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                            Abstract 
 Enzymes have received signifi cant attention as alternative catalysts to chemical auxiliaries in textile processing. For exam-
ple, laccases and peroxidises are promising alternatives for bleaching and denim stone washing processes. Similarly, the 
ability to oxidise different phenolic substrates and dye precusors resulting in the formation of different coloured polymeric 
molecules is being exploited for developing green chemistry dyeing processes. The enzymatic process is simpler than con-
ventional coloration processes, giving economic and environmental benefi ts. In this review, the applications of laccase and 
peroxidise enzymes in dyeing processes of various textile meterials is discussed.  
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  Introduction 

 Advances in enzymology and related areas of molec-
ular biology and genetic engineering offer signifi cant 
opportunities to develop novel enzyme-based pro-
cesses (green chemistry technologies), representing 
a major step in environmentally friendly industrial 
development. The demand for application of enzymes 
in industry is increasing due to the need to overcome 
high consumption of energy and raw-materials as 
well as increased environmental concerns over the 
use and disposal of chemicals into landfi lls, water or 
the air during chemical processing. For this reason, 
enzyme applications have expanded to various fi elds, 
including the chemical, fuel, food, agricultural, 
paper, textile and cosmetic industrial sectors (Maciel 
et al. 2010). 

 This is particularly true in the textile industry. 
It is well known that conventional processes of dye 
production and colouration require high tempera-
tures and pressure, have high consumption of 
alkali and unsafe chemical reagents, and release 

effl uents to the environment, which can cause 
severe environmental pollution, damage to 
coloured materials and instruments and harm 
human health. This has driven the search for envi-
ronmentally acceptable alternatives to chemical 
synthesis of dyes and colouration. As stereospecifi c 
natural biological catalysts, enzymes greatly reduce 
the reaction activation energy and thus lower pro-
cess energy consumption (Kim 2009). Enzyme 
application in textile treatment can minimize not 
only the COD (chemical oxygen demand) and 
BOD (biological oxygen demand) in effl uents, but 
also the amount of effl uent. Moreover, enzymes 
are biodegradable and therefore considered as 
non-pollutive and self-cleaning materials. This 
review focuses on the new concept of enzyme 
assisted textile colouration by introduction of 
various functional polymers through enzymatic 
catalysis using laccases and peroxidases. The 
physicochemical and biological properties of 
specifi c enzymes are also introduced.   
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 General biochemical properties and 
characteristics of oxidoreductase 
(laccase and peroxidase)  

 Laccase 

 Laccases (EC 1.10.3.2) are multi-copper containing 
oxidoreductases mainly obtained from bacteria and 
fungi (Alcalde 2007; Ara ú jo et al. 2008; Baldrian 
2006; Campos et al. 2001b; Desai  &  Nityanand 
2011; Hoegger et al. 2006; Jeon et al. 2010; 
 Kunamneni et al. 2008a; Mustafa et al. 2005; Pereira 
et al. 2005; Riva 2006; Zille 2005). Enzymes of this 
group were  fi rst described by Yoshida in 1883 based 
on the observation of rapid hardening of the latex 
from Japanese lacquer trees ( Rhus vernicifera ) in the 
presence of air (Call  &  M ü cke 1997; Gianfreda 
et al. 1999; Yoshida 1883) and named laccase 10 
years later, after isolation and purifi cation (Bertrand 
1894). Since then, laccase activity has been found 
in other plants species (e.g. mango, mung bean, 
peach), certain prokaryotes (e.g.  Azospirillum 
lipoferum ) and various insects, with the most bio-
technologically useful laccases being predominantly 
of fungal origin (e.g.  Ascomycetes, Deuteromycetes, 
Basidiomycetes ) (Baldrian 2006; Benfi eld et al. 1964; 
Claus 2003, 2004; Desai  &  Nityanand 2011; Forte 
et al. 2010; Gianfreda et al. 1999; Kalmis et al. 
2008; Kunamneni et al. 2008a). White-rot fungi 
from  Basidiomycetes  are the highest producers of lac-
cases (Kunamneni et al. 2008a). Such widespread 
detection indicates that the laccase redox process is 
ubiquitous in nature. 

 Laccases are dimeric or tetrameric glycopro-
teins, containing four copper atoms per monomer 
bound to three redox sites T1 (blue copper centre), 
T2 and T3 Cu pair to coordinate at the active site 
of each enzyme molecule or functional unit 
(Dwivedi et al. 2011; Kunamneni et al. 2008b; 
Messerschmidt  &  Huber 1990; Solomon et al. 
1992, 1996; Yaropolov et al. 1994). Copper atoms 
differ from each other in their characteristic elec-
tronic paramagnetic  resonance (EPR) signals 
(Dwivedi et al. 2011;  Gianfreda et al. 1999; Zille 
2005). In the T1 copper site, the substrate is oxi-
dised and shows an intense electronic absorbance 
around 610 nm (Burton 2003; Maciel et al. 2010; 
Zille 2005). The colourless T2 copper site shows 
no absorption in the visible spectrum but is EPR 
detectable (Dwivedi et al. 2011; Koroljova-
Skorobogat ’ ko et al. 1998;  Leontievsky et al. 1997; 
Solomon et al. 1996; Zille 2005;). The other two 
belong to the diamagnetic spin-coupled copper – -
copper pair at the T3 site with a weak UV absor-
bance at 330 nm (Dwivedi et al. 2011; Zille 2005). 
The T2 and T3 copper atoms cluster to form a 
trinuclear site responsible for  oxygen binding and 

reduction to water (shown in Figure 1) (Cole et al. 
1990; Solomon et al. 1992; Zille 2005). The redox 
potential of laccases depends on the structure and 
properties of the copper centres. Generally, lacca-
ses from  Basidiomycetes  (especially, white-rot fungi) 
have a high-redox potential (Guti é rrez et al. 2006), 
whereas, laccases from bacteria and plants have a 
low-redox potential (Mikolasch  &  Schauer 2009). 
Previous studies have indicated that the catalytic 
effi ciency of laccases for some reducing substrates 
depends linearly on the redox potential of the T1 
copper, showing the higher the redox potential of 
the T1 site is, the higher the catalytic effi ciency of 
the laccase presents (Xu et al. 1996, 2000). 

