
Application Synchronisation on Public Displays

based on PubSubHubbub

Manuel Pereira, Maria João Nicolau and Helena Rodrigues

Centro Algoritmi, Escola de Engenharia, Universidade do Minho, Campus de
Azurém, 4800-058 Guimarães, Portugal

a50022@alunos.uminho.pt,{joao,helena}@dsi.uminho.pt

Abstract. Large-scale pervasive public displays networks are becoming
an emerging paradigm and represent a radical transformation in the way
we think about information dissemination in public spaces. One of the
features of pervasive public display systems is their ability to create ex-
periences that span across multiple displays in a coordinated fashion.
Proprietary single site display solutions exist but these are not open to
third-party developers.
On the other hand, scalable open systems that enable large-scale, syn-
chronised and multi-screen experiences, spanning multiple networks do-
mains will call for the definition of multiple administrative boundaries
that accommodate function partitioning. In our research, we are studying
the key requirements involved in this open application synchronisation
and present our initial work on designing a synchronisation model and
Application Programming Interface for public displays application devel-
opers that is built on top of the PubSubHubbub protocol, an open protocol
for distributed publish/subscribe communication on the Internet.

Keywords: Public displays, synchronisation, publish-subscriber, PubSubHub-
bub

1 Introduction

Open, large-scale pervasive public displays networks are becoming an emerging
paradigm and represent a radical transformation in the way we think about
information dissemination in public spaces. In particular, open networks of public
displays create the opportunity for third parties to create and publish content
in the form of applications, promoting openness as a source of value for all
the parties involved [7, 14]. In the future we believe that the interconnected
nature of these displays will mean that new applications for public displays will
promote not only enticing situated interactions but also meaningful synchronised
interactions between independent, possibly remote, public displays installations,
challenging radically the current stat-of-the-art in digital signage.

Application synchronisation on public displays networks has been mainly
approached from the perspective of application scheduling. Storz et al [13] has

94

developed, as part of the e-Campus project, a domain-independent API that
supports the construction of domain-specific scheduling approaches. Using this
approach, it is possible to support a combination of both statically scheduled
content and interactive schedule content across multiple displays. A more recent
approach for content scheduling in e-Campus has been described in [2]. The
scheduling API has been replaced by the concept of Content Descriptor Set
(CDS) that describes how single items of media should be rendered at the display.
The system is opened to content from numerous sources with no centralised
control. Although not specifically analysed in the paper, coordination between
displays seems to be supported in the definition of CDSs.

Application synchronisation has also been investigated in the context of sys-
tem support for smart spaces. The Event Heap is one of the main components of
the iROS operating system for smart spaces. Users in a meeting room interact
with different visualization applications that run on displays and other situated
devices, such as on laptops or PDAs, and are able to control any device or ap-
plication from their current location. The Event Heap [10], a publish-subscribe
system, provides for dynamic application coordination and forms the underlying
communication infrastructure for applications in the interactive workspace.

Our approach to application synchronisation on public display networks aims
at evaluating a publish-subscriber protocol designed for the web space, the Pub-
SubHubbub1, as an architectural component of a public display network system
with the objective to promote synchronised experiences across displays.

In section 2 we describe the main architectural concerns that support the
execution of applications on open public display networks. In section 3 we de-
scribe a synchronisation scenario in public display networks and define the initial
requirements for public displays synchronisation. In section 4 we introduce the
PubSubHubbub protocol, describe a PHP API for application development and
briefly describe our approach through the definition of a simple application.
Finally, in section 5 we present our conclusions.

2 Public Displays Applications

Figure 1 presents the main functional blocks and interactions required to have
a fully functional pervasive displays network. It can be instantiated in different
forms and replicated as needed, depending on grow demands [5]. We will briefly
describe the depicted architecture, emphasising the main architectural aspects
that frame our work.

