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Abstract. This paper gives a characterisation, via intersection types, of the strongly normalising
proof-terms of an intuitionistic sequent calculus (where LJ easily embeds). The soundness of the
typing system is reduced to that of a well known typing system with intersection types for the ordi-
nary λ-calculus. The completeness of the typing system is obtained from subject expansion at root
position. Next we use our result to analyze the characterisation of strong normalisability for three
classes of intuitionistic terms: ordinary λ-terms, ΛJ-terms (λ-terms with generalised application),
and λx-terms (λ-terms with explicit substitution). We explain via our system why the type systems
in the natural deduction format for ΛJ and λx known from the literature contain extra, exceptional
rules for typing generalised application or substitution; and we show a new characterisation of the
β-strongly normalising λ-terms, as a corollary to a PSN-result, relating the λ-calculus and the intu-
itionistic sequent calculus. Finally, we obtain variants of our characterisation by restricting the set
of assignable types to sub-classes of intersection types, notably strict types. In addition, the known
characterisation of the β-strongly normalising λ-terms in terms of assignment of strict types follows
as an easy corollary of our results.
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1. Introduction

Intersection type assignment systems were introduced by Coppo and Dezani [2, 3], Barendregt et al. [1],
Copo et al. [4], Pottinger [22], and Sallé [25]. They extend the simple type assignment system λ→ so that
a refined study of both syntax and semantics of the ordinary λ-calculus is possible (e.g. characterisation
of normalising terms, analysis of models).
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Meanwhile, the ordinary λ-calculus has been extended in several ways, as an answer to stimuli com-
ing from different sources. For instance, the λ-calculi with explicit substitutions have a computer science
motivation (more precisely the implementation of functional programs and other symbolic systems).
Many other extensions are motivated by logic and, more specifically, by the extension of the Curry-
Howard correspondence. Examples are Parigot’s λµ-calculus (for classical natural deduction), Herbe-
lin’s λ-calculus (for a fragment of the intuitionistic sequent calculus), Joachimski-Matthes’ λ-calculus
with generalised application (for von Plato’s system of natural deduction), and Curien-Herbelin’s λµµ̃-
calculus (for classical sequent calculus). As an answer to this expansion of the field of application,
intersection type assignment systems are being defined and studied for almost all of the mentioned ex-
tensions [19, 20, 6, 7, 17].

In this paper we study the λGtz-calculus, introduced in [8], and corresponding under the Curry-
Howard correspondence to the intuitionistic sequent calculus. The interest of λGtz, and simultaneously
the difference relative to λ is that: (i) at the logical level, no restriction is placed on left inferences; (ii)
at the term-calculus level, λGtz has a single cut-construction that subsumes both explicit substitution and
an enlarged concept of application, exhibiting the features of “multiarity” and “generality” [13]. The
main result of this paper is the design of an intersection type assignment system λGtz∩ which, we prove,
characterises the strongly normalising λGtz-terms (i.e. terms representing sequent calculus derivations
on which cut-elimination always terminates).

A recent topic of research is the use of intersection types for the characterisation of strong normalisabi-
lity in extensions of the λ-calculus with generalised applications or explicit substitutions [20, 19, 17]. A
common feature of these works is the need to throw in the typing system some extra, exceptional rules
for typing generalised applications or substitutions. This breaks somehow the harmony observed in the
ordinary λ-calculus between typeability induced by intersection types and strong β-normalisability. One
may wonder whether, in the extended scenario with generalised applications or explicit substitutions, the
blame for the slight mismatch is on some insufficiency of the intersection types technique, or on some
insufficiency of the reduction relations causing too many terms to be terminating.

It turns out that, because of its expressive power, λGtz is a good tool to analyze this question. A simple
analysis of our main characterisation result shows that strong normalisability as sequent terms (i.e. inside
λGtz) of λ-terms with generalised applications or explicit substitutions is equivalent to their typeability
in certain “natural” typing systems with intersection types. The latter are in the natural deduction format,
like systems previously studied in [20, 19], except that they do not contain any extra, exceptional rules for
typing generalised applications or substitution. So one is led to compare the behavior under reduction of
λ-terms with generalised applications or explicit substitutions inside λGtz and inside their native system
ΛJ [16] or λx [24]. We conclude that the problem in ΛJ is that we cannot form explicit substitutions,
and in λx is that we cannot compose substitutions.

On the other hand, when analyzing, via λGtz, β-strong normalisability of ordinary λ-terms, one finds
positive results. The key is that, contrary to ΛJ-terms and λx-terms, λGtz preserves strong normalisability
of λ-terms. This allows us to obtain, as an easy corollary of our main result, a new characterisation of
β-strong normalisability of λ-terms, in terms of typeability in a new system called λ∩.