 Laccases are able to catalyse monoelectronic 
oxidation with concomitant reduction of oxygen to 
water as the fi nal by-product in a four-electron 
transfer process (Bourbonnais et al. 1997; Dur á n 
et al. 2002; Jeon et al. 2010; Kudanga et al. 2011; 
Kunamneni et al. 2008a; Morozova et al. 2007; Riva 
2006; Robles et al. 2000; Thurston 1994; Xu 1996; 
Yaropolov et al. 1994). The mechanism of laccase 
catalysis involves the reduction of copper T1 by oxi-
dising a substrate, internal electron transfer between 
the different copper types from copper T1 to the 
copper T2 and T3 trinuclear cluster, and the reduc-
tion of oxygen to water at the T2 and the T3 copper 
site (Messerschmidt 1994; Solomon et al. 1992; 
Thurston 1994; Yaropolov et al. 1994). Such 

  Figure 1.     Copper centres of laccase (adapted from Claus 2004).  
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 oxidation gives rise to radicals capable of spontane-
ously rearranging and undergoing further fi ssion of 
C – C or C – O bonds of the alkyl side chains, or to 
cleavage of aromatic rings, resulting in depolymer-
ization, repolymerization, demethylation or quinone 
formation (Thurston 1994; Yaropolov et al. 1994; 
Flickinger  &  Drew 1999; Kunamneni et al. 2008b). 
Thus, the main functions of laccases are briefl y 
demonstrated as crosslinking of monomers (Claus 
2004; Dur á n  &  Esposito 2000), degradation of 
polymers (Claus 2004; Claus et al. 2004; Dur á n  &  
Esposito 2000) and ring cleavage of aromatics 
(Claus 2004; Kawai et al. 1999). 

 The large size of laccase (MW ∼ 70   000) (Bour-
bonnais et al. 1997) makes it diffi cult to penetrate 
into substrates, meanwhile the relatively low redox 
potential limits laccase oxidation only for phenolic 
lignin fragments (Evans  &  Hedger 2001; Kersten 
et al. 1990). However, the discovery of new and effi -
cient mediators extend the effect of laccase to non-
phenolic lignin units and also overcome the 
accessibility problem (Bourbonnais  &  Paice 1990, 
1992; Bourbonnais et al. 1997; Camarero et al. 
2005; Crestini  &  Agryropoulos 1998; Eggert et al. 
1996a; Galli  &  Gentili 2004; Hammel 1996; Ham-
mel  &  Moen 1991; Kudanga et al. 2011; Kuhad 
et al. 1997; Van Aken  &  Agathos 2001, 2002). This 
is because a mediator is a small molecule that acts 
as a sort of  ‘ electron shuttle ’  and is therefore able to 
penetrate to the inner part of polymers. In the 
laccase-mediator system (LMS), the mediator is  fi rst 
oxidised by laccase generating a strongly oxidising 
intermediate, the co-mediator (Med ox), and then 
diffuses away from the enzyme active site into the 
cell wall, and in turn oxidises any substrate inacces-
sible to laccase (shown in Figure 2) (Banci et al. 
1999; Barreca et al. 2004). 

 An ideal redox mediator should be a good laccase 
substrate with cyclic redox conversion and its 
oxidised and reduced forms must be stable with 
no inhibition on enzymatic reaction (Johannes  &  
Majcherczyk 2000). The addition of redox-mediators, 
such as ABTS (2,2¢-azino-bis (3-ethylbenz- thiazoline-
6-sulfonic acid), HBT (1-hydroxybenzo-triazole) or 
compounds secreted by lignolytic fungi, which trans-
fer electrons between the enzymes and the substrates 
(Bourbonnais et al. 1995; Eggert et al. 1996b; 
Johannes  &  Majcherczyk 2000; Reyes et al. 1999; 

Wong  &  Yu 1999) can further expand the substrate 
specifi city of laccases, which is already broad, ranging 
from various organic substances (e.g. ortho- and 
para-diphenols, aminophenols, methoxy-substituted 
monophenols, polyphenols, polyamines, aromatic 
amines, alkyl- and alkoxy-substituted anilines, lignins, 
syringaldazine, aryl diamines) to some inorganic ions 
(Bourbonnais et al. 1997; Gianfreda et al. 1999; Hoff 
et al. 1985; Kobayashi et al. 2001; Kobayashi  &  
Higashimura 2003; Li et al. 1999; Reinhammar 1984; 
Robles et al. 2000; Sakurai et al. 1992; Solomon et al. 
1996; Thurston 1994; Yaropolov et al. 1994). Due to 
the high catalytic ef fi ciency and broad oxidative capa-
bilities, laccase has become attractive for many bio-
technological and environmental applications, as 
compared to other conventional chemical or micro-
bial catalysts (Desai  &  Nityanand 2011; Dur á n et al. 
2002; Dwivedi et al. 2011; Widsten  &  Kandelbauer 
2008). Additionally, substrate conversion using lac-
case coupled with small molecule redox shuttles is 
promising for the synthesis of new compounds (Pilz 
et al. 2003), offering new routes to colouration com-
pounds for dyeing.   

 Peroxidase 

 Peroxidases (EC 1.11.1.7) are bifunctional oxi-
doreductase enzymes (Miranda et al. 2002; Mohamed 
et al. 2011) with molecular weights ranging from 
35   000 to 100   000 (from 251 to 726 residues) (Banci 
1997). They are able to catalyse the oxidation of a 
wide variety of organic and inorganic compounds in 
the presence of hydrogen peroxide but also produce 
reactive oxygen species (Dunford et al. 1976; Everse 
 &  Everse 1991; Nigel 2004; Mohamed et al. 2011). 

