Synthesis and photophysical studies of new pyrenylamino acids

SUPPLEMENTARY DATA

Table SD1. Ratio of emission intensities between excimer and monomer, $\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{M}}$, for the bipyrenylamino acid $\mathbf{4}$ in several solvents (the viscosity of solvents at room temperature is also indicated).

Solvent	$\boldsymbol{\eta}(\mathbf{c P})$	$\mathbf{I}_{\mathbf{E}} / \mathbf{I}_{\mathbf{M}}$
Cyclohexane	0.89	1.96
Ethanol	1.14	0.96
Methanol	0.59	0.95
Ethyl acetate	0.42	2.51
Dichloromethane	0.41	2.49
Dioxane	1.18	1.40
Acetonitrile	0.37	3.22
N, N-Dimethylformamide	0.79	1.23
Dimethylsufoxide	1.99	0.93

Figure SD1. Plot of $\ln \left(\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{M}}\right)$ versus $\ln \eta$ for the bipyrenylamino acid 4 .

Figure SD2. Fitting of the decay curve of the bipyrenylamino acid $4\left(\lambda_{\mathrm{em}}=500 \mathrm{~nm}\right)$ in ethanol, as an example.

