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Abstract—The identification of genetic modifications leading
to mutant strains able to overproduce compounds of industrial
interest is a challenging task in Metabolic Engineering (ME).
Several methods have been proposed but, to some extent, none of
them is suitable for all the specificities of each particular strain
optimization problem. This work proposes an integrated frame-
work that allows its users to configure and fine tune all the various
steps involved in a strain optimization strategy, including the
loading of models in distinct formats, the definition of a suitable
phenotype simulation method and the choice and configuration of
the strain optimization engine. Moreover, it is designed to suit the
needs of users skilled at programming, as well as less advanced
users. The framework includes a GUI implemented as the strain
optimization plug-in for the OptFlux workbench (version 3), a
reference platform for ME (http://www.optflux.org). All the code
is distributed under the GPLv3 licence and it is fully available
(http://sourceforge.net/projects/optflux/).

I. INTRODUCTION

The ability to understand the genotype-phenotype relation-
ship began to change in the mid 1990s, after the completion of
the first sequenced bacterial genome. Until then, this relation-
ship was treated mostly based on qualitative analysis. With
the recent developments in genome sequencing technologies
and semi-automated annotation techniques, an increasingly
large number of fully annotated microbial genomes is be-
ing made available. These full genome sequences provide
comprehensive information about the genetic elements that
compose an organism and, when combined with the under-
standing of some cellular processes such as metabolism, results
in structured knowledge that is mathematically representable
[1]. This knowledge explosion accelerated the development
of constraint-based methods for phenotype simulation based
on genome-scale stoichiometric metabolic models for a large
number of microbes [2], allowing the development of predic-
tion methods for distinct genetic and environmental conditions.

The most common approach is to consider the cell to be
in a pseudo steady-state and, since the solution space for the
metabolic flux state of the cell is usually very large, constraint
based optimization approaches are often applied for simulat-
ing metabolic fluxes. Given this assumption, it is therefore
plausible to predict cellular behaviour by solving optimization
problems, as long as biologically realistic objective functions
are put forward. Several methods have been developed to solve
these problems. Among these, Flux Balance Analysis (FBA)
[3] is a widely used phenotype prediction tool that uses a linear
programming (LP) formulation for maximization of growth
(synthesis of biomass constituents) as the objective function,

considering the biological assumption that organisms tend to
maximize their growth. FBA has been applied with success
in several cases [4], [5], although mostly for wild-type or
unperturbed metabolic networks [6].

However, to predict the cellular behaviour of mutant or-
ganisms, such assumption is not widely accepted and, for
that specific purpose, other methods have been proposed
such as Regulatory On/Off Minimization of metabolic flux
changes (ROOM) [7], Minimization of Metabolic Adjustment
(MOMA) [8] and more recently Minimization of Metabolites
Balance (MiMBl) [6]. ROOM is based on Mixed Integer-
Linear Programming (MILP) and the objective function is the
minimization of the number of significantly perturbed fluxes
from the mutant relatively to the wild-type. As for MOMA,
the principle is similar, only the formulation is based on
Quadratic Programming (QP) and the objective function is
the minimization of flux variations relatively to the wild-type.
The hypothesis underlying both MOMA and ROOM is that
fluxes in a perturbed cell (e.g. a mutant) will be redistributed
in order to be as similar as possible to the wild-type [6].
MiMBl looks at the problem from a different perspective and,
instead of tackling the problem by finding linear combinations
of fluxes, centers its attention on the metabolite turnovers,
decoupling the formulation away from the problems related
with the sensitivity to the stoichiometric representations, which
can hinder the predictions.

Parallel efforts in the Metabolic Engineering (ME) arena
have been exploiting these advances for the purposes of strain
optimization, through the development of methods able to
select genetic modifications, capable of achieving an improved
production of compounds of high industrial interest [9]. These
novel tools aim to contribute to the competitiveness of Biotech-
nological processes in the production of a number of valuable
products, replacing traditional chemical synthesis with reduced
environmental costs. In fact, although there are still limitations
in constraint-based modelling approaches, ME increasingly
relies on the use of genome scale models, combined with com-
putational algorithms to predict and optimize cell behaviour
under distinct conditions, both environmental and genetic.