 Due to their wide distribution among living 
organisms, multiple physiological roles, mul-
tifunctional reactivities and broad substrate speci-
fi cities, peroxidases have attained a prominent 
position in biotechnology and associated research 
areas such as enzymology, biochemistry, medicine, 
genetics, physiology and histo- and cytochemistry 
(Azevedo et al. 2003; de Montellano  &  Crab 1987; 
d’Ischia et al. 1991). Peroxidases have been found 
in plants, bacteria and fungi, and higher organisms 
 (Battistuzzi et al. 2010; Reihmann  &  Ritter 2006), 
and can be divided into three superfamilies: 
plant peroxidases, animal peroxidases and cata-
lases according to their source and mode of action. 
Most peroxidases are glycoproteins containing 
N-linked oligosaccharide chains (Dunford et al. 
1976; Gray  &  Montgomery 1997) and protopor-
phyrin IX (heme) as prosthetic group (Conesa 
et al. 2002). The structure of the active site in dif-
ferent superfamilies is similar, and they all 
use a similar mechanism involving formation of a 

  Figure 2.     Catalytic cycle of a laccase-mediaator oxidation system 
(adapted from Banci et al. 1999).  
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two-equivalent oxidised (Compound I) intermediate 
(Gumiero et al. 2010). 

 Heme peroxidases catalyse the oxidation of a vari-
ety of substrates, most commonly small organic sub-
strates, and are widely distributed in biological 
systems (Gumiero et al. 2010) but share the same 
catalytic cycle (shown in Figure 3) due to their strik-
ingly similar active site structure. The catalytic cycle 
is based on three consecutive and distinct redox 
steps, involving two high-valent intermediates (Com-
pound I and Compound II) (Banci 1997; Dunford 
1999; English 1994; English  &  Tsapralis 1995; Everse 
 &  Everse 1991; Nakayama  &  Amachi 1999; Smith  &  
Veitch 1998; Veitch  &  Smith 2001). Initially, a mol-
ecule of hydrogen peroxide binds to the active site 
and undergoes a two-electron reduction to water and 
the formation of Compound I through oxidation of 
the enzyme. Compound I has an oxyferryl (Fe(IV)  �  O) 
centre and an organic cation radical located either on 
the heme or on a protein residue (Battistuzzi et al. 
2010; Conesa et al. 2002). The cation radical then 
undergoes a one-electron reduction, oxidising one 
substrate molecule to give a substrate radical and 
forming Compound II. Finally, Compound II is 
reduced by a second substrate molecule to the resting 
ferric state (Banci 1997; Conesa et al. 2002; Dunford 
1999; English 1994; English  &  Tsapralis 1995; Everse 
 &  Everse 1991; Nakayama  &  Amachi 1999; Smith  &  
Veitch 1998; Veitch  &  Smith 2001). 

 Among all peroxidases, horseradish peroxidase 
(HRP), a classical plant heme-containing enzyme 
from  Armoracia rusticana  roots (Kay et al. 1967; Nigel 
2004; Ryan et al. 2006), has received special attention 
(Azevedo et al. 2003) due to its practical and com-
mercial applications (Nigel 2004). Although the term 

 ‘ peroxidase ’  came into use towards the end of the 
nineteenth century, research on peroxidase from the 
horseradish root and other plant sources was initiated 
by the work of Robert Chodat (1865 – 1934) and 
Alexei Nikolaevich Bach (1857 – 1946) at the Univer-
sity of Geneva during the early years of the twentieth 
century (Bach  &  Chodat 1903). Horseradish peroxi-
dases are most often used to catalyse an oxidative 
polymerization of electron-rich aromatic compounds 
like phenols, anilines and their derivative in the pres-
ence of peroxides like hydrogen peroxide, alkyl per-
oxides and benzyl peroxide (Reihmann  &  Ritter 
2006; Uyama  &  Kobayashi 2006). HRP catalyses the 
one-electron oxidation of phenols by hydrogen per-
oxide as oxidising reagent to form the corresponding 
phenoxy radicals and two water molecules. 

 The phenoxy radicals go further to form poly-
mers via subsequent recombination and radical 
transfer steps. The overall polymerization can there-
fore be written as shown in Figure 4 (Reihmann  &  
Ritter 2006):   

 Applications of laccase/peroxidase in textile 
and other areas 

  Enhancement of whiteness (Bio-bleaching) in cellulosic 
materials . Bleaching is the process of removing 
naturally-occurring coloured substances in fi bres like 
cotton wax, fatty acid, colouring matter, albuminoids 
and mineral matter, amounting in all to 5% of the 
weight of material. The fl avonoids are the substances 
mainly responsible for the natural colour of cotton. 
The natural colour on the fabrics can affect further 
fi nishing and dyeing processes leading to unexpected 
colour shades (Ardon et al. 1996; Hedin et al. 1992). 
Hydrogen peroxide is commonly applied in conven-
tional bleaching processes, under alkaline condition 
and temperatures close to boiling. However, the 
radical reactions by hydrogen peroxide on the fi bres 
can not only affect impurities fabrics but also the 
cellulosic components. That can result in severe 
damage of fabrics. Specifi c processes only targeting 
coloured impurities offer a practical alternative to 
the traditional bleaching process. Laccase, due to its 
ability to oxidise fl avonoids (Ara ú jo et al. 2008), can 
be applied in the bleaching of cellulosic materials 
(Kim et al. 2007c). However, the mechanism of lac-
case oxidation of natural compounds in fabrics to 
improve their whiteness is not well studied. Tzanov 
et al. (2003a) initially reported enhancement of the 
bleaching effect on cotton fabric using a low dosage 
of laccase over a short-time, batchwise or in a pad-
dry processes prior to conventional peroxide bleach-
ing. Also, Pererira et al. (2005) reported that laccases 
from a newly isolated strain of  Trametes hirsuta  were 
responsible for oxidation of the fl avonoids morin, 

  Figure 3.     Catalytic cycle of peroxidase (adapted from Battistuzzi 
et al. 2010).  
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luteolin, rutin and quercetin and resulted in an 
increase of whiteness of cotton. More recently, ultra-
sound was used in the work of Basto et al. (2007) as 
a trial to intensify the enzymatic process by sonica-
tion to improve fi nal whiteness of the fabrics. 

