.6
3.8

5.16
6.27

7.1
7.3

16.5
57.8

57.85
1612.99

1670.75

T
ab

le
5.3:

C
om

p
u
tation

al
resu

lts
for

in
stan

ces
from

th
e

literatu
re

5.5. Computational Results 119

On average, our algorithm needs much less branching nodes. If we exclude the root,

Vanderbeck needed 169 nodes, which are mainly due to the instances 7p18 and d33p20,

while we only need 70.3 nodes. This is a reduction of almost 60%. Remember that

we do not use any rounding heuristic with which a better incumbent may probably

be found faster. In fact, we believe that the cutting plane procedure described in this

chapter is more effective in terms of pruning nodes by bounding than the approach of

Vanderbeck.

The LP bounds obtained after adding our cutting planes are better than the ones

obtained with the cutting planes described by Vanderbeck. For kT03, we were able to

strengthen the lower bound already at the root node. With 5.50, the bound can be

fixed to 6 which is precisely the value of the optimal solution. The bound of 5 units

obtained by Vanderbeck is improved by 10%. For most of the other instances, the LP

bound is close to the next integer value (7.90 for d16p6, 4.95 for kT09, for example).

On average, at the root node, the values of the LP optima are improved by 21.5%. In

Table 5.4, we compare for all the instances the exact values of the LP optima obtained

without any cutting plane, using our cutting planes and those proposed by Vanderbeck.

With the latter, the LP bounds are improved on average by 13.6%. The lower bounds

obtained with our cutting planes are always better. The improvement is indicated in

percentage in the last column of the table. It goes up to 26.1%.

Name zbc
LP (1) zac

LP (2) zac
LP ∆ (%)

1 kT03 4.77 4.99 5.50 10.22

2 kT05 5.65 7.06 8.00 13.31

3 kT01 2.10 2.46 2.61 6.10

4 kT02 15.93 17.42 18.00 3.33

5 kT04 6.74 7.79 7.88 1.16

6 d16p6 6.74 7.79 7.90 1.41

7 7p18 3.74 4.08 4.90 20.10

8 d33p20 6.18 6.5 6.70 3.08

9 12p19 2.89 3.49 3.90 11.75

10 d43p21 7.86 8.55 8.72 1.99

11 kT06 1.75 2.48 2.78 12.10

12 kT07 2.86 3.43 3.64 6.12

13 14p12 3.75 4.03 4.22 4.71

14 kT09 3.65 4.16 4.95 18.99

15 11p4 2.48 3.10 3.91 26.13

16 30p0 5.51 6.39 6.66 4.23

avg. 5.16 5.86 6.27 9.04

Table 5.4: Improvement of the LP optima with the cutting planes described in 5.4.4

120 5. The Pattern Minimization Problem

5.5.2 Randomly Generated Instances

To further evaluate the performance of our algorithm, we performed a set of com-

putational experiments on a broad range of instances randomly generated using the

CUTGEN1 generator [50]. A total of 3600 instances divided in 36 groups of 100 in-

stances were generated for different problem sizes (m = 20, 30 and 40), average demand

(d = 10, 20 and 30), and relative size of the items compared to the stock lengths. The

size of the smallest item (v1) varies between 1 and 30% of the stock length, while the

largest (v2) is at most 80% of this length. We used a seed equal to 1994, and we stopped

the execution after 10 minutes of branch-and-bound.

Tables 5.5 and 5.6 summarize the results obtained for the instances with m = 20.

Column opt indicates the number of instances for which a proven optimal solution

was found. All the instances with an average demand of 10 units per item size were

solved to optimality. For the whole set, we were not able to prove the optimality of the

incumbent, or find an improving one, for only 11% of the instances. The corresponding

average optimality gap is not greater than 3%. The most difficult instances were those

with d = 30. In fact, the larger the demands, the larger will be the multiplicities,

and the larger will be the number of subproblems that will have to be solved. As a

consequence, computing times increase naturally with the average demand, as they do

with other parameters as the relative size of the smallest item, for example. Applying

the cutting planes yields an improvement of 17.5% of the LP bound. The average

computing time is almost 2.5 minutes.

In tables 5.7 and 5.8, we present the results for the instances with 30 different item

sizes. The percentage of instances solved at optimality solved instances is now 57.6%.

For these instances, the cutting planes improve the LP bound in 19.8%. The optimality

gap increases to 8.9%. The average computing time is slightly greater than 6 minutes.

Tables 5.9 and 5.10 illustrate the results for the instances with m = 40. Only 33.5%

of the instances were optimally solved, which amounts to nearly 400 instances. There

is an average optimality gap of 12.1% and the computing time is almost 9 minutes.

5.6 Minimizing the Number of Different Patterns

with Multiple Stock Lengths

5.6.1 Problem Formulation

With more than a single stock length, the set of cutting patterns with low trim loss

becomes expectably larger. This may help in constructing a more homogeneous cutting

plan, with more groups of identical patterns. Here, we consider two patterns to be

identical if they have the same set of items and are cut from rolls with the same

5.6. Minimizing the Number of Different Patterns with Multiple Stock Lengths 121

m v1 v2 d K zbc
LP zac

LP LB UB CSP opt

1 20 0.3 0.8 10 139.58 14.74 16.31 17.03 17.03 22.46 100

2 20 0.3 0.8 20 278.68 14.75 16.89 17.89 17.89 22.57 100

3 20 0.3 0.8 30 417.68 14.76 17.05 18.10 18.17 22.62 98

4 20 0.2 0.8 10 119.59 13.14 14.91 15.82 15.82 23.93 100

5 20 0.2 0.8 20 238.69 13.26 15.63 16.91 17.03 24.09 96

6 20 0.2 0.8 30 357.78 13.27 15.99 17.24 17.57 24.26 87

7 20 0.1 0.8 10 104.45 11.76 13.61 14.67 14.67 25.89 100

8 20 0.1 0.8 20 208.40 11.92 14.29 15.64 15.94 26.52 91

9 20 0.1 0.8 30 312.33 11.98 14.50 17.00 18.00 28.04 67

10 20 0.01 0.8 10 93.65 10.66 13.13 13.68 13.68 27.51 100

11 20 0.01 0.8 20 186.67 10.84 13.08 14.28 14.91 28.82 83

12 20 0.01 0.8 30 279.93 10.93 13.34 14.74 16.72 30.90 48

avg. 12.67 14.89 16.08 16.45 25.63 89.17

Table 5.5: Computational results for random instances with m = 20 (a)

spLP colsLP spBB colsBB nodBB cuts tLP tBB tTOT

1 74.23 62.02 301.26 117.55 183.42 98.01 0.51 5.47 5.98

2 132.54 107.06 650.37 282.51 343.27 225.49 2.00 31.04 33.04

3 187.42 146.26 927.28 421.88 452.30 337.09 4.64 88.42 93.06

4 94.62 80.78 421.31 174.89 244.30 131.23 0.82 11.76 12.58

5 168.66 140.95 1162.86 457.14 663.01 320.07 3.29 92.47 95.76

6 252.85 203.10 1576.88 672.87 802.83 499.64 8.65 200.33 208.98

7 108.98 96.01 812.06 323.82 487.97 184.28 1.38 33.98 35.36

8 194.33 170.00 1581.12 751.28 818.29 368.19 5.93 190.65 196.58

9 272.28 214.46 1870.53 916.74 860.70 509.65 13.74 334.08 347.81

10 122.47 108.56 833.11 459.18 405.25 175.47 3.75 48.28 52.03

11 210.38 178.64 1715.23 952.97 749.75 371.56 13.54 246.62 260.16

12 286.95 243.28 1974.86 1131.27 793.72 507.16 29.81 423.18 452.99

avg. 175.48 145.93 1152.24 555.18 567.07 310.65 7.34 142.19 149.53

Table 5.6: Computational results for random instances with m = 20 (b)

122 5. The Pattern Minimization Problem

m v1 v2 d K zbc
LP zac

LP LB UB CSP opt

1 30 0.3 0.8 10 200.76 21.04 23.09 24.01 24.03 33.16 99

2 30 0.3 0.8 20 400.96 21.18 23.98 25.17 25.35 33.11 93

3 30 0.3 0.8 30 602.40 21.24 24.36 25.44 26.02 33.20 80

4 30 0.2 0.8 10 170.96 18.49 21.13 22.19 22.30 34.15 96

5 30 0.2 0.8 20 341.48 18.63 22.10 23.12 24.18 34.34 66

6 30 0.2 0.8 30 511.99 18.66 22.49 22.98 25.35 34.82 28

7 30 0.1 0.8 10 148.71 16.77 19.42 20.46 20.86 39.36 87

8 30 0.1 0.8 20 296.94 17.01 20.40 20.91 24.02 39.24 28

9 30 0.1 0.8 30 445.07 17.08 20.69 21.26 25.67 41.79 12

10 30 0.01 0.8 10 132.80 14.95 17.36 18.28 19.26 42.76 74

11 30 0.01 0.8 20 265.10 15.25 18.41 18.65 22.36 44.53 15

12 30 0.01 0.8 30 397.30 15.45 25.03 20.54 27.14 47.82 13

avg. 17.98 21.54 21.92 23.88 38.19 57.58

Table 5.7: Computational results for random instances with m = 30 (a)

spLP colsLP spBB colsBB nodBB cuts tLP tBB tTOT

1 125.96 108.08 896.74 244.71 646.02 172.03 1.62 45.16 46.78

2 231.92 192.49 1443.36 588.72 815.09 383.45 6.84 151.04 157.88

3 322.28 264.58 1873.48 860.48 910.87 562.81 15.89 289.94 305.83

4 166.93 144.32 1247.06 419.70 813.94 241.34 2.99 86.79 89.78

5 308.63 264.33 2284.70 959.42 1271.61 531.35 13.49 353.87 367.36

6 427.59 364.21 2315.85 1176.67 1041.05 691.80 31.22 507.22 538.45

7 195.90 178.20 1753.75 751.89 1034.70 279.11 5.69 195.31 201.00

8 341.23 303.95 2667.31 1208.77 1384.54 559.11 28.90 513.71 542.61

9 475.52 405.14 2128.51 1244.35 807.56 661.15 66.10 570.79 636.89

10 212.95 194.93 2231.19 1153.95 1147.48 297.45 13.93 302.19 316.12

11 366.28 325.47 2141.58 1322.13 787.86 496.38 52.23 543.59 595.82

12 497.80 421.78 1608.09 1141.69 377.90 641.67 115.56 592.40 707.95

avg. 306.08 263.96 1882.63 922.71 919.88 459.80 29.54 346.00 375.54

Table 5.8: Computational results for random instances with m = 30 (b)

5.6. Minimizing the Number of Different Patterns with Multiple Stock Lengths 123

m v1 v2 d K zbc
LP zac

LP LB UB CSP opt

1 40 0.3 0.8 10 265.02 27.25 29.75 30.65 30.85 42.98 92

2 40 0.3 0.8 20 529.24 27.42 30.76 31.65 32.69 43.45 60

3 40 0.3 0.8 30 793.74 27.45 31.19 31.77 33.68 43.95 34

4 40 0.2 0.8 10 224.85 24.03 26.98 28.00 28.65 45.10 81

5 40 0.2 0.8 20 448.90 24.35 28.41 28.92 31.48 45.34 28

6 40 0.2 0.8 30 673.25 24.38 28.85 29.13 32.26 45.53 15

7 40 0.1 0.8 10 196.18 21.66 24.80 25.35 27.18 53.20 50

8 40 0.1 0.8 20 391.54 22.04 26.19 26.43 32.65 53.00 9

9 40 0.1 0.8 30 587.08 22.34 26.70 26.83 33.20 56.92 4

10 40 0.01 0.8 10 176.90 19.46 22.39 22.64 25.62 56.77 27

11 40 0.01 0.8 20 353.12 19.79 23.51 23.66 29.87 58.93 2

12 40 0.01 0.8 30 529.44 20.03 24.21 24.35 31.27 64.47 0

avg. 23.35 26.98 27.45 30.78 50.80 33.50

Table 5.9: Computational results for random instances with m = 40 (a)

spLP colsLP spBB colsBB nodBB cuts tLP tBB tTOT

1 176.20 152.28 1451.77 425.80 1021.74 246.93 3.62 113.56 117.17

2 329.48 276.57 2340.25 979.72 1290.63 545.33 17.17 378.21 395.38

3 449.78 385.50 2165.40 1162.52 900.17 696.00 38.06 483.71 521.77

4 225.51 200.95 2152.20 683.24 1467.43 330.16 7.32 250.38 257.71

5 425.07 366.47 2467.51 1180.88 1187.95 619.27 32.96 521.75 554.71

6 591.56 503.85 1922.01 1201.19 608.47 764.56 82.56 557.29 639.85

7 266.72 245.33 2293.41 977.43 1344.97 349.63 14.52 382.67 397.19

8 475.16 422.85 2148.59 1249.08 820.62 599.52 66.30 572.92 639.23

9 650.69 557.45 1609.71 1101.08 408.75 769.46 149.77 588.70 738.47

10 302.24 274.85 2651.17 1314.74 1321.56 412.71 32.45 513.04 545.49

11 525.83 478.47 1653.81 1182.36 415.03 600.44 124.35 600.07 724.42

12 725.17 641.98 1119.96 886.39 130.94 774.15 278.54 605.04 883.58

avg. 428.62 375.55 1997.98 1028.70 909.86 559.01 70.63 463.94 534.58

Table 5.10: Computational results for random instances with m = 40 (b)

124 5. The Pattern Minimization Problem

length. Traditionally, the cost of a solution of the standard multiple length cutting

stock problem is expressed as the total length of the rolls used. Let Wtot denote this

cost. An upper bound on the number of rolls can not be explicitly enforced as in

(5.15)-(5.18), since Wtot can result from different combinations of rolls. Hence, if one is

searching for a minimum number of different patterns without exceeding the optimal

material usage, one should restrict the maximum material length used to Wtot units.

Let Wk, k = 1, . . . , K, be the length of the stock roll k. Assume that there is a

limited number of rolls of each length, which is denoted by Bk. From Wtot, the rolls

availabilities can eventually be tightened by computing better upper bounds. A trivial

upper bound on the number of rolls with length Wk is given by

z1
k =

⌊
Wtot

Wk

⌋
.

A stronger bound z2
k can be derived by solving the following problem

z2
k = max xk

s.t.
K∑

i=1

Wixi = Wtot,

xi ∈ N.

The pattern minimization problem with multiple stock lengths can be formulated

using a column generation model similar to the one described in 5.2.3 as follows

min
K∑

k=1

∑
p∈P k

ub(P k
p)∑

n=1

λk
pn (5.76)

subject to

K∑
k=1

∑
p∈P k

ub(P k
p)∑

n=1

nak
ipλ

k
pn = bi, i = 1, . . . ,m, (5.77)

K∑
k=1

∑
p∈P k

ub(P k
p)∑

n=1

nWkλ
k
pn ≤ Wtot, (5.78)

K∑
k=1

∑
p∈P k

ub(P k
p)∑

n=1

nλk
pn ≤ z2

k, k = 1, . . . , K, (5.79)

λk
pn ∈ {0, 1}, k = 1, . . . , K, p ∈ P k, n = 1, . . . , ub(P k

p), (5.80)

with the maximum multiplicity ub(P k
p) of a pattern p in P k given by

ub(P k
p) = min

{
min

i=1,...,m

⌊
bi

ak
ip

⌋
,

⌊
Wtot −

∑m
i=1 wibi

Wk −
∑m

i=1 wiak
ip

⌋
, z2

k

}
.

There is a nonlinear pricing subproblem for each stock length, which can again be

linearized by fixing the multiplicity. Using for example a dynamic programming algo-

rithm, the knapsack problems for different stock lengths can be solved once, as long as

they share the same multiplicity.

5.6. Minimizing the Number of Different Patterns with Multiple Stock Lengths 125

Constraints (5.79) can be used to derive valid cutting planes with the superadditive

functions u(k′)(x), u
(ε)
1 (x) and u

(ε)
2 (x) discussed in 5.3.2. These cuts take the following

form

∑
p∈P k

ub(P k
p)∑

n=1

u(k′)

(
n

z2
k

)
λk

pn ≤ 1, k′ ∈ N, k = 1, . . . , K, (5.81)

∑
p∈P k

ub(P k
p)∑

n=1

u
(ε)
1

(
n

z2
k

)
λk

pn ≤ 1, ε ∈ [0,
1

2
], k = 1, . . . , K, (5.82)

∑
p∈P k

ub(P k
p)∑

n=1

u
(ε)
2

(
n

z2
k

)
λk

pn ≤ 1, ε ∈)
1

4
,
1

2
(, k = 1, . . . , K. (5.83)

These cutting planes can be derived from better surrogate constraints each time a lower

bound is known on the number of rolls with a specific length. This is the case when,

for example, certain branching constraints are enforced. Note that z2
k may be difficult

to compute, and one may resort to an easier and weaker bound instead. However,

the better is the bound, the stronger will be the cuts. From the other constraints of

(5.76)-(5.80), cutting planes can be derived similar to the ones described in 5.4.4.

5.6.2 Computational Experiments

A set of computational experiments were conducted with a small set of instances so

as to get an idea of the impact in the homogeneity of the cutting plan caused by the

availability of more than a single stock length. Twenty instances were randomly gen-

erated, with 15 item sizes, and an average demand per item size of 10 units. We solved

them considering the existence of a single type of stock rolls with length W = 1000,

and the existence of two stock lengths of 1000 and 1500 units. Execution was stopped

after 5 minutes of branch-and-bound. The results are reported in Table 5.11. Column

lng represents the number of stock lengths used, and column Wtot, the minimum stock

length (divided by 1000), which is necessary to cut the items.

A first, and obvious, observation is that more stock lengths lead to more economical

cutting plans. Note that, for all the instances, the availability of the stock lengths is

unlimited. Regarding the impact on the number of setups, the results obtained show

consistently that the number of different patterns decreases when a greater choice

of stock lengths is available. These results need to be confirmed by more extensive

experiments, but they are a first confirmation of our intuition. All the instances are

solved in a reasonable amount of time. The harder instances are those with two stock

lengths. The computing time needed to solve them is generally far greater than for the

instances with a single stock length.