The Application Developer is the main actor in the Application Domain. He
is responsible for application development, application description and applica-
tion registration. The application model for public displays networks is still an
open issue. In this work we share the application model provided by the Instant
Places, a specific display infrastructure. Instant Places aggregates place-based
screen media and explores new concepts for user-generated content [11]. A dis-
play application in Instant Places is a web application whose primary goal is to

1 https://pubsubhubbub.appspot.com/

95

render content on a public display [14]. Display apps are based on web technolo-
gies and standards, e.g., HTML, JavaScript and CSS. They are developed on
public servers from where they can be used in any public display. Displays apps
are rendered in any standard web browser or other types of specially tailored web
stacks and their model is optimised for the distinctive execution context and user
experience of public displays. The InstantPlaces system facilitates seamless inte-
gration of third party web applications residing anywhere in the public Internet
into a display, thus catering for a scalable and open architecture. Instant Places
offers a model for content presentation that takes into consideration both the
display environmental data, e.g., sensors and user interactions, and app specific
configuration. This approach enables the content being shown to be highly per-
sonalized, thus reflecting the dynamic and situated behavior of displays global
web apps [6].

Fig. 1. Public Display Network architecture.

Application registration in the Application Registry is the basis for an appli-
cation distribution model. Making an analogy with the mobile phone context,
Clinch et al. present a set of design considerations for public displays appli-

96

cations stores [3]. Application stores for public displays have the potencial to
promote collaboration and synchronisation in public spaces as innovative ideas
are likely to appear in open innovation environments. Additionally, sophisticated
application description systems that are likely to appear, will also have the po-
tential for promoting application sharing and synchronisation as developers and
displays owners will be offered shared environments for application behaviour
description.

The Display owner accesses to one or more application stores, registers his
display and installs applications on them. He interacts with the Orchestration
Service to define how applications are rendered in the display. Application devel-
opers may also be able to define orchestration constraints and, ultimately, User
may also influence display behaviour through situated interactions. Orchestra-
tion information are the basis for the Display Controllers to decide which content
or application should be rendered, where in the display and when - scheduling
model. Typical scheduling models for traditional public displays most commonly
multiplex over a set of content items through time multiplexing, regularly chang-
ing the item visible on the display for another. Open public displays networks
should accommodate new forms of highly dynamic scheduling that emerge from
the dynamic nature of content itself. In particular, for the problematic of display
application synchronisation, the need for dynamic scheduling may be associated
with the need to react to application events running on a different display.

A final issue on public display networks systems is the question of where
to physically locate the application the display is executing. The potentially
large-scale characteristics of public displays networks with their inherent inno-
vative nature, characterized by a continuously changing number of users, display
owners, content producers, display nodes, application items, application hosts,
content types, interaction modalities, sensors and connections, may lead to sev-
eral scalability and performance problems. In this context, existing scalability
techniques can be applied, in particular in the web environment. This may call
for application replication techniques or for dynamic VM synthesis supported
by cloudlets [4].

3 Synchronization scenario and requirements

To illustrate the synchronisation aspect of public displays applications, consider
the following scenario: International Action - World AIDS Day - It is the 1st of
December - World AIDS Day. All around Europe there are initiatives exploring
what AIDS means to different communities: including public information on
how to avoid contracting AIDS; documentaries concerning the plight of many
AIDS sufferers in Africa; and content from grass roots groups such as schools
fund raising for AIDS charities. Citizens in Europe are united through common
interactive experiences created by a team of international artists and displayed
on every participating display in Europe.

In this situation, displays are being used for improving communication be-
tween different communities and promoting awareness to a world-wide health

97

problem. Synchronisation requirements are evident as different and, preferably,
independent public displays installations need to coordinate their actions. Con-
sider for example the situation where a photo of a greeting gesture of a group of
people in front of a display may immediately be spread for all participating dis-
plays. Every participating installation has previously looked up and subscribed
the ”World AIDS Day application” (or one of the ”World AIDS Day applica-
tions”, if a few variations of the application may exist). The subscription process
is out-of-scope of this document, but at the end every installation had been con-
figured with the application URL (a public display opmtimised end-point) and a
proper set of scheduling constraints would have been set by the respective instal-
lation’s managers. Those would include, at the minimum, a rule for scheduling
the application on the 1st of December and some indication about the event-
based nature of the application. Situated-behaviour and interaction with local
resources is accomplished through the integration of the environment service
provided by the display node (possibly an Instant Places node). Applications
are running on public servers, possibly replicated in different servers or running
on local VM supported by cloudlets [4].

