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Abstract. An approach for multiple biomass growth rates and biomass concentration estimation is 
proposed for a class of bioprocesses characterizing by on-line measurements of dissolved oxygen 
concentration and off-line measurements of biomass concentration. The approach is based on 
adaptive observer theory and includes two steps. In the first one, an adaptive estimator of two biomass 
growth rates is designed using on-line measurements of dissolved oxygen concentration. In the 
second step, the third biomass growth rate and the biomass concentration are estimated on the basis of 
other estimator using additionally off-line measurements of biomass concentrations. The simulation 
results demonstrated the good performance of the estimators under fed-batch conditions. 
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1. INTRODUCTION 

 
The kinetic rates are ones of the most important 
parameters of the bioprocesses. Their exact 
estimation allows to be realized on-line by adaptive 
control algorithms. Moreover, the information about 
their changes in the time is important and useful with 
regard to the investigations and study of every 
bioprocess. 
 
In many practical cases, it is impossible to measure 
the kinetic rates directly. Their estimation becomes a 
necessary step. Some approaches, proposed in the 
literature, are based on extended Kalman filter 
(Dochain and Pauss, 1988; Lubenova, 1993), 
adaptive system theory (Lubenova, 1993; Bastin and 
Dochain, 1989; Cazzador and Lubenova, 1995; 
Ferreira, 1995; Oliveira et al., 1996; Pomerleau and 
Perrier, 1990), high gain approach (Farza et al., 
1997), hybrid neural network based approach (Chen 
et al., 1995) etc. 
 
A considerable part of the authors direct their efforts 
to estimation of the specific growth rate in simple 
culture. Multiple rates estimation is realized in small 

number of works (Ferreira, 1995; Oliveira et al., 
1996; Pomerleau and Perrier, 1990). Pomerleau and 
Perrier (1990) used the observer-based estimator 
(Bastina and Dochain, 1989) and a pole placement 
based tuning in the estimation of three specific 
growth rates of baker’s yeast fed-batch fermentation. 
Ferreira (1995) and Oliveira et al. (1996) proposed a 
second order dynamic based tuning for the design 
parameters of the same general estimator to estimate 
these rates in the same fermentation process. In both 
cases, two partial models are used to describe the 
process. The estimation is carried out using a switch 
between two partial observer based estimators using 
on-line measurements of the dissolved oxygen and 
carbon dioxide concentrations. 
 
This paper is dedicated to the estimation of the 
multiple biomass growth rates and the biomass 
concentration of a class of bioprocesses, which is 
characterized by the following reaction network: 

S1 + O → 1µ  X + C (1) 

S1 → 2µ  X + C + S2 (P) (2) 

S2 (P) +O → 3µ  X +C (3) 



 

 

where S1 is the first substrate; O – dissolved oxygen; 
X – biomass; S2 (P) – second substrate or product 
depending on the metabolic pathway; C – carbon 
dioxide; µ1, µ2, and µ3 are the specific growth rates 
for the three metabolic pathways. 
 
In the sequel O, X, S1, S2, C will represent the 
concentrations of these variables. 
 
Pathways (1), (2) and (3) refer respectively to the 
respiratory growth on substrate S1, fermentative 
growth on substrate S1 and the respiratory growth on 
S2. It is considered the case when the processes, 
belong to the class above, are described using only 
one model. Two adaptive algorithms are proposed. 
The first one estimates two of the biomass growth 
rates R1 and R3 using on-line measurements of 
dissolved oxygen concentration. The second 
algorithm estimates the biomass growth rate R2 and 
the biomass concentration using additionally off-line 
measurements of biomass concentration. The second 
estimator need the estimates R1 and R3, obtained by 
the first algorithm. The performance of proposed 
estimators is investigated by simulation. 
 