126 5. The Pattern Minimization Problem

m lng Wtot spLP colsLP spBB colsBB nodBB cuts zbc
LP zac

LP LB UB tLP tBB tTOT

1 15 1 102 75 58 47 24 20 74 9.93 12.00 13 13 0.66 0.52 1.18
1 15 2 88.5 82 101 2695 874 2040 303 7.29 9.00 11 11 1.69 139.03 140.73
2 15 1 90 84 61 23 12 6 72 9.16 11.00 11 11 0.82 0.25 1.07
2 15 2 74 63 116 42 75 8 81 6.42 7.84 8 8 1.46 1.18 2.65
3 14 1 132 27 23 0 0 0 11 12.00 13.00 13 13 0.13 0.00 0.13
3 14 2 99 125 116 1074 702 188 560 6.90 9.00 9 9 2.05 36.84 38.90
4 15 1 98 89 73 81 40 33 83 10.53 14.00 15 15 0.68 0.91 1.59
4 15 2 85.5 87 106 133 122 21 118 7.34 10.00 10 10 1.63 3.20 4.84
5 15 1 120 35 23 48 28 23 27 12.48 13.00 14 14 0.25 0.49 0.74
5 15 2 98.5 61 86 505 460 151 285 9.33 11.00 12 12 1.01 13.70 14.72
6 15 1 85 42 38 28 22 9 51 10.58 11.67 12 12 0.27 0.42 0.69
6 15 2 78.5 96 144 114 156 31 108 7.79 9.92 10 10 1.95 2.79 4.75
7 15 1 68 100 93 4020 454 3452 408 8.16 9.87 13 13 1.56 148.77 150.33
7 15 2 63.5 111 163 3362 2121 2577 227 6.38 7.75 9 9 3.31 301.48 304.79
8 15 1 88 81 60 157 104 44 98 9.37 11.00 12 12 0.87 1.89 2.77
8 15 2 77 81 129 721 520 296 250 7.33 8.84 9 10 2.04 28.65 30.69
9 15 1 80 44 35 15 8 8 23 10.12 11.00 12 12 0.21 0.16 0.37
9 15 2 74.5 84 122 88 95 27 95 7.00 8.79 9 9 1.50 2.27 3.78
10 15 1 94 59 41 68 38 23 54 11.58 13.00 14 14 0.51 0.68 1.19
10 15 2 84 59 81 50 42 12 54 8.25 9.00 10 10 0.95 0.86 1.81
11 14 1 93 81 62 18 9 6 61 9.26 11.00 11 11 0.65 0.17 0.82
11 14 2 81 78 124 1456 1016 857 338 6.35 8.75 9 9 1.61 78.84 80.45
12 15 1 94 50 39 55 32 20 48 11.74 13.00 14 14 0.45 0.52 0.97
12 15 2 80.5 94 117 2756 1772 1488 1372 8.09 10.00 12 12 1.59 231.77 233.36
13 15 1 94 56 50 43 36 14 57 11.25 12.50 13 13 0.50 0.50 1.00
13 15 2 79.5 69 105 5008 1979 4311 511 8.05 9.65 10 10 1.18 257.02 258.21
14 15 1 83 80 74 150 88 42 112 9.52 12.00 12 12 0.75 1.62 2.38
14 15 2 75 86 146 1095 686 460 411 6.63 8.92 11 11 2.21 59.21 61.43
15 15 1 102 55 42 205 116 62 103 10.24 12.00 12 12 0.37 2.51 2.89
15 15 2 76.5 116 125 36 38 5 82 6.98 9.00 9 9 2.26 0.88 3.14
16 14 1 150 15 14 0 0 0 0 14.00 14.00 14 14 0.08 0.00 0.08
16 14 2 112.5 91 87 108 79 21 95 7.62 9.00 9 9 1.14 1.53 2.67
17 15 1 124 27 23 8 3 4 15 13.18 13.71 14 14 0.17 0.08 0.25
17 15 2 101 57 76 210 147 87 93 9.76 10.00 11 11 0.70 3.51 4.21
18 14 1 110 70 49 78 48 23 74 10.59 12.00 13 13 0.52 0.94 1.46
18 14 2 82.5 121 119 958 497 539 194 7.08 9.00 10 10 2.69 36.95 39.64
19 14 1 99 55 38 189 107 31 205 10.83 12.00 13 13 0.46 2.70 3.16
19 14 2 82.5 69 100 20 26 6 58 7.29 8.84 9 9 1.28 0.47 1.75
20 14 1 82 111 102 37 22 18 96 8.40 11.69 12 12 1.14 0.53 1.67
20 14 2 76.5 80 134 686 918 19 556 6.44 8.73 9 9 1.83 38.60 40.44

Table 5.11: Computational results for random instances with one and two stock lengths

5.7. Conclusion 127

5.7 Conclusion

The formulation of Vanderbeck [123] for the Pattern Minimization Problem provides

a poor continuous bound, and hence, it must be strengthened using additional cutting

planes in order to be used in a branch-and-bound framework. In this chapter, we

explored different cuts that we proved to be at least as strong as the ones used by

Vanderbeck. Dual feasible functions were used for the first time for this purpose.

We gave various formal proofs, showing that these functions are superadditive, and

hence, that valid inequalities can be obtained with them. To get even stronger cuts,

we systematically derived inequalities from various surrogate constraints, obtained by

combining, for example, demand constraints with branching constraints. A branch-

and-price-and-cut algorithm was developed, and tested on a set of instances from the

literature. We obtained computational results slightly improved, but we were still

unable to bridge the integrality gap for some of them.

The problem of minimizing setups when multiple stock lengths are available was

also explored. We showed how to extend the previous approaches to this case, and we

performed a set of computational experiments on some instances. With more stock

lengths, one can expect to have more cutting patterns with low trim loss, which favor

the construction of more homogeneous cutting plans. The first results obtained confirm

this intuition.

Chapter 6

The Ordered Cutting Stock

Problem

The Ordered Cutting Stock Problem was originally addressed by Ragsdale and Zo-

bel [95], who encounter it when dealing with a door and window manufacturer. In

this problem, the small items are divided into lots, and all the items belonging to

the same lot must be cut from the stock rolls so that there are no items of a different

lot placed among them. In practice, this constraint may arise because there is a

single stack of end products near the cutting machine, or because of production

requirements, like those imposed on just-in-time systems. The Ordered Cutting

Stock Problem is clearly NP-complete. It combines aspects from the standard Cut-

ting Stock Problem, and from the Traveling Salesman Problem, two problems that

are well known to be NP-complete.

In this chapter, we present the first attempt to solve this problem exactly. We pro-

pose three different integer programming models for it: an assignment model, a flow

model and a column generation formulation. Two families of valid cutting planes are

described, along with their separation algorithms. The cuts are used to strengthen

a column generation model, which is solved with a branch-and-price-and-cut

algorithm. The structure of the pricing subproblem is presented, and the dynamic

programming algorithm devised for its resolution is discussed. A set of random

instances were generated, and computational experiments were conducted to evalu-

ate the efficiency of our approach. The results are reported at the end of the chapter.

Keywords: Ordered Cutting Stock Problem, IP Models, Column Generation, Sub-

tour Elimination Constraints, Comb Inequalities, Branch-and-Price-and-Cut

129

130 6. The Ordered Cutting Stock Problem

6.1 Introduction

Usually, cutting problems are only a part of larger production systems. Inventory

control, deliveries, many are the sectors that can be affected by this kind of activities.

Among the different production environments, just-in-time is surely one of the most

demanding. As a consequence, cutting plans must attend to the new constraints that

arise. Pattern minimization helps in reducing many costs by limiting the number of

different patterns. This topic was explored in the previous chapter. Sequencing and

scheduling patterns properly in the production floor are another means to control costs,

or simply to ensure the respect for operational constraints. These latter problems are

nowadays a true challenge for combinatorial optimization practitioners.

After a pattern is cut from the raw material, the resulting small items must be

moved to a storage area, normally located close to the cutting machine. If some logical

distinction is made among these items, one may think of separating them in different

stacks. Here, space is an obvious restriction; the number of stacks that can be opened

at the same time is therefore a bounded variable. A stack is opened when the first

item of an order is cut, and remains opened until the last item is ready. Mixing items

from different orders may perhaps solve the space problem, but sooner or later these

items will have to be separated. With such a mixing, we can easily imagine the mess

that will follow. An order can be completely defined by one or more item sizes, but

it can also be composed by item sizes shared with other orders. In the first case, a

stack receives items of a single size. While most of the literature in the field is devoted

to this case [43, 129, 12], others generalize their approach by considering instead lots

of items of different sizes [71], with the particularity that two distinct lots never have

item sizes in common. The most general case consists finally in defining lots as sets of

item sizes that may eventually appear in more than one lot. As far as we know, this

model has been considered only by Ragsdale and Zobel in a recent paper [95], where

a new problem, the Ordered Cutting Stock Problem (OCSP), is introduced. This is

precisely the problem we address in this chapter.

In the OCSP, a single stack is available. Since a stack is opened for each new

incoming order, lots must be processed one after the other. In this sense, to begin

cutting the items of a lot, all the items from the prior scheduled lot must have been

cut. We can view such a cutting process as a continuous flow of ordered lots, with lots

being an indivisible entity. The sequence of lots may reflect an existing logistical policy

(client priority, for example) and be fixed, total or partially, or it may be free. In this

latter case, the associated optimization problem consists in finding not only the best

assignment of items to the rolls, but also the best sequence of lots. Beyond the simple

application to a production environment, this problem may also arise in other contexts

such as truck or train loading, for example, where it is convenient for the merchandize

6.1. Introduction 131

to be loaded without breaking the client orders. Furthermore, the orders may be larger

than the capacity of a single vehicle, or wagon.

In this chapter, we propose three integer programming formulations for the OCSP,

two compact models and a column generation reformulation. An exact algorithm based

on column generation, branch-and-bound and cutting planes is devised to solve it. This

is the first reported attempt to solve the OCSP exactly. Assignment of items to rolls,

which can have different lengths, and sequencing of lots are tackled in a single phase. No

a priori order for the sequence of lots is assumed. The difficulty of the “simple” cutting

stock problem is hence reinforced. In fact, the OCSP combines characteristics from

the common cutting stock problem with those from the Traveling Salesman Problem

(TSP). We can not expect it to be easy to solve, since both are already NP-complete.

Although our aim is to find optimal solutions, we will see that frequently, even when

this extreme is not reached, our algorithm still provides very economical solutions,

behaving as an efficient heuristic scheme.

As we mentioned above, Ragsdale and Zobel were the first to formulate this problem.

They met it in an industrial context, dealing with a door and window manufacturer with

an appreciable volume of activity. Their objective consists in designing an optimization

algorithm able to improve both the ordering of lots and the cutting plan. And there was

surely space for improvements since no rational ordering scheme had been implemented

in the company, the lots being treated in a FIFO order. The need to harmonize the

flow of materials in the production floor justifies the will of the company to implement

a production philosophy that can lead to useful materials being discarded. Indeed,

when the remaining part of a roll used to cut the items of a lot is not long enough to

accommodate any of the items of the following lot, this raw material is simply thrown

away. This is a defining element of the OCSP and also an immediate consequence of the

just-in-time scheme for production organization, which imposes stringent constraints

on inventory management and material handling.

The authors opted for a heuristic approach based on genetic algorithms. They

solved both real-life data and random instances, with item sizes generated using various

distributions. Chromosomes, the fitness function and crossover and mutation operators

are key elements of a genetic algorithm. For the OCSP, Ragsdale and Zobel define a

chromosome as a vector with information about the lots permutation and the items

permutation within each lot. In their paper, the authors used the term “job” to

denote what we call here a lot, and parts to denote the small items. We will keep our

taxonomy, since it is closer to what is used in the cutting and packing literature. Their

fitness function measures the amount of waste associated to a solution, a chromosome.

Crossover and mutation operators allow one to search for an improving solution in

a neighborhood. An additional heuristic is provided, the PARTCUT method, which

further improves the items ordering. Comparative results are reported for the FIFO

132 6. The Ordered Cutting Stock Problem

scheme, a greedy bin-packing heuristic, the genetic algorithm applied with a fixed

sequence of lots, with and without the PARTCUT heuristic, and finally the genetic

algorithm with a free sequence of lots and the PARTCUT heuristic. The bin-packing

heuristic already allows significant savings. The genetic algorithm by its own leads to

a slight improvement only; savings become important when the PARTCUT heuristic

is also used. For the real-life data, considering a variable sequence of lots conduces to

a tiny reduction in the total amount of waste. For the random instances, this results

in most cases in solutions with a worse level of waste. Obviously, one would expect

to find at least some solutions equivalent to those obtained with a fixed order. The

fact is that their genetic algorithm found difficulties in finding improving lot sequences.

There is nothing odd in that, since the main complexity of the problem comes from

the combination of two hard problems: sequencing and pattern construction. This is

the difficulty we tried to tackle in this chapter.

The chapter is organized as follows. In the next section, we present our formulations

for the OCSP. A series of cutting planes are discussed next. Two groups, namely

the subtour elimination constraints and the comb inequalities, are valid inequalities

that can be applied to other combinatorial problems. Our algorithm relies on the

column generation formulation. We then pursue by defining the characteristics of the

pricing problem. The details of our branch-and-bound algorithm are presented, and

followed by the description of the rounding schemes used throughout the search tree.

Computational experiments are finally reported. The characteristics of our data set are

presented, and the computational results are discussed. The chapter ends with some

concluding remarks.

6.2 Problem Formulations

The OCSP consists in finding a cutting plan that minimizes the total length of stocks

used, various lengths of stock rolls being available, such that the items that belong to

the same ordered lot are cut only when all the items of the previous lot have been cut,

i.e., only the remaining material from the last roll which served to cut the previous lot

can be used to cut items of the next scheduled lot. We assume a bounded availability

of stock rolls. Here, a distinction has to be made between “small” and “large” lots.

Small lots are composed of items whose total length is smaller than at least one of the

stock lengths. These lots can be completely cut from a single roll, or alternatively they

may be partially cut from two different rolls. Large lots consist in orders that need

more than one stock length. We will see later how the existence of two sorts of lots

conditions our algorithm.

We introduce next the notation that will be used to formalize our description:

. J ′: set of small lots;

6.2. Problem Formulations 133

. J : set of lots, numbered from 1 to p, the first p′ lots being the large ones, and

the other p− p′ the small ones;

. mj: number of different item sizes in lot j;

. K: number of different roll types;

. wij: size of item i in lot j, wi > wi+1 (we may have wi1j1 = wi2j2 for j1 6= j2);

. bij: demand for item i in lot j;

. Wk: length of roll type k (stock types are ordered from the largest W1 to the

smallest WK);

. Bk: availability of roll type k.

The following example helps to clarify the main aspects of the OCSP.

Example 6.1 Consider an instance with four lots, one small and three large, two stock

lengths of 100 and 75 units, and the following data concerning items:

lot j mj (wij, bij) lot type

1 3 (65,1), (25,2), (20,2) large

2 3 (65,1), (18,1), (5,4) large

3 3 (65,1), (35,2), (5,5) large

4 2 (20,1), (10,1) small

Assume that the rolls are available in high quantities. Figure 6.1 depicts a feasible

solution for the related OCSP. Lot 1 is firstly cut, followed by lot 4, lot 3 and lot

2. Since there is no imposition regarding the beginning nor the end of the sequence,

an alternative ordering would be lot 2 followed by lot 3, lot 4 and lot 1. Lot 4, the

small one, is completely cut from one roll, between lot 1 and lot 3, which are only

partially served from this roll. In the first roll, there are 10 units of unused space,

which is enough to cope with two items with 5 units of size coming from lot 2. Moving

these items from the last to the first roll helps in reducing the total waste, since a

roll of length 75 could be used instead of the larger roll of 100 units. However, this

change produces a cycle in the lot ordering. Indeed, the resulting sequence will be lot

2, followed by lot 1, lot 4, lot 3 and lot 2 again. In these conditions, a second stack is

necessary. �

At this point, a series of observations can already be made:

. a lot can only be combined with another lot in at most two rolls,

134 6. The Ordered Cutting Stock Problem

Figure 6.1: Feasible solution for the instance of Example 6.1

. there can be no more than two lots partially cut from the same roll,

. there can be any number of small lots cut from the same roll, provided that the

maximum number of partially cut lots per roll is not exceeded,

. a pattern combining items from more than one lot will be cut at most once,

. lots partially cut from a roll appear necessarily at the beginning and/or the end

of the roll,

. caution must be taken to avoid the creation of cycles, since they do not lead to

any useful sequence.

If a cutting plan does not verify one of the conditions stated above, we will not be able

to recover any feasible lot ordering from it. Whatever the sequence, there will always

be a lot interrupted by some other lot, implying the opening of an additional stack.

6.2.1 An Assignment Model

In this section, we formulate the OCSP using an assignment model. Different integer

and binary variables are necessary to model the assignment of items and lots to rolls.

For small lots, we have to further distinguish between a complete and partial assignment

6.2. Problem Formulations 135

to a specific roll, since it influences the way the other lots can be assigned to this roll.

The whole set of variables is defined next:

. xijr is 1 if item i of lot j is to be cut from roll r, and 0 otherwise,

. yr is a binary variable that indicates if roll r is used or not,

. yjr is 1 if lot j has been assigned to roll r, and 0 otherwise,

. zjr indicates if lot j has been only partially cut from roll r. In the case of a

large lot, zjr is equal to yjr. We will keep it anyway as it can help to clarify the

formulation,

. cjr indicates if the small lot j is to be completely cut from roll r,

. fjr is 1 if lot j has been combined to some other lot in roll r, and 0 otherwise,

. zj1j2r is 1 if lots j1 and j2 have been both cut partially from roll r, and 0 otherwise.

To avoid obscuring even more the formulation, we present it for the case of a single

stock length. The modification induced by the existence of multiple lengths follows

what has been outlined in other parts of this thesis.

