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Abstract. In this paper, we present a derivative-free multilevel coordinate search (MCS) approach, that relies on the Hooke
and Jeeves local search, for globally solving bound constrained optimization problems. Numerical experiments show that
the proposed algorithm is effective in solving benchmark problems, when compared with the well-known solvers MCS and
DIRECT.
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INTRODUCTION
We consider solving the bound constrained global optimization problem (BCGOP)
glob min f(x), (1)
xeQ

by a derivative-free deterministic method, where f is a continuous function and Q is a hyperrectangle in IR":
Q={xeR":1<x<u}. We do not assume that f is differentiable and convex. Instead of searching for any
local (non-global) solution we want the globally best point in the feasible region. Chemical equilibrium problems,
safety verification problems, protein folding problems, semi-infinite programming problems, nonlinear least squares
problems, can be formulated as shown in (I)) [I} 2]]. The subproblems, that appear in the penalty function approaches
and augmented Lagrangian based multiplier algorithms when constrained global optimization problems need to be
solved, have in general the form (). Direct search methods might be suitable since we do not assume differentiability.
However, they are only local optimization procedures and therefore there is no guarantee that a global solution
is reached [3]. Deterministic and stochastic global search methods have been proposed to compute a solution to
the problem (I). The most known deterministic algorithms are Lipschitzian-based partitioning and the multilevel
coordinate search.

We are particularly interested in using a variant of the multilevel coordinate search (MCS) algorithm of Huyer and
Neumaier [4] where smoothness is not assumed to be present. Analytic and numerical derivatives are not used. The
MCS method is inspired by the DIRECT method of global optimization [5]. MCS is a popular method for bound
constrained global optimization that only uses function values. To enhance the convergence result, the original method
uses a local search based on a sequential quadratic programming. It consists of building a local quadratic model
by triple searches, and defining afterwards a promising search direction by minimizing the quadratic model on a
suitable box. Finally, a line search along this direction is carried out looking for the global minimizer. The method is
guaranteed to converge if the objective function is continuous in the neighborhood of the global minimizer. An useful
and promising method for local search is the Hooke and Jeeves (HJ) method [6]. This is a pattern search type method
that does not require analytic and numerical derivatives in order to converge to stationary points. In this paper, we
propose a new variant of the MCS algorithm where the local search carried out from a candidate good solution is the
HIJ search method.

This paper is organized as follows. First, we briefly describe the proposed MCS that uses the HJ algorithm as the
local search procedure, henceforth denoted by MCS-HJ. Then, we show the numerical results, some comparisons and
the conclusions.



HJ BASED MCS

The MCS algorithm seeks a global minimum of a multivariable function in a hyperbox defined by / < x < u, although
we will simply use the term ‘box’ for simplicity. Like DIRECT, MCS searches for a global minimizer using branching
recursively in order to divide, or split, the search space in a specific manner. They differ mainly in when and how a
box is split. Appropriate splitting rules guarantee the convergence of box diameters to zero. Efficiency is ensured by a
proper balance between global and local search. This balance is achieved in MCS by splitting the boxes for which the
pair (s, f) (where s is a suitably assigned level and f is the base point function value) is not dominated by any other pair.
This means that the global part of the algorithm explores boxes that have not been explored very often, while the local
part splits boxes that have good objective function values. Additionally, the original MCS implements a local search
procedure using line searches and sequential quadratic programming (SQP). It consists of building a local quadratic
model by triple searches, and defining afterwards a promising search direction by minimizing the quadratic model on
a suitable box. Details of the MCS algorithm, the underlying theory, and numerical comparisons can be found in [4].
The herein presented MCS algorithm contains the below described main procedures.

Initialization An initialization procedure generates a preliminary set of sub-boxes, using points input by the user or
derived using a default generation procedure.