  Stonewashing and denim over dyeing . Stonewashing is 
generally known as denim washing where excessive 
amounts of indigo are removed from the fabrics. 
 Cellulases can partially replace the role of pumice 
stones in the traditional process with an abrasive 
effect on the fi bre surface producing the stone-
washed look (Cavaco-Paulo et al. 1998). In addition, 
laccases can bleach indigo dyed denim fabrics to 
lighter shades (Campos et al. 2001b; Kunamneni 
et al. 2008b; Pazarloglu et al. 2005). However, the 
re-deposition of removed indigo dye on white weft 
yarns of denim fabrics (high indigo  ‘ back-staining ’  
on denim fabrics) is a major problem when removing 
the indigo dye trapped inside the cellulose fi bre by 
the cooperative action of cellulases and mechanical 
action, which is mainly due to the tendency of cel-
lulases to re-adsorb on the fabrics and bind to indigo 
(Cavaco-Paulo et al. 1998; Montazer  &  Maryan 
2008;). The degradation of indigo released during 
the stonewashing process could avoid the phenom-
enon of backstaining (Campos et al. 2001b). Lac-
cases isolated from  Polyporus sp.  and  Sclerotium rolfsii  
were found to degrade indigo on fabrics (Abadulla 
et al. 2000; Campos et al. 2001a). Those from  Tram-
etes hirsute  and  Sclerotium rolfsii  in combination with 
redox-mediators caused various bleaching appear-
ances in denim garments (Campos et al. 2001b), 
while the enzyme from batch cultures of  Trametes 
versicolor  can be used for denim washing without 
using a mediator, which is more effective than com-
mercial laccase (obtained from recombinant  Asper-
gillus niger , Novo Nordisk, Denmark) with a mediator 
(Pazarloglu et al. 2005). Recent investigations showed 
that laccases along with cellulases reduced the activ-
ity of neutral cellulases, and  fi bre damage was limited 
to the outer  fi bres with inner  fi bres remaining unaf-
fected (Montazer  &  Maryan 2008). The co-applica-
tion of laccase with cellulase increased the lightness 
and decreased the staining on both the back of the 

garment and white pocket. Laccase decomposes the 
removed indigo during stone washing and in a con-
centration dependent manner,  back-staining 
decreases (Maryan  &  Montazer 2009). There are 
already some successful industrial applications of 
laccases in denim fi nishing, for example, DeniLite TM , 
DeniLiteII TM , Zylite, ECOSTONE ® LCC 10, 
PrimaGreen EcoFade LT100, etc. (AB Enzymes 
2011; Couto  &  Toca-Herrera, 2006). 

 The over-dyeing of denim, achieved by a further 
dyeing step, primarily dyes the fi ll yarn of the desized 
denim but also imparts some degree of dyeing to the 
previously dyed warp yarn, which can bring in new 
shades on textiles. Polymers formed by enzymatic 
polymerization have drawn considerable attention 
for application as  ‘ dyes ’  in the denim overdyeing 
process. US Pat. No.5925148 (Barfoed  &  Kirk 
1999) claimed an enzymatic method for overdyeing 
warp dyed denim textiles, in which a hydrogen per-
oxide source or at least one enzyme exhibiting per-
oxidase activity and/or oxidase activity was employed 
for overdyeing fabrics and articles. Recently, 
Guimar ã es et al. (2011) adopted laccase from the 
ascomycete  Myceliophthora thermophila  as a catalyst 
to oxidise the polymerization  ‘ in situ ’  of catechol 
and catechin, and the enzyme-generated polymers 
were capable to over dyeing the denims. Different 
colours were acquired based on the phenolic used, 
ranging from brown to green-yellow for catechol 
and catechin, respectively. Such enzyme-based over-
dyeing processes have launched new approaches for 
denim overdyeing with the same level of durability 
as obtained with direct dyes, at the same time 
increasing the fabric ’ s hydrophobicity.   

 Stain removal in laundry 

 A peroxidase-based system for the inhibition of 
dye transfer during washing with laundry deter-
gents was developed by Conrad et al. (1997). The 
mechanism of dye-transfer inhibition by peroxi-
dases involves oxidation and decolourisation of 
released dyes. To enhance the dye decolourisation 
ability of the enzymes, phenothiazine-10-propionic 
acid was used as a mediator. The peroxidases 

  Figure 4.     Polymerization of phenols catalyzed by horseradish peroxidase (HRP) (adapted from Reihmann  &  Ritter 2006).  
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 oxidise phenothiazine-10-propionic acid to a highly 
reactive species responsible for oxidising and 
decolourising dyes in solution. A comparison of 
enzymatic and non-enzymatic dye-transfer inhibi-
tion systems showed that the enzymatic method is, 
in many cases, more effective than the non-
enzymatic method (Conrad et al. 1997).    

 Dye synthesis through oxidative 
polymerization 

 The enzymatic polymerization phenomenon can be 
described as the synthesis of polymers  ‘  in vitro  ’  via 
non-biosynthetic pathways, catalysed by enzymes 
(Reihmann  &  Ritter 2006). Since 1985, enzymatic 
oxidative polymerization of aromatic compounds has 

been widely investigated and anticipated to be an alter-
native method for the production of conventional phe-
nolic resins, which typically involves the use of toxic 
formaldehyde (Aktas et al. 2000). Enzyme catalysis 
introduces the possibility of  ‘ Green polymer chemis-
try ’  (Kumar et al. 2005; Reihmann  &  Ritter 2006). 

 The principal mechanism of both peroxidases and 
laccases is one electron oxidation of phenolic com-
pound to form phenoxy radicals using an oxidising 
reagent. However, the main difference between per-
oxidases and laccases is the type of oxidising agent, 
which is hydrogen peroxide and oxygen, respectively. 
The phenoxy radical may react with a second radical 
to form  o -quinones, which are highly reactive electro-
philic molecules and further spontaneously polymer-
ize in a non-enzymatic pathway (Figure 5) (Amić   
et al. 2003; Uyama  &  Kobayashi 2002). 