 

2. PROBLEM STATEMENT 
 
A general dynamical model of a stirred tank reactor 
(Bastina and Dochain, 1989) has the form: 

( ) QFr K -Ddt
d

+−= ξξξξξξξξ
ξξξξ

 (4) 

where ξξξξ is the n vector of state variables; K - the n×m 
yield coefficient matrix; D - the dilution rate; F - n 
feed rate vector, Q – n gaseous outflow rate vector, r 
(ξξξξ)- a m×r reaction rate vector. 
 
The dynamics of the class of bioprocesses, which is 
characterized by the scheme (1), (2) and (3) is given 
in the matrix form (4), (5) by the following vectors 
and matrix: 
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where k1 ÷ k9 are yield coefficients, OTR is the 
oxygen transfer rate, CTR is the carbon dioxide 
transfer rate, and Sin1 is the first substrate 
concentration in the feed. 

 

For the system (4), (5), it is assumed that: 
 
A1. Only dissolved oxygen concentration O, the 
oxygen transfer rate OTR, and the carbon dioxide 
transfer rate CTR, and carbon dioxide concentration 
C are measured on-line. 
 
A2. The elements of the yield coefficient matrix K 
are known and constants. 
 
A3. The off-line measurements of biomass 
concentration X are available. 
 
For the class of bioprocesses, given by the system 
(4), (5) and under the assumptions A1÷A3, the 
following problem is considered: Estimation of the 
biomass growth rates R1, R2 and R3, as well as the 
concentration of biomass on the basis of adaptive 
algorithms, derived by the theory of adaptive 
estimation using on-line measurements of the 
dissolved oxygen concentration and the off-line X 
measurements. 
 
 

3. ADAPTIVE ALGORITHMS DESIGN 
 

3.1 Estimator of R1 and R3 (Estimator I) 
 
According to Eq. 5, the dynamics of the dissolved 
oxygen concentration is presented by: 

OTRDORkRk
dt
dO

361 +−−−= 5  (6) 

 
From Eqs. (6), it follows that the oxygen uptake rate 
(OUR) is given by: 

3615 RkRkOUR +=  (7) 
 
Then the time derivative of the reaction rate R1 can 
be presented in the following way: 
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Define the auxiliary parameter: 
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with CI and CII - positive constants or time-varying 
parameters. 
 
Combining Eqs. (6), (8), and (9), it is possible to 
derive the following adaptive estimator of R1 and R3: 
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where 31 RRO ˆ,ˆ,ˆ  and 1ρ̂  are estimated values for O, 
R1, R3 and ρ1, while CI, CII, C1, C2, C3 and C4 are 
estimator parameters, which must be chosen 
according to stability conditions, V1 is an auxiliary 
variable.  
 
 

3.2 Stability analysis 
 
Defining the estimation errors: 

OOO ˆ~ −= ,       111 RRR ˆ~ −= ,  

333 RRR ˆ~ −= ,     111 ρρρ ˆ~ −=   
consider the following error system: 
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It is assumed that: 
 
A5. C1>0; C1 = h1 + h2 - CI;  
 
A6. C2>0; C2 =[(h2 - h1)2 - (C1 - CI)2]/4.k5 
 
A7. c1>0; c1=- C2/k5 
 
A8. C3 = c1k6; C4 = c1k5V1 
 
where h1 = -h1', h2 = -h2' with h1, h2 positive 
constants, h1', h2' - eigenvalues of the matrix: 
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A9. The vector [k6, k5V1]T is a persistently exciting 
signal. 
 

A10. 
dt
Rd 3  ≤ M1, and A11.

dt
d 1ρ

≤ M2 

where M1 and M2 are upper bounds. 

Statement 1: Under assumptions A1 to A11, there 
exist positive finite constants l01, l11 and l21 such that 
the error x1 is bounded as follows, for all t: 
||x1(t) || ≤ l01 ||x1(0) ||+ l11M1+ l21 
 
Proof: 
 
1. Defining )(VRR 1111

* ρ~~~ −=  
the following system is equivalent to the error system 
(11): 
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2. The homogeneous part of (12) can be written: 
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is negative definite by the assumptions A5÷A8.  
 