Consider that there are n bins of length W available. With a single type of stock

rolls, our objective (6.1) becomes the minimization of the number of rolls used. The

capacity or knapsack constraints are defined by inequalities (6.2), and the demand

constraints by equations (6.4). Inequalities (6.3) are the definition constraints for

variables yjr, while (6.5) and (6.6) are those for variables cjr. Using the total demand

for the items of a lot in constraints (6.3), instead of a greater value, say M , strengthens

the formulation. Constraints (6.7), (6.8) and (6.9) state that there can be no more than

two lots partially assigned to a roll. As we pointed out in a previous observation, a

lot can not “share” a roll with another lot more than twice, since this will inevitably

break the lot in at least two pieces. Inequalities (6.10)-(6.12) forbid such a situation

to occur. Note that if cj1r is equal to 1 for some j1 and r, then lot j1 will only appear

in roll r. In turn, inequalities (6.13) avoid the creation of cycles, and are based on the

defining constraints (6.14) for variables zj1j2r. These variables are necessary since only

the lots partially assigned to a roll can lead to a cycle. Regarding cycles, we will not

go here into further detail since we devote a full section to them below.

min
n∑

r=1

yr (6.1)

sub. to
∑
j∈J

mj∑
i=1

wijxijr ≤ Wyr, r = 1, . . . , n, (6.2)

mj∑
i=1

xijr ≤ yjr

mj∑
i=1

bij, ∀j ∈ J, r = 1, . . . , n, (6.3)

136 6. The Ordered Cutting Stock Problem

n∑
r=1

xijr = bij, ∀j ∈ J, i = 1, . . . ,mj, (6.4)

mj∑
i=1

xijr −
mj∑
i=1

bij ≤ −ε + cjr, ∀j ∈ J ′, r = 1, . . . , n, (6.5)

mj∑
i=1

xijr −
mj∑
i=1

bij ≥ (−
mj∑
i=1

bij)(1− cjr), ∀j ∈ J ′, r = 1, . . . , n, (6.6)

cjr + zjr = yjr, ∀j ∈ J ′, r = 1, . . . , n, (6.7)

zjr = yjr, ∀j ∈ J \ J ′, r = 1, . . . , n, (6.8)
p∑

j=1

zjr ≤ 2, r = 1, . . . , n, (6.9)

zj1r + zj2r ≤ 1 + fj1r, ∀j1, j2 ∈ J, j1 6= j2, r = 1, . . . , n, (6.10)

zj1r + cj2r ≤ 1 + fj1r, ∀j1 ∈ J, j2 ∈ J ′, j1 6= j2, r = 1, . . . , n, (6.11)
n∑

r=1

fj1r ≤ 2, ∀j1 ∈ J, (6.12)

∑
i,j∈I

n∑
r=1

zijr ≤ |I| − 1, ∀I ⊆ J, 2 ≤ |I| ≤ p, (6.13)

zj1r + zj2r ≤ 1 + zj1j2r, j1 = 1, ..., p, j2 = j1 + 1, ..., p, r = 1, ..., n, (6.14)

xijr ∈ N, i = 1, . . . ,mj, ∀j ∈ J, r = 1, . . . , n, (6.15)

yr ∈ {0, 1}, r = 1, . . . , n, (6.16)

zjr, yjr, fjr ∈ {0, 1}, ∀j ∈ J, r = 1, . . . , n, (6.17)

cjr ∈ {0, 1}, ∀j ∈ J ′, r = 1, . . . , n, (6.18)

zj1j2r ∈ {0, 1}, j1 = 1, ..., p, j2 = j1 + 1, ..., p, r = 1, ..., n. (6.19)

Usually, models that rely on assignment variables have symmetry, and formulation

(6.1)-(6.19) is not an exception. Indeed, the same solution in practice may have more

than one representation in this model. The number of constraints may also be impor-

tant, depending on the size of the instance. Some of them can however be generated

with a separation algorithm, and added to the formulation only if they are violated.

This is the case of constraints (6.13). Later, a strengthened formulation obtained

through a Dantzig-Wolfe decomposition of formulation (6.1)-(6.19) will be proposed,

but first we present an alternative flow model for the OCSP.

6.2.2 A Flow Model

The OCSP can also be modeled as a set of flows over an acyclic digraph G with a set

V of W1 + 1 vertices and, fundamentally, three groups of arcs: the first represents the

6.2. Problem Formulations 137

inclusion of an item in an area of the roll identified by the origin and destination of the

arc, the second are “transition” arcs which do not represent the occupation of space,

but instead inform that a lot partially cut from a roll is followed by another lot which

is also partially cut from this roll, and the third group is composed by “hybrid” arcs,

which represent a transition between a lot and a small lot and the inclusion of all the

items of the latter. Additionally, a fourth group of arcs could have been considered

representing the usage of rolls. In this case, G would be a digraph allowing cycles and

each cutting pattern would translate into a circulation flow.

In Figure 6.2, we represented the solution discussed above in Example 6.1. Only

the arcs with positive flow were considered, excluding those that represent loss. The

original graph G was replicated to illustrate how the conservation of flow is enforced.

A set of nodes is associated to each lot. These nodes are replicated to clarify the

presentation, and mainly the way the flow conservation constraints are enforced. We

also included an additional set of nodes for the unique small lot of the example. All

in all, there are three distinct portions in the graph of Figure 6.2, which basically

represent a roll with one partial lot, with two partial lots, and with a set of complete

small lots, with or without partial lots.

A pattern is translated into a set of flows according to the following rule. The

partially cut lots are represented first in order of increasing indexes. The small lots

which are completely cut from the roll are left for the end of the pattern. There is

no way of moving between lots in the first and second portions of the depicted graph.

On the contrary, transition arcs allow passing from the first to the second part of the

graph. Along with the existence of two distinct portions where partially cut lots can

be represented, these arcs ensure the satisfaction of the constraint which restricts to

two the number of partial lots per roll. What distinguishes the arcs in the second part

from those in the first part is that they are necessarily associated to a lot that follows

another lot present in the roll. Cutting completely a small lot is allowed via hybrid

arcs that lead to the third portion of the depicted graph. They can start in the first

portion, if the complete small lots follow a unique partially cut lot, or they can start

in the second portion, if the small lots come after two partially cut lots. But once the

third portion is reached, there is no way of getting out of there. The only arcs that are

available are hybrid arcs between two small lots, or within the same small lot if this

lot is the first in the roll.

In our flow model, all these transitions are defined over a single graph with W1 + 1

vertices using flow conservation constraints and different sets of arcs and flow variables.

To reduce the size of our formulation, some ordering rules were applied on the lots and

items within a roll. Transitions are allowed between a lot l1 and a lot l2 if l1 < l2,

l1, l2 ∈ J , except for the hybrid arcs starting in the first and second portions of the

graph in Figure 6.2. For the hybrid arcs in the third portion, we can also have l1 = l2.

138 6. The Ordered Cutting Stock Problem

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

1

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

r
r

r
rr

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

2

0
5

10
15

18
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10

0

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

3

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

4

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

1
0

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10

0

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

2

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

r
r

r
rr

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
rr

L
o
t

3

0
5

10
15

18
20

25
30

35
40

45
50

55
60

65
70

75
83

88
93

98
10

0

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

4

0
5

10
15

20
25

30
35

40
45

50
55

60
65

70
75

80
85

90
95

10
0

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
r

r
L
o
t

4
0

5
10

15
20

25
30

35
40

45
50

55
60

65
70

75
80

85
90

95
10

0

I

I
I

I
I

.

H

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

I

I

I
I

I

I
.H

I

I
I

I

I

I
I

I

Figure 6.2: Cutting patterns presented in Example 6.1

6.2. Problem Formulations 139

Patterns are also represented assuming the items within a lot ordered in decreasing

values of size. In our model, partial lots will always appear at the beginning of the

roll. In practice, lots partially cut form a roll are always located at its extremities.

However, with a complete solution for the OCSP, we can determine in a polynomial

number of steps which lot goes at the beginning of the roll, and which is left for the

end. The definition of the arc sets follows:

. X corresponds to the arcs in the first part of the graph in Figure 6.2. It is

composed by triplets (r, s, l), r being the origin of the arc and s its destination.

The difference s− r must correspond to the size of an item belonging to the lot

l or, alternatively, it should represent loss and have a unit length. Destination s

must be less than or equal to W1. The tail r of the arc must coincide with node

0 or with the head of another arc of X related to lot l with a length equal to or

greater than s− r.

. Z corresponds to the arcs in the second part of the graph in Figure 6.2. Its

elements have the form (r, s, l), and follow the same rules as X plus an additional

one: r must be greater than or equal to the smallest item from lots l′, l′ < l. As

a consequence, r will always be different from 0.

. Y is the set of transition arcs, which carry the flow from the first to the second

part of the graph in Figure 6.2. Its elements have the form (s, l, l′), with l, l′ ∈ J .

The transition is made between the lots l and l′, l < l′, over the same node s.

The node s must be greater than or equal to the smallest item of l, and smaller

than or equal to W1 − wml′ l
′ , with wml′

being the smallest item in lot l′.

. C1 is the first set of hybrid arcs. Its elements have the form (r, s, l, l′), with l ∈ J

and l′ ∈ J ′ and l 6= l′. They represent the complete inclusion of the small lot l′

after another lot l. The difference s − r must be equal to the total size of the

items of l′. The arcs head s must be less than or equal to W1 and greater than or

equal to the smallest item of l. The tail r must coincide with the head of another

arc (r1, r, l) of X. These arcs carry the flow from the first to the third portions

of the graph in Figure 6.2.

. C2 is the second set of hybrid arcs. Its elements have the form (r, s, l, l′), with

l ∈ J , l′ ∈ J ′, l 6= l′ and s − r =
∑ml′

i=1 wil′ . Additionally, the origin r of the arc

must be greater than or equal to the sum of the sizes for the smallest item of l

and the smallest item for a lot l1 such that l1 < l, and it must coincide with the

head of an arc (r1, r, l) of Z. The arcs of C2 define moves between the second

and third portion of the graph in Figure 6.2.

. C3 is the last set of hybrid arcs, and have elements (r, s, l, l′) with l, l′ ∈ J ′, l ≤ l′

and s − r =
∑ml′

i=1 wil′ . The values of l and l′ are equal only for r = 0, and,

140 6. The Ordered Cutting Stock Problem

when they are different, r must correspond to the head of an arc with lot l as

destination from C1, C2 or C3. In Figure 6.2, the arcs of C3 start and end in the

third portion of the graph.

The model derived from these arc sets has considerably less symmetry than the assign-

ment model presented above. For instances with only large lots, this symmetry is even

more reduced.

The integer programming formulation for our flow model is the following:

min
3∑

i=1

K∑
k=1

p∑
l=1

Wkg
l
ik (6.20)

subject to∑
(0,t,l)∈X

xl
0,t +

∑
(0,t,l,l′)∈C3

qll′

3,0,t =
3∑

i=1

K∑
k=1

p∑
l=1

gl
ik, (6.21)

−
∑

(r,s,l)∈X

xl
rs +

∑
(s,t,l)∈X

xl
st +

∑
(s,l,l′)∈Y

yll′

s +
∑

(s,t,l,l′)∈C1

qll′

1st =

=

{
−gl

1k , for s = Wk, k = 1, ..., K,

0 , for s 6= Wk and s 6= 0,

∣∣∣∣∣ ∀l ∈ J, (6.22)

−
∑

(s,l′,l)∈Y

yl′l
s −

∑
(r,s,l)∈Z

zl
rs +

∑
(s,t,l)∈Z

zl
st +

∑
(s,t,l,l′)∈C2

qll′

2st =

=

{
−gl

2k , for s = Wk, k = 1, ..., K,

0 , for s 6= Wk and s 6= 0,

∣∣∣∣∣ ∀l ∈ J, (6.23)

−
∑

(r,s,l′,l)∈C1

ql′l
1rs −

∑
(r,s,l′,l)∈C2

ql′l
2rs −

∑
(r,s,l′,l)∈C3

ql′l
3rs +

∑
(s,t,l,l′)∈C3

qll′

3st =

=

{
−gl

3k , for s = Wk, k = 1, ..., K,

0 , for s 6= Wk and s 6= 0,

∣∣∣∣∣ ∀l ∈ J ′, (6.24)

∑
(s,s+wil,l)∈X

xl
s,s+wil

+
∑

(s,s+wil,l)∈Z

zl
s,s+wil

+ bil

3∑
j=1

∑
(s,t,l′,l)∈Cj

ql′l
jst = bil,∀l ∈ J, (6.25)

∑
(s,l′,l)∈Y

yl′l
s +

∑
(s,l,l′)∈Y

yll′

s +
∑

(s,l,l′)∈C1

qll′

1s ≤ 2, ∀l ∈ J, (6.26)

3∑
i=1

p∑
l=1

gl
ik ≤ Bk, k = 1, ..., K, (6.27)∑

l,l′∈I⊆J,(s,l,l′∈Y)

yll′

s ≤ |I| − 1,∀I ⊆ J, 2 ≤ |I| ≤ p, (6.28)

xl
rs ≥ 0 and integer, ∀(r, s, l) ∈ X, (6.29)

zl
rs ≥ 0 and integer, ∀(r, s, l) ∈ Z, (6.30)

yll′

s ≥ 0 and integer, ∀(s, l, l′) ∈ Y, (6.31)

qll′

irs ≥ 0 and integer, i = 1, ..., 3, ∀(r, s, l, l′) ∈ Ci, (6.32)

gl
ik ≥ 0 and integer, i = 1, ..., 3, ∀l ∈ J. (6.33)

6.2. Problem Formulations 141

All the variables in (6.20)-(6.33) are integer flow variables. Variables xl
st and zl

st are

the flow variables for the item arcs in X and Z, respectively. Variables yll′
s account

for the flow on the transition arcs of Y , and qll′
irs on the hybrid arcs of Ci. Even if it

is not enforced explicitly, variables yll′
s and qll′

irs will end up as binary values. The yll′
s

variables can not be greater than 1 because of the anti-cycle constraints. In turn, since

demand is satisfied exactly, variables qll′
irs will never exceed 1. Variables gl

ik represent

the number of rolls of length Wk used, being l the last lot of the roll. In particular,

gl
1k represent the number rolls from which only the lot l is cut, gl

2k the number of rolls

used to cut lot l along with another partial lot, and gl
3k the number of rolls used to

cut completely lot l and two other lots. Clearly, in the latter case, gl
3k will never be

greater than the unit value. The constraint set (6.21)-(6.24) are the flow conservation

constraints. Constraints (6.25) are the demand constraints, and (6.27) the constraints

on the availability of rolls. Constraints (6.26) ensure that a lot will never appear

partially in more than two different rolls. Inequalities (6.28) guarantee a lot sequence

free of cycles.

6.2.3 Column Generation Reformulation

Using the Dantzig-Wolfe decomposition principle, we can obtain a LP relaxation ex-

pectably stronger than (6.1)-(6.14) keeping in the master problem the demand con-

straints (6.4), constraints (6.12) guaranteeing that a lot is not combined to any other

lot in more than two rolls, and the anti-cycle constraints (6.13). Following this decom-

position, we can formulate the integer master problem:

min
K∑

k=1

∑
j∈P k

Wkλjk (6.34)

subject to
K∑

k=1

∑
j∈P k

ail
jkλjk = bil, ∀l ∈ J, i = 1, ...,ml, (6.35)

K∑
k=1

∑
j∈P k

cl
jkλjk ≤ 2, ∀l ∈ J, (6.36)

∑
j∈P k

λjk ≤ Bk, k = 1, ...K, (6.37)

K∑
k=1

∑
j∈P k

rs
jkλjk ≤ |Is| − 1, ∀Is ∈ S, (6.38)

λjk ≥ 0 and integer, k = 1, ..., K, j ∈ P k. (6.39)

142 6. The Ordered Cutting Stock Problem

Each set of cutting patterns P k, constructed from a roll of length Wk, consists in

vectors (a1,1
jk , a2,1

jk , ..., a1,2
jk , ..., a

mp,p
jk), which indicate the number ail

jk of items i of lot l

that compose its jth pattern. There are
∑p

l=1 ml elements in these vectors, as many

as the number of demand constraints. For each pattern j of P k, there is an additional

vector (c1
jk, c

2
jk, ..., c

p
jk) of binary values, with cl

jk taking the value 1 if lot l belongs

partially to this pattern, and if it shares the pattern with any other lot. At most two

coefficients cl
jk will be positive. Note that if only one lot is to be cut partially from a

roll, along with a set of complete small lots, then only one of these coefficients will be

equal to 1. This time, we consider the availability constraints which are modeled via

the constraints (6.37). The final group of inequalities refer to the anti-cycle constraints.

Let S denote the set of all the subsets of J . For an element Is ∈ S, the coefficient rs
jk

relative to column jk will be 1 if at least two lots partially cut in pattern jk belong to

Is. Otherwise, the respective coefficient will be null. Note that only the patterns with

a unique lot can have a general integer frequency. The others will in fact be binary.

Figure 6.3 illustrates the restricted linear formulation obtained for the Example

6.1. Only a subset of the anti-cycle constraints is represented, namely for the lot sets

{1, 2, 3} and {1, 4}. The aim of these constraints is to avoid wrong lot sequences like 1-

2-3-1, 2-1-3-2 or 1-4-1, for example. Variables λ1,1, λ2,1, λ3,1, λ4,1 and λ1,2 are associated

to the patterns presented in Example 6.1. Among all the variables represented, λ1,1,

λ4,1 and λ1,2 are the only true general integer variables.

The subproblem is a knapsack problem with additional constraints. It is defined

by the knapsack constraints (6.2), constraints (6.3), (6.5)-(6.9) ensuring no more than

two partially cut lot per roll, constraints (6.10), (6.11), (6.14) and the integrality re-

quirements. We will go back to the subproblem later in Section 6.5.

As we have already pointed out, the number of anti-cycle constraints may be huge.

Therefore, we will rather solve a relaxation of (6.34)-(6.39) where these restrictions are

initially relaxed, and generate them only as they are needed. The following section is

devoted to this matter. Two sections follow with other valid inequalities for the OCSP

that may help strengthening the linear relaxation of our master problem. From this

point forward, we will use the designation of subtour elimination constraints for these

anti-cycle constraints. This is the term generally used in the TSP literature.

6.3 Subtour Elimination Constraints

6.3.1 Definition

A lot sequence can be represented as a set of flows in a complete graph G = (V, E)

with p + 1 vertices, one vertex per lot plus one extra vertex. The extra vertex will be

referred to by index 0. The edges of the graph are undirected since, when a sequence is

6.3. Subtour Elimination Constraints 143

λ1,1 λ2,1 λ3,1 λ4,1 λ5,1 λ6,1 ... λ|P1|,1 λ1,2 λ2,2 ... λ|P2|,2

wil =65 1 1 1 = 1

Lot 1 25 1 1 1 1 = 2

20 2 1 = 2

65 1 = 1

Lot 2 18 1 = 1

5 3 1 = 4

65 1 = 1

Lot 3 35 2 = 2

5 1 3 1 = 5

Lot 4
20 1 1 1 = 1

10 1 1 1 1 = 1

l =1 1 1 1 1 ≤ 2

2 1 1 ≤ 2

3 1 1 ≤ 2

4 1 ≤ 2

Wk =100 1 1 1 1 1 1 ≤ 500

75 1 1 ≤ 500

Is ={1,2,3} 1 1 1 ≤ 2

{1,4} 1 ≤ 1

...

Figure 6.3: Partial LP formulation for the instance of Example 6.1

chosen, its head and tail are not specified. This was pointed out above. If a precedence

relation is defined for the whole set of lots, the sequence converts into a Hamiltonian

cycle of graph G. Alternatively, if the ordering of the lots lead to independent groups

of lots, we translate the sequence into a set of cycles among the extra vertex and the

nodes attached to each group of lots. For example, if two large lots, say l1 and l2, are

partially cut from the same roll, and two other lots l3 and l4 share another roll, while

the other rolls are used to cut the remaining items with a unique lot per roll, what we

know is that l2 must follow l1, or vice versa, without any interruption to cut another

lot. The same applies to l3 and l4. No ordering is defined between the two pairs of

lots. One can determine that l1 will be the first lot to be cut, and l4 the last. In G,

this sequence will convert into a tour starting in the extra vertex, going through the

vertices corresponding to lot 1, 2, 3 and 4, and ending finally in the extra vertex. We

prefer not to choose among all the hypothesis, and rather represent this sequence as

the cycles {0, l1, l2, 0} and {0, l3, l4, 0}.
Referring to formulation (6.34)-(6.39), for each pattern with a positive frequency

144 6. The Ordered Cutting Stock Problem

that includes two lots partially, there is an equal flow between the two corresponding

vertices of G, representing the precedence relation between these two lots. For the

small lots, the treatment is different. In fact, for some pattern, one of two situations

may occur:

. all the items of the small lot belong to the pattern. In this case, it will never

cause a cycle in the lot sequence, since it will never appear in any other roll,

demand being satisfied exactly. As a consequence, we do not convert the pattern

frequency into a flow between this small lot and some other lot present in the

pattern.