OH

OH
O

OH

O

O

H2N CO2H

R3

R1

R2
R2

R1

R2

R1

R2

R1

O

O

N
H

CO2H

R3

O

O

R1

S
NH2

CO2H

HS

NH2HO2C

H2N CO2H

R3 N

O

CO2H

R3

R1

R2

OHO

OH

OH

OHO

OH

OH

O

R3: Organic Substituent in amino acid 
group

Enzymatic 
oxidation

R2: QuercetinR1: Catechin

Schiff Bases

Michael Addition

Michael Addition

  Figure 5.     Schematic representation of enzymatic and non-enzymatic conjugation of fl avonoids and reactive amino acids (adapted from 
Kim  &  Cavaco-Paulo 2011).  
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 Phenolic polymers require specifi c functional 
properties of molecular weight, dispersity, degree of 
crosslinking, crystallinity, and inter- and intra-
molecular bonding (Aktas et al. 2000). Laccases and 
peroxidises are able to catalyse the transformation of 
phenol derivatives through an oxidative coupling 
reaction, resulting in the formation of less soluble 
and high molecular weight polymer compounds 
(Gianfreda et al. 2003). The polymerization of phe-
nols catalysed by horseradish peroxidase (HRP) is 
fairly well understood based on published research 
(Adam et al. 1999; Hewson  &  Dunford 1976a, b; 
Poulos 1993; Van Deurzen et al. 1997). The oxida-
tion of aromatic electron donors in the presence of 
peroxide is an important step in peroxidise catalysed 
synthesis (Reihmann  &  Ritter 2006; Tawaki et al. 
2005). Peroxidases are able to yield chromogenic 
products and show relatively good stability charac-
teristics (Worthington 2011). 

 Compared with peroxidases, the range of laccase 
substrates is very wide. Basically, any substrate 
 possessing characteristics similar to  p -diphenol will 
be oxidised by laccases. Moreover a few fungal lac-
cases can oxidise monophenols such as cresol and 
some are able to oxidise ascorbic acid (Mayer  &  
Staples 2002). Using oxygen as an oxidation reagent 
and having a wide range of substrates is a valuable 
feature of laccase applications. 

 Forte et al. (2010) and Pogni et al. (2010) applied 
laccase from  Cerrena unicolour  to catalyse the one step 
bioconversion of 3-amino-4-hydroxybenzensulfonic 
acid into a water soluble phenoxazine dye having the 
structure of 2-amino-3-oxo-3H-phenoxazine-8-sulfonic 
acid. The initial mixture changed from  yellow ochre to 
red. They claimed that the biocatalytic system offered 
eco-sustainable synthesis of complex polymers. 

 Mustafa et al. (2005) used the laccase oxidation 
of ferulic acid in a biphasic hydro-organic medium 
containing well-mixed ethyl acetate and sodium 
phosphate buffer and obtained intermediate stable 
yellow coloured products from the organic phase, 
with the ability to bind to macromolecules like pec-
tin, hemicellulose etc (Craven et al. 1981; Taylor  &  
Clydesdale 1987a, b). Normally, when the laccase 
oxidation of phenolic and polyphenolic compounds 
(ferulic acid, gallic acid, caffeic acid and catechin) 
takes place in aqueous medium, the colour of the 
oxidation products goes from an intermediate yel-
low, green or orange to a fi nal brown hue. However, 
the presence of an organic solvent in the reaction 
medium decreased both the laccase activity and non-
enzymatic reaction rates, resulting in a major 
improvement in stability of the intermediate  products. 
Therefore, the laccase-based synthesis of colorants 
may be expanded to other phenolic and polypheno-
lic compounds with this medium. In addition, a 
biphasic hydro-organic medium helped the preven-

tion of browning and increased product solubility. 
The authors claimed an improved control of poly-
mer synthesis. Recently, Polak and Jarosz- Wilkolazka 
(2010) tried to apply immobilized white rot fungal 
strains as cheaper industrial-grade biocatalysts for 
dye synthesis. Such biomass was able to catalyse the 
transformation of benzene and naphthalene deriva-
tives and generate stable and non-toxic polymers 
with good dyeing properties, highlighting the possi-
bility to replace isolated enzymes by fungal biomass 
to transform precursors into dyes in a more effi cient 
and simple way (Polak  &  Jarosz-Wilkolazka 2010). 
Enaud et al. (2010) synthesized a sulfonic azoan-
thraquinone through the coupling of aromatic amine 
monomers in the presence of the  Perenniporia ochro-
leuca  MUCL 41114 laccase, Laccase Acid Red 1 
(LAR1). Such enzymatically created dyes were not 
mutagenic and showed lower toxicity than other 
commercial red dyes. A crude preparation of this 
new acid eco-colourant could be used directly and 
demonstrated good dyeing properties on polyamide. 
This work opens the way to safe and environmentally 
friendly routes to azo dye biosynthesis. Horseradish 
peroxidase (HRP) and soybean peroxidase (SBP) 
can also produce polymers from the fl avonoids quer-
cetin, rutin and catechin in the presence of H 2 O 2  
(Lorenzo et al. 2002).   

 Laccase and peroxidase based colouration 

 The fi rst notable activity of heme peroxidases that 
led to their discovery was the observation by Planche 
in 1810 of their ability to catalyse the formation of 
a beautiful blue colour when a tincture of gaiac 
resin came into contact with fresh horseradish root, 
long before the enzyme was known (Nyanhongo 
et al. 2010). Similarly with respect to laccases, 
 Chinese lacquer artwork from more than 6000 
years ago reveals the use of laccase (H ü ttermann 
et al. 2001). Recently, there has been growing inter-
est in using these oxidative enzymes to improve the 
aesthetic look of fabrics. Dyes are colorants applied 
to textile substrates in a molecularly dispersed form 
(AATCC 1997, 375). Colour is derived from the 
conjugated double bonds in the molecular structure 
of the dyes (Clifford 1986; Bille  &  Phyllis 1997). 
The dyes which are mainly used are classifi ed as 
azoic dyes (naphthol dyes), direct dyes, vat dyes, 
sulphur dyes and reactive dyes (Bille  &  Phyllis 
1997). Different dyes are appropriate for the 
requirements for dyeing various substrates. The 
enzymatically polymerized phenolic compounds 
with high molecular weight are less soluble 
 (Gianfreda et al. 2003) and tend to have a charac-
teristic colour attributed to the formation of a large 
conjugated structure along the main chain (Shin 
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et al. 2001), which offers great potential for applica-
tion in colouration. The enzymatically produced 
polyphenols generally possess mixed structures with 
phenylene and oxyphenylene units resulting from 
the C – C and C – O coupling of phenols, respectively 
(Mita et al. 2003). Such enzyme-catalysed polym-
erization for polymer production is regarded as an 
 ‘ environmentally friendly ’  synthetic process 
(Kobayashi et al. 2001) for colorant production.  