In ME, strain optimization tasks can be formulated as
bi-level problems, adding to phenotype simulation a layer
that searches for the best mutant that can be obtained by
performing genetic alterations to the wild type. The most
studied problem consists in discovering a subset of genes to
delete to achieve strains that maximize an objective function
(e.g. yield) related with the production of a target compound,
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while keeping the host viable. Different approaches were
proposed, namely OptKnock that uses MILP [10] and meta-
heuristics such as Evolutionary Algorithms (EAs) [11] and
Simulated Annealing (SA) [12]. Both approaches search for a
set of gene (reaction) deletions that maximize the flux towards
a desired product, while the internal flux distribution is still
operated such that growth (or another biological objective) is
optimized. The formulation of OptKnock guarantees that the
optimal solution, if there is one, will be found. However, this
formulation also poses some problems. Since it is MILP-based,
a linear objective function is mandatory, which is an important
limitation; moreover, it requires that the user decides the size
of the gene (reaction) deletion set and it is not scalable. This
means that, for larger sets, the resolution of the problem is
not computationally tractable. Both EA-based and SA-based
approaches overcome these problems, although they do not
guarantee that an optimal solution is found.

A problem with these optimization methods was tied to
the fact that all of them were reaction-based. This meant that
the variables interplaying in the optimization process repre-
sented reactions instead of the genes encoding the proteins
that promoted those reactions, disregarding available transcrip-
tional/ translational information (gene-protein-reaction (GPR)
relationships) and thus generating many biologically unfeasible
solutions. This limitation has been overcome in recent work
by the authors’ research group [13].

On the other hand, knockout-based optimization is limited
by the fact that in silico genetic changes are restricted to gene
deletions. An alternative way to optimize the production of
metabolites is to up or down-regulate the expression of genes
relatively to their wild-type values. OptReg [14] is a first
attempt to address this task, working directly with reaction
over/under expression. A reaction is considered under (or over)
regulated in a mutant if it takes a flux value considerably
lower (or higher) when compared with the wild-type steady-
state fluxes. OptKnock is the basis for OptReg formulation,
and therefore, the limitations of this approach are similar to
the ones pointed out for this method, a fact that led to the
development of alternative methods based in EAs [15].

Albeit all the mentioned approaches have provided good
results, they are still limited, since they usually return a single
solution to the problem or, in some cases, sets of solutions with
limited variability. EAs are able to provide more solutions,
but typically those follow similar strategies to maximize the
selected objective function. There are a few reasons to prefer
algorithms that can provide diverse solutions, namely the fact
that, since simulation results are used to generate the best
mutants, these can have poor performances in vivo due to
pitfalls in the model or simulation tools. Furthermore, these
approaches can also provide strains with different trade-offs
between the distinct factors involved, namely the production
yield of the desired compound, the strain viability (measured
by the biomass flux) or the predicted cost of implementing
the genetic modifications. Additionally, the inclusion of infor-
mation from multiple criteria in a single objective function
through aggregation techniques can introduce undesired bias
in the sampling process. Since the complexity of many opti-
mization problems is often difficult to represent using a single
objective, the use of multi-objective optimization (MOO) is a
logical path to follow.

MOO applications have been increasing, and the devel-
opment of suitable algorithms has been an active area of
research. As compared to single objective, in MOO there
is no longer a single optimal solution but rather a set so-
lutions of non-comparable quality. The classical definition
of a MOO problem can be formally written in the form:
minimize[f1(x), f2(x), . . . , fK(x)] where fi : Ω → RK

are K objective functions. The task is to determine from
the set of feasible solutions, the particular subset yielding
optimum values for all objective functions [16]. Yet, it is
very rare to find a solution that simultaneously optimizes all
objective functions. Therefore, we usually seek the optimal set
of trade-offs rather than a single solution. To this optimal set
of trade-off solutions we call Pareto-front. The Pareto-front
is composed solely of non-dominated solutions. A solution
a ∈ Ω is said to dominate another solution b ∈ Ω, when
∀i : fi(a) ≤ fi(b) and ∃i : fi(a) < fi(b), where fi is the i-
th objective (assuming a minimization problem without losing
generality). This relation is notated as a ≺ b, meaning that a
solution a dominates another solution b, if a is not worse than
b in any of the objectives and it is at least better in one.