. the lot belongs partially to the pattern. In this case, the remaining part of the

lot will be cut from another pattern. The lot will be present in two different rolls

and may link the two ends of a valid sequence. If another lot is partially included

in the pattern, then the pattern frequency will be converted into a flow between

it and the small lot.

The flow that converges to a vertex of V \ {0} may be null or equal to 2 units. If a

vertex other than 0 has a set of incident edges with a positive total flow but less than

the 2 units, the gap is bridged by adding the deficit to the edge between this and the

extra vertex. Examples of vertices which are somewhat isolated are those associated

to small lots completely cut from a roll or to large lots that do not share any roll with

another lot. Example 6.2 illustrates the details of our graph representation.

Example 6.2 Consider the instance introduced in Example 6.1. Figure 6.4 represents

the graph representation for two sequences of lots. Only the arcs with a positive flow

were considered. All of them have a unit flow. In (a), the sequence of Figure 6.1

is depicted. Lot 4 appears isolated, since its relation with lots 1 and 3 is not taken

into account. The ends of the sequence {1,3,2} are linked to the extra vertex. An

alternative ordering is represented in graph (b). It corresponds to the feasible solution

of Figure 6.5. This solution defines two independent sequences, one with lots 1 and

2, and another with lots 3 and 4. The dotted lines complete the corresponding cycles

with the extra vertex. In (a), linking lot 1 to lot 2 would exclude the extra vertex due

to the degree constraints. This will produce a non admissible subtour. �

The only admissible cycles in G are those passing by the extra vertex. Cycles

including vertices solely attached to the lots are not allowed. Let G′ = (V ′, E ′) be a

subgraph of G, with E ′ ⊆ E, V ′ ⊆ V and V ′ containing the extra vertex. These cycles

can be seen as subtours of the subgraphs G′ that exclude the extra vertex. As we have

already seen, these subtours do not lead to any useful sequence of lots.

6.3. Subtour Elimination Constraints 145

t t

t t

w
Extra Vertex

(a)

1 4

2 3........................
........................
........................
........................
........................
.........................
........................
........................
........................
........................
.........................
........................
........................
........................
....................

................................
................................

................................
................................

................................
.................................

.................................
.................................

................................
................................

....................

t t

t t

w
Extra Vertex

(b)

1 4

2 3........................
........................
........................
........................
........................
.........................
........................
........................
........................
........................
.........................
........................
........................
........................
....................

........................
........................

........................
........................

........................
.........................

........................
........................

........................
........................

.........................
........................

........................
........................

....................

................................
................................

................................
................................

................................
.................................

.................................
.................................

................................
................................

....................

................................
................................

................................
................................

................................
.................................

.................................
.................................

................................
................................

....................

Figure 6.4: Graph representation of lot sequences (Example 6.2)

Figure 6.5: An alternative feasible solution for the instance of Example 6.1

146 6. The Ordered Cutting Stock Problem

A cycle has always a number of edges equal to its number of vertices. For all

the possible G′, forbidding cycles that exclude the extra vertex and, hence, have less

than |V ′| edges, prevents the creation of invalid subtours. Let xij be the flow on edge

(i, j) ∈ E ′, with i, j ∈ V ′ and i < j. The subtour elimination constraints can be stated

as follows∑
i,j∈W

xij ≤ |W | − 1, ∀ W ⊆ V ′ \ {0}, 2 ≤ |W | ≤ |V ′| − 1, ∀ V ′. (6.40)

These constraints correspond to (6.13), (6.28) and (6.38) in models (6.1)-(6.19), (6.20)-

(6.33) and (6.34)-(6.39), respectively. Since there is an exponential number of subsets

of lots, the number of subtour elimination constraints is also exponential. Enumerating

them all is clearly unpractical, and therefore we will generate them only as needed. In

the following section, we discuss the separation procedure used to identify violated

subtour elimination constraints.

6.3.2 Separation Procedure

To search for violated subtour inequalities, we first convert the pattern frequencies

given by model (6.34)-(6.39) into a set of flows x∗ in G as described above. The edges

(i, j) ∈ E with xij = 1 are then shrunk to reduce the size of G and, hence, the size of our

separation problems. From the resulting graph, we define q subgraphs G′
s = (V ′

s , E
′
s),

s = 1, . . . , q, such that {0} ∈ V ′
s , for all s, and V ′

s1
∩ V ′

s2
= {0}, for s1 6= s2. The

vertex sets V ′
s are composed by vertices for lots connected by edges with positive flow.

In the Example 6.2, for the solution represented in graph (b) of Figure 6.4, we have

V ′
1 = {0, 1, 2} and V ′

2 = {0, 3, 4}. The vertices of G which have no incident edge with

positive flow do not belong to any of the V ′
s . This is the case of vertex 4 in graph (a),

Figure 6.4.

There is a subtour in G′
s if a cut-set inequality with the following form is violated

by x∗: ∑
i∈W, j /∈W

xij ≥ 2, {0} ∈ W, W ⊂ V ′
s , 1 ≤ |W | ≤ |V ′

s | − 2. (6.41)

For ease of presentation, assume that the indexes of the vertices for lots in V ′
s are

redefined to vary between 1 and |V ′
s |. The extra vertex maintains its index 0. To find

a violated cut-set inequality in G′
s, one has to solve the minimum 0− j cut problems

Fj = min

 ∑
(i,j)∈E′

s

xij : i ∈ W, j ∈ W, {0, 1, . . . , j − 1} ⊂ W,

j ∈ W, 1 ≤ |W | ≤ |V ′
s | − 2

}
, (6.42)

6.4. Comb Inequalities 147

for j = 1, . . . , |V ′
s | − 2 [93]. If minjFj < 2, then a subtour exists with the elements of

the corresponding W . In (6.42), the size of W can be of 2 elements, since we can have

cycles between pairs of vertices defined by an edge between them with a flow greater

than 1.

In practice, solving a maximum flow problem between the source vertex 0 and

a sink vertex j leads to a solution for the minimum 0 − j cut problem. There are

many algorithms for the former in the literature. Examples are the augmenting path

algorithm from Ford and Fulkerson [45] or the preflow-push algorithms [55, 2].

6.4 Comb Inequalities

6.4.1 Definition

The comb inequalities are valid for the TSP polytope [93]. They are also valid for the

Vehicle Routing Problem, for example, and can be used to strengthen our models for

the OCSP. A comb is defined by a set H of vertices called the handle and t sets Ti

of vertices called the teeth. The combs for a graph G = (V, E) share the following

properties:

. H ∩ Ti 6= ∅, for i = 1, . . . , t,

. Ti \H 6= ∅, for i = 1, . . . , t,

. 2 ≤ |Ti| ≤ |V | − 2, for i = 1, . . . , t,

. Ti ∩ Tj = ∅, for i 6= j,

. t ≥ 3 and t is odd.

For any combs of G, the following inequality holds:

∑
i,j∈H

xij +
t∑

q=1

∑
i,j∈Tq

xij ≤ |H|+
t∑

q=1

(|Tq| − 1)− t + 1

2
. (6.43)

In the literature, we frequently find the comb inequalities stated in another but equiv-

alent form:

∑
i∈H, j /∈H

xij +
t∑

q=1

∑
i∈Tq , j /∈Tq

xij ≥ 3t + 1. (6.44)

148 6. The Ordered Cutting Stock Problem

6.4.2 Separation Procedure

The comb inequalities must hold for all the G′
s defined in Section 6.3.2. When searching

for violated comb inequalities, we assume that any edge of the G′
s between the extra

vertex 0 and any other edge has a flow less than or equal to the unit, and also that

there is no violated subtour elimination constraint.

There is no reported exact algorithm to find general violated comb inequalities.

We then resort to a heuristic procedure that is applied to each G′
s, s = 1, . . . , q.

The algorithm starts by defining a graph G′′
s from G′

s, removing all the edges with a

flow greater than 1 − ε, where ε is a small value. A set of potential handles is then

constructed with all the biconnected components of G′′
s , and with the unions of at most

three of these biconnected components. A biconnected component of a graph consists

in a maximal set of edges such that any pair of edges appears in a common cycle. For

any pair of vertices lying in a biconnected component of a graph, there are always

two vertex-disjoint paths linking them. Biconnected components are found using a

depth-first search. In turn, the set of candidate teeth consists in all the biconnected

components of G′′
s , plus the extremities of the edges (i, j) of G′

s with a flow greater

than 1− ε. For each potential handle, we choose one by one the elements of the tooth

set such that the first four properties of a valid comb stated in the previous section

are never violated. We begin by the teeth with two vertices, only one in H and with

a linking edge with a flow greater than 1 − ε. Once the possibilities are exhausted,

we select biconnected components of G′′
s with the smaller ratio between the number of

vertices and the total flow on edges that are completely within the component. At the

end, if the number of teeth is even, we remove the biconnected component with the

worst ratio, or if none exists, an arbitrary tooth. The corresponding comb inequality

is checked, and if it is violated, we insert it in our model for the OCSP.

6.5 Pricing Columns in the Column Generation Re-

formulation

6.5.1 Problem Formulation

There are K pricing subproblems, one for each roll length. Each pricing subproblem is

a knapsack problem where, along with the traditional capacity constraint, a restriction

is imposed on the number of partial lots that can be placed in the knapsack. A set

of defining constraints are also necessary in order to report into the objective function

the dual values associated to the subtour elimination constraints, and those restricting

to two the number of rolls where a lot can be combined to any other lot.

Let α, β, γ and δ be the vectors of dual variables related to the constraints (6.35),

6.5. Pricing Columns in the Column Generation Reformulation 149

(6.36), (6.37) and (6.38) from the master problem. Consider them indexed accordingly.

Through the subproblem, we search for the most negative reduced cost column of the

master problem. For a pattern constructed from a roll of length Wk, this cost is equal

to

Wk −

 p∑
j=1

mj∑
i=1

αijxij +

p∑
j=1

βjfj + γk +

|S′|∑
s=1

∑
j1,j2∈Is

δszj1j2

 (6.45)

The subproblem states as follows:

max

p∑
j=1

mj∑
i=1

αijxij +

p∑
j=1

βjfj +

|S′|∑
s=1

∑
j1j2∈Is

δszj1j2 (6.46)

subject to∑
j∈J

mj∑
i=1

wijxij ≤ Wk, (6.47)

mj∑
i=1

xij ≤ yj

mj∑
i=1

bij, ∀j ∈ J, (6.48)

mj∑
i=1

xij −
mj∑
i=1

bij ≤ −ε + cj, ∀j ∈ J ′, (6.49)

mj∑
i=1

xij −
mj∑
i=1

bij ≥ (−
mj∑
i=1

bij)(1− cj), ∀j ∈ J ′, (6.50)

cj + zj = yj, ∀j ∈ J ′, (6.51)

zj = yj, ∀j ∈ J \ J ′, (6.52)
p∑

j=1

zj ≤ 2, (6.53)

zj1 + zj2 ≤ 1 + fj1 , ∀j1, j2 ∈ J, j1 6= j2, (6.54)

zj1 + cj2 ≤ 1 + fj1 , ∀j1 ∈ J, j2 ∈ J ′, j1 6= j2, (6.55)

zj1 + zj2 ≤ 1 + zj1j2 , j1 = 1, ..., p, j2 = j1 + 1, ..., p, (6.56)

xij ∈ N, i = 1, . . . ,mj, ∀j ∈ J (6.57)

zj, yj, fj ∈ {0, 1}, ∀j ∈ J, (6.58)

cj ∈ {0, 1}, ∀j ∈ J ′, (6.59)

zj1j2 ∈ {0, 1}, j1 = 1, ..., p, j2 = j1 + 1, ..., p. (6.60)

The set S ′ comprises only the part of the lot subsets of S considered in the master

problem. Problem (6.46)-(6.60) has not the integrality property. Solving its linear

relaxation does not lead necessarily to an integer solution. Additionally, observe that,

for a lot j that occupies exclusively the knapsack, and whose demand is not completely

satisfied from this knapsack, we can have fj = 0 or fj = 1. The most correct solution

150 6. The Ordered Cutting Stock Problem

would be fj = 0, since lot j is not combined to any other partial lot in this pattern.

In the case where there is no slack in the constraint (6.36) associated with lot j, and

βj is negative, the corresponding pattern with fj = 0 will surely be generated, if it is

attractive.

6.5.2 Dynamic Programming

The K subproblems are solved by running once a pseudo-polynomial dynamic program-

ming algorithm. Its states are defined as the pairs (j1, j2, t, len), where j1 and j2 are the

indexes of the partial lots in the knapsack, t is 1 or 0, if there is a complete small lot or

not in the knapsack, respectively, and len is the space in the knapsack that is already

occupied. When j1 = 0 and j2 6= 0, the knapsack has only one partial lot. When both

are 0, the knapsack has no partial lot. In this case, a value of t = 1 represents a knap-

sack filled with only complete small lots. Note that, because of constraints (6.36) and

the subtour elimination constraints (and also the comb inequalities), we have to keep

track of the partial lots that are in the knapsack, which are at most two. Regarding

small lots, the situation is different. What we really need to register is the existence

or not of one of these lots in the knapsack, since this can determine the addition of

the β dual prices. For an instance with only large lots, the number of states is divided

by two. Indeed, for these instances, defining a state as the pair (j1, j2, len) is clearly

sufficient. The initial state is (0, 0, 0, 0). The values of j1 are always kept smaller than

those for j2. Considering the states ordered in increasing values for the length, the

binary coefficient t and the lot indexes, the last state will then be (p−1, p, 1, W1). The

total number of states is given by the following expression:

2×
(

p(p + 1)

2
+ 1

)
×W1 + 1

The cost of a state is denoted by h(j1, j2, t, len). For the initial state, we have h(0, 0, 0, 0) =

0. The objective of the algorithm is to find a maximum cost solution.

We present our recurrence equation in two parts for clarity. Both depend on the

ending state which corresponds respectively to a knapsack with and without any com-

plete small lot.

h(j1, j2, 0, len) = maxi { h(j3, j4, 0, len− wij2) + αij2 |

(j1 = 0, j2 6= 0, j3 = 0 and j4 = 0), or

(j1 = j4, j2 6= 0 and j3 = 0), or

(j1 = j3 and j2 = j4), or

(j1 = 0, j2 = j4 and j3 = 0) },

∀ i ∈ {1, . . . ,mj2}, j1, j2, j3 and j4 ∈ J ∪ {0},

6.5. Pricing Columns in the Column Generation Reformulation 151

j1 ≤ p− 1, j2 ≤ p, j1 < j2, ∀ len ∈ {wij2 , . . . ,W1}.

h(j1, j2, 1, len) = maxj3

{
h

(
j1, j2, t, len−

mj3∑
i=1

bij3wij3

)
+

mj3∑
i=1

bij3αij3

∣∣∣∣∣
t = 0, or t = 1

}
,

∀ j3 ∈ J ′, j1 and j2 ∈ J ∪ {0},

j1 ≤ p− 1, j2 ≤ p, j1 < j2, ∀ len ∈

{mj3∑
i=1

bij3wij3 , . . . ,W1

}
.

An extra term has to be added to the final cost of each state (j1, j2, t, len) given by

the recurrence equations, in order to report the dual prices β and δ. Depending on the

values for j1, j2 and t, a state will end up with one of the following costs:

. h(j1, j2, t, len)+βj1 +βj2 +
∑|S′|

s=1 δsstj1,j2,s, for j1 6= 0, j2 6= 0 and (t = 0 or t = 1);

. h(0, j2, 1, len) + βj2 , for j2 6= 0;

. h(0, j2, 0, len), for j2 6= 0;

. h(0, 0, 1, len).

with stj1,j2,s = 1, if j1 and j2 belong both to Is, and 0 otherwise. Note that these costs

could have been reported directly to the recurrence equations.

Our implementation of this dynamic programming algorithm considers a sequence

of stages that can be divided in p + (p− p′) groups, one for each lot plus one for each

small lot. Within the first p groups, there is ml stages, if the group is attached to lot

l. The last p − p′ groups have one stage each. In each of them, a decision is taken

whether to place or not all the items of the corresponding small lot in the knapsack.

States with two partial lots are never starting points for the stages related to the

first p groups. For these groups, the states to explore are only those corresponding to

a knapsack with at most one partial lot. In the worst case, at most (p + 1) ×W1 + 1

states will have to be explored.

For the last p − p′ groups, the majority of the states with a cost different from ∞
(this cost stands for a state that has not been reached) have to be explored. But for

each of them, there is only a binary decision to take. Furthermore, for a small lot j3,

states with the form (j1, j3, t, len) or (j3, j1, t, len), whatever the values of j1, t and

len, have not to be taken into account since demand is to be satisfied exactly, and

the presence of j3 in the list of lots signals that some of its items are already in the

knapsack.

152 6. The Ordered Cutting Stock Problem

6.6 Searching for Integer Solutions with Branch-

and-Bound

In this section, we discuss the characteristics of the branch-and-bound algorithm used

to find the optimal integer solution for the OCSP. The branching rule adopted com-

plicates excessively the subproblem for instances that include small lots in the lot set.

Consequently, from this point forward, we will consider only instances with large lots.

For those, our branching scheme is compatible with the subproblem defined in the pre-

vious section. Its complexity remains the same. We begin by giving a brief overview of

the algorithm and proceed by describing how the first columns of the restricted mas-

ter problem are generated. The branching scheme, search strategy and the modified

subproblem are described next.

6.6.1 Algorithm Overview

The optimal integer solution for the OCSP is searched via a branch-and-price-and-cut

algorithm, combining column generation and cutting planes at the branching nodes

with branch-and-bound. We give an outline of our complete algorithm next.

Initially, a restricted version of the LP master problem related to (6.34)-(6.39) is

solved without any of the subtour elimination constraints (6.38). Columns are gener-

ated by solving a pricing subproblem, (6.46)-(6.60) for the root node and a modified

subproblem in the other nodes. The most attractive column is added to the master

problem, which is then reoptimized. When there are no more attractive columns, we

search for the subtour elimination constraints violated by the current solution by run-

ning the separation procedure described in Section 6.3. These violated constraints, if

they exist, are inserted into the master problem, which, again, is reoptimized. The pro-

cess repeats until no more violated subtour elimination constraints are found. In this

case, we search for violated comb inequalities using the separation algorithm presented

in Section 6.4, and repeat the column generation procedure followed by the search for

violated subtour elimination constraints. Branching is done at the end of this process,

when no more violated comb inequalities can be identified. Before branching, the so-

lution of the column generation model is translated into an equivalent solution for the

flow model described above. Patterns are converted into flows over item arcs and tran-

sition arcs according to the following order: lots are treated in increasing order of their

indexes and items are represented within each lot from the largest to the smallest. In

fact, this is the general data ordering that we have been assuming along this chapter.