Public displays networks will be sharing the most important characteristics
of large-scale distributed systems: they will be decentralised in many forms, de-
veloped, owned and used by a wide variety of stakeholders with conflicting needs
and expanding or evolving continuously. One of the key aspect of this situation
is the autonomy between the public displays installations. Every installation is
likely to be managed by independent owners and do not share any functional
component of the public display network system apart from the application store
and, in some cases, the public server running the web application. Although some
form of a scheduler component capable of managing a set of displays installations
could also fulfill the above requirements [13], we believe that such an approach
would ”violate” the autonomy of public display installations. In our research we
intend to approach the problem of synchronisation in public places by offering
a web based, loosely-coupled synchronisation framework for public displays ap-
plications that allows for public displays synchronisation while preserving the
autonomy of display installations. In this paper, we report our initial work on
exploring the PubSubHubbub, a publish-subscribe protocol for the web space.
In the next section we briefly introduce the protocol and describe an API for
application synchronisation on public displays.

4 Coordination within PubSubHubbub

Publish-subscriber systems are known as having a particular relevance in com-
munication models in the increasingly distributed and necessarily loosely cou-
pled context of the modern Internet. They offer loosening coupling in space,
time or synchronisation [8]. Moreover, publish-subscriber systems have been an
important component in the web context, recently enforced by the increasing
popularity of the ”Real Time Web”. In particular, approaches such as PuSH

98

(PubSubHubbub) [9] add realtime notifications on top of RSS provide a REST-
ful decentralised publish-subscribe service.

4.1 PubSubHubbub

PubSubHubbub is a simple, open, server-to-server web-hook-based pubsub (pub-
lish/subscribe) protocol as an extension to Atom and RSS2. PubSubHubbub is a
topic-based subscription protocol, not a service. Application developers can run
a PubSubHubbub or use an open server. Google is running, in scalable clouds,
an open test server for anybody to use to help bootstrap the protocol3.

The main architectural entities of the PubSubHubbub protocol are the ”Hub”,
the ”Publishers” and the ”Subscribers”. An Hub is the server which implements
both sides of this protocol. It acts as a broker between publishers and subscribers.
A feed publisher indicates in the feed document (Atom [12] or RSS [1]) its hub
URL, to which a subscriber (a web server) can register the callback URL. The
publisher notifies its hub whenever it generates a feed update. The hub than
fetches the feed and sends it to all the registered subscribers. Subscribers pro-
vide endpoint URLs to which hubs can post updates. For a complete description
of the PubSubHubbub protocol, please consult [9].

4.2 Synchronisation PHP API

We have design a basic PHP API for using the PubSubHubbub protocol. Our
objective is to provide a very first application programming tool for providing
synchronisation in public display networks. This will be the basis for the im-
plementation of a few synchronisation scenarios in public displays networks. We
intend to study performance issues as well as to define the requirements for a
programming tool for developing synchronised applications for an open public
display network. As we expect that, as display nodes, PubSuBHubbub will ex-
hibit a federated behaviour, hud discovery and hub coordination is expected to
be a crucial issue.

In our API, an event represents the information that is shared between pub-
lishers and subscribers. It has a type, a description, a creation time and a list of
optional parameters, specific to the application domain. The API consists of four
operations: create event(), publish event(), subscribe event() and read event().

function create event($parameters) This function receives an array that
contains the parameters of an event. Each parameter is described by a pair
(”key”,”value”). This function adds a xml representation of the event to
the respective application feed. It returns true or false if success or failure
respectively (HTTP error code is logged for analysis).

function publish event($topic urls,$hub url) This function publishes an
event in the hub with address $hub url. The topic URL corresponds to the

2 https://pubsubhubbub.appspot.com/
3 https://code.google.com/p/pubsubhubbub/

99

address of the application feed. It returns true or false if success or failure
respectively (HTTP error code is logged for analysis).

function subscribe event($hub url,$callback url,$topic url,$lease seconds)
This function subscribes an event the application is interested in receiving.
$hub url defines the hub address, $callback defines the local endpoint URL
that receives the hub notification when the event occurs. $topic url corre-
sponds to the address of the feed the application intends to subscribe for
notifications. $lease seconds defines the life time of the subscription (in sec-
onds). The hub has to validate the subscriber application callback endpoint.
To do that, an hub contacts the callback endpoint to test if it is alive. The
application must to answer back to that contact. The API contains a class
(”endpoint.php”) that offers the mechanisms to implement this handshake.

function read event($parameters) This function extracts from a notifica-
tion the key values that are described in $parameters.