The populational and stochastic nature of EAs enables
them to find several possible members of the Pareto-front in
a single run. It must be noted, however, that to properly work
in multi-objective scenarios, a new class of MOEAs has been
proposed which, while keeping the main principles, introduce
some changes into the selection and re-insertion steps. One
advantage of using EAs over other MOO methods lies in the
few constraints imposed over the objective function (e.g. they
do not depend on the continuity of the Pareto-front). Also, they
are relatively easy to implement, are very robust and can be
easily adapted to parallel computing. A recent history of the
field can be found in [17].

The fact that no single method is optimal for every strain
optimization problem leads to the primary objective of this
work, which is the development of a framework that allows
researchers to configure and fine tune strain optimization
strategies tailored to their own needs. A complementary aim
is to provide users with visualization tools that allow to easily
analyse the results generated by those strategies. The proposed
framework includes the selection of several phenotype pre-
diction methods and several optimization algorithms capable
of performing well in both single and multi-objective tasks.
Moreover, the user can choose to perform reaction or gene-
based optimization and for both options, the selection of the
over/under expression approach or simple knockouts is also
allowed. We demonstrate the usefulness of such framework
with a simple case study focused on maximizing the production
of succinic acid in Escherichia coli.

II. FRAMEWORK ARCHITECTURE

The architecture of the framework is segmented into 4
distinct layers. A) The model layer; B) The simulation layer;
C) the optimization layer and D) the interface layer. These
layers and their hierarchy are represented in Figure 1.

A. Model Layer

This layer handles all the operations related to stoichiomet-
ric metabolic models. In this context, a model is represented by
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Fig. 1. The 4 layers of the framework. Black boxes represent the various libraries that compose the framework and how they relate to the various components/layers
of the framework. A) The model layer represents the model and its constraints, wether they are environmental or genetic. Genetic conditions can be gene knockouts
(GK), reaction knockouts (RK), gene over/under expression (GOU) or reaction over/under expression (ROU). B) The simulation layer encompasses the essentiality
information computation (i.e., computation of reactions/genes without which the organism becomes unviable) and the phenotype simulation methods for both
wild-type (FBA, pFBA) and mutants strains (MOMA, ROOM, MiMBl). C) The optimization layer is responsible for the formulation of the optimization problems,
it allows the selection of the optimization algorithms, the selection of the optimization type (GK, RK, GOU, ROU) and the specification of the objective functions.
D) The GUI layer represents the graphical user interface. This layer is supported by the OptFlux 3 application by means of a plug-in.

a stoichiometric matrix, the set of flux thermodynamic/capacity
constraints and the Gene-Reaction (GR) relationship rules, as
exemplifed in Figure 2.
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Fig. 2. The several components of a stoichiometric metabolic model.

This layer includes methods for reading and writing the
models in several formats including the Systems Biology
Markup Language (SBML) [18], Metatool [19], Flat-files [20]
and the generic table format (csv, tsv, etc.). It also allows for
the definition of environmental conditions (eg. medium com-
ponents). Moreover, the definition of the genetic conditions

is also supported by this layer. Genetic conditions are related
to modifications in the original flux capacities of the internal
stoichiometric model. These can be gene knockouts (GK),
reaction knockouts (RK), gene over/under expression (GOU)
or reaction over/under expression (ROU) constraints. Both the
environmental and genetic conditions will act as constraints to
the original model in the simulation layer.

B. Simulation layer

The simulation layer is responsible for the formulation of
all the phenotype simulation problems implementing different
methods for their solution. This layer allows the user to specify
a simulation method and use it to predict the phenotype of both
wild-type and mutant strains. It allows the prediction of the
flux distributions of wild-type strains using the environmental
conditions defined in the model layer. Moreover, it allows the
prediction of flux distributions for mutant strains, using both
the environmental and genetic conditions defined in the model
layer. The currently available methods are the following: i)
for wild-type strains: FBA and parsimonious enzyme usage
Flux Balance Analysis (pFBA) [1], and ii) for mutant knockout
and over/under expression phenotype prediction: FBA, pFBA,
MOMA (includes its LP variant, Linear MOMA), ROOM and
MiMBl.