Note that there is no flow over hybrid arcs since we are only considering instances

with large lots. Branching is done on these arcs according to the scheme we will in-

troduce later, and branching constraints are converted back to the column generation

6.6. Searching for Integer Solutions with Branch-and-Bound 153

model following the data ordering rule. Each node is optimized following the steps

already described, and the process proceeds until the optimality of the incumbent or

the infeasibility of the problem are proven.

Lower bounding is used to control the number of column generation iterations.

Hence, after each iteration, we calculate the Farley’s bound [41], which provides a

good lower bound for the master problem. If this bound is equal to or greater than the

best known incumbent, column generation is stopped and the node is pruned. Besides,

when the optimal solution of the LP master is equal to or lower than the best global

lower bound for the integer problem, column generation is also interrupted.

6.6.2 Initialization Heuristic

The LP master problem associated with (6.34)-(6.39) is initialized with a restricted

pool of columns, hence the name restricted master problem. The first column to be

inserted is an artificial one ensuring the feasibility of the master in every node of the

branching tree, at every stage of the column generation process. The artificial column

has a high cost, so that an infeasible solution can be clearly distinguished. The step

that follows consists in finding a set of columns associated to a feasible solution for the

OCSP. This is done via a heuristic. The success of this step is not guaranteed since

the restricted number of available rolls may cause the algorithm failure.

The objective of the heuristic is to find a good assignment of items to rolls as well as

a good sequence of lots. These objectives can be considered separately or combined in a

unique objective for a single algorithm. We opt for the second possibility. Our heuristic

follows the principle of the well known First Fit Decreasing algorithm, and then, each

item is assigned to the first opened roll where it fits. A roll is opened whenever an

item, selected to be placed somewhere, does not fit in any of the already opened rolls.

The rolls are opened in order of decreasing length, while lots are processed in order of

increasing index. Before treating the items of a lot, all the items of the previous lot

must be assigned to a roll. Within each lot, we place the items from the largest to the

smallest. When an item is to be placed in a roll where there is already one or more

items from a different lot, we first check if the sequence induced by this placement is

free of cycles or not. In the first case, the item is assigned to the roll, and the heuristic

goes on with the next item in the lot, or the first item of the following lot. In the

second case, the item is not placed in the roll, and the next opened roll with enough

free space is checked in turn. If there is no rolls with enough free space, a new roll

is opened. At the end, the patterns are transferred one by one into the smallest roll

available where they fit, freeing at the same time their original roll.

154 6. The Ordered Cutting Stock Problem

6.6.3 Branching Scheme

Branching is necessary whenever the solution of the master, after adding all the cuts, is

still fractional and the first integer greater than or equal to the solution cost is strictly

lower than the incumbent. To select the subset of columns to branch from the master

problem, we first translate the solution of the master into a solution for the flow model

using the simple rule described above. An arc (or a set of arcs) with fractional flow is

then selected, and the columns whose translation into the flow model include this arc

are finally the ones chosen for branching.

In order to get a balanced branching tree, we considered different levels of branching.

Hence, we begin by checking the aggregated flow between two nodes induced by item

arcs. Let gij denote this flow for the nodes i and j. Using the terminology introduced

for the flow model, we then have

gij =
∑
l∈J

xl
ij +

∑
l∈J

zl
ij

If the current value for gij is fractional, two branching nodes are created with the

following branching constraints

gij ≤ bgijc and gij ≥ dgije. (6.61)

Among the different arcs, we select the leftmost with, as a secondary criterion, the

higher difference j− i, i.e., the largest. If none of these variables is fractional, we check

the xl
ij variables, and finally the zl

ij if all the latter are integer. The same criterion is

applied for the arc selection. Based on these variables, branching constraints similar to

(6.61) are enforced. The last variables to branch on if none of the latter is fractional are

those associated with the transition arcs, the yll′
s variables. These are binary variables,

so the two branching nodes will be associated to one of the following constraints

yll′

s = 0 and yll′

s = 1. (6.62)

Depending on the branching constraints that have already been enforced in a node, the

second constraint may induce a cycle in the lot sequence. This situation, which can

be easily anticipated, is checked and, if it is the case, the node is simply discarded. In

practice, this node corresponds to an infeasible problem. The arc selected for branching

is the upmost arc, i.e., the one with the lowest l, located nearest from the left border

of the roll (with the smallest s).

Branching on the transition arcs, or even on the xl
ij or zl

ij variables, does not

induce any extra complication to the subproblem (6.46)-(6.60). Indeed, the states

of our dynamic programming algorithm already have to register the two partial lots

present in the knapsack. With a branching scheme based on hybrid arcs, these states

will also have to keep track of the small lots in the knapsack. Clearly, at a certain level

of the branching tree, the state space will become excessively big.

6.6. Searching for Integer Solutions with Branch-and-Bound 155

The nodes of the branch-and bound tree are selected on a best-bound basis, until

the optimality gap is equal or lower than 5%. Once this point is reached, we search for

an improved solution following a depth-first strategy.

6.6.4 Modified Pricing Problem

To show how the dual prices for the branching constraints are reported to the pricing

subproblem, we reformulate the knapsack problem (6.46)-(6.60) as an equivalent longest

path problem over an acyclic and directed graph. For this purpose, we use the set of

arcs defined above for the flow model, as well as a similar set of variables. Before

describing the reduced costs, we introduce first the following notation

. ρs
ij: dual variables for the branching constraints (6.61) on the aggregated flow in

arc (i, j), with s ∈ Tw
1ij, the set of these branching constraints at node w;

. σxs
ijl: dual variables for the branching constraints on the xl

ij variables, with s ∈
Tw

2ijl, for the branching node w;

. σzs
ijl: dual variables for the branching constraints on the zl

ij variables, with s ∈
Tw

3ijl;

. τ s
ill′ : dual variables for the branching constraints on the yll′

i variables, with s ∈
Tw

4ill′ ;

. S ′
w: set of subtour elimination constraints at node w;

. δ′s: dual variables for the comb inequalities, with s ∈ S ′′
w;

. fx,l: index of an item of size x in the lot l.

The reduced costs for the xl
ij, zl

ij and yll′
i variables, respectively, are given by

. cx
ijl = αfj−i,l,l +

∑
s∈T w

1ij
ρs

ij +
∑

s∈T w
2ijl

σxs
ijl;

. cz
ijl = αfj−i,l,l +

∑
s∈T w

1ij
ρs

ij +
∑

s∈T w
2ijl

σzs
ijl;

. cy
ill′ =

∑
s∈T w

4ill′
τ s

ill′ + βl + βl′ .

As in (6.46)-(6.60), the objective function of the modified pricing problem must

account for the dual costs induced by the subtour elimination constraints (6.38). Ad-

ditionally, the dual prices for the comb inequalities must also be taken into account.

Hence, the formulation for the modified pricing subproblem related to a roll of length

Wk stands as follows

max
∑

(i,j,l)∈X

cx
ijlx

l
ij +

∑
(i,j,l)∈Z

cz
ijlz

l
ij +

∑
(i,l,l′)∈Y

cy
ill′y

ll′

i +

156 6. The Ordered Cutting Stock Problem

+
∑
s∈S′

w

∑
(i,l,l′)∈Y,l,l′∈Is

δsy
ll′

i +
∑
s∈S′′

w

∑
(i,l,l′)∈Y

δ′sy
ll′

i cbll′s (6.63)

subject to∑
(0,t,l)∈X

xl
0,t = 1, (6.64)

−
∑

(i,j,l)∈X

xl
ij +

∑
(j,r,l)∈X

xl
jr +

∑
(i,l,l′)∈Y

yll′

i =

=

{
−gl

1k , for s = Wk, k = 1, ..., K

0 , for s 6= Wk and s 6= 0,

∣∣∣∣∣ ,∀l ∈ J, (6.65)

−
∑

(i,l′,l)∈Y

yl′l
i −

∑
(i,j,l)∈Z

zl
ij +

∑
(j,r,l)∈Z

zl
jr =

=

{
−gl

2k , for s = Wk, k = 1, ..., K

0 , for s 6= Wk and s 6= 0,

∣∣∣∣∣ ,∀l ∈ J, (6.66)∑
(i,l′,l)∈Y

yl′l
i +

∑
(i,l,l′)∈Y

yll′

i ≤ 2, ∀l ∈ J, (6.67)

∑
l∈J

gl
1k +

∑
l∈J

gl
2k = 1, (6.68)

xl
ij ≥ 0 and integer, ∀(i, j, l) ∈ X, (6.69)

zl
ij ≥ 0 and integer, ∀(i, j, l) ∈ Z, (6.70)

yll′

i ≥ 0 and integer, ∀(i, l, l′) ∈ Y, (6.71)

gl
ik ≥ 0 and integer, i = 1, ..., 2, ∀l ∈ J. (6.72)

Coefficients cbl,l′,s are 1 if both the vertices related to lots l and l′ belong to either the

handle or one of the teeth of the comb s in S ′′
w.

The K problems (6.63)-(6.72) are solved with a single dynamic programming es-

sentially identical to the one discussed in Section 6.5.2.

6.7 Rounding Procedures

Frequently, a solution improving the incumbent can be found quickly just by rounding

the values of the current solution. This happens especially in the initial iterations of

the algorithm. Hence, we devised two variants of a rounding procedure in order to

improve the convergence of our branch-and-price-and-cut algorithm.

In our first rounding heuristic, all the columns associated to patterns with a single

lot that have a fractional value equal to or greater than f are rounded up one by one in

order of increasing indexes, so that the rolls availability is never exceeded. The columns

that are not in these conditions are rounded down to the first smaller integer value.

The difference between demand and the supplied items is then evaluated. Columns

with a positive value are inspected in order to find the one that has items with an

6.8. Computational Experiments 157

excess of supply whose removal allows passing the corresponding pattern to a smaller

roll. We select the column with the higher difference between the lengths of its original

roll and the one for its destination roll. This step is repeated until there are no more

items in excess, or the destination rolls are the same as the original ones. In the latter

case, the items in excess are removed from the patterns with the lower indexes. In

all the operations, the rolls availability is always taken into account. The algorithm

proceeds with the placement of the remaining items. Each roll related to a column

with a positive value is considered an open roll. A First Fit Decreasing strategy is used

to place the items. Before assigning an item to a roll, we first check if this placement

does not induce a cycle in the lot sequence.

A second procedure is used, differing only from the first in the initial steps. Before

rounding up or down the columns associated to patterns with a single lot, we first

check the columns with two partial lots, rounding up those with a value greater than

f1. Once more, we confirm first that this rounding does not produce any cycle in the

current lot sequence. These operations are done on columns with increasing indexes.

These procedures are ran just before branching with three different values for f

(0.3, 0.5 and 0.7) and two different values for f1 (0.8 and 0.9).

6.8 Computational Experiments

6.8.1 Data Sets

We randomly generated 200 instances with five different number of lots. For each

instance, the lots are composed by items whose total size is greater than the length

of the larger stock roll (large lots). To guarantee that this criterion is satisfied, the

instances were generated in a way such that the total number of items per lot times

the smaller admissible item size (a fixed parameter) is greater than the larger roll.

Four parameters were used to generate the instances. In the following tables, they are

denoted by v1 and v2, for the sizes of the smaller and the larger items expressed as a

percentage of the larger stock length, respectively, m for the average number of items

per lot, and d for the average demand per item size.

Our experiments were done with 10, 15, 20, 25 and 30 lots. For each one of these

values, forty instances were generated, varying the parameters m and d. The tables

in the following section specify the values used for each instance. There are also two

different stock lengths per instance, which belong to the set {60, 80, 100}.

6.8.2 Computational Results

Our computational experiments were carried out on a 3GHz Pentium IV computer with

512MBytes of RAM. We used CPLEX 6.5 [69] to perform some of the optimization

158 6. The Ordered Cutting Stock Problem

subroutines. The execution of the algorithm was stopped after 10 minutes spent in the

branch-and-bound search tree.

The following tables list the results obtained for the 200 instances. Along with the

parameters of each instance, the columns represent the value of the continuous bound

before and after adding the cutting planes described in this chapter, respectively zbc
LP

and zac
LP , the best lower bound (LB) and the best upper bound (UB) achieved within

the time limit, the number of subproblems and columns generated at the root node

(spLP and colsLP , respectively), the remaining subproblems solved in the branching

tree, the number of columns generated therein and branching nodes explored (spBB,

colsBB and nodBB, respectively), the number of subtour elimination constraints and

comb inequalities added (cuts), the time spent in initializing the master (tPP), in

solving the master problem and all the subproblems (tLP and tSP , respectively), the

time spent with branch-and-bound (tBB), and, finally, the total computing time (tTOT).

We applied also the level cut described in Chapter 3. The column zac
LP represents the

LP optimum after adding this cut, and the subtour elimination and comb inequalities.

The level cut is computed using the same procedure as the one described in Chapter

3.

Only 10 instances were not solved to optimality within the time limit, 2 are from

the group with 20 lots, 2 from the group with 25 lots, and 6 from the group with 30 lots.

However, for all these instances, the integrality gap is very small, never greater than

0.5%. All the instances with 10 and 15 lots were solved to optimality. Not surprisingly,

the larger the number of lots, the more difficult is the instance. The same happens with

the number of items per lot. Beyond 30 lots, our algorithm found serious difficulties in

finding an optimal integer solution, at least within a time limit of 10 minutes.

The size of the problem is directly related to the total number of lots, and item sizes

per lot. For a problem with 30 lots, and 8 different item sizes per lot, for example, the

demand constraints represent 240 constraints of the column generation formulation.

However, the master problem is not the heavier burden. The pricing subproblem is

the real bottleneck of our algorithm. Its resolution generally requires a large percent-

age of the total computing time. In finding improved integer solutions, the rounding

procedures has proven to be very useful.

6.8. Computational Experiments 159

m d v1 v2 zbc
LP zac

LP LB UB

1 5 5 0.1 0.8 15340.00 15360.00 15360 15360

2 5 5 0.1 0.8 17005.56 17020.00 17040 17040

3 5 5 0.1 0.8 14395.83 14400.00 14440 14440

4 5 5 0.1 0.8 14946.67 14980.00 15000 15000

5 5 5 0.1 0.8 14975.91 15020.00 15040 15040

6 5 5 0.1 0.8 16035.69 16060.00 16080 16080

7 5 5 0.1 0.8 15881.00 15900.00 15900 15900

8 5 5 0.1 0.8 15990.00 16000.00 16020 16020

9 5 5 0.1 0.8 14421.67 14480.00 14480 14480

10 5 5 0.1 0.8 15895.00 15920.00 15940 15940

11 10 2 0.1 0.8 11220.00 11240.00 11240 11240

12 10 2 0.1 0.8 10325.18 10340.00 10360 10360

13 10 2 0.1 0.8 10580.00 10600.00 10600 10600

14 10 2 0.1 0.8 11805.00 11840.00 11860 11860

15 10 2 0.1 0.8 10772.89 10780.00 10800 10800

16 10 2 0.1 0.8 11467.50 11480.00 11500 11500

17 10 2 0.1 0.8 10917.50 10940.00 10960 10960

18 10 2 0.1 0.8 11360.00 11380.00 11380 11380

19 10 2 0.1 0.8 11659.00 11680.00 11680 11680

20 10 2 0.1 0.8 11394.29 11420.00 11440 11440

avg. 13319.43 13342.00 13356.00 13356.00

Table 6.1: Computational results for random instances with 10 lots (a)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

1 33 42 87 52 38 10 0.03 0.27 0.78 0.72 1.02
2 40 50 54 28 19 9 0.03 0.12 0.34 0.31 0.47
3 29 40 297 60 220 23 0.03 0.14 1.52 2.44 2.61
4 37 46 42 22 22 9 0.03 0.23 0.47 0.34 0.61
5 39 48 120 44 77 13 0.03 0.22 0.69 0.94 1.19
6 40 56 304 89 212 14 0.03 0.22 1.66 3.03 3.28
7 29 29 26 9 12 14 0.03 0.17 0.33 0.22 0.42
8 23 26 66 30 30 14 0.02 0.09 0.31 0.35 0.46
9 38 50 59 34 29 11 0.03 0.25 0.59 0.61 0.89
10 33 39 91 42 52 12 0.02 0.16 0.46 0.64 0.81
11 79 110 3 2 3 6 0.06 1.35 1.36 0.09 1.50
12 116 192 389 216 192 15 0.05 2.24 8.48 10.85 13.14
13 66 93 18 16 8 4 0.06 1.22 1.50 0.39 1.67
14 45 58 39 34 10 6 0.06 0.61 1.03 0.58 1.25
15 88 134 159 103 71 11 0.05 1.73 4.11 3.73 5.51
16 76 120 229 135 124 12 0.06 1.33 4.28 4.48 5.87
17 81 122 14 10 4 5 0.06 1.52 1.72 0.25 1.83
18 81 111 6 0 5 5 0.06 1.55 1.56 0.11 1.72
19 57 69 10 8 6 4 0.06 0.95 1.11 0.17 1.19
20 75 109 451 186 274 23 0.06 1.16 7.10 10.06 11.28
avg. 55.25 77.20 123.20 56.00 70.40 11.00 0.04 0.78 1.97 2.02 2.83

Table 6.2: Computational results for random instances with 10 lots (b)

160 6. The Ordered Cutting Stock Problem

m d v1 v2 zbc
LP zac

LP LB UB

21 12 2 0.1 0.8 13688.52 13700.00 13740 13740

22 12 2 0.1 0.8 13560.00 13580.00 13600 13600

23 12 2 0.1 0.8 11868.33 11900.00 11900 11900

24 12 2 0.1 0.8 13063.33 13080.00 13100 13100

25 12 2 0.1 0.8 13214.90 13240.00 13260 13260

26 12 2 0.1 0.8 11420.00 11460.00 11500 11500

27 12 2 0.1 0.8 13144.83 13180.00 13200 13200

28 12 2 0.1 0.8 12330.00 12360.00 12380 12380

29 12 2 0.1 0.8 13760.00 13780.00 13780 13780

30 12 2 0.1 0.8 13750.00 13760.00 13780 13780

31 15 2 0.1 0.8 14606.19 14620.00 14640 14640

32 15 2 0.1 0.8 14808.15 14820.00 14820 14820

33 15 2 0.1 0.8 14535.56 14560.00 14580 14580

34 15 2 0.1 0.8 14570.00 14580.00 14600 14600

35 15 2 0.1 0.8 15977.50 16000.00 16020 16020

36 15 2 0.1 0.8 15036.58 15060.00 15080 15080

37 15 2 0.1 0.8 16000.83 16020.00 16040 16040

38 15 2 0.1 0.8 15005.88 15020.00 15060 15060

39 15 2 0.1 0.8 15170.00 15180.00 15180 15180

40 15 2 0.1 0.8 15263.33 15300.00 15340 15340

avg. 14038.70 14060.00 14080.00 14080.00

Table 6.3: Computational results for random instances with 10 lots (c)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