The matrix B11 is stable by the same assumptions. 
Then the exponential stability of (13) follows from 
Theorem 3.2 (Bastin and Dochain, 1989). 
 
3. The forcing term of (12) is bounded by 
assumptions A10 and A11. 
 
4. Then it is a result of adaptive system theory that 
the state of (11) is bounded (Theorem A2.6, Bastin 
and Dochain, 1989). 
 
 

3.3 Estimator of R2 and X (Estimator II) 

 
Define the auxiliary parameters: 

XOUR2 +=ρ  (14) 

( ) IVIII
2 CXCR −−=3ρ  (15) 

 



 

 

where CIII and CIV are parameters, which can be 
positive constants or time-varying parameters. 
Write the dynamical model of dissolved oxygen 
concentration, given by Eq. (6) and using Eq. (14) as: 

OTRDOX
dt
dO

2 +−+−= ρ  (16) 

 
According to Eq. (15), the dynamical model of X can 
be written as: 

DX XCCRR
dt
dX III

3
IV

31 −−−+= ρ  (17) 

Using Eqs. (16), (17) and on-line measurements of 
the dissolved oxygen concentration and the off-line 
measurements of the biomass concentration, the 
following adaptive estimator can be derived: 

)ˆ(ˆˆ
ˆ

OOCOTRDOX
dt
Od

  52 −++−+−= ρ  (18a) 

+−+−−−+= )ˆ(ˆˆˆˆˆˆ
OOCXD XCCRR

dt
Xd

 
6

III
3

IV
3I1I

ρ

)ˆ()ˆ(
LLx128

XXCOOVC     −+−+  (18b) 

)ˆ(
ˆ

OOC
dt

d
 7

2 −−=
ρ

 (18c) 

( ) 





 −−−−= 22 XXCOOC

dt
d

x28
3 ˆˆρ̂

 (18d) 

( ) IVCD
dt

dV
III ++−= 2

2 VC  (18e) 

where 2XO ρ̂,ˆ,ˆ  and 3ρ̂  are estimated values for O, 
X, ρ2 and ρ3, while CIII, CIV, C5, C6, C7, C8, Cx1 and 
Cx2 are estimator parameters, V2 - an auxiliary 
variable, XL and LX̂  - the off-line measurements and 

the estimates of X, 
1I

R̂ , 
3I

R̂ - the estimated values of 

the 
1I

R , 
3I

R obtained by the first algorithm. 

 
An estimation of R2 is obtained using ρ3, X estimates 
and the relationship (15) as follows: 

XCCR IIIIV
32

ˆˆˆ −−= ρ  (18f) 
The stability of the estimator (18) can be proved like 
estimator I under the following assumptions: 
 
a) in the case where the off-line X measurements are 
not available: 
 
A12. C5>0; C5 = 2h - (CIII + D), h � positive 
constant.  
 
A13. C6>0; C6 =[C5 -(CIII +D)]2/4  
 
A14. c2>0; c2= C6 
 
A15. C7 = c2, C8 = c2 V2  

A16 The vector [1, V2]T is a persistently exciting 
signal 
 

A17. 
dt

d 2ρ
≤ M3;  

 

A18. 
dt

d 3ρ
≤ M4 

where M3 and M4 are upper bounds. 
 
b) in the case where the off-line X measurements are 
available: 
 
A19. C5>0; C5 = 2h - (CIII +Cx1 + D), with h � 
positive constant. 
 
A20. C6>0; C6 =[C5 -(CIII + Cx1+D)]2/4  
 
A21. c2>0; c2= C6, A22. C7 = γ1 
 
A23. C8=0 
 
A24. Cx2 = γ2 C IV with γ1,  γ2 positive constants. 
 