Finally, the simulation layer also allows the computation
of the essentiality information. The essentiality information
comprises the set of genes/reactions that, when inactive, render
the organism unviable (no biomass flux). These are computed
via simulation and can be used to constrain the solution
space in the optimization layer (not considering these in the
optimization problem.)

C. Optimization Layer

The optimization layer is the core subject of this work.
This layer allows for the definition, tuning and solving of the
strain optimization problem that better suits the user requests.
In the context of strain optimization, the problem is defined as:
finding the optimal set of genes (or reactions) to inactivate (or
over/under express) that optimize a set of objective functions.
These objective functions are the most important user input,
in the sense that they identify what are the optimization
targets/objectives. An example is the maximization of the
flux of a given reaction (over-production of a compound of
interest). Several objective functions are readily available:

- Biomass-Product Coupled Yield (BPCY) [11]: This ob-
jective function couples (via multiplication) the biomass flux
(B) with the selected product flux (P) relative to the substrate
(S) consumption: bpcy(solution) = B×P

S ;
- Product Yield with minimum biomass (YIELD): Com-

putes the yield of the desired product flux (P) relative to
the substrate consumption (S) ensuring that a minimum per-
centage of biomass (relative to the wild-type) is produced:
yield(solution) = P

S , Bmut ≥ Bwt;
- Flux value: Maximize or minimize the value of a specified

reaction flux;
- Number of knockouts (or over/under expressions): Max-

imize or minimize the number of modifications performed to
the mutant strain;

- Sum of flux measures: Maximize or minimize the sum of
all the fluxes in the flux distribution (metabolic activity).

The layer supports the selection of multiple objective
functions to be optimized in parallel. In fact, even when a
single objective (SO) algorithm is selected using multiple
objective functions, the framework still follows the multi-
objective premisses. This is accomplished by means of the
archive manager, a feature that manages the solutions reached
by the algorithms according to specific criteria (refer to Section
III-A for more details). The optimization layer also allows the
selection of environmental conditions to use in the optimization
problems, as well as a set of genes/reactions that should not
be considered in the optimization procedure. Regarding the
optimization algorithms, 3 alternatives are provided:

- Evolutionary Algorithms (EAs) : EAs [21] are a popular
family of metaheuristic optimization methods, inspired in
biological evolution through natural selection. They work by
evolving a set of individuals encoding solutions to a given
problem. Each individual is evaluated via a fitness function
that assigns a numerical value to it, depending on the quality
of the solution. New solutions are created using reproduction
operators over selected parents taken probabilistically from the
current population;

- Simulated Annealing (SA): SA [22] works in a distinct
fashion, keeping just one solution. This is used to create new

solutions through the application of a mutation operator. Each
time a new solution is created, it replaces the original one, if
it is better or, in some cases, even when it is worse. The prob-
ability of accepting worse solutions depends on the difference
between the fitness values and on the current temperature, a
variable that is reduced as the SA iterates.

- Strength Pareto Evolutionary Algorithm 2 (SPEA2):
SPEA2 [23] is a MOEA, being an evolution of the SPEA
[24] algorithm. SPEA uses an external archive that contains
non-dominated solutions (called the external non-dominated
set). At each generation, non-dominated individuals are copied
to this external non-dominated set. For each individual in
the archive, a strength value, proportional to the number
of solutions it dominates, is computed. The fitness of each
individual in the current population is computed according to
the strengths of all external individuals that dominate it. This
strategy is used to promote the convergence of the algorithm.
The fact that the external non-dominated set is used in the
selection process brings the problem that, if that set grows too
much, the selection pressure might be reduced, thus slowing
down the global search process. To prevent this, a clustering
technique called ”average linkage method” was adopted to
prune the external non-dominated set, thus maintaining diver-
sity. The main improvements of SPEA2 include: (i) a better
fitness assignment strategy taking into account the number of
individuals that each individual dominates/ is dominated by;
(ii) the use of a nearest neighbour density estimation technique
to guide the search more efficiently; and, (iii) a truncation
technique to prevent the loss of boundary solutions.