21 83 120 401 134 283 16 0.09 1.81 8.78 11.50 13.41
22 83 125 168 100 76 11 0.08 1.86 4.82 3.95 5.89
23 125 180 70 49 23 7 0.09 3.37 4.56 1.80 5.26
24 107 161 175 102 70 14 0.09 2.58 5.89 4.81 7.48
25 115 178 56 29 22 12 0.08 2.93 3.89 1.47 4.47
26 144 245 526 117 378 38 0.06 4.53 15.56 19.78 24.37
27 97 150 239 134 138 9 0.06 2.36 7.11 6.80 9.21
28 65 100 261 78 188 14 0.08 1.43 6.03 6.90 8.41
29 91 130 64 45 22 13 0.08 2.06 3.00 1.31 3.45
30 74 110 25 28 8 4 0.09 1.63 1.98 0.47 2.19
31 164 271 582 306 301 13 0.11 6.06 23.54 29.22 35.39
32 96 157 225 182 82 9 0.11 3.47 10.32 9.13 12.71
33 125 197 107 85 30 11 0.11 4.16 6.69 3.16 7.42
34 123 211 406 289 164 12 0.13 4.49 16.37 18.15 22.76
35 75 102 166 124 62 14 0.13 2.08 5.64 4.59 6.79
36 143 233 1216 627 631 21 0.11 4.75 44.81 80.19 85.04
37 92 153 372 188 197 18 0.13 2.91 12.86 14.28 17.31
38 142 229 346 154 206 16 0.11 5.48 15.65 15.24 20.83
39 80 144 90 105 17 4 0.13 2.63 5.19 3.01 5.76
40 114 197 204 85 104 28 0.11 3.96 8.87 7.03 11.10
avg. 106.90 169.65 284.95 148.05 150.10 14.20 0.10 3.23 10.58 12.14 15.46

Table 6.4: Computational results for random instances with 10 lots (d)

6.8. Computational Experiments 161

m d v1 v2 zbc
LP zac

LP LB UB

1 4 2 0.2 0.8 7370.00 7380.00 7420 7420

2 4 2 0.2 0.8 7842.38 7860.00 7880 7880

3 4 2 0.2 0.8 7292.50 7300.00 7320 7320

4 4 2 0.2 0.8 8930.00 8940.00 8940 8940

5 4 2 0.2 0.8 8340.00 8340.00 8360 8360

6 4 2 0.2 0.8 7273.33 7280.00 7300 7300

7 4 2 0.2 0.8 7190.00 7200.00 7220 7220

8 4 2 0.2 0.8 7750.00 7800.00 7800 7800

9 4 2 0.2 0.8 7566.67 7580.00 7600 7600

10 4 2 0.2 0.8 6810.00 6820.00 6820 6820

11 6 2 0.2 0.8 11765.00 11780.00 11800 11800

12 6 2 0.2 0.8 11775.00 11780.00 11800 11800

13 6 2 0.2 0.8 12280.00 12280.00 12280 12280

14 6 2 0.2 0.8 10570.00 10580.00 10600 10600

15 6 2 0.2 0.8 11490.00 11520.00 11520 11520

16 6 2 0.2 0.8 11910.00 11920.00 11920 11920

17 6 2 0.2 0.8 11215.00 11220.00 11220 11220

18 6 2 0.2 0.8 12180.00 12200.00 12200 12200

19 6 2 0.2 0.8 11165.00 11180.00 11200 11200

20 6 2 0.2 0.8 12305.00 12320.00 12320 12320

avg. 9650.99 9664.00 9676.00 9676.00

Table 6.5: Computational results for random instances with 15 lots (a)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

1 59 83 170 75 82 18 0.02 0.42 1.66 1.91 2.35
2 48 71 58 42 20 5 0.03 0.30 0.61 0.49 0.82
3 56 80 118 74 44 13 0.03 0.42 1.17 1.28 1.74
4 36 52 27 17 13 2 0.03 0.24 0.35 0.14 0.41
5 41 61 21 14 8 6 0.03 0.28 0.42 0.16 0.47
6 50 67 69 37 33 14 0.03 0.36 0.81 0.66 1.05
7 52 79 44 28 14 13 0.02 0.38 0.67 0.36 0.75
8 63 77 4 1 4 4 0.02 0.41 0.42 0.03 0.46
9 53 72 73 50 28 7 0.03 0.39 0.89 0.73 1.16
10 56 75 39 25 11 14 0.03 0.42 0.69 0.38 0.83
11 75 106 305 98 187 33 0.06 1.05 4.99 5.90 7.01
12 77 96 718 122 553 63 0.06 0.97 10.01 15.37 16.40
13 57 76 11 7 7 7 0.05 0.70 0.83 0.22 0.97
14 68 102 100 56 47 9 0.06 1.02 2.33 1.76 2.83
15 66 87 20 11 11 7 0.06 0.95 1.19 0.44 1.45
16 69 93 6 3 3 1 0.06 0.84 0.87 0.11 1.02
17 78 123 268 119 147 20 0.05 1.14 4.81 5.55 6.74
18 73 89 3 0 3 6 0.06 1.05 1.08 0.09 1.20
19 76 112 255 78 166 34 0.06 1.09 4.62 4.92 6.08
20 71 87 80 50 30 17 0.06 0.89 1.87 1.17 2.12
avg. 61.20 84.40 119.45 45.35 70.55 14.65 0.04 0.67 2.02 2.08 2.79

Table 6.6: Computational results for random instances with 15 lots (b)

162 6. The Ordered Cutting Stock Problem

m d v1 v2 zbc
LP zac

LP LB UB

21 8 2 0.2 0.8 15890.00 15900.00 15920 15920

22 8 2 0.2 0.8 14820.00 14840.00 14860 14860

23 8 2 0.2 0.8 14190.00 14220.00 14240 14240

24 8 2 0.2 0.8 15000.00 15020.00 15020 15020

25 8 2 0.2 0.8 15300.00 15320.00 15320 15320

26 8 2 0.2 0.8 15375.00 15400.00 15400 15400

27 8 2 0.2 0.8 14340.00 14360.00 14360 14360

28 8 2 0.2 0.8 14670.00 14700.00 14720 14720

29 8 2 0.2 0.8 15025.00 15040.00 15060 15060

30 8 2 0.2 0.8 13610.00 13640.00 13640 13640

31 10 2 0.2 0.8 16887.00 16900.00 16900 16900

32 10 2 0.2 0.8 16983.33 17000.00 17020 17020

33 10 2 0.2 0.8 16755.83 16780.00 16800 16800

34 10 2 0.2 0.8 17118.00 17120.00 17140 17140

35 10 2 0.2 0.8 17760.00 17780.00 17780 17780

36 10 2 0.2 0.8 16883.33 16900.00 16920 16920

37 10 2 0.2 0.8 19095.00 19120.00 19160 19160

38 10 2 0.2 0.8 17225.00 17240.00 17260 17260

39 10 2 0.2 0.8 17963.33 18000.00 18000 18000

40 10 2 0.2 0.8 18416.67 18440.00 18440 18440

avg. 16165.37 16186.00 16198.00 16198.00

Table 6.7: Computational results for random instances with 15 lots (c)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

21 76 101 276 87 174 44 0.09 1.54 6.64 6.86 8.50
22 66 98 6 5 4 5 0.11 1.53 1.62 0.16 1.79
23 73 99 141 93 58 14 0.11 1.75 4.85 3.83 5.69
24 80 109 10 0 5 12 0.09 1.67 1.81 0.24 2.00
25 75 105 113 64 49 14 0.09 1.71 4.28 3.30 5.10
26 96 115 48 35 13 12 0.09 2.07 3.01 1.13 3.29
27 75 92 14 9 4 9 0.11 1.78 2.01 0.34 2.23
28 86 112 288 95 190 36 0.09 1.81 7.61 7.88 9.78
29 87 125 218 94 119 16 0.11 2.22 7.32 6.46 8.79
30 101 154 33 19 13 8 0.09 2.42 3.09 0.88 3.39
31 88 129 445 226 223 33 0.14 3.70 21.36 23.47 27.31
32 83 124 229 94 136 28 0.14 3.62 11.92 10.53 14.30
33 114 168 624 199 418 28 0.16 5.33 30.18 34.21 39.69
34 85 125 88 58 35 8 0.14 3.09 5.93 3.53 6.76
35 99 128 30 12 14 9 0.14 3.59 4.47 1.15 4.89
36 105 168 1150 280 838 65 0.14 4.64 52.05 67.04 71.82
37 80 100 693 129 502 92 0.16 2.60 22.40 27.86 30.62
38 103 160 554 256 300 39 0.16 4.09 26.00 30.38 34.63
39 78 115 30 20 13 6 0.14 2.82 3.76 1.25 4.21
40 94 136 13 2 6 8 0.14 3.61 3.97 0.53 4.28
avg. 87.20 123.15 250.15 88.85 155.70 24.30 0.12 2.78 11.21 11.55 14.45

Table 6.8: Computational results for random instances with 15 lots (d)

6.8. Computational Experiments 163

m d v1 v2 zbc
LP zac

LP LB UB

1 3 2 0.2 0.8 8685.00 8700.00 8700 8700

2 3 2 0.2 0.8 8610.00 8620.00 8640 8640

3 3 2 0.2 0.8 8072.50 8080.00 8080 8080

4 3 2 0.2 0.8 7575.00 7580.00 7600 7600

5 3 2 0.2 0.8 7770.00 7780.00 7780 7780

6 3 2 0.2 0.8 8620.00 8640.00 8640 8640

7 3 2 0.2 0.8 8805.00 8820.00 8820 8820

8 3 2 0.2 0.8 8355.00 8380.00 8380 8380

9 3 2 0.2 0.8 7770.00 7780.00 7800 7800

10 3 2 0.2 0.8 7510.00 7520.00 7540 7540

11 5 2 0.2 0.8 12170.00 12180.00 12200 12200

12 5 2 0.2 0.8 12770.00 12780.00 12800 12800

13 5 2 0.2 0.8 13173.33 13180.00 13180 13180

14 5 2 0.2 0.8 12556.67 12580.00 12580 12580

15 5 2 0.2 0.8 13150.00 13160.00 13180 13180

16 5 2 0.2 0.8 11875.00 11880.00 11900 11900

17 5 2 0.2 0.8 12005.00 12020.00 12020 12020

18 5 2 0.2 0.8 12640.00 12660.00 12660 12660

19 5 2 0.2 0.8 13030.00 13060.00 13080 13080

20 5 2 0.2 0.8 12430.00 12480.00 12480 12480

avg. 10378.63 10394.00 10403.00 10403.00

Table 6.9: Computational results for random instances with 20 lots (a)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

1 56 64 45 21 23 9 0.03 0.45 0.83 0.55 1.03
2 62 76 230 66 164 22 0.03 0.55 2.60 3.09 3.66
3 56 67 12 5 4 7 0.03 0.50 0.58 0.14 0.67
4 57 64 11 7 4 6 0.02 0.50 0.58 0.13 0.64
5 67 79 4 0 2 4 0.03 0.55 0.56 0.05 0.62
6 63 80 18 5 10 9 0.03 0.55 0.75 0.23 0.81
7 30 38 5 0 3 4 0.03 0.28 0.30 0.06 0.38
8 72 82 98 31 60 19 0.03 0.63 1.27 1.00 1.66
9 54 78 23 12 9 4 0.03 0.56 0.79 0.28 0.87
10 61 78 270 76 188 21 0.03 0.58 3.03 3.85 4.46
11 103 145 19 13 4 11 0.08 2.53 2.91 0.47 3.08
12 91 119 44 22 18 18 0.06 1.92 2.65 0.97 2.95
13 113 133 59 32 24 12 0.08 2.67 3.88 1.60 4.35
14 95 123 15 3 10 5 0.08 2.19 2.47 0.47 2.73
15 91 123 22 10 10 6 0.06 2.02 2.43 0.63 2.71
16 90 136 657 211 427 51 0.08 2.33 19.66 25.54 27.95
17 71 99 33 19 11 13 0.08 1.78 2.55 1.09 2.95
18 87 112 32 14 14 16 0.08 1.90 2.55 0.85 2.83
19 71 92 59 35 19 19 0.06 1.56 2.77 1.53 3.15
20 94 130 38 26 20 9 0.08 2.09 2.92 1.15 3.31
avg. 74.20 95.90 84.70 30.40 51.20 13.25 0.05 1.31 2.80 2.18 3.54

Table 6.10: Computational results for random instances with 20 lots (b)

164 6. The Ordered Cutting Stock Problem

m d v1 v2 zbc
LP zac

LP LB UB

21 6 2 0.2 0.8 16030.00 16040.00 16040 16040

22 6 2 0.2 0.8 16680.00 16700.00 16700 16700

23 6 2 0.2 0.8 15810.00 15820.00 15840 15840

24 6 2 0.2 0.8 15705.00 15720.00 15720 15720

25 6 2 0.2 0.8 15330.00 15340.00 15340 15340

26 6 2 0.2 0.8 15960.00 15980.00 15980 15980

27 6 2 0.2 0.8 15127.00 15140.00 15140 15140

28 6 2 0.2 0.8 14895.00 14920.00 14920 14920

29 6 2 0.2 0.8 14720.00 14740.00 14740 14740

30 6 2 0.2 0.8 14660.00 14680.00 14680 14680

31 8 2 0.2 0.8 20330.00 20340.00 20360 20360

32 8 2 0.2 0.8 19190.00 19220.00 19240 19240

33 8 2 0.2 0.8 19375.00 19400.00 19400 19400

34 8 2 0.2 0.8 20499.58 20520.00 20520 20540

35 8 2 0.2 0.8 19450.00 19460.00 19460 19460

36 8 2 0.2 0.8 19430.00 19440.00 19440 19440

37 8 2 0.2 0.8 19940.00 19940.00 19960 19960

38 8 2 0.2 0.8 19870.00 19880.00 19900 19900

39 8 2 0.2 0.8 20497.50 20520.00 20520 20520

40 8 2 0.2 0.8 18923.33 18960.00 18960 18980

avg. 17621.12 17638.00 17643.00 17645.00

Table 6.11: Computational results for random instances with 20 lots (c)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

21 73 95 21 11 9 5 0.11 2.30 2.91 0.78 3.19
22 104 144 41 16 23 5 0.09 2.97 4.07 1.55 4.61
23 78 108 16 14 2 7 0.09 2.30 2.72 0.49 2.87
24 82 120 89 47 36 13 0.11 2.58 5.08 3.11 5.80
25 82 100 25 14 9 11 0.11 2.53 3.20 0.89 3.53
26 133 164 33 14 14 17 0.11 3.80 4.57 1.16 5.06
27 117 167 10 5 5 8 0.11 4.08 4.39 0.39 4.58
28 109 135 761 231 489 79 0.11 3.19 23.70 32.27 35.57
29 109 141 13 6 6 13 0.11 3.55 3.83 0.52 4.17
30 88 125 376 182 171 49 0.09 2.72 13.91 14.80 17.61
31 112 165 1394 354 965 127 0.17 5.50 82.13 112.91 118.58
32 105 141 210 81 114 39 0.17 5.49 15.97 12.78 18.43
33 91 125 71 41 24 21 0.17 4.51 8.00 4.08 8.77
34 624 855 6435 1479 4725 359 0.17 6.14 464.70 600.04 606.36
35 114 151 9 8 1 15 0.17 5.64 5.96 0.44 6.25
36 108 152 631 239 367 52 0.17 5.45 39.03 43.09 48.71
37 114 181 10 10 2 8 0.19 6.17 6.64 0.56 6.92
38 100 149 216 86 120 31 0.19 5.10 15.48 12.70 17.98
39 118 167 536 215 304 38 0.17 5.95 33.73 35.56 41.69
40 386 613 4694 1555 3246 104 0.19 6.53 468.17 600.13 606.85
avg. 142.35 199.90 779.55 230.40 531.60 50.05 0.14 4.32 60.41 73.91 78.38

Table 6.12: Computational results for random instances with 20 lots (d)

6.8. Computational Experiments 165

m d v1 v2 zbc
LP zac

LP LB UB

1 2 3 0.2 0.8 10870.00 10880.00 10900 10900

2 2 3 0.2 0.8 9578.33 9600.00 9600 9600

3 2 3 0.2 0.8 9338.75 9340.00 9360 9360

4 2 3 0.2 0.8 9381.67 9400.00 9400 9400

5 2 3 0.2 0.8 9170.00 9180.00 9180 9180

6 2 3 0.2 0.8 8920.00 8940.00 8940 8940

7 2 3 0.2 0.8 10890.00 10900.00 10920 10920

8 2 3 0.2 0.8 7815.00 7820.00 7840 7840

9 2 3 0.2 0.8 9813.33 9840.00 9860 9860

10 2 3 0.2 0.8 9416.67 9420.00 9440 9440

11 5 2 0.2 0.8 16577.14 16600.00 16600 16600

12 5 2 0.2 0.8 16630.00 16640.00 16640 16640

13 5 2 0.2 0.8 17710.00 17720.00 17720 17720

14 5 2 0.2 0.8 16580.00 16600.00 16600 16600

15 5 2 0.2 0.8 16102.50 16120.00 16120 16120

16 5 2 0.2 0.8 16640.00 16660.00 16660 16660

17 5 2 0.2 0.8 16780.00 16800.00 16800 16800

18 5 2 0.2 0.8 17320.00 17320.00 17340 17340

19 5 2 0.2 0.8 17196.67 17200.00 17220 17220

20 5 2 0.2 0.8 16205.00 16220.00 16240 16240

avg. 13146.75 13160.00 13169.00 13169.00

Table 6.13: Computational results for random instances with 25 lots (a)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

1 20 25 23 15 8 3 0.03 0.20 0.44 0.25 0.48
2 69 74 97 24 45 45 0.02 0.72 1.83 1.42 2.16
3 47 64 5 2 2 2 0.02 0.53 0.55 0.06 0.61
4 49 59 21 7 8 10 0.03 0.59 0.75 0.28 0.91
5 48 59 44 22 17 14 0.03 0.59 1.03 0.59 1.22
6 52 58 12 5 6 14 0.02 0.63 0.72 0.14 0.78
7 31 35 68 28 36 20 0.03 0.31 1.02 0.80 1.14
8 54 78 272 106 152 45 0.02 0.70 3.84 4.74 5.46
9 51 56 510 68 390 71 0.03 0.56 5.35 7.15 7.74
10 45 52 63 29 26 18 0.02 0.47 1.15 0.89 1.37
11 118 156 20 5 9 12 0.13 4.61 5.29 0.89 5.62
12 103 126 49 33 15 15 0.13 3.79 5.40 2.03 5.95
13 95 115 260 129 128 22 0.11 3.52 13.11 11.74 15.37
14 131 167 19 0 9 20 0.11 5.20 5.85 0.89 6.20
15 123 185 19 12 8 10 0.13 5.45 6.16 0.95 6.53
16 113 147 80 52 29 14 0.13 4.64 7.91 3.82 8.58
17 112 160 166 60 90 33 0.11 4.86 11.73 8.58 13.55
18 139 171 39 26 18 9 0.13 5.81 7.40 1.91 7.84
19 132 162 25 17 8 8 0.13 5.77 6.66 1.16 7.05
20 96 138 240 151 80 28 0.11 4.17 14.41 12.00 16.28
avg. 81.40 104.35 101.60 39.55 54.20 20.65 0.07 2.66 5.03 3.01 5.74