In λGtz∩ the management of intersection is built in the ordinary logical rules. We also define a pre-
order on the types, but instead of having a typing rule for the pre-order, we found it sufficient to work
modulo the corresponding equivalence of types ∼. For these reasons, λGtz∩ is a syntax-directed system,
in the sense that there is exactly one typing rule for each syntactic constructor. This property eases some
of the meta-theory of the system.
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Working modulo ∼ means that a part of the system is not governed by primitive rules of the system.
Instead of adding rules to the system which would break syntax-directedness, we explore in a later
section the idea of assigning restricted classes of intersection types, notably strict types [27], on which∼
boils down to syntactic identity. We obtain variants of our main characterisation of strongly normalising
sequent terms via typeability with “proper” types and strict types. As an easy corollary of our results, the
known [28] characterisation of the β-strongly normalising λ-terms in terms of assignment of strict types
follows.

The paper is organised as follows: Section 2 presents the syntax of λGtz. Section 3 introduces λGtz∩.
Section 4 proves the characterisation of strongly normalising λGtz-terms. Section 5 analyzes other classes
of intuitionistic terms. Section 6 studies assignment of restricted classes of intersection types. Section 7
concludes.

The majority of the results in this paper is based on the joint work of the first two authors with Silvia
Ghilezan, presented at the TYPES ’07 Meeting [11]. The type system λGtz∩ presented in Section 3, the
characterisation of strongly normalisable terms in Section 4, and the results about the ΛJ-calculus and
the λx calculus in Section 5 all come from [11]. There is however a difference in the proofs in Section 4
since a new auxiliary type system λGtz∩≤ is used. The part of this work dealing with the type systems for
assigning proper and strict types to λGtz-terms was reported in [12] and presented at the 4th Workshop
on Intersection Types and Related Systems, ITRS’08. The characterisations of the β-strong normalisable
λ-terms, as well as the PSN result for the λ-calculus, although not reported in [12], were also discussed
at ITRS’08.

Acknowledgements: First, and most important, we would like to thank Silvia Ghilezan for letting
us use here the material from the TYPES’07 paper [11]. In addition, we would like to thank her for
encouraging us to continue working on this paper on our own. We would also like to thank the referees
of TYPES’07, ITRS’08, and of the present journal submissions for careful reading and many valuable
comments, which helped us improve the final version of this paper.

The first author is supported by Fundação para a Ciência e Tecnologia, Portugal. The second and
third authors are supported by projects ON174026 and III44006, Ministry of Education and Science,
Republic of Serbia.

2. Syntax of the λGtz-calculus

The λGtz-calculus was proposed in [8]. Its simply-typed version obtains, in the context of the implica-
tional fragment of intuitionistic logic, a Curry-Howard correspondence for the sequent calculus. In this
section we present the syntax of the system and some of the properties of the untyped version.

The abstract syntax of λGtz is given by:

Terms t,u,v ::= x |λx.t | tk
Contexts k ::= x̂.t |u :: k

A term is either a variable, an abstraction λx.t, or a cut tk. A context is either a selection or a context
cons(tructor). Terms and contexts are together referred to as expressions and are ranged over by E. The
set of free variables of an expression E, denoted by Fv(E), is defined as follows:

Fv(x) = {x}; Fv(λx.t) = Fv(t)\{x}; Fv(tk) = Fv(t)∪Fv(k);
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Fv(x̂.t) = Fv(t)\{x}; Fv(t :: k) = Fv(t)∪Fv(k).

In λx.t and x̂.t, λx and x̂ bind the variable x in t. The scope of binders extends to the right as much as pos-
sible. Free variables are the variables not bound by abstraction or by selection operator and Barendregt’s
convention applies in both cases.

Depending on the form of k, a cut may be an explicit substitution t(x̂.v) or a multiary generalised
application t(u1 :: · · ·um :: x̂.v), m ≥ 1. In the last case, if m = 1, we get a generalised application
t(u :: x̂.v); if v = x, we get a multiary application t[u1, · · · ,um] (x̂.x can be seen as an empty list of
arguments); a combination of m = 1 and v = x brings cuts to the form of an ordinary application.

The reduction rules of λGtz are the following:

(β) (λx.t)(u :: k) → u(x̂.tk)
(π) (tk)k′ → t(k@k′)
(σ) t(x̂.v) → v[x := t]
(µ) x̂.xk → k, if x /∈ k

where v[x := t] denotes meta-substitution defined as follows:

x[x := u] = u; y[x := u] = y; (λy.t)[x := u] = λy.t[x := u];

(tk)[x := u] = t[x := u]k[x := u]; (ŷ.v)[x := u] = ŷ.v[x := u]; (v :: k)[x := u] = v[x := u] :: k[x := u];

and k@k′ is defined by:

(u :: k)@k′ = u :: (k@k′); (x̂.t)@k′ = x̂.tk′.