D. Graphical User Interface (GUI) layer

The GUI layer is implemented in the OptFlux application
[20] via the Optimization plug-in. This layer provides a facility
to the less programming-oriented users in which they can
use all the functionalities of the framework. The GUI layer
provides dialogs for setting and fine-tuning all the optimiza-
tion parameters and objective functions, in a simplified/user-
friendly manner. Also, during the execution of the optimization
procedures, the user is provided with an interface to monitor
the progress of the procedure. This interface also allows
stopping the execution at any time, processing and returning
the solutions found thus far. Upon successful conclusion, the
results are presented in the OptFlux clipboard tree, and the
user can analyze each solution individually.

III. DEVELOPMENT

The framework was fully developed in the Java program-
ming language. The four layers of the framework (depicted
in Figure 2) are supported by three distinct software libraries,
described below.

A. Jecoli 3

The Java Evolutionary Computation Library (JECoLi 3)
[25] is a generic-purpose evolutionary computation library. It is
an adaptable, flexible, extensible and reliable software frame-
work implementing metaheuristic optimization algorithms, us-
ing the Java programming language. In its current version,
JECoLi aims to offer a solution suited for the integration of
EC-based approaches in larger applications, as well as a way to

201



the rapid and efficient benchmarking of EC algorithms in spe-
cific problems taking full advantage of the available hardware.
JECoLi 3 allows to encode solutions using different types of
representations such as: binary, integer, real, permutations, sets
and trees. JECoLi also provides a panoply of almost 40 repro-
duction operators (crossover and mutation) as well as several
distinct selection operators implemented for EAs. A number of
pre-processing schemes applicable to the selection operators
are also made available (e.g. scaling, ranking). Moreover,
several metaheuristic algorithms are also provided: General
purpose Evolutionary Algorithms, including Genetic Algo-
rithms and Evolutionary Programming; Differential Evolution;
Genetic Programming and Linear GP; Simulated Annealing;
Cellular Automata GAs [1] and multi-objective optimization
Evolutionary Algorithms (NSGA II and SPEA2). The library
also includes an Application Programming Interface (API) that
allows all its components to be easily extended. Some impor-
tant features and components of the library are highlighted
next.

a) ElementSetRepresentation: The representation used
to encode the solutions for gene or reaction knockouts (GK,
RK) problems. This is a set based representation that does
not allow repetitions and guarantees the constant order of its
elements. Each element in our problems represents a given
gene or reaction in the model that will be deleted. This is
represented in Figure 3 a).

b) HybridSetRepresentation: The representation used
to encode the solutions generated for gene or reaction
over/under expression (GOU, ROU) problems. It is an ex-
tension of the Element Set Representation, but provides an
extra field per element that allows a relative expression level
to be set. In our problems, each element is composed of an
Integer, representing a gene/reaction in the model, and a Float
representing the level of over/under expression relatively to the
original expression level as depicted in Figure 3 b).

3	
   10 24 42 … 286 Index in model 

a) ElementSetRepresentation<Integer> 

0.5	
   2.0 8.0 0.25 … 0.0 

b) HybridSetRepresentation<Integer,Real> 

3	
   10 24 42 … 286 

0 1 2Index 3 k

0 1 2Index 3 k
Index in model 

Expression level 

Fig. 3. The two representations used in the framework.

c) Archive Manager: The Archive Manager runs in
parallel with the optimization algorithms and it is notified
by the evaluation function of the algorithms. Each time a
new solution is evaluated, the archive is notified and decides
whether or not to keep that solution. Several operations are
performed by the Archive Manager to maximize the number
of interesting solutions that are kept. The user is allowed to
specify the maximum number of solutions to keep, as well
as the strategies to keep or remove solutions. When multiple
objective functions are selected, the archive manager uses the
the Zitzler truncation clustering method [23] to prune the
archive to the maximum size allowed.