Table 6.14: Computational results for random instances with 25 lots (b)

166 6. The Ordered Cutting Stock Problem

m d v1 v2 zbc
LP zac

LP LB UB

21 6 2 0.2 0.8 18993.33 19000.00 19020 19020

22 6 2 0.2 0.8 20087.50 20100.00 20100 20100

23 6 2 0.2 0.8 18300.00 18300.00 18320 18320

24 6 2 0.2 0.8 18660.00 18680.00 18680 18680

25 6 2 0.2 0.8 19398.33 19420.00 19420 19420

26 6 2 0.2 0.8 18670.00 18680.00 18700 18700

27 6 2 0.2 0.8 20060.00 20080.00 20080 20080

28 6 2 0.2 0.8 18776.67 18800.00 18820 18820

29 6 2 0.2 0.8 21050.00 21100.00 21100 21100

30 6 2 0.2 0.8 18950.00 18960.00 18980 18980

31 8 2 0.2 0.8 24732.50 24740.00 24760 24800

32 8 2 0.2 0.8 25866.67 25900.00 25900 25900

33 8 2 0.2 0.8 24420.00 24440.00 24460 24460

34 8 2 0.2 0.8 25390.00 25400.00 25420 25420

35 8 2 0.2 0.8 24220.00 24240.00 24240 24260

36 8 2 0.2 0.8 25470.00 25480.00 25480 25480

37 8 2 0.2 0.8 24790.00 24800.00 24820 24820

38 8 2 0.2 0.8 25455.00 25460.00 25480 25480

39 8 2 0.2 0.8 24240.00 24260.00 24280 24280

40 8 2 0.2 0.8 26576.67 26600.00 26600 26600

avg. 22205.33 22222.00 22233.00 22236.00

Table 6.15: Computational results for random instances with 25 lots (c)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

21 113 155 130 59 62 23 0.17 7.07 14.83 8.92 16.16
22 146 192 28 13 13 13 0.17 8.46 9.93 1.81 10.44
23 101 140 19 16 2 6 0.16 6.84 8.07 1.36 8.36
24 132 175 88 45 35 21 0.17 7.83 13.11 6.36 14.36
25 129 178 27 8 10 15 0.17 8.16 9.75 2.03 10.36
26 111 164 28 11 16 14 0.17 7.28 8.99 2.10 9.55
27 150 194 5 0 5 4 0.17 9.00 9.22 0.41 9.58
28 132 189 59 26 28 14 0.17 8.22 11.79 4.16 12.55
29 138 171 67 38 25 10 0.19 8.01 11.54 4.32 12.52
30 106 151 65 45 24 12 0.17 6.23 10.06 4.31 10.72
31 149 209 2688 457 1548 239 0.28 15.09 469.46 600.31 615.68
32 133 195 8 0 4 13 0.28 13.83 14.37 0.88 14.98
33 142 195 1618 236 1317 88 0.28 14.82 268.26 301.12 316.21
34 147 192 61 43 18 15 0.30 13.86 20.44 7.31 21.47
35 168 241 2397 437 1524 258 0.27 16.89 498.07 600.61 617.77
36 147 197 77 42 32 22 0.28 13.78 21.68 8.82 22.88
37 140 203 45 24 19 13 0.30 15.36 20.99 6.30 21.96
38 151 189 1125 214 800 113 0.30 14.51 161.49 178.96 193.77
39 145 200 28 27 6 11 0.28 14.44 17.48 3.30 18.02
40 149 197 43 21 16 15 0.30 13.34 17.23 4.64 18.27
avg. 136.45 186.35 430.30 88.10 275.20 45.95 0.23 11.15 80.84 87.40 98.78

Table 6.16: Computational results for random instances with 25 lots (d)

6.8. Computational Experiments 167

m d v1 v2 zbc
LP zac

LP LB UB

1 2 3 0.2 0.8 10897.41 10920.00 10920 10920

2 2 3 0.2 0.8 9940.42 9960.00 9960 9960

3 2 3 0.2 0.8 11896.67 11900.00 11920 11920

4 2 3 0.2 0.8 11245.00 11260.00 11260 11260

5 2 3 0.2 0.8 11167.78 11180.00 11200 11200

6 2 3 0.2 0.8 10534.17 10540.00 10540 10540

7 2 3 0.2 0.8 10503.33 10520.00 10520 10520

8 2 3 0.2 0.8 11703.33 11720.00 11720 11720

9 2 3 0.2 0.8 11393.33 11400.00 11400 11400

10 2 3 0.2 0.8 11465.00 11480.00 11480 11480

11 5 2 0.2 0.8 17420.00 17440.00 17440 17440

12 5 2 0.2 0.8 20433.33 20440.00 20460 20460

13 5 2 0.2 0.8 20960.00 20960.00 20980 20980

14 5 2 0.2 0.8 21077.50 21080.00 21080 21080

15 5 2 0.2 0.8 17810.00 17840.00 17860 17860

16 5 2 0.2 0.8 19383.33 19400.00 19400 19440

17 5 2 0.2 0.8 19940.00 19940.00 19960 19960

18 5 2 0.2 0.8 19780.00 19800.00 19800 19800

19 5 2 0.2 0.8 19586.67 19600.00 19600 19600

20 5 2 0.2 0.8 19010.00 19040.00 19040 19040

avg. 15307.36 15321.00 15327.00 15329.00

Table 6.17: Computational results for random instances with 30 lots (a)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

1 66 99 27 13 10 13 0.03 1.39 1.96 0.77 2.19
2 76 121 116 93 46 17 0.03 1.80 4.06 3.08 4.91
3 38 65 71 25 50 10 0.03 0.73 1.92 1.42 2.18
4 38 65 73 43 40 23 0.03 0.69 1.97 1.64 2.36
5 28 50 22 8 12 4 0.03 0.51 0.87 0.44 0.98
6 46 71 366 161 207 52 0.03 0.95 7.70 9.60 10.59
7 44 68 38 30 18 16 0.03 0.89 1.58 0.86 1.78
8 41 67 412 91 311 37 0.03 0.74 8.17 9.64 10.41
9 49 85 134 85 72 20 0.03 0.97 3.38 3.20 4.20
10 54 98 3 0 2 6 0.03 1.03 1.08 0.05 1.11
11 122 181 727 341 371 50 0.17 9.97 77.02 83.01 93.14
12 142 172 51 35 20 13 0.17 10.95 14.57 4.11 15.23
13 143 194 14 13 2 4 0.17 9.66 10.47 0.95 10.78
14 159 203 271 128 129 28 0.17 12.19 32.00 23.30 35.66
15 133 194 39 17 16 18 0.16 11.03 14.36 4.14 15.33
16 144 200 4753 425 3045 458 0.17 10.83 372.63 600.10 611.10
17 157 212 463 128 281 75 0.19 11.69 44.32 40.33 52.21
18 133 173 1980 426 1448 130 0.17 9.41 228.93 303.44 313.03
19 132 192 51 27 15 20 0.16 9.54 13.11 4.22 13.92
20 119 184 29 24 8 8 0.14 8.75 10.82 2.41 11.29
avg. 93.20 134.70 482.00 105.65 305.15 50.10 0.10 5.69 42.55 54.84 60.62

Table 6.18: Computational results for random instances with 30 lots (b)

168 6. The Ordered Cutting Stock Problem

m d v1 v2 zbc
LP zac

LP LB UB

21 6 2 0.2 0.8 23400.00 23420.00 23440 23440

22 6 2 0.2 0.8 23183.33 23200.00 23200 23200

23 6 2 0.2 0.8 24875.00 24880.00 24900 24900

24 6 2 0.2 0.8 23561.25 23580.00 23580 23580

25 6 2 0.2 0.8 25467.14 25480.00 25480 25480

26 6 2 0.2 0.8 23323.33 23340.00 23340 23360

27 6 2 0.2 0.8 23703.33 23720.00 23720 23720

28 6 2 0.2 0.8 23260.00 23280.00 23280 23280

29 6 2 0.2 0.8 23800.00 23820.00 23820 23820

30 6 2 0.2 0.8 23926.67 23940.00 23940 23940

31 8 2 0.2 0.8 31105.00 31120.00 31120 31120

32 8 2 0.2 0.8 30144.29 30160.00 30160 30200

33 8 2 0.2 0.8 30598.33 30620.00 30620 30620

34 8 2 0.2 0.8 29285.00 29300.00 29300 29320

35 8 2 0.2 0.8 29727.22 29740.00 29740 29780

36 8 2 0.2 0.8 31202.50 31220.00 31220 31220

37 8 2 0.2 0.8 31850.00 31860.00 31880 31880

38 8 2 0.2 0.8 29865.00 29880.00 29880 29880

39 8 2 0.2 0.8 30865.00 30880.00 30880 30900

40 8 2 0.2 0.8 30390.00 30400.00 30420 30420

avg. 27176.62 27192.00 27196.00 27203.00

Table 6.19: Computational results for random instances with 30 lots (c)

spLP colsLP spBB colsBB nodBB cuts tPP tLP tSP tBB tTOT

21 131 197 84 47 32 18 0.25 14.16 24.16 11.04 25.45
22 133 183 1895 266 1473 175 0.25 27.57 489.51 533.27 561.10
23 139 170 35 23 10 11 0.27 13.79 17.66 4.23 18.29
24 160 214 115 56 46 31 0.25 16.28 28.58 14.06 30.59
25 126 178 1960 362 1053 183 0.25 11.28 241.99 307.15 318.68
26 150 214 2108 501 1444 188 0.27 16.44 506.86 600.38 617.09
27 136 195 1978 419 1188 162 0.23 14.11 328.52 389.75 404.10
28 137 196 211 132 76 40 0.22 14.45 38.55 26.59 41.26
29 177 252 4 0 3 12 0.24 17.75 17.96 0.45 18.44
30 187 253 1513 258 852 148 0.23 19.55 279.51 316.43 336.22
31 172 230 785 293 461 69 0.41 28.05 231.45 229.21 257.67
32 181 244 1628 267 873 100 0.42 31.69 559.77 600.22 632.33
33 185 246 163 117 33 36 0.42 31.90 63.92 34.40 66.73
34 206 299 1685 304 1206 218 0.53 38.82 547.17 600.08 639.43
35 157 230 1505 301 728 228 0.42 28.94 566.64 602.26 631.62
36 150 207 11 5 5 10 0.45 26.16 28.05 2.31 28.92
37 164 228 116 70 34 30 0.44 27.18 48.91 23.90 51.51
38 179 261 365 188 156 47 0.44 31.73 109.68 87.13 119.30
39 189 247 1427 347 985 132 0.44 34.20 565.03 600.03 634.67
40 169 223 29 24 8 12 0.42 28.34 34.79 6.89 35.65
avg. 161.40 223.35 880.85 199.00 533.30 92.50 0.34 23.62 236.43 249.49 273.45

Table 6.20: Computational results for random instances with 30 lots (d)

6.9. Conclusion 169

6.9 Conclusion

In this chapter, we described a branch-and-price-and-cut algorithm for the Ordered

Cutting Stock Problem. This is the first reported attempt to solve this problem exactly.

The problem is particularly hard. It can be seen as a combination of the standard

Cutting Stock Problem with the Traveling Salesman Problem. We formulate it with a

column generation model that we solved using a branch-and-price-and-cut algorithm.

Two families of valid cutting planes were used to strengthen the LP relaxations at

each node of the branch-and-bound tree: subtour elimination constraints and comb

inequalities. We used a branching scheme based on the arc flow model also described

in this chapter. Our scheme is compatible with the pricing subproblem, as are the two

types of cutting planes used. A simple rounding procedure was devised to accelerate

the search for integer solutions.

A set of random instances was generated to test our approach. The instances had

no more than 30 lots, since, for higher values, the capacity of our algorithm to find

integer optima greatly deteriorates. Almost all the 200 instances were successfully

solved within a time limit of 10 minutes of branch-and-bound.

Chapter 7

Conclusions

7.1 Contributions

Different variants of the one-dimensional cutting stock and bin-packing problems were

addressed in this thesis. Their practical relevance is largely recognized in the field, and

has been pointed out by many other authors. We investigated in particular problems

in which more than a single type of large objects are available, problems with non-

standard objectives, such as the minimization of the number of distinct patterns, and

problems with new constraints on the ordering of the small items. We also studied

methods to improve the convergence of the standard column generation algorithm. All

the algorithms proposed were coded, and tested on many problem instances.

The results obtained throughout the thesis can be considered as state-of-the-art

results. For the Multiple Length Cutting Stock Problem, and its packing counter-

part the Variable Sized Bin-Packing Problem, the branch-and-price-and-cut algorithm

studied in Chapter 3 produced better results than other algorithms described in the

literature. In fact, only two alternative exact solution procedures have been reported

so far. One of them consists in a combinatorial algorithm, while the other combines

Chvatal-Gomory cutting planes with column generation. With our approach, we were

able to solve all the instances the first author was unable to solve, and we get improved

results with the instances of the second authors. For the Pattern Minimization Prob-

lem, we proposed to restrict the set of columns of the master problem so as to get a

stronger linear relaxation. We proved that the cutting planes derived from dual feasible

functions are always at least as strong as those used by Vanderbeck [123]. To get even

stronger cuts, we proposed to derive them from surrogate constraints. We compared

our approach to the one of Vanderbeck using the set of instances used by this author in

[123]. Without any rounding heuristic, we solved more instances using less branching

nodes. The algorithm developed for the Ordered Cutting Stock Problem is the first

reported attempt to solve this problem to optimality. We were able to solve instances

with up to 30 lots, and 8 different item sizes per lot. The bottleneck of the algorithm

171

172 7. Conclusions

is the pricing subproblem, whose resolution takes an important percentage of the total

computing time.

The study of the stabilization technique introduced in [117] was extended to the

whole branch-and-bound tree. We showed that, for the standard Cutting Stock Prob-

lem, some dual cutting planes may not be valid when used together with a specific

branching scheme. Conditions were given, allowing one to select the dual cuts that

are feasible in a node in which certain branching constraints were enforced. The com-

putational results obtained with the application of these cuts in all the nodes of the

branch-and-bound tree were very good. The computing times decreased substantially,

as well as the number of branching nodes, and more instances could be solved to

optimality.

The development of a branch-and-price algorithm implies a great part of customiza-

tion. The branching schemes must be devised so as to be compatible with the pricing

subproblem, keeping its original structure, or at least not complicating it too much.

When cutting planes are necessary to strengthen models which are not strong enough

to be tackled within a branch-and-bound framework, this development phase can be-

come even more difficult. Not all types of cuts can be used a priori, at least without

affecting the efficiency of the whole algorithm. Sometimes, good families of cuts have

to be discarded, as happens with the cover inequalities, which can not be used for the

Pattern Minimization Problem. All the branching schemes devised along this thesis

ensure both convergence, and compatibility with the pricing subproblem. Moreover,

cutting planes were chosen, or developed, with a similar objective in mind.

The way the algorithms were implemented in practice may have influenced the re-

sults presented in the thesis. We did not use any original paradigm for this codification,

but we always tried to use the most efficient data structures, and to avoid bad prac-

tices in the development of our code. We did not include any reference to the details

concerning this implementation. The main reason for doing so is because this is out

the scope of this thesis, and also because the originality of our work is not there.

7.2 Future Research

A great part of the work that will be done in a near future is motivated by the weak-

nesses of our approaches, and by the horizons opened with the study of some of the

subjects treated throughout this thesis. This work will be both practical, oriented to

a more efficient resolution of practical problems in the field of cutting and packing,

and theoretical, with an incidence in the area of integer programming methods such as

column generation, branch-and-bound and cutting planes.

Given the capacity of dual cutting planes to accelerate column generation, and the

results obtained when applying them in all the nodes of a branch-and-bound tree for

7.2. Future Research 173

cutting and packing problems, it will be interesting to study how such an extension

can be achieved for other problems, and with different branching schemes. Ideally, this

study should be independent of the type of the problems, and should concentrate on

general integer programs with a special structure.

The column generation formulation for the Pattern Minimization Problem remains

quite weak, even after applying the cutting planes discussed in Chapter 5. To expect a

more successful resolution of this problem with linear programming based branch-and-

bound methods, an alternative model should be devised, or stronger cutting planes

must be applied. For this purpose, we can follow the strategy used in this thesis, and

investigate alternative dual feasible functions, or resort to other approaches for deriving

valid cutting planes.

The dual feasible functions used for the Pattern Minimization Problem can be

improved so as to derive stronger cutting planes for knapsack polytopes. An example

was given in Chapter 5 illustrating how this can be done. As we said in that chapter,

these improvements are easily applied with constraints whose coefficients are all known

a priori. The way these new dual feasible functions can be used with a restricted

master problem, and the quality of the cutting planes that can be derived, are the

real questions. When the coefficients are dynamically generated, we must be able to

anticipate the set of possible coefficients. It would be interesting to know the classes of

cutting and packing problems for which this can be done, and if these problems have

any practical relevance.

Regarding the Ordered Cutting Stock Problem, we are restricted to problems with

up to 30 lots. An obvious challenge will be to tackle larger problems. Given its inherent

complexity, this problem is an ideal testing ground for new solution approaches. In this

domain, we can point to the actual trend that consists in mixing intensively branch-

and-price-and-cut algorithms with heuristic approaches, including metaheuristics. The

different decisions that are taken during the execution of a branch-and-price-and-cut

algorithm can also be oriented heuristically. As an example, we refer to the way the

nodes are selected, which is usually done in a standard style, using a depth-first search,

or a best-bound search, among few others. It will be interesting to study how this can

be done in practice, and if the use of more sophisticated approaches can have a real

impact on the efficiency of branch-and-price-and-cut algorithms.

Bibliography

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms and

Applications. Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] R. K. Ahuja and J. B. Orlin. A fast and simple algorithm for the maximum flow

problem. Operations Research, 37:748–759, 1989.

[3] J. M. Allwood and C. N. Goulimis. Reducing the number of patterns in one-

dimensional cutting stock problems. Technical report, Electrical Engineering

Department, Imperial College, London, 1988.

[4] C. Alves and J. M. Valério de Carvalho. Planeamento de rotas num sistema de

recolha de desperd́ıcios de madeira. Investigação Operacional, 24:21–43, 2004.

[5] L. H. Appelgren. A column generation algorithm for a ship scheduling problem.

Transportation Science, 3:53–68, 1969.