The rule β generates a substitution but it is the rule σ that executes it, on the meta-level. The rule
π simplifies the head of a cut (t is the head of tk). The rule µ (whose origin is in [26]) has a structural
character and it either performs a trivial substitution in the reduction t(x̂.xk)→ tk, or it minimises the
use of the generality feature in the reduction t(u1 · · ·um :: x̂.xk)→ t(u1 · · ·um :: k).

The rules β, π, and σ aim at eliminating all cuts but those of the trivial form y(u1 :: · · ·um :: x̂.v) (for
some m≥ 1). The βπσ-normal forms correspond to the multiary, cut-free, sequent terms of [26], and are
given in the following definition.

Definition 2.1. βπσ-normal forms of the λGtz-calculus are:

(Terms) tn f ,un f ,vn f = x | λx.tn f | x(un f :: kn f )

(Contexts) kn f = x̂.tn f | tn f :: kn f .

In the simply-typed case, the reduction rules of λGtz have a logical motivation, as they correspond
to cut-elimination steps (or, in the case of µ, to a certain trivial manipulation of sequent derivations).
But these reduction rules are also interesting in the untyped case, being capable of simulating ordinary
β-reduction, and therefore giving a decomposition of the atomic step of computation of the ordinary
λ-calculus. We now see this with little more detail.

The λ-terms are given by:
M,N,P ::= x |λx.M |MN



J. Espı́rito Santo, J. Ivetić, S. Likavec / Characterising strongly normalising intuitionistic terms 5

and equipped with one reduction rule:

(β) (λx.M)N → M[x := N].

There is a mapping G : λ→ λGtz given by

G(x) = x G(λx.M) = λx.G(M) G(MN) = G(M)(G(N) :: ẑ.z)

Proposition 2.1. If M→β N in the λ-calculus, then G(M)→+
βσ

G(N) in the λGtz-calculus.

Proof:
We need the preliminary, common lemma G(P[x := Q]) = G(P)[x := G(Q)], for all P,Q λ-terms, which
is proved by a routine induction on P. Then, the proposition is proved by induction on M→β N. The
inductive cases are routine, following by IH and definitions. We just check the base case. Suppose
M ≡ (λx.P)Q→β P[x := Q]≡ N. Then,

G(M) = (λx.G(P))(G(Q) :: ẑ.z)

→β G(Q)(x̂.G(P)(ẑ.z))

→σ G(Q)(x̂.G(P))

→σ G(P)[x := G(Q)]

= G(P[x := Q])

= G(N)

ut

The λGtz-calculus may be seen as a modification of Herbelin’s λ̄-calculus [14]. The main difference
between the two calculi is that, in λ̄, selection x̂.t is restricted to [] = x̂.x. This entails that, in λ̄, contexts
have the restricted form of “evaluation contexts”, and that the construction u :: k represents, logically, a
restricted form of left introduction. So, only a fragment of sequent calculus is captured by λ̄, which is
good if one wants to obtain a correspondence with natural deduction: the normal forms of λ̄, contrary to
the normal forms of λGtz, are in 1-1 correspondence with the β-normal λ-terms. Other uses of selection
have to be added as separate, primitive constructions in λ̄. For instance, the cut t(x̂.u) corresponds to
the “mid-cut” u〈x := t〉, that is, explicit substitution. The formulation of the λ̄-calculus in [14] makes
explicit other operations like k@k′.

Finally, a remark on confluence. Not surprisingly, λGtz-calculus is not confluent. One reason is that
we can reproduce in λGtz the call-by-name/call-by-value dilemma of Curien-Herbelin’s λ̄µµ̃ calculus [5].
Let t0 = (tk)(x̂.v). This term is both a π-redex and a σ-redex. Contracting it as a π-redex (the call-
by-value option) we get t1 = t(k@x̂.v). Contracting it as a σ redex (the call-by-name option) we get
t2 = v[x := tk]. Consider, for example, this particular case: t = z, v = y, and k = u :: ŵ.w, where z and y
are variables, y 6= x, and u is a normal form. Then t1 = z(u :: ŵ.w(x̂.y)) and t2 = y. So we would like to
reduce t1 to t2 but, on t1, we can at most perform a further µ-step, yielding the normal form z(u :: x̂.y).
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3. Type assignment systems

3.1. Simply typed λGtz-calculus

The basic type assignment system for the λGtz-calculus is the one with simple types, introduced in [8].
The set of simple types is defined as follows:

A,B ::= p | A→ B

where p ranges over a denumerable set of type atoms.

Definition 3.1. (i) A basic type assignment is an expression of the form x : A, where x is a term
variable and A is a type.

(ii) A basis Γ is a set {x1 : A1, . . . ,xn : An} of basic type assignments, where all term variables are
different. DomΓ = {x1, . . . ,xn}. A basis extension Γ,x : A denotes the set Γ∪ {x : A}, where
x 6∈ DomΓ.

(iii) There are two kinds of type assignment:

- Γ ` t : A - a type assignment for terms;

- Γ;B ` k : A - a type assignment for contexts.