 Colouration of cellulosic fi bres (cotton and fl ax) 

 In situ  direct colouration on cellulosic materials . Fixation 
of dye molecules  ‘  in situ  ’  generated on the fi bre sur-
face can take place when a decrease in solubility their 
release during wet processing (Hadzhiyska et al. 
2006). The key to achieving higher dye fi xation on 
cellulosic materials depends on suitable molecular 
reations of dye precursors for enzymatic coupling 
(Hadzhiyska et al. 2006). Generally, enzymatic oxi-
dation of dye intermediates dominantly leads to 
homo-molecular reactions at equimolar ratios of pre-
cursors. However, the higher the concentration of 
compounds that can transform into less soluble 
products upon laccase oxidation, the higher the fi xa-
tion that may be achieved (Hadzhiyska et al. 2006). 
It is reported that increasing the concentration 
of phenol component benefi ts oxidative self-
polymerization into less soluble products (Aktas  &  
Tanyolac 2003; David et al. 1996; Dubey et al. 1998). 
Tzanov and coworkers have undertaken a series of 
studies on laccase-assisted dyeing of cotton since 
2006, and demonstrated for the fi rst time a perma-
nent colouration of cotton fabrics with polymeric 
dyes generated  in situ  by oxidative coupling of 
1-hydroxyphenol (catechol) and colourless 2,5-
diaminobenzenesulfonic acid (2,5-DABSA) in the 
presence of laccase (Calafell et al. 2007; Hadzhiyska 
et al. 2006). With an excess of catechol, the cross-
coupling occurs in higher yield (Calafell et al. 2007). 
They suggested that at least four-fold excess of cat-
echol was required for satisfactory dye fi xation on 
cotton and proposed the reaction pathway for the 
laccase-catalysed oxidative coupling of the reagents 
shown in Figure 6. Laccase catalysed the conversion 
of catechol to highly reactive quinone species which 
undergo homo-molecular C – O – C coupling, and 
then non-enzymatic C – N coupling with 2,5-DABSA 
took place through 1,4 nucleophilic addition of the 
latter to the quinoid rings (Calafell et al. 2007). 

 Non-toxic and non-harmful phenolic substrates 
such as fl avonoids (rutin, morin and quercetin) have 
been used to coat and colourise cotton and fl ax fab-
rics. The laccase-oxidised  fl avonoids can graft onto the 
surface of the cotton and provide a yellow to brown 
colour of different colour strength, depending on the 

type of external  fl avonoids used and the reaction con-
ditions (Kim et al. 2007a). Rutin fl avonoids gave poor 
colour appearance on the surface of cotton fabric in 
the presence of laccase compared with morin and 
quercetin (Kim 2009) since the oxidation rate of rutin 
is lower than the other fl avonoids (Friedman 1996) 
and the aqueous solubility of the enzyme-catalysed 
poly(rutin) reduced the chance for coupling to the 
cellulosic fi bre surface (Kim 2009). Rinsing and wash-
ing conditions also infl uenced the colour visual inspec-
tion, and a remarkable colour vanish was detected in 
a high temperature process (Kim 2009). The washing 
and friction fastness test of fl avonoid colourised cot-
ton showed satisfactory results confi rming the feasibil-
ity of this new and promising colouration technique 
(Kim 2009). Moreover, their application on the sur-
face of fabrics introduces new functions on the fabrics 
such as antioxidant and antimicrobial properties, and 
therefore, increasing their potential. 

 Signifi cantly, for all fl avonoids tested, a higher 
increase in colour appearance and superior colour 
fastness was obtained when laccase treatment was 
carried out in the presence of scoured cotton fi bres, 
rather than the scoured/bleached fi bres (Kim et al. 
2007a). Similar results were obtained in the coloura-
tion of fl ax fabrics with polymerized fl avonoids. The 
scoured fl ax fabrics gave better colour strength and 
colour fi xation in comparison with scoured and 
bleached fabrics (Kim 2009). Natural fl avonoids 
present in cotton and fl ax may serve as grafting points 
or anchors to attach the intermediates  (quinones) 
formed during oxidation by laccase (Friedman 1996; 
Makris  &  Rossiter 2002), promoting colouration. 
However, the traditional bleaching pretreatment of 
cotton removes these natural  fl avonoids from cotton 
and fl ax. Elimination of the bleaching treatment 
results in savings of chemicals, water, energy, giving 
an environmentally friendly textile process (Kim 
et al. 2007a). Flax is thought to have a better affi nity 
for oxidised fl avonoids due to the higher quantity of 
lignin compounds on its surface compared with cot-
ton (Kim 2009). A high temperature and the pres-
ence of salt improved polymer absorption onto the 
fl ax fabrics. Compared to morin, the quercetin fl a-
vonoid is more effective for colouration of fl ax fab-
rics. However, considerable colour vanished during 
the washing processes since the newly incorporated 
polymers had not deeply penetrated through the 
fi bre structure and no strong covalent bonds were 
formed between the fi bre and oxidised compounds, 
leading to a poor affi nity (Kim 2009; Kim et al. 
2009). In addition, polymers from laccase-catalysed 
polymerization of lignosulfonates were applied on 
the lignin-containing surface of fl ax fi bre. However, 
the affi nity of the resulting polymers towards the 
fi bres was low since their high molecular weight 
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affected interaction with the fi bre structures. There-
fore, the colour strength level was not so  satisfactory 
(Kim 2009). In very recent work, polyoxometalates 
(POMs), namely K 5 [SiW 11 V V O 40 ] · 11H 2 O and 
H 5 [PMo 10 V V  2 O 40 ] · 13H 2 O, were employed as inor-
ganic mediators in the laccase-oxidative polymeriza-
tion reaction to form a relatively high molecular 
weight polycatechol. The polymers synthesized by 
the laccase-mediator system allowed better colour 
fi xation and colour resistance for fl ax compared to 
that obtained by conventional synthesis with laccase 
solely or with addition of an organic mediator (1-hy-
droxybenzotriazole) (Kim et al. 2011).   

 Preparations of cellulosic fabrics for improving 
polymer affi nity 

 A major constraint for enzymatic colouration of cel-
lulosic materials is the lack of affi nity between the 

laccase-generated dyes and cellulosic materials, since 
no chemical bonding occurs. Various surface modi-
fi cation techniques like aminisation, pre-oxidation, 
cationisation, etc. have been employed to improve 
cellulose fi bre – matrix adhesion (Tsubokawa et al. 
2000; Zhou et al. 2005). These functional groups 
have chemical affi nity to enzymatically produced 
polymers thus enhancing  ‘ dyeability ’  (Chhagani 
et al. 2000; Mohorcic et al. 2004). 