Example

We are developing a simple application that shows a photo slideshow, the de-
scription of the current photo and a set of user submitted comments about the
photos. Additionally, the application provides two endpoints for submitting new
photos and comments. The application is associated to a set of public displays
and the intended behaviour is to provide a shared photo slideshow in every place.
Whenever a new photo is uploaded, the new photo is displayed in every public
display. Whenever a new comment is published, the list of comments is updated
in every application.

Fig. 2. Application feed containing two new comment events.

In our approach, different application components and/or different applica-
tion components instances correspond to publishers and subscribers. Submission
of a new photo or a new comment corresponds to application events which are
published and subscribed accordingly. As an example, consider the figure 2 that
describes a feed formed by two new comment events.

100

5 Conclusions and Future Work

In this paper we have described our initial steps on system support for applica-
tion synchronisation in public displays. We have framed application synchronisa-
tion within the context of existent architectures for public display networks and
described an initial set of application synchronisation requirements. Building on
the characteristics of openness, autonomy and scalability, we have described our
initial steps on investigating PubSubHubbub, a publish-subscribe protocol for
the web space. We have design an initial API for application development using
the PubSuHubbub.

More research work has to be done on evaluating performance issues and the
programming model, possibly with external application developers. Also, inte-
gration with remaining architectural components such as the Display Controller
or Scheduler or application subscription and application description models has
to be further explored. Finally, as potentially in the future there will be many
hubs and tons of publishers and subscribers, we also need to investigate the steps
towards a federation of hubs that work cooperatively.

Acknowledgment

Research group supported by FEDER Funds through the COMPETE and Na-
tional Funds through FCT Fundação para a Ciência e a Tecnologia under the
Project FCOMP-01-FEDER-0124-022674.

References

1. Advisory Board RSS. RSS 2.0 specification, 2007.

2. S. Clinch, N. Davies, A. Friday, and G. Clinch. Yarely: a software player for
open pervasive display networks. In Proceedings of the 2nd ACM International
Symposium on Pervasive Displays, pages 25–30. ACM, 2013.

3. S. Clinch, N. Davies, T. Kubitza, and A. Schmidt. Designing application stores for
public display networks. In Proceedings of the 2012 International Symposium on
Pervasive Displays, page 10. ACM, 2012.

4. S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan. How close is
close enough? understanding the role of cloudlets in supporting display appropri-
ation by mobile users. In Pervasive Computing and Communications (PerCom),
2012 IEEE International Conference on, pages 122–127. IEEE, 2012.

5. P. Consortium. Deliverable D2.1 - scientific evaluation of pervasive display net-
workprototype, 2012.

6. H. R. Constantin Taivan, Rui Jos and B. Silva. Situatedness for global display web
apps, 2013.

7. N. Davies, M. Langheinrich, R. José, and A. Schmidt. Open display networks: A
communications medium for the 21st century. Computer, 45(5):58–64, 2012.

8. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys (CSUR), 35(2):114–131, 2003.

101

9. B. Fitzpatrick, B. Slatkin, and M. Atkins. Pubsubhubbub core 0.3–working draft.
Project Hosting on Google Code, available at http://pubsubhubbub. googlecode.
com/svn/trunk/pubsubhubbub-core-0.3. html, 2010.

10. B. Johanson and A. Fox. The Event Heap: A coordination infrastructure for in-
teractive workspaces. In WMCSA ’02: Proceedings of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications, page 83, Washington, DC, USA,
2002. IEEE Computer Society.

11. R. José, H. Pinto, B. Silva, A. Melro, and H. Rodrigues. Beyond interaction: Tools
and practices for situated publication in display networks. In Proceedings of the
2012 International Symposium on Pervasive Displays, page 8. ACM, 2012.

12. R. Sayre. Atom: The standard in syndication. Internet Computing, IEEE, 9(4):71–
78, 2005.

13. O. Storz, A. Friday, and N. Davies. Supporting content scheduling on situated
public displays. Computers & Graphics, 30(5):681–691, 2006.

14. C. Taivan and R. José. An application framework for open application development
and distribution in pervasive display networks. In On the Move to Meaningful
Internet Systems: OTM 2011 Workshops, pages 21–25. Springer, 2011.

102