B. Metabolic 3

The Metabolic 3 library is the ”brain” of the framework.
It is responsible for the interaction with the models in their
various formats, formulation of all the previously mentioned
phenotype simulation methods, the computation of the essen-
tial genes/reactions and the strain optimization procedures. The
Metabolic 3 library includes an API that allows programming-
oriented users to take advantage of all the provided facilities.
The library is segmented in several modules, from which the
5 most relevant ones are detailed next:

-metabolic.criticality: provides facilities to compute sets of
critical genes and reactions;
-metabolic.model: provides data structures to support all the
information pertinent to stoichiometric metabolic models. The
read/write support for the several file formats is provided by
an extra library named BioComponents (also available in the
sourceforge of the project);
-metabolic.simplification: includes the implementation of the
model simplification procedures;
-metabolic.simulation: provides the implementation of all the
phenotype prediction methods. It also includes the SteadyS-
tateSimulationControlCenter, an API class that serves as the
control center for every phenotype simulation process available
in the library;
-metabolic.optimization: The optimization module is the core
software piece of this work. It provides the implementation
of all the optimization procedures of the framework. An API
class named StrainOptimizationControlCenter allows to pro-
grammatically access all the features described in this work in
a swift manner. This class provides API methods that allow the
configuration of every previously described feature, including
some details that are not visible in the GUI layer. Moreover,
it also provides an abstraction that permits the selection of
several LP/ MILP solvers (GLPK, CLP, CPLEX, GUROBI)
via another library named Solvers2 (also in sourceforge).

C. OptFlux 3

The OptFlux 3 optimization plug-in provides a rational
Graphical User Interface (GUI) for the described framework.
The configuration dialog of the strain optimization operation
allows the process to be configured and launched. It is depicted
in Figure 4, providing the following options:

-Select Simulation method. The method used to perform the
phenotype simulation: FBA, pFBA, MOMA, LinearMOMA,
ROOM and MiMBl are available.
-Select Environmental Conditions. The list of available
environmental conditions for this project.
-Select the objective functions. OptFlux supports multiple-
criteria optimisation; this means that the user can select several
objective functions to optimize at the same time, among the
following: BPCY, YIELD, Max/Min of reaction flux value,
Max/Min of the number of knockouts and Max/Min of the
sum of flux measures. The user can configure each objective
function individually and add them to the list (on the right).
-Select Optimization Algorithm. The optimization method
to use, selected from the available ones: EA, SA and SPEA2.
SPEA2 is natively multi-objective, thus prone to provide better
solutions when multiple objective functions are used.
-Knockout Type. The user can select reaction (R) or gene
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(G) based optimization, as well as simple knockouts (K) or
the over/under expression (OU) approach.
-Optimization Basic Setup. Maximum Number of Solution
Evaluations - The number of simulations allowed for this
optimization. Increasing this parameter will also increase the
chances of finding optimal solutions, but the optimization
process will take more time to complete. Maximum Number
of Knockouts - The maximum number of deletions/regulations
allowed. Variable size solution - When selected, the size of
the solutions is not fixed and can vary up to the maximum
previously configured.
-Essential Information. - Depending on whether this is a
Reaction of Gene optimization, the user can select a set of
reactions/genes that must never be considered for deletion.
This set can be computed automatically by OptFlux.

Fig. 4. The strain optimization configuration dialog.

IV. CASE STUDY

To illustrate the framework capabilities we selected a case
study, that considers the bacterium Escherichia coli in the
production of succinate. This case study was designed to
demonstrate the versatility of the framework while, at the same
time, display the different outcomes that the various strain
optimization strategies may originate. This will illustrate our
claim, that no single strain optimization strategy meets every
purpose, and that a framework that allows a flexible tuning of
those strategies is a big surplus for the ME community.

Succinate is one of the key intermediates in cellular
metabolism and therefore an important case study for ME
(Lee et al., 2002). Succinate and its derivatives have been used
to synthesize polymers, as additives and flavouring agents in
foods, supplements for pharmaceuticals, or surfactants. Cur-
rently, succinate is produced through petrochemical processes
that can be expensive and have significant environmental
impacts. The knockout solutions that lead to an improved
production are not straightforward to identify since they often
involve a large number of interacting reactions [26]. E. coli
has many advantageous characteristics as a production host,
such as rapid growth and simple nutritional requirements.

The E. coli genome-scale metabolic model used in this
work was developed by [27]. This model includes a total of
N=1075 reactions, M=761 metabolites and G=904 genes. To
reduce the search space, some simplification operations were
conducted, described in detail in [12]. After the simplification

operations, the model was reduced to a size of N=549 reac-
tions, M=332 metabolites and G=505 genes. Moreover, sets
of essential reactions and essential genes have been identified,
removing them from the variables for optimization. This left
the problems with 332 variables for the the RK optimization
strategy and 403 variables for the GK optimization strategy.