 Based on its relatively low cost and wide ulitiliza-
tion as a dye in the textile industry, Reactive Black 5 
dye (RB5), a di-azo vinyl sulphonic dye, is normally 
adopted for aminisation (Mohorcic et al. 2004). Ini-
tially, RB 5 is covalently attached onto the cellulose 
fabric via a nucleophilic addition reaction (Chhagani 
et al. 2000) and then covalently attached RB5 mol-
ecules are chemically reduced to form aminic func-
tional groups on the fabric surface (Chhagani et al. 
2000; Kim et al. 2007b) as shown in Figure 7. 

  Figure 6.     Proposed reaction pathway for laccase-catalyzed oxidative cross-coupling of 2,5-DABSA and catechol, and splitting pattern of 
the resulting product identifi ed by MALDI-TOF MS (Adapted from Calafell et al. 2007).  
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 Reduction of the two azo groups of RB5 produces 
three compounds containing amino groups: one com-
pound covalently linked to cellulose and the other 
two dissolving in water. Decolorisation of the fabric 
can be observed during the reduction process, since 
the reduction of azo bonds resulted the formation of 
non-colourful amine groups. The amino groups on 
the cellulose can be exploited for coupling polyphe-
nols obtained through enzymatic oxidation (Kim 
et al. 2007b). Compared with unfunctionalised cot-
ton fi bres, the aminised cotton fi bres develop a much 
darker-brown colour after coating  ‘ in situ ’  with lac-
case-synthesised polycatechol, which refl ects the high 
level of coupling sites on the functionalized surface 
(Kim 2009). Meanwhile, coated functionalized-cel-
lulose showed greater resistance to cellulase hydroly-
sis since the polymeric network on the fi bre surface 
can sterically block the binding activity of cellulase 
(Kim 2009; Kim et al. 2007b). 

 Blanco et al. (2009) examined tosylation of the 
surface of cotton fabrics with subsequent amino 
group introduction with 2,5-DABSA through 
nucleophilic displacement of the tosyl groups in a 
quantitatively controlled way. The aminised cotton 
showed about 20% enhancement in dyeability com-
pared to the unmodi fi ed fabric and allowed up to 
95% pigment  fi xation on the fabric in the laccase 
catalysed process for  fi bres colouration. 

 Recently, Silva et al. (2011) described the appli-
cation of natural compounds for aminization, using 
chitosan. In the presence of laccase, the amino 

functional groups of chitosan can covalently link 
with unbleached fl ax fabrics previously oxidised 
with  laccase. The pre-oxidation of fl ax fabrics using 
laccase might develop grafting points for chitosan 
attachment by oxidation of natural phenolic com-
pounds in fl ax to introduce reactive sites. The previ-
ously laccase-oxidised fl ax fabric had enhanced 
washing durability and higher grafting levels on the 
surface and, thus had a higher concentration of cat-
echin polymers grafted onto the surface giving 
higher colour strength (Silva et al. 2011). In the 
study of Kim and Cavaco-Paulo (2011), the cat-
ionisation of fl ax fabrics using a polyanion was intro-
duced for modifi cation of fl ax fabrics by anchoring 
of protein-fl avonoid conjugates produced by laccase 
catalysis. The cationised fabrics reacted with pro-
tein-fl avonoid conjugates through strong ionic inter-
actions. In the reaction medium, the proteins are 
negatively charged at pH 7.4 with high affi nity for 
the cationised surface of fabrics. The conjugates 
onto fi bres had acceptable durability in terms of 
washing resistance and the surface became hydro-
philic when  α -casein-catechin was applied (lower 
contact angle 48 ° ). The fi nal products with new 
colour generation and antioxidant activity ( �  93%) 
were obtained by anchoring the protein-fl avonoid 
conjugates onto fl ax fi bres. 

 In addition to chemical pre-modifi cation, 
mechanical agitation can also greatly infl uence the 
affi nity of coloured polymers. Strong vertical agita-
tion promotes the breakage of fi laments on fi bre 

  Figure 7.     Mechanisms of chemical-reductive cellulose funcitionalization (adapted from Kim et al., 2007b).  
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surfaces increasing the accessible surface area for 
attachment of polymerized fl avonoids (Kim 2009).   

 Dyeing of keratinous fi bres (wool and hair) 

 Wool and hair are the most common keratinous 
fi bres in textile and cosmetic applications, respec-
tively. Enzymes like laccase or horseradish peroxi-
dase can be applied for their colouration. The 
enzymatic dyeing process, when carried out at a mild 
pH and low temperature does not damage kerati-
nous fabric, is an economically and environmentally 
attractive alternative to the conventional process 
(Tzanov et al. 2003b; Zille 2005). 

  Wool dyeing . Characteristic colours are determined 
by the use of different phenolic compounds for the 
enzymatic dyeing, such as hydroquinone (brown-
blacks), catechol (greys), dopamine (greys), guaia-
col (colourless) and ferulic acid (yellows) after 
treatment with HRP (Shin et al. 2001). Shin et al. 
(2001) found that wool fabric previously treated 
with hydroquinone and ferulic acid can be coloured 
by laccase (or HRP), in which the hydroquinone on 
the fabric was enzymatically oxidised, forming dim-
ers, oligomers and polymers. The colour depth of 
enzymatically dyed wool fabrics could be adjusted 
by the amount of hydroquinone previously added 
to the wool fabric. Mordant processing with chro-
mium compounds and boiling under acidic condi-
tions assisted the strong fi xation of the coloured 
hydroquinone and ferulic acid derivatives to the 
wool fabrics. 