 

4. SIMULATION INVESTIGATIONS 
 
The behaviour of proposed adaptive estimators is 
investigated by simulations of a process model, 
which belongs to the class defined by Eqs. (4), (5) 
where specific growth rates are given by Monod 
models with constant parameters µmax1, µmax2, µmax3 
maximum specific growth rates, Ks1, Ks2, Ks3 
saturation constants. The values of the model 
parameters are given in Table 1. 
 
It is considered fed-batch process. The initial values 
of variables and parameters X, S1, R1, R2, R3 are given 
in Table 2. In Fig. 1, the simulation results from 
estimator I under different values of design parameter 
CI are shown. The simulations results of estimator II 
are plotted in Fig. 2.  
 
On the basis of the obtained results, the following 
conclusions can be drawn: 
 
1. Although the proposed estimators have not small 
number parameters, the proposed tuning procedures 
reduce their number to: three for estimator I: CI, hI 
and V1(0); four for estimator II: CIII, hII, Cx1 and Cx2 
 
2. The estimates under different values of the 
sampling period Tx coincide. 
 
3. More accurate estimates are obtained for R1, R3 
and X in comparison with R2. 
 
4. In the considered simulation investigations, the 
values of the tuning parameters are chosen using a 
trial-and-error approach. It is possible to be proposed 
and applied other tuning methods under the 



 

 

experimental validation of the proposed software 
sensors. One possibility to be searched is a 
reasonable trade-off between noise sensitivity and 
convergence using criteria proposed by Claes and 
Van Impe (1997) on the basis of the experimental 
data. 
 
 

5. CONCLUSION 
 
An approach for estimation of multiple biomass 
growth rates and biomass concentration for a class of 
aerobic bioprocesses is proposed. It is based on 
adaptive observer theory and requires on-line 
measurements of dissolved oxygen concentration and 
off-line measurements of biomass concentration.  
 
The practical applicability of the proposed approach 
is a direct consequence of several important factors. 
The estimators (i) are not depend on any particular 
models of the biomass growth rates, which are 
assumed to be unknown time-varying parameters; (ii) 
require only on-line measurements of dissolved 
oxygen concentration, which can be performed easily 
using cheap and reliable sensors. 
 
The results by simulation demonstrated the good 
performance of the proposed estimators under fed-
batch conditions. The values of tuning parameters 
were chosen using a trial and error approach. The 
experimental validation of the proposed strategy 
gives the possibilities to be applied other tuning 
procedures, connecting with the use of experimental 
data.  
 
 
 
Table 1: Model parameters 
µmax1=0.5 h-1  µmax2=0.8 h-1  µmax3=0.1 h-1  
Ks1=1 g l-1 Ks2=2 g l-1 Ks3=1 g l-1   
k1=0.5      k2=0.1    k5=0.1      k6=0.08 
k7=0.1      k8=0.05  k9=0.01  
Sin1=10 g l-1  
OTR=0.3 g l-1 min-1 
CTR=0.35 g l-1 min-1 
 
 
 
Table 2: Initial conditions 
X(0)=34.56 g l-1 
S1(0)=0.1086 g l-1  
R1(0)=1.6934 g l-1 min-1   
R3(0)=0.3386  g l-1 min-1  
R2(0)=1.4245 g l-1 min-1  
D=0.1 h-1  
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Figure 1. Estimates of R1, R3, and ρ1 by estimator I and the true value of the same parameters (lines) under 
different values of the design parameter CI (CII=1):  
CI =1.05 (o points), CI =1.03 (+ points), h1,2

I= -5. 
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Figure 2. Estimates of X, R2, ρ2, and ρ3 by estimator II and the true value of the same parameters (lines) under 

different sampling times Tx of biomass measurements.  
Values of design parameters: estimator I: CI =1.05, CII =1, h1,2

I = -5, estimator II: CIII = -D+0.1, CIV=1, h1,2
II=-10 

and Cx1=10, Cx2= C7=50 (o points for Tx =25 min and with + points for Tx = 50 min). 
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