Splitting Information gained from already sampled points is used to determine the splitting coordinate as well as the
position of the split. The level s € {0, 1,..., smax } that is assigned to each box aims to measure the number of times
a box has been processed. The following rules are considered: i) boxes with level sy, are considered too small
for further splitting; ii) when a box of level s (0 < s < smax) is split, its level is set to zero, and its descendants
get level s+ 1 or min(s + 2, smax ). The golden section algorithm is used to split along a single coordinate and
the larger fraction of the split gets level s+ 1, the smaller fraction gets level min{s+2,smax }; 1iii) a level s =0
indicates that a box has already been split and can be ignored. Thus, boxes with smaller levels mean that they are
the larger boxes and have not been split very often yet. A box is split either by rank or by expected gain along
a coordinate where the maximum gain in objective value is expected. MCS splits along a single coordinate at
a time at chosen points. Only one new function evaluation is needed to split a box into two or three sub-boxes.
Each sub-box is given a base point. Base points and objective function values of sub-boxes of level spx are good
starting points for the local search procedure.

Shopping Basket Shopping basket is another important concept in the MCS algorithm. It contains the minimizers
that have been located so far. A base point of a box with level sy« is a candidate to the shopping basket. If the
base point is likely to be in the basin of attraction of a minimizer already in the shopping basket, the point is
discarded; otherwise, the local search procedure is started from it. The procedure that verifies if a point lies in the
basin of attraction of a point already in the shopping basket is repeated from the output point of the local search
procedure. If this point is really new then it will be put into the shopping basket.

Local Search When solving nonsmooth problems, methods that require analytic and numerical derivatives are not
appropriate. In the present study, we propose the HJ method to replace the SQP within the local procedure
aiming to refine the search for an accurate global solution. HJ is a derivative-free method from the pattern local
search class [[6]. Besides generating points along the coordinate directions with a fixed step size in the vicinity
of a current point, also denoted as central point, xy, the HJ algorithm also defines a pattern move whenever a
successful iteration is found. This means that a new point, x|, is found that improves over the central, in terms
of objective function value. Then, a new trial point is defined using the pattern move, x4 1 + (Xg+1 — ¢ ), and a set
of points are generated along the coordinate directions, using the trial point as the center of the search. If a new
point with a better function value is found, the point is accepted and the step size is maintained; otherwise the
search returns to x;1. Whenever an iteration does not provide a successful iterate, the step size of the search is
reduced and the search process about the same central point is repeated. The algorithm stops when the step size
falls below an error tolerance, &, since first-order convergence is guaranteed [3].

COMPUTATIONAL EXPERIMENTS AND CONCLUSIONS

In this section, a comparison between the DIRECT algorithm, the original MCS algorithm and the proposed MCS-HJ
on a set of well-known BCGOP is presented. We report numerical results obtained with a set of twenty nonsmooth
unconstrained problems (see [[7]] for a description of the functions) and consider the bounded set Q = [—10, 10]".