In order to demonstrate the usefulness of such framework,
a batch of tests was designed, comprising several optimization
strategies and comparing two phenotype prediction methods.
EA, SA and SPEA2 were tested in the four optimization
strategies discussed (GK, GOU, RK, ROU) and for each,
both pFBA and MOMA were used to predict the phenotypes.
For every algorithm two objective functions were imposed:
OF1 = Max Biomass and OF2 = Max Succinate. It is
worth mentioning that MO optimization was possible for the
SO algorithms (EA, SA) due to an abstraction provided by
the framework via the archive manager. The solutions are kept
following the premisses of the MO strategies, but the evolution
of the algorithms is not affected by this. In order to compute a
fitness value for these SO approaches, an aggregation function
is automatically applied (Fit = OF1×OF2). The framework
provides two different aggregation functions (sum and multi-
plication) and allows to define new ones by implementing a
simple interface.

The metric chosen for performance comparison was the
previously detailed Biomass-Product Coupled Yield (BPCY).
This metric is easy to compute for both SO and MO algo-
rithms, and allows direct comparison with results from other
works [12]. For each combination, 20 trials were performed
and each solution was simplified (removed all the knockouts or
over/under regulations that did not contribute for the objective
functions). Moreover, for each combination, the results from
the 20 trials were aggregated into solution supersets where
non-better and repeated solutions were removed. The number
of solutions in each set is detailed in Table I.

TABLE I. NUMBER OF SOLUTIONS IN EACH SOLUTION SUPERSET.

EA SA SPEA2

GK pFBA 583 825 1011
MOMA 1985 1992 1999

GOU pFBA 1164 1407 1211
MOMA 1600 1699 1836

RK pFBA 1066 1530 1532
MOMA 1992 1990 1998

ROU pFBA 714 792 1062
MOMA 1666 1663 1943

The results presented in Table I allow to infer, as a first
conclusion, that shifting the phenotype prediction method,
results in a substantially different number of unique solutions
generated. When MOMA was used as the phenotype prediction
method, the number of unique solutions in the aggregated sets
suffered an increase of almost two fold in some cases. When
only the optimization algorithm or the optimization strategy
are swaped, the results do not present the same variability. For
each trial, the best BPCY and the size of the best solution was
also computed and are presented in Table II.

A careful examination of Table II and the boxplots in
Figure 5 shows that, albeit using MOMA as a phenotype
prediction method produces a larger set of alternative solutions,
these solutions are also generally larger in size. In this work,
the size of the solutions was constrained to a maximum of 20
(knockouts or over/under regulations). The best solutions found
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GK GOU 

RK ROU 

MOMA pFBA MOMA pFBA 

MOMA pFBA MOMA pFBA 

Best 
(size) 

0.298 
(20) 

0.298 
(19) 

0.293 
(20) 

0.145 
(11) 

0.344 
(10) 

0.344 
(6) 

Best 
(size) 

0.295 
(19) 

0.332 
(7) 

0.328 
(19) 

0.379 
(6) 

0.379 
(6) 

0.381 
(8) 

Best 
(size) 

0.27 
(20) 

0.292 
(19) 

0.272 
(17) 

0.365 
(10) 

0.365 
(10) 

0.365 
(9) 

Best 
(size) 

0.267 
(19) 

0.275 
(20) 

0.278 
(17) 

0.398 
(4) 

0.402 
(8) 

0.398 
(5) 

Fig. 5. Boxplots of the best BPCYs found for each run. All the optimization strategies were contemplated and for each, the two phenotype prediction methods
were tested. The tables display the best BPCYs found in all runs of that specific combination and its respective size (in brackets).

by MOMA were constantly close to that limit. Exchanging
the optimization algorithm translated into less visible changes,
even tough the SPEA2 algorithm (with some exceptions), tends
to generate better solutions that are smaller in size.