Notice the special place between the symbols ; and `, called the stoup, which contains a selected
formula with which we continue computation.

The type assignment system λGtz→ is given in Figure 1.

Γ,x : A ` x : A
(Ax)

Γ,x : A ` t : B
Γ ` λx.t : A→ B

(→R)
Γ ` t : A Γ;B ` k : C
Γ;A→ B ` t :: k : C

(→L)

Γ ` t : A Γ;A ` k : B
Γ ` tk : B

(Cut)
Γ,x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Figure 1. λGtz→: simply typed λGtz-calculus

The ordinary inference rules of sequent calculus are easily interpreted in λGtz: axiom, right intro-
duction, left introduction, and cut, are represented by the constructions x, λx.t, y(u :: x̂.v), and t(x̂.v),
respectively.

λGtz → satisfies subject reduction, and the proof of this property shows which proof transforma-
tions are associated with each reduction rule. The rule β corresponds to the key-step in cut-elimination,
whereas the rules σ and π correspond to right and left permutation of cuts, respectively. The rule µ undoes
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the sequence of two inference steps consisting of unselecting the stoup formula, without contraction, and,
immediately after, selecting the same formula.

Strong normalisation for this system is proved in [8], by a translation into the λ-calculus with “de-
layed” substitutions. But, as with the simply typed λ-calculus, the basic type assignment system cannot
characterise all strongly normalising terms. For example, the term λx.x(x :: ŷ.y) (which corresponds to
the term λx.xx in the simply typed λ-calculus) does not have a type in λGtz→, although it is a normal
form.

3.2. Intersection types for the λGtz-calculus

In order to characterise strong normalisation in the λGtz-calculus, we follow a standard technique and
introduce intersection types in the system.

Definition 3.2. The set of types, ranged over by A,B,C, ...,A1, ..., is inductively defined as follows:

A,B ::= p | A→ B | A∩B

where p ranges over a denumerable set of type atoms.

Definition 3.3. (i) The pre-order ≤ over the set of types is the smallest relation that satisfies the
following properties:

1. A≤ A;

2. A∩B≤ A and A∩B≤ B;

3. (A→ B)∩ (A→C)≤ A→ (B∩C) and A→ (B∩C)≤ (A→ B)∩ (A→C);

4. A≤ B and B≤C implies A≤C;

5. A≤ B and A≤C implies A≤ B∩C;

(ii) Two types are equivalent, A∼ B , if and only if A≤ B and B≤ A.

In this paper, if nothing is said otherwise, we consider types modulo this equivalence relation.

Remark 3.1. ∼ is an equivalence relation on types, and a congruence w.r.t. ∩.1 Associativity of ∩
holds, in the sense that A∩ (B∩C) ∼ (A∩B)∩C, so we are entitled to write ∩Ak. The equivalence
(A→ B)∩ (A→ C) ∼ A→ (B∩C) (or more generally ∩(∩Ak → Bi) ∼ ∩Ak → ∩Bi) follows from the
given set of rules (and congruence w.r.t. ∩), and will be used in the sequel.

The definition of a type assignment, a basis, and related notions is analogous to Definition 3.1.
The following type assignment system for the λGtz-calculus, given in Figure 2, is named λGtz∩. In

(Ax), (→L), and (Cut) ∩Ai = A1∩·· ·∩An, for some n≥ 1.
By taking n = 1 in (Ax), (→L), and (Cut) we get the typing rules for assigning simple types given in

Figure 1.

1In [11] the definition of ≤ included the usual clause stating contra-variance (resp. co-variance) in the lhs (resp. rhs) of an
arrow. In fact, provided that we state the equivalence (A→ B)∩ (A→ C) ∼ A→ (B∩C) as an axiom, we do not need such
clause for our results, and indeed it is crucial that such clause is absent for our treatment of strict type assignment later in the
paper.
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j ∈ {1, · · · ,n}
Γ,x : ∩Ai ` x : A j

(Ax)

Γ,x : A ` t : B
Γ ` λx.t : A→ B

(→R)
Γ ` t : Ai, ∀i ∈ {1, · · · ,n} Γ;B ` k : C

Γ;∩Ai→ B ` t :: k : C
(→L)

Γ ` t : Ai, ∀i ∈ {1, · · · ,n} Γ;∩Ai ` k : B
Γ ` tk : B

(Cut)
Γ,x : A ` v : B
Γ;A ` x̂.v : B

(Sel)

Figure 2. λGtz∩: intersection types for the λGtz-calculus

Notice that in this type assignment system no separate rules for the introduction of intersection are
given. The management of intersection is built in the other rules. There is a right (resp. left) introduction
of intersection implicit in (→L) and (Cut) (resp. in (Ax)). Also there is no separate typing rule for ≤.