[6] L. H. Appelgren. Integer programming methods for a vessel scheduling problem.

Transportation Science, 5:64–78, 1971.

[7] B. M. Baker. A spreadsheet modelling approach to the assortment problem.

European Journal of Operational Reseaech, 114:83–92, 1999.

[8] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to

solve origin-destination integer multicommodity network flow problems. Opera-

tions Research, 48(3):318–326, 2000.

[9] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H.

Vance. Branch-and-price: Column generation for solving huge integer programs.

Operations Research, 46(3):316–329, 1998.

[10] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali. Linear Programming and Network

Flows. John Wiley, New York, 2nd edition, 1980.

[11] J. E. Beasley. OR-library: Distributing test problems by electronic email. Journal

of the Operational Research Society, 41:1069–1072, 1990.

175

176 BIBLIOGRAPHY

[12] G. Belov. Problems, Models and Algorithms in One- and Two- Dimensional

Cutting. PhD thesis, Dresden University, 2003.

[13] G. Belov and G. Scheithauer. A cutting plane algorithm for the one-dimensional

cutting stock problem with multiple stock lengths. European Journal of Opera-

tional Research, 141:274–294, 2002.

[14] H. Ben Amor. Stabilisation de L’algorithme de Génération de Colonnes. PhD

thesis, École Polytechnique de Montréal, 2002.

[15] H. Ben Amor, J. Desrosiers, and J. M. Valério de Carvalho. Dual-optimal in-

equalities for stabilized column generation. Les Cahiers du GERAD, G-2003-20,

2003.

[16] E. E. Bischoff and M. S. W. Ratcliff. Loading multiple pallets. Journal of the

Operational Research Society, 46:1322–1336, 1995.

[17] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very

large-scale linear programming: A case study in combining interior point and

simplex methods. Operations Research, 40(5):885–897, 1992.

[18] M. A. Carravilla, C. Ribeiro, and J. F. Oliveira. Solving nesting problems with

non-convex polygons by constraint logic programming. International Transac-

tions in Operational Research, 10:651–664, 2003.

[19] C.-L. S. Chen, S. M. Hart, and W. M. Tham. A simulated annealing heuristic

for the one-dimensional cutting stock problem. European Journal of Operational

Research, 93:522–535, 1996.

[20] C. Chu and R. La. Variable-sized bin packing: Tight absolute worst case perfor-

mance ratios for four approximation algorithms. SIAM Journal on Computing,

30(6):2069–2083, 2001.

[21] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York,

1983.

[22] E. G. Coffman, M. R. Garey, and D. S. Johnson. Bin packing with divisible item

sizes. Journal of Complexity, 3:406–428, 1987.

[23] E. G. Coffman, M. R. Garey, and D. S. Johnson. Approximation algorithms for

bin packing: A survey. In D. S. Hochbaum, editor, Approximation Algorithms

for NP-Hard Problems. PWS Publishing Company, Boston, 1997.

[24] J. Csirik. An online algorithm for variable sized bin packing. Acta Informatica,

26(8):697–709, 1989.

BIBLIOGRAPHY 177

[25] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Oper-

ations Research, 8:101–111, 1960.

[26] Z. Degraeve and M. Peeters. Optimal integer solutions to industrial cutting-stock

problems: Part 2, benchmark results. INFORMS Journal on Computing, 15(1):

58–81, 2003.

[27] Z. Degraeve and L. Schrage. Optimal integer solutions to industrial cutting stock

problems. INFORMS Journal on Computing, 11(4):406–419, 1999.

[28] G. Desaulniers, J. Desrosiers, I. Ioachim, M. Salomon, F. Soumis, and D. Vil-

leneuve. A unified framework for deterministic time constrained routing and crew

scheduling problems. In T. G. Crainic and G. Laporte, editors, Fleet Management

and Logistics, pages 57–93. Kluwer Academic Publishers, Boston, 1998.

[29] M. Desrochers, J. Desrosiers, and M. M. Solomon. A new optimization algorithm

for the vehicle routing problem with time windows. Operations Research, 40(2):

342–354, 1992.

[30] M. Desrochers and F. Soumis. A column generation approach to urban transit

crew scheduling. Transportation Science, 23:1–13, 1989.

[31] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Time constrained

routing and scheduling. Network Routing, 8:35–139, 1995.

[32] J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time windows by

column generation. Networks, 14:545–565, 1984.

[33] A. Diegel, M. Chetty, S. van Schalkwyk, and S. Naidoo. Setup combining in the

trim loss problem: 3-to-2 2-to-1. Technical report, University of Natal, 1994.

[34] O. du Merle, J. Goffin, and J. Vial. On improvements to the analytic center

cutting plane method. Computational Optimization and Applications, 11:37–52,

1998.

[35] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column

generation. Discrete Mathematics, 194:229–237, 1999.

[36] H. Dyckhoff. A new linear programming approach to the cutting stock problem.

Operations Research, 29:1092–1104, 1981.

[37] H. Dyckhoff. A typology of cutting and packing problems. European Journal of

Operational Research, 44:145–159, 1990.

[38] H. Dyckhoff and U. Finke. Cutting and Packing in Production and Distribution:

A Typology and Bibliography. Physica-Verlag, Heidelberg, 1992.

178 BIBLIOGRAPHY

[39] E. Falkenauer. Tapping the full power of genetic algorithm through suitable

representation and local optimization. In J. Biethann and V. Nissen, editors,

Evolutionary Algorithms in Management Applications. Springer-Verlag, Berlin,

1995.

[40] E. Falkenauer. A hybrid grouping genetic algorithm for bin packing. Journal of

Heuristics, 2:5–30, 1996.

[41] A. A. Farley. A note on bounding a class of linear programming problems,

including cutting stock problems. Operations Research, 38(5):922–923, 1990.

[42] S. Fekete and J. Schepers. New classes of fast lower bounds for bin packing

problems. Mathematical Programming, 91:11–31, 2001.

[43] H. Foerster and G. Waescher. Simulated annealing for order spread minimization

in sequencing cutting patterns. European Journal of Operational Research, 110

(2):272–281, 1998.

[44] H. Foerster and G. Waescher. Pattern reduction in one-dimensional cutting stock

problems. International Journal of Production Research, 38(7):1657–1676, 2000.

[45] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian

Journal of Mathematics, 8:399–404, 1956.

[46] L. R. Ford and D. R. Fulkerson. A suggested computation for maximal multi-

commodity network flows. Management Science, 5:97–101, 1958.

[47] J. J. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear pro-

gramming. Mathematical Programming, 57:341–374, 1992.

[48] D. Friesen and M. Langston. Variable sized bin packing. SIAM Journal on

Computing, 15:222–230, 1986.

[49] M. Garey and D. S. Johnson. Computers and Intractability, A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[50] T. Gau and G. Waescher. CUTGEN1: A problem generator for the standard one-

dimensional cutting stock problem. European Journal of Operational Research,

84:572–579, 1995.

[51] A. M. Geoffrion. Lagrangian relaxation for integer programming. Mathematical

Programming Studies, 2:82–114, 1974.

[52] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

stock problem. Operations Research, 9:849–859, 1961.

BIBLIOGRAPHY 179

[53] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting

stock problem: Part II. Operations Research, 11:863–888, 1963.

[54] P. C. Gilmore and R. E. Gomory. Multistage cutting stock problems of two and

more dimensions. Operations Research, 13:94–120, 1965.

[55] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem.

Journal of ACM, 35:921–940, 1988.

[56] A. M. Gomes and J. F. Oliveira. A 2-exchange heuristic for nesting problems.

European Journal of Operational Research, 14:359–370, 2002.

[57] C. Goulimis. Optimal solutions for the cutting stock problem. European Journal

of Operational Research, 44:197–208, 1990.

[58] M. Gradisar, J. Jesenko, and G. Resinovic. Optimization of roll cutting in cloth-

ing industry. Computers and Operations Research, 24:945–953, 1997.

[59] M. Gradisar, M. Kljajic, G. Resinovic, and J. Jesenko. A sequential heuristic pro-

cedure for one-dimensional cutting. European Journal of Operational Research,

114:557–568, 1999.

[60] M. Gradisar, G. Resinovic, and M. Kljajic. Evaluation of algorithms for one-

dimensional cutting. Computers and Operations Research, 29:1207–1220, 2002.

[61] R. W. Haessler. A heuristic programming solution to a nonlinear cutting stock

problem. Management Science, 17(12):793–802, 1971.

[62] R. W. Haessler. Controlling cutting pattern changes in one-dimensional trim

problems. Operations Research, 23(3):483–493, 1975.

[63] R. W. Haessler and P. Sweeney. Cutting stock problems and solution procedures.

European Journal of Operational Research, 54:141–150, 1991.

[64] A. I. Hinxman. The trim-loss and assortment problems: A survey. European

Journal of Operational Research, 5:8–18, 1980.

[65] J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algo-

rithms II: Advanced Theory and Bundle Methods. A Series of Comprehensive

Studies in Mathematics. Springer-Verlag, 1993.

[66] K. L. Hoffman and M. Padberg. Solving airline crew scheduling problems by

branch-and-cut. Management Science, 39(6):657–682, 1993.

180 BIBLIOGRAPHY

[67] O. Holthaus. Decomposition approaches for solving the integer one-dimensional

cutting stock problem with different types of standard lengths. European Journal

of Operational Research, 141:295–312, 2002.

[68] O. Holthaus. On the best number of different standard lengths to stock for

one-dimensional assortment problems. International Journal of Production Eco-

nomics, 83:233–246, 2003.

[69] ILOG. CPLEX 6.5 User’s Manual. 1999.

[70] E. L. Johnson, A. Mehrotra, and G. L. Nemhauser. Min-cut clustering. Mathe-

matical Programming, 62:133–151, 1993.

[71] M. P. Johnson, C. Rennick, and E. Zak. One-dimensional cutting stock problem

in just-in-time environment. Pesquisa Operacional, 19(1):145–158, 1999.

[72] R. E. Johnston. Rounding algorithms for cutting stock problems. Asia Pacific

Operational Research Journal, 3:166–171, 1986.

[73] R. E. Johnston. Cutting patterns and cutter schedules. Asia Pacific Operational

Research Journal, 4:3–14, 1987.

[74] B. Kallehauge, J. Larsen, and O. B. G. Madsen. Lagrangean duality applied on

vehicle routing with time windows. Technical Report IMM-TR-2001-9, Technical

University of Denmark, Denmark, 2001.

[75] J. Kang and S. Park. Algorithms for the variable sized bin packing problem.

European Journal of Operational Research, 147:365–372, 2003.

[76] L. V. Kantorovich. Mathematical models of organising and planning production.

Management Science, 6:366–422, 1960. Translated from the Russian original,

1939.

[77] J. E. Kelley. The cutting plane method for solving convex programs. Journal of

the SIAM, 8(4):703–712, 1961.

[78] K. Kim and J. L. Nazareth. The decomposition principle and algorithms for

linear programming. Linear Algebra and its Applications, 152:119–133, 1991.

[79] N. Kinnersley and M. Langston. Online variable-sized bin packing. Discrete

Applied Mathematics, 22(2):143–148, 1988.

[80] L. S. Lasdon. Optimization Theory for Large Systems. MacMillan, New York,

1970.

BIBLIOGRAPHY 181

[81] A. Lodi, S. Martello, and M. Monaci. Two-dimensional packing problems: A

survey. European Journal of Operational Research, 141:241–252, 2002.

[82] A. Loebel. Optimal Vehicle Scheduling in Public Transit. PhD thesis, Technische

Universitaet Berlin, 1997.

[83] M. E. Luebbecke and J. Desrosiers. Selected topics in column generation. Les

Cahiers du GERAD, G-2002-64, 2002.

[84] G. S. Lueker. Bin packing with items uniformly distributed over intervals [a,b]. In

Proceedings 24th Annual Symp. Found. Comp. Sci. (FOCS 1983), pages 289–297.

[85] O. Marcotte. The cutting stock poblem and integer rounding. Mathematical

Programming, 33:82–92, 1985.

[86] O. Marcotte. An instance of the cutting stock problem for which the rounding

property does not hold. Operations Research Letters, 4(5):239–243, 1986.

[87] R. E. Marsten, W. W. Hogan, and J. W. Blankenship. The BOXSTEP method

for large-scale optimization. Operations Research, 23(3):389–405, 1975.

[88] S. Martello and P. Toth. Knapsack Problems. Wiley, New York, 1990.

[89] C. McDiarmid. Pattern minimisation in cutting stock problems. Discrete Applied

Mathematics, 98:121–130, 1999.

[90] M. Monaci. Algorithms for Packing and Scheduling Problems. PhD thesis, Uni-

versità di Bologna, 2002.

[91] F. Murgolo. An efficient approximation scheme for variable-sized bin packing.

SIAM Journal on Computing, 16:149–161, 1987.

[92] G. L. Nemhauser and S. Park. A polyhedral approach to edge coloring. Operations

Research Letters, 10:315–322, 1991.

[93] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization.

Wiley, New York, 1988.

[94] D. Pisinger. A minimal algorithm for the 0-1 knapsack problem. Operations

Research, 46(5):758–767, 1997.

[95] C. T. Ragsdale and C. W. Zobel. The ordered cutting stock problem. Decision

Sciences, 35(1):83–100, 2004.

[96] D. Rogers, R. Plante, R. Wong, and J. Evans. Aggregation and disaggregation

techniques and methodology in optimization. Operations Research, 39:553–582,

1991.

182 BIBLIOGRAPHY

[97] M. Ronnqvist. A method for the cutting stock problem with different qualities.

European Journal of Operational Research, 83:57–68, 1995.

[98] G. Roodman. Near optimal solutions to one-dimensional cutting stock problem.

Computers and Operations Research, 13:713–719, 1986.

[99] M. W. P. Savelsbergh. A branch-and-price algorithm for the generalized assign-

ment problem. Operations Research, 45(6):831–841, 1997.

[100] G. Scheithauer and J. Terno. The modified integer round-up property of the one-

dimensional cutting stock problem. European Journal of Operational Research,

84:562–571, 1995.

[101] G. Scheithauer, J. Terno, A. Mueller, and G. Belov. Solving one-dimensional

cutting stock problems exactly with a cutting plane algorithm. Journal of the

Operational Research Society, 52:1390–1401, 2001.

[102] K. E. Schilling. The growth of m-constraint random knapsacks. European Journal

of Operational Research, 46:109–112, 1990.

[103] J. E. Schoenfield. Fast, exact solution of open bin-packing problems without lin-

ear programming. Technical report, US Army Space and Missile Defense Com-

mand, Alabama, USA, 2002.

[104] A. Scholl, R. Klein, and C. Jurgens. Bison: A fast hybrid procedure for exactly

solving the one-dimensional bin packing problem. Computers and Operations

Research, 24(7):627–645, 1997.

[105] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986.

[106] P. Schwerin and G. Waescher. A new lower bound for the bin-packing and its

integration to MTP. Pesquisa Operacional, 19(2):111–129, 1999.

[107] S. Seiden. An optimal online algorithm for bounded space variable-sized bin

packing. SIAM Journal Discrete Mathematics, 14(4):458–470, 2001.

[108] S. Seiden, R. Stee, and L. Epstein. New bounds for variable-sized online bin

packing. SIAM Journal on Computing, 32(2):455–469, 2003.

[109] H. Stadtler. A comparison of two optimization procedures for 1- and 11
2
-

dimensional cutting stock problems. OR Spektrum, 10:97–111, 1988.

[110] H. Stadtler. A one-dimensional cutting stock problem in the aluminium industry

and its solution. European Journal of Operational Research, 44:209–223, 1990.

BIBLIOGRAPHY 183

[111] P. E. Sweeney and R. W. Haessler. One-dimensional cutting stock decisions for

rolls with multiple quality grades. European Journal of Operational Research, 44:

224–231, 1990.

[112] J. Teghem, M. Pirlot, and C. Antoniadis. Embedding of linear programming in

a simulated annealing algorithm for solving a mixed integer production planning

problem. J. Comput. Appl. Math., 64:91–102, 1995.

[113] S. Umetani, M. Yagiura, and T. Ibaraki. One-dimensional cutting stock problem

to minimize the number of different patterns. European Journal of Operational

Research, 146:388–402, 2003.

[114] J. M. Valério de Carvalho. Exact solution of cutting stock problems using column

generation and branch-and-bound. International Transactions in Operational

Research, 5:35–44, 1998.

[115] J. M. Valério de Carvalho. Exact solution of bin-packing problems using column

generation and branch-and-bound. Annals of Operations Research, 86:629–659,

1999.

[116] J. M. Valério de Carvalho. LP models for bin-packing and cutting stock problems.

European Journal of Operational Research, 141(2):253–273, 2002.

[117] J. M. Valério de Carvalho. Using extra dual cuts to accelerate convergence in

column generation. INFORMS Journal on Computing (in press), 2005.

[118] J. M. van den Akker, C. A. J. Hurkens, and M. W. P. Savelsbergh. A time-

indexed formulation for single machine scheduling problems: Column generation.

INFORMS Journal on Computing, 12(2):111–124, 2000.

[119] P. H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock

problem. Computational Optimization and Applications, 9(3):211–228, 1998.

[120] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Solving binary

cutting stock problems by column generation and branch-and-bound. Computa-

tional Optimization and Applications, 3(2):111–130, 1994.

[121] F. Vanderbeck. Decomposition and Column Generation for Integer Programs.

PhD thesis, Université Catholique de Louvain, 1994.

[122] F. Vanderbeck. Computational study of a column generation algorithm for bin

packing and cutting stock problems. Mathematical Programming, 86(3):565–594,

1999.

184 BIBLIOGRAPHY

[123] F. Vanderbeck. Exact algorithm for minimising the number of setups in the one-

dimensional cutting stock problem. Operations Research, 48(6):915–926, 2000.

[124] F. Vanderbeck. On Dantzig-Wolfe decomposition in integer programming and

ways to perform branching in a branch-and-price algorithm. Operations Research,

48(1):111–128, 2000.

[125] F. Vanderbeck and L. A. Wolsey. An exact algorithm for IP column generation.

Operations Research Letters, 19:151–159, 1996.

[126] D. Villeneuve, J. Desrosiers, M. Luebbecke, and F. Soumis. On compact formula-

tions for integer programs solved by column generation. Les Cahiers du GERAD,

G-2003-6, 2003.

[127] G. Waescher, H. Haußner, and H. Schumann. An improved topology of cutting

and packing problems. Technical Report 24, Faculty of Economics and Manage-

ment, Otto van Guericke University Magdeburg, 2004.

[128] W. E. Wilhelm. A technical review of column generation in integer programming.

Optimization and Engineering, 2:159–200, 2001.

[129] B. J. Yuen. Heuristics for sequencing cutting patterns. European Journal of

Operational Research, 55:183–190, 1991.

[130] G. Zhang. Worst-case analysis of the FFH algorithm for online variable-sized bin

packing. Computing, 56(2):165–172, 1996.