TABLE 1. Comparison results: DIRECT, MCS and MCS-HJ

Zakharov

Prob. DIRECT MCS MCS-HJ

n f * f best T_nf e f best nf €loc T_nf e f best I’lf €loc T_nf e
CB2 [z 2 1.9522e+00 1.9524¢+00 493 1.9637e+00 531 9671 1.9528e+00 129 9269
CB3 [z1 2 2.0000e+00 2.0002e+00 485 2.0010e+00 1098 10241 2.0002e+00 156 9293
DEM [71 2 -3.0000e+00 -2.9999¢e+00 259 -2.9999¢e+00 68 79 -3.0000e+00 9 20
EVD52 [7z1 3 3.5997e+00 3.5999¢+00 53661 3.7482e+00 2133 100000 3.7152e+00 2097 100000
Goffin® [7]1 50  0.0000e+00 0.7071e+00 169869 2.8422¢-14 0 101 2.8422¢-14 0 101
HS78 [71 5 -2.9197e+00 -3.3528e+03 5109 9.6947e-03 2842 100000 1.7976e-05 6888 100000
LI1HILB" [7]1 50  0.0000e+00 4.9368e-01 190269 1.8147e-04 1454 100001 1.8223e-05 2701 100001
LQ [z1 2 -1.4142¢00 -1.4141e00 403 -1.4127¢00 226 12135 -1.4140e00 90 11999
Maxl" [7Z1 20  0.0000e+00 0.7071e+00 179893 3.1234e-01 805 100000 3.2514e-01 2605 100000
Maxq® [7]1 20  0.0000e+00 0.5000e+00 179893 1.1093e-31 0 99 1.1093e-31 0 929
Maxquad [71 10 -8.4141e-01 -7.5202¢-01 100081 -3.4291e-01 3162 100000 -6.0568e-01 2182 100000
Mifflin 1 [7] 2 -1.0000e+00 -0.9968e+00 118011 -1.0000e+00 1379 1539 -1.0000e+00 299 459
Mifflin 2 [71 2 -1.0000e+00 -0.9999¢+00 50355 -1.0000e+00 1379 1539 -1.0000e+00 299 459
MXHILB' [7]1 50  0.0000e+00 1.4142e-02 190269 8.5499¢-07 1472 100000 5.2203e-07 2701 100000
OET6 71 4 2.0161e-03 9.1009¢-03 100031 5.1195e-02 11939 100000 1.8728e-02 8057 100000
QL (71 2 7.2000e+00 7.2002e+00 923 7.3067e00 886 12765 7.2043e00 129 11998
Rosen-Suzuki [7Z1 4  -4.4000e+01 -4.3997e+01 2127 -4.2374e+01 442 100000 -4.3814e+01 1171 100000
SPIRAL [z1 2 0.0000e+00 0.0000e+00 2587 3.7241e-12 297 311 5.1595e-11 202 216
Wolfe [71 2 -8.0000e+00 -7.9996e+00 14829 -7.9440e+00 2098 100000 -8.0000e+00 300 510
Wong 1 [z 7 6.8063e+02 6.8839¢+02 100081 6.9277e+02 5970 100000 6.8549¢+02 733 100000
Ackley']' 8] 2 0.0000e+00 9.1114e-11 1861 7.9884e-11 442 492 5.0187e-06 3590 16700
Booth 8] 2 0.0000e+00 1.3726e-11 1295 6.4428e-11 36 47 5.3644e-08 165 11767
Branin 8] 2 3.9789¢-01 3.9789¢-01 195 3.9789¢-01 29 41 3.9790e-01 101 113
Dixon-Price o] 2 0.0000e+00 3.3020e-11 1969 3.9489¢-19 67 80 2.6828e-08 270 11947
Easom 8] 2  -1.0000e+00 -9.9999¢-01 32859 -1.0000e+00 42 53 -1.0000e+00 83 94
Goldstein-Price  [8] 2 3.0000e+00 3.0001e+00 191 3.0001e+00 29 40 3.0000e+00 89 100
Griewank" 8] 2 0.0000e+00 2.4981e-04 100063 9.8647e-03 608 12537 1.6255e-09 1140 13118
Hartman3 [8] 3  -3.8628e+00 -3.8625e+00 199 -3.8624e+00 66 79 -3.8625e+00 160 173
Hartman6 [8] 6  -3.3224e+00 -3.3221e+00 571 -3.3224e+00 86 111 -3.3222e+00 324 349
S.Hump Camel [9] 2 -1.0316e+00 -1.0316e+00 293 -1.0316e+00 33 45 -1.0316e+00 60 72
Levy' [91 30  0.0000e+00 2.9960e-02 106803 1.5478e-16 1214 1305 3.3192e-08 1711 100000
Perm o] 4 0.0000e+00 7.5234e-01 100015 1.2388e-14 60972 71735 2.6520e-04 95471 100094
Powell 9] 24 0.0000e+00 4.2174e+00 101553 1.6061e-11 2885 3030 0.0000e+00 240 385
Power Sum 8] 4 0.0000e+00 3.5730e-02 100113 3.3334e-12 45225 54497 0.0000e+00 16 35
Rastrigin® 8] 2 0.0000e+00 6.4802e-11 1551 0.0000e+00 35 46 8.1442e-11 19443 25230
Shekel5 [8] 4  -1.0153e+01 -1.0152e+01 155 -1.0153e+01 65 83 -1.0153e+01 193 211
Shekel7 [8] 4 -1.0403e+01 -1.0402e+01 145 -1.0403e+01 88 106 -1.0403e+01 212 230
Shekel10 [8] 4  -1.0536e+01 -1.0535e+01 145 -1.0536e+01 85 103 -1.0536e+01 211 229
Shubert 8] 2 -1.8673e+02 -1.8672e+02 2967 -1.8673e+02 58 69 -1.8672e+02 110 121
Trid [9] 30 -2.1000e+02 1.0000e+01 102789 -2.1000e+02 1033 1133 -2.1000e+02 2888 2988