Because of this, we may say the typing system λGtz∩ is syntax directed, in the sense that there is
exactly one typing rule for each syntactic constructor. This makes the Generation lemma below trivial,
and implies that all the typing derivations assigning a type to a certain expression have a fixed, rigid
“skeleton”, determined by the expression.

Proposition 3.1. (Admissible rule - (∩L))
(i) If Γ,x : Ai ` t : B, for some i, then Γ,x : ∩Ai ` t : B.

(ii) If Γ,x : Ai;C ` k : B, for some i, then Γ,x : ∩Ai;C ` k : B.

Proof:
By mutual induction on the derivation. ut

Proposition 3.2. (Basis expansion)
(i) Γ ` t : A ⇔ Γ,x : B ` t : A and x /∈ Fv(t).

(ii) Γ;C ` k : A ⇔ Γ,x : B;C ` k : A and x /∈ Fv(k).

Proof:
The proof follows from the definitions of a basis and a free variable. ut

Definition 3.4.

Γ1∩Γ2 = {x : A | x : A ∈ Γ1 & x /∈ Γ2}
∪ {x : A | x : A ∈ Γ2 & x /∈ Γ1}
∪ {x : A∩B | x : A ∈ Γ1 & x : B ∈ Γ2}.

Proposition 3.3. (Bases intersection)
(i) Γ1 ` t : A ⇒ Γ1∩Γ2 ` t : A.
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(ii) Γ1;B ` k : A ⇒ Γ1∩Γ2;B ` k : A.

Proof:
By mutual induction on the structure of t and k. ut

Proposition 3.4. (Generation lemma)
(i) Γ ` x : A iff x : ∩Ai ∈ Γ and A≡ A j, for some j.

(ii) Γ ` λx.t : A iff A≡ B→C and Γ,x : B ` t : C.

(iii) Γ;A ` x̂.t : B iff Γ,x : A ` t : B.

(iv) Γ ` tk : A iff there is a type B≡ ∩Bi such that Γ ` t : Bi, ∀i ∈ {1, . . . ,n}, and Γ;∩Bi ` k : A.

(v) Γ;D ` t :: k : C iff D≡ ∩Ai→ B, Γ;B ` k : C, and Γ ` t : Ai, ∀i ∈ {1, . . . ,n}.

Proof:
The proof is straightforward since all rules are syntax-directed. ut

Lemma 3.1. (Substitution lemma)
(i) If Γ,x : ∩Ai ` t : B and Γ ` u : Ai, for each i, then Γ ` t[x := u] : B.

(ii) If Γ,x : ∩Ai;C ` k : B and Γ ` u : Ai, for each i, then Γ;C ` k[x := u] : B.

Proof:
(i) and (ii) are proved by simultaneous induction on t and k.

• t is a variable:

– t ≡ x:
From Γ,x : ∩Ai ` x : B, using Generation lemma 3.4(i) we derive B ≡ Ai, for some i. Since
x[x := u] = u the proof is contained in the second premise.

– t ≡ y:
From Γ,x : ∩Ai ` y : B and Proposition 3.2 we derive that Γ ` y : B. Since y[x := u] = y the
proof is complete.

• t ≡ λy.t ′:
From Γ,x : ∩Ai ` λy.t ′ : B, using Generation lemma 3.4(ii) we get B ≡ ∩C j → D and for some j,
Γ,x : ∩Ai,y : C j ` t ′ : D. Applying the induction hypothesis to t ′ we get Γ,y : C j ` t ′[x := u] : D.
Since (λy.t ′)[x := u] = λy.t ′[x := u], the proof is complete using Proposition 3.1 and rule (→R).

• t ≡ t ′k:
From Γ,x : ∩Ai ` t ′k : B, using Generation lemma 3.4(iv), we derive that there exists a type
∩C j, j = 1, ...,m, m≥ 1, such that Γ,x : ∩Ai ` t ′ : C j,∀ j ∈ {1, . . . ,m} and Γ,x : ∩Ai;∩C j ` k : B.
Applying the induction hypothesis to t ′ and k we get:

Γ ` t ′[x := u] : C j,∀ j ∈ {1, . . . ,m} Γ;∩C j ` k[x := u] : B
(Cut)

Γ ` t ′[x := u]k[x := u] : B

This is exactly what we need since (t ′k)[x := u] = t ′[x := u]k[x := u].
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• k ≡ ŷ.v:
From Γ,x : ∩Ai;C ` ŷ.v : B, using Generation lemma 3.4(iii), we get Γ,x : ∩Ai,y : C ` v : B. Ap-
plying the induction hypothesis to v we get

Γ,y : C ` v[x := u] : B
(Sel)

Γ;C ` ŷ.v[x := u] : B

This ends the proof since (ŷ.v)[x := u] = ŷ.v[x := u].