 Later, Tzanov et al. (2003b) and Zille (2005) 
optimized a novel laccase-assisted wool dyeing pro-
cess performed in a dye bath using a dye precursor 
(2,5-diaminobenzenesulfonic acid) and dye modifi -
ers (catechol and resorcinol) and laccase, without 
any dyeing auxiliaries. Varying the concentration of 
the modifi ers and the time of laccase treatment gen-
erated different hues and depths of shades on the 
wool fabric. The wool fabrics dyed with catechol 
(modifi er) showed redder and bluer colours, while 
the fabric dyed with resorcinol gave yellower and 
greener colours. The highest colouration value for 
catechol was achieved at the highest concentration 
of modifi er, laccase amount and dyeing time, while 
the highest colouration value for resorcinol was 
attained at the highest concentration of laccase and 
dyeing time but lowest concentration of modifi er. It 
was pointed out that the duration of the enzymatic 
reaction appeared to be the most important factor in 
the dyeing process. Darker colouration of the wool fab-
ric could be achieved by increasing the reaction time 
and minimizing the enzyme and modifi er loading. 

Such laccase-catalysed colorant can penetrate into 
the mass of wool fi bres. 

 More recently, Munteanu et al. (2007) found that 
the cyclic voltammetry had a syneristic effect on wool 
staining using 2,2 ¢ -Azinobis(3-ethylbenzothiazoline-
6-sulfonate) (ABTS) enzymatic oxidation when 
coupled with ultrasound and resulted in higher 
colour depth (K/S value). The K/S value of staining 
wool in the system with the combination of cyclic 
voltammetry and ultrasonic irradiation was the sum 
of the values obtained in the presence of cyclic vol-
tammetry and ultrasonic irradiation alone. However, 
the cumulative value was exceeded when wool colou-
ration was carried out under continuous stirring and 
cyclic voltammetry, since mass transport of the active 
species to/from the working electrode was improved 
in the presence of ultrasound and formed a higher 
amount of ABTS 2  �    which was easily transported to 
the wool surface resulting in wool colouration. 

 When laccase (Denilite II S) was applied to mod-
ify the physical properties of wool fabric, Majid 
Montazer et al. (2009) found that the wool fabric 
changed colour, showing a redder and yellower 
colour with increasing laccase, due to the progres-
sively higher oxidation of wool. Additionally, they 
found that the dyeing of laccase pre-treated wool 
fabric with madder gave a lower lightness since the 
laccase pretreated wool fabric was more hydrophilic 
and could adsorb higher amounts of water soluble 
dye in the dye bath. This suggested that the laccase-
based pre-treatment was effective for fabric colour-
ing when dyed with madder. 

  Hair dyeing . Hair is mostly proteinaceous in nature 
mainly consisting of  fi brous  α -keratin proteins 
(Ara ú jo et al. 2011). Hydrogen peroxide (H 2 O 2 ) 
and phenylenediamines are the most widely used 
oxidising agent and dye precursor for hair dyeing 
(Wall 1972), respectively. However, it has been rec-
ognized that the strong oxidation power of H 2 O 2  
under high alkalinity conditions causes severe hair 
damage (Ara ú jo et al. 2011; Takada et al. 2003) and 
phenylenediamines are allergenic and carcinogenic 
(Chen et al. 2006; Marcoux et al. 2002; Huang 
et al. 2007). Therefore, it is high desirable to develop 
new approaches for hair dyeing to overcome these 
problems. 

 Various patents have claimed the oxidation dye-
ing of keratinous fi bres and, in particular, human 
keratinous fi bres (such as hair) in the presence of 
enzymes (Lang  &  Cotteret 2007; Onuki et al. 2004). 
Oxidases such as peroxidase and laccase can be used 
to generate useful hair dyes. Laccase-based hair dyes 
are less irritant and easier to handle than current hair 
dyes (Aaslyng et al. 1997; Koike 2002; Lang  &  Plos 
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2002; Lang  &  Cotteret 1999, 2004; Onuki et al. 
2000; Pereira  &  Burgaud 2005; Plos 2001, 2004a, 
b; Pruche et al. 2000; Shichiri et al. 2003; Riva 2006; 
Roure et al. 1992; Sorensen 2001; Tsuji et al. 2002; 
Xu 1999). However, phenylenediamines or other 
synthetic dye precursors which may be toxic to 
humans are still in use (Lang  &  Cotteret 2007; Onuki 
et al. 2004). 

 Recently, Jeon et al. (2010) studied laccase-
catalysed polymerization of natural phenols to form 
products for hair dyeing, overcoming the current 
problem with H 2 O 2 - and phenylenediamine-based 
dyeing systems. They found that the novel combina-
tions of natural phenols derived from edible plant 
 fi bres for polymeric dye synthesis can result in useful 
and diverse colours in hair dyeing. The colour of 
compounds obtained from two-monomer polymer-
izations was more diverse than that from single-
monomer polymerizations due to the formation of 
heteropolymer or homopolymer mixtures. Three 
kinds of two-monomer combinations, namely gallic 
acid/syringic acid, catechin/catechol and ferulic acid/
syringic acid, generated brown, black and red colou-
rations, respectively, showing commercial value for 
grey hair dyeing. The catechin/catechol mixture 
could be particularly useful as an alternative to 
 p -phenylenediamine for hair blackening, as both 
materials are natural polyphenols. The authors indi-
cated that the laccase-catalysed polymerization of 
natural phenols to produce polymeric hair dyes 
would be a promising and applicable  ‘ green ’  technol-
ogy in the cosmetic industry.    

 Conclusion and future outlook 

 The potential of enzyme-based dyeing processes 
has been demonstrated in this review. Laccase and 
peroxidise, in particular, are able to catalyse the 
oxidative transformation or polymerization of vari-
ous amine or phenolic compounds to generate 
coloured polymers  ‘  in situ  ’  to dye fabrics like cot-
ton, fl ax, wool and hair. The enzymatic colouration 
takes place at low temperature, neutral pH and 
without pressure, addition of acid or alkaline prod-
ucts and toxic reagents. Moreover, biological colou-
ration of lignocellulosic fi bres allows elimination of 
the conventional bleaching process that uses alka-
line conditions and other chemicals.  Consquently, 
substitution of chemical processes with enzymes 
holds the promise of simpler, more economic and 
more environmentally friendly colouration pro-
cesses. Additional functions, such as antioxidant 
antimicrobial activity, obtained through the attach-
ment of polymers produced by enzymatic catalysis, 
can also add value to these products. 

 The discovery of novel laccases/peroxidases with 
different substrates specifi cities to extend the range 
of accessible colored compounds and discovery of 
more suitable, less polluting redox mediators remain 
as future challenges.   
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