[

91 2 0.0000e+00 4.9791e-11 1419 2.9476e-14 28 41 0.0000e+00 19 32




Another set of twenty-one small and medium scale uni- and multi-modal differentiable benchmark functions
(see [8, 9] for a description of the problems) is also used. Table [I] reports the name of the problem, ‘Prob.’; the
number of variables, ‘n’; the known global minimum avialable in the literature, ‘ f*’; the best function value obtained
by the algorithm, °fp.s; the total number of function evaluations,‘T_nfe’; and the number of function evaluations
in local search procedures, ‘nfej,.’. The algorithms in comparison — DIRECT, MCS and MCS-HJ - terminate when
the following stopping condition is verified: fheq — f* < max {10~*|f*|, 10719}, If this condition does not hold,

the algorithms also stop when the total number of function evaluations exceeds 10°. In MCS and MCS-HIJ, the
following additional condition is used s > smax. For the problems marked with T in the table, the change of variables
Vi =X+ 0.5v/2 is implemented since the global minimizer is the centroid of the Q and all three methods, DIRECT,
MCS and MCS-HIJ, would find it in just one function evaluation. Other parameters from MCS are set as default, for
example, spax = Sn+ 10. In the original MCS, the number of iterations in the local search procedure is 50, and in
MCS-H]J, the local HJ algorithm stops due to the tolerance &,; = 1073. Bold values show the best obtained results by
DIRECT, MCS and MCS-HJ. From Table |1, we notice that none of the three algorithms is able to converge in 107
function evaluations when solving problem ‘Max1’. Analyzing the nonsmooth problems (first 20 rows of the table),
we observe that MCS-HI is better than the original MCS in terms of final objective function values on six problems
(‘DEM’, ‘HS78’, ‘L1HILB’, ‘MXHILB’, ‘Wolfe’, “Wong 1’), gives the same function value and number of function
evaluations on two problems, ‘Goffin’ and ‘Maxq’, and the same function value with less function evaluations on
‘Mifflin 1’ and ‘Mifflin 2’. DIRECT is better, in terms of final objective function values, than MCS and MCS-HJ on
nine problems (‘CB2’, ‘CB3’, ‘EVD52’, ‘LQ’, ‘Maxquad’, ‘OET6’, ‘QL’, ‘Rosen-Suzuki’, ‘SPIRAL’) but it is not
able to converge to a reasonable solution on five of the nonsmooth problems. Regarding the differentiable problems
(last 21 rows of the table), we observe that in terms of final objective function values, the original MCS is better on
eight problems (‘Ackley’, ‘Branin’, ‘Dixon-Price’, ‘Hartman6’, ‘Levy’, ‘Perm’, ‘Rastrigin’, ‘Shubert’), MCS-HJ is
better on six problems (‘Goldstein-Price’, ‘Griewank’, ‘Hartman3’, ‘Powell’, ‘Power Sum’, ‘Zakharov’) and DIRECT
only on the problem ‘Booth’. Furthermore, we note that both MCS and MCS-HIJ reach the global solution of the
problems ‘Easom’, ‘S.Hump Camel’, ‘Shekel5’, ‘Shekel7’, ‘Shekel10’ and ‘Trid’ although MCS is better in terms of
function evaluations. We note that DIRECT fails to converge to the global solution on five problems of this set. The
results reveal, in terms of final objective function values, that MCS and MCS-HJ are comparable and perform better
than DIRECT. Overall MCS-HJ often outperforms MCS at the expense of additional function evaluations. Numerical
testing involving large-dimensional problems and the implementation of an efficient technique to handle equality and
inequality constraints are issues to be addressed in the near future.
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