• k ≡ t :: k′:
From Γ,x : ∩Ai;C ` t :: k′ : B , using Generation lemma 3.4(v), we derive C ≡ ∩D j → E, Γ,x :
∩Ai;E ` k′ : B , and Γ,x : ∩Ai ` t : D j,∀ j ∈ {1, . . . ,m}. Applying the induction hypothesis to t and
k′ we get

Γ ` t[x := u] : D j, ∀ j ∈ {1, . . . ,m} Γ;E ` k′[x := u] : B
(→L)

Γ;∩D j→ E ` t[x := u] :: k′[x := u] : B

Since ∩D j→ E ≡C and (t :: k′)[x := u] = t[x := u] :: k′[x := u], the proof is complete.
ut

Lemma 3.2. (Append lemma)
If Γ;C ` k : Bi, ∀i ∈ {1, . . . ,n}, and Γ;∩Bi ` k′ : A, then Γ;C ` k@k′ : A.

Proof:
By induction on k.

• k ≡ x̂.v:
From Γ;C ` x̂.v : Bi,∀i ∈ {1, . . . ,n}, using Generation lemma 3.4(iii) it follows that Γ,x : C ` v :
Bi,∀i ∈ {1, . . . ,n}. Without loosing generality we can assume that x /∈ Fv(k′) (if the variable x was
free in k′ we would have to rename it in k where it is bound; then we would not have the variable
x, but some other variable). According to Proposition 3.2 we can extend the basis in the second
premise to Γ,x : C;∩Bi ` k′ : A. Then,

Γ,x : C ` v : Bi,∀i ∈ {1, . . . ,n} Γ,x : C;∩Bi ` k′ : A
(Cut)

Γ,x : C ` vk′ : A
(Sel)

Γ;C ` x̂.vk′ : A

Since (x̂.v)@k′ = x̂.vk′, the proof is complete.

• k ≡ v :: k′′:
From Γ;C ` v :: k′′ : Bi,∀i ∈ {1, . . . ,n}, using Generation lemma 3.4(v), it follows that C≡∩D j→
E, Γ;E ` k′′ : Bi,∀i∈ {1, . . . ,n}, and Γ` v : D j,∀ j ∈ {1, . . . ,m}. Applying the induction hypothesis
to k′′ and k′ we get Γ;E ` k′′@k′ : A. Now we can build the following derivation:

Γ ` v : D j,∀ j ∈ {1, . . . ,m} Γ;E ` k′′@k′ : A
(→L)

Γ;∩D j→ E ` v :: (k′′@k′) : A.

Since ∩D j→ E ≡C and (v :: k′′)@k′ = v :: (k′′@k′), the proof is complete.
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ut
Theorem 3.1. (Subject Reduction)
If Γ ` t : A and t→ t ′, then Γ ` t ′ : A.

Proof:
By induction on t→ t ′. We just show the base case. There are four sub-cases:

• (β):
Suppose that Γ ` (λx.t)(u :: k) : A. We need to show that Γ ` u(x̂.tk) : A.
From Γ ` (λx.t)(u :: k) : A , using Generation lemma 3.4(iv), it follows that there exists a type ∩Bi

such that Γ ` λx.t : Bi,∀i ∈ {1, . . . ,n} and Γ;∩Bi ` u :: k : A. Using Remark 3.1 and Generation
lemma 3.4(v) for the second premise we deduce that ∩Bi ≡ ∩(∩C j → Di) ∼ ∩C j → ∩Di, ∀i ∈
{1, . . . ,n}, Γ;∩Di ` k : A, and Γ ` u : C j,∀ j ∈ {1, . . . ,m}. On the other hand, from Γ ` λx.t :∩C j→
Di,∀i∈{1, . . . ,n}, using Generation lemma 3.4(ii), it follows that Γ,x :∩C j ` t : Di,∀i∈{1, . . . ,n}.
From here we conclude that x /∈ DomΓ. Now we can write a type derivation for the term u(x̂.tk):

Γ ` u : C j, ∀ j ∈ {1, . . . ,m}

Γ,x : ∩C j ` t : Di,∀i ∈ {1, . . . ,n} Γ,x : ∩C j;∩Di ` k : A
(Cut)

Γ,x : ∩C j ` tk : A
(Sel)

Γ;∩C j ` x̂.tk : A
(Cut)

Γ ` u(x̂.tk) : A.

• (π):
Suppose that Γ ` (tk)k′ : A. We have to show that Γ ` t(k@k′) : A.
From Γ ` (tk)k′ : A, using Generation lemma 3.4(iv), it follows that there exists a type ∩Bi such
that Γ ` tk : Bi,∀i ∈ {1, . . . ,n} and Γ;∩Bi ` k′ : A. Next, using Generation lemma 3.4(iv) for
the first premise we conclude that for each i ∈ {1, . . . ,n} there exists a type ∩C j such that Γ `
t : C j,∀ j ∈ {1, . . . ,m} and Γ;∩C j ` k : Bi,∀i ∈ {1, . . . ,n}. From Γ;∩C j ` k : Bi,∀i ∈ {1, . . . ,n}
and Γ;∩Bi ` k′ : A, applying Proposition 3.2 we get Γ;∩C j ` k@k′ : A. So we can conclude the
following:

Γ ` t : C j,∀ j ∈ {1, . . . ,m} Γ;∩C j ` k@k′ : A
(Cut)

Γ ` t(k@k′) : A

• (σ):
Suppose that Γ ` t(x̂.v) : A. We have to show that Γ ` v[x := t] : A.
From Γ ` t(x̂.v) : A , using Generation lemma 3.4(iv), it follows that there exists a type ∩Bi such
that Γ ` t : Bi,∀i ∈ {1, . . . ,n} and Γ;∩Bi ` x̂.v : A. Next, using Generation lemma 3.4(iii) for the
second premise we derive that Γ,x : ∩Bi ` v : A. Now we can apply Substitution lemma 3.1 and
get Γ ` v[x := t] : A.

• (µ):
Suppose that Γ;B ` x̂.xk : A. We have to show that Γ;B ` k : A. Using Generation lemma 3.4(iii)
it follows that Γ,x : B ` xk : A. Next, using Generation lemma 3.4(iv) there exists a type ∩Ci such
that Γ,x : B ` x : Ci,∀i ∈ {1, . . . ,n} and Γ,x : B;∩Ci ` k : A. ¿From the first sequent, using (Ax), it
follows that B∼ ∩Ci. Since x /∈ Fv(k), the proof is complete using Proposition 3.2.
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ut

Example 3.1. In the λ-calculus, the term λx.xx has the type (A∩ (A→ B))→ B.
The corresponding term in the λGtz-calculus is λx.x(x :: ŷ.y). Although being a normal form this term is
not typeable in the simply typed λGtz-calculus. It is typeable in λGtz∩ in the following way:

(Ax)
x : A∩ (A→ B) ` x : A→ B

(Ax)
x : A∩ (A→ B) ` x : A

(Ax)
x : A∩ (A→ B),y : B ` y : B

(Sel)
x : A∩ (A→ B);B ` ŷ.y : B

(→L)
x : A∩ (A→ B);A→ B ` x :: ŷ.y : B

(Cut)
x : A∩ (A→ B) ` x(x :: ŷ.y) : B

(→R).
` λx.x(x :: ŷ.y) : (A∩ (A→ B))→ B

3.3. Alternative system

The system λGtz∩was obtained after several attempts to build a system of intersection types for λGtz have
failed. The detailed account on these attempts can be found in [12, 15], but we give here a summary.
The first attempt took the most natural approach - simply adding to the existing simple type assignment
system λGtz → standard typing rules for the left and right introduction of intersection, plus a rule for
≤. But we could not formulate the Generation lemma in this “intuitive system”. The next approach
considered a system inspired by the type assignment system for classical sequent λµµ̃-calculus proposed
by Dougherty et al. in [7]. This second system satisfied the Generation lemma, but not the Subject
reduction property. The modification of its cut rule, by implicitly introducing intersection in it, led us to
the system λGtz∩.

In this paper we focus on λGtz∩ and, later, on subsystems of λGtz∩. The reason is that λGtz∩, not
only characterises the strongly normalising terms of λGtz, but also enjoys Subject Reduction and what
we called “syntax-directedness”. The fact that there is only one rule per constructor brings technical
advantages (Generation lemma) and a form of elegance.

Certainly, there are other systems that characterise the strongly normalising terms of λGtz. Indeed,
in this subsection we introduce the auxiliary system λGtz∩≤ which has that property. λGtz∩≤ is the
“intuitive system” of [12, 15] described two paragraphs above, minus one typing rule. So, it is a simple
system, but inappropriate as explained before. Nevertheless, it is useful as a tool in the proof of the
characterisation of the strongly normalising terms, to be given in the next section.

λGtz∩≤ is given in Figure 3.

Proposition 3.5. If λGtz∩ derives Γ ` t : A, then λGtz∩≤ derives Γ ` t : A.

Proof:
By induction on the derivation of Γ ` t : A in λGtz∩. We distinguish the following cases according to the
last typing rule used.

• (Ax): Let j ∈ {1, · · · ,n}.



J. Espı́rito Santo, J. Ivetić, S. Likavec / Characterising strongly normalising intuitionistic terms 13

Γ,x : A ` x : A
(Ax)

Γ,x : A ` t : B
Γ ` λx.t : A→ B

(→R)
Γ ` t : A Γ;B ` k : C
Γ;A→ B ` t :: k : C

(→L)

Γ ` t : A Γ;A ` k : B
Γ ` tk : B

(Cut)
Γ,x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Γ ` t : A Γ ` t : B
Γ ` t : A∩B

(∩R)
Γ ` t : A, A≤ B

Γ ` t : B
(≤)

Figure 3. System λGtz∩≤

(Ax)
Γ,x : ∩Ai ` x : ∩Ai ∩Ai ≤ A j

(≤)
Γ,x : ∩Ai ` x : A j

• (→R) and (Sel): trivial by IH, since the rules are identical in both systems.