Changing from knockout-based optimization strategies to
over/under expression ones (GK → GOU and RK → ROU),
allowed better solutions to be found when the phenotype
simulation method was pFBA, but had almost no influence in
the results when MOMA was preferred. Also, when observing
the effects of changing the optimization targets from genes
to reactions (GK → RK and GOU → ROU), it is possible
to observe that, when pFBA was used, changing from GK to
RK allowed better solutions to be found but those solutions
were larger on average (probably due to genes encoding for
multiple reactions). Once again, MOMA-based results did not
seem to be significantly affected. Comparing GOU to ROU
did not reveal significant differences, suggesting that knockout-
based strategies impose harder constraints to the problems, and
that some solutions that are probably not viable (do not allow
biomass flux) in the knockout-based strategies, become viable
by under/over regulations of some of their elements.

TABLE II. AVERAGE BPCYS OF THE BEST SOLUTIONS AND 95% CIS.
AVERAGE BEST SOLUTION SIZES ARE PRESENTED IN BRACKETS.

EA SA SPEA2

GK pFBA 0.1307 ± 0.01 (7.1) 0.171 ± 0.046 (5.9) 0.244 ± 0.047 (4.8)
MOMA 0.245 ± 0.01 (19.8) 0.245 ± 0.01 (19.1) 0.279 ± 0.007 (18.8)

GOU pFBA 0.324 ± 0.028 (4.7)) 0.359 ± 0.01 (4.7) 0.364 ± 0.015 (5.3)
MOMA 0.272 ± 0.007 (18.9) 0.277 ± 0.009 (18.1) 0.284 ± 0.008 (17.1)

RK pFBA 0.239 ± 0.062 (7.2) 0.361 ± 0.004 (9.6) 0.35 ± 0.028 (7.8)
MOMA 0.257 ± 0.004 (19.9) 0.261 ± 0.004 (19.5) 0.263 ± 0.001 (18.1)

ROU pFBA 0.322 ± 0.033 (5.2) 0.358 ± 0.015 (5.7) 0.394 ± 0.004 (5.8)
MOMA 0.245 ± 0.007 (19.4) 0.257 ± 0.009 (19.3) 0.262 ± 0.002 (17.6)

Another analysis methodology was also devised, in order
to evaluate the feasibility of some solutions under distinct phe-
notype evaluation methods. A solution is considered feasible if

its BPCY is greater than zero. The solutions generated by the
EA optimization algorithm, spanning all the four optimization
strategies (GK, GOU, RK, ROU) were used in this test. For
each optimization strategy, the solutions generated by the EA
when MOMA was the phenotype simulation method were
simulated using pFBA and vice-versa. For each case, a Venn
diagram was generated, displaying the solutions that were
only feasible under MOMA, pFBA or were feasible for both
methods. The results are presented in Figure 6.

1814 754 0 

EA-GK 

MOMA pFBA 

522 2241 1 

EA-GOU 

MOMA pFBA 

659 2399 0 

EA-RK 

MOMA pFBA 

1228 1150 2 

EA-ROU 

MOMA pFBA 

Fig. 6. Venn diagrams for the EA algorithm.

The first observable fact is that MOMA is able to achieve
feasability for almost all the solutions, including the ones
that were generated by optimization strategies that used pFBA

204



as the phenotype simulation method. On the other hand,
pFBA does not have almost any exclusive feasible solutions.
Comparing EA-GK to EA-GOU solutions, it is possible to
observe a major increase in the number of solutions that pFBA
is able to solve, but that observation is not possible when
comparing EA-RK to EA-ROU solutions.

V. CONCLUSIONS

In the Metabolic Engineering arena, the possibility of
selecting the appropriate genetic modifications to a given mi-
croorganism promises revolutionary advances in several other
fields. However, either due to lack of information or incorrect
assumptions, the uncertainty of the results provided by the
current approaches renders some of the solutions not viable.
Moreover, no strain optimization method developed to date
is able to satisfy every particular problem that arises. This
work proposes an integrated framework that allows its users
to configure and fine tune strain optimization strategies tailored
to their specific needs. The framework is segmented in various
layers, that allow both programmers and less advanced users
to take full advantage of all the methods provided, and also to
extend it with new ones. The integration of this framework
in the open-source OptFlux platform, makes it even more
attractive to an ever increasing ME community.

Future work contemplates the generalization of the opti-
mization layer to support other non-evolutionary optimization
methods, as well as the improvement of the programming
interfaces making it easier to extend the framework with third-
party software.
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