• (→L) and (Cut): just apply IH and the needed ∩R. E.g.

Γ ` t : Ai,∀i ∈ {1, . . . ,n}
(∩R)

Γ ` t : ∩Ai Γ;B ` k : C
(→L)

Γ;∩Ai→ B ` t :: k : C
ut

4. Characterisation of SN in λGtz calculus

4.1. Typeability⇒ SN

We prove strong normalisation for the λGtz∩≤ system (and a fortiori for the λGtz∩ system). We connect,
via an appropriate mapping, λGtz∩≤ with D≤, where the latter is the type assignment system for the
λ-calculus presented in Figure 4. We then use the strong normalisation theorem for λ-terms typeable in
system D≤.

Proposition 4.1. (SN)
If a λ-term M is typeable in D≤, then M is β-SN.

Proof:
This is known, but we have to be precise. In the system of Fig. 4, ≤ is taken from Definition 3.3 and
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Γ,x : A ` x : A
(Ax)

Γ,x : A `M : B
Γ ` λx.M : A→ B

(→ I) Γ `M : A→ B Γ ` N : A
Γ `MN : B

(→ E)

Γ `M : A Γ `M : B
Γ `M : A∩B

(∩I)
Γ `M : A A≤ B

Γ `M : B
(≤)

Figure 4. D≤: intersection type assignment system for λ-calculus

we work modulo the corresponding equivalence. In the literature [27, 23], D≤ is based on a bigger ≤,
because the definition of ≤ includes contra-variance (resp. co.variance) in the lhs (resp. rhs) of arrows,
and hence one works modulo a bigger equivalence. So, if a λ-term M is typeable in D≤ according to Fig.
4, then it is so according to [27, 23], and so it is known to be strongly normalising. ut

We define a mapping F from λGtz-calculus to λ-calculus. The idea is the following. If F(t) = M,
F(ui) = Ni and F(v) = P, then t(u1 :: u2 :: x̂.v), say, is mapped to (λx.P)(MN1N2).

Definition 4.1. Formally, a mapping F : λGtz−Terms−→ λ−Terms is defined simultaneously with an
auxiliary mapping F ′ : λ−Terms×λGtz−Contexts−→ λ−Terms as follows:

F(x) = x; F(λx.t) = λx.F(t); F(tk) = F ′(F(t),k);

F ′(N, x̂.t) = (λx.F(t))N; F ′(N,u :: k) = F ′(NF(u),k).

Proposition 4.2. If λGtz∩≤ proves Γ ` t : A, then D≤ proves Γ ` F(t) : A.

Proof:
The proposition is proved together with the claim:

If λGtz∩≤ proves Γ;A ` k : B and D≤ proves Γ ` N : A, then D≤ proves Γ ` F ′(N,k) : B.

The proof is by simultaneous induction on derivations Π1 and Π2 of Γ` t : A and Γ;A` k : B, respectively.
We distinguish the following cases according to the last typing rule used.

• (Ax), (→R), (∩), and (≤): trivial.

• (Cut): Π1 has the shape
Π11

Γ ` t : A
Π12

Γ;A ` k : B
Γ ` tk : B

(Cut)

By IH(Π11), D≤ proves Γ ` F(t) : A. By IH(Π12), D≤ proves Γ ` F ′(F(t),k) : B. This is what we
want, since F ′(F(t),k) = F(tk).
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• (Sel): Π2 has the shape
Π21

Γ,x : A ` t : B
Γ;A ` x̂.t : B

(Sel)

Suppose D≤ proves Γ ` N : A. Then in D≤ one has

IH
Γ,x : A ` F(t) : B

Γ ` λx.F(t) : A→ B
→ I

Γ ` N : A
Γ ` (λx.F(t))N : B

(→ E)

This is what we want, since F ′(N, x̂.t) = (λx.F(t))N.

• (→ L): Π2 has the shape
Π21

Γ ` u : A
Π22

Γ;B ` k : C
Γ;A→ B ` u :: k : C

(→ L)

Suppose D≤ proves Γ ` N : A→ B. By IH (Π21) D≤ proves Γ ` F(u) : A. Then in D≤ one has

Γ ` N : A→ B Γ ` F(u) : A
Γ ` NF(u) : B

(→ E)

Hence, by IH(Π22), D≤ proves Γ ` F ′(NF(u),k) : C. This is what we want, since F ′(NF(u),k) =
F ′(N,u :: k).

ut

We consider the λ-terms equipped with the following reduction relations, in addition to the standard
β-reduction.

(π1) (λx.M)NP → (λx.MP)N (π2) M((λx.P)N) → (λx.MP)N

We let π = π1∪π2.

Proposition 4.3. If a λ-term M is β-SN, then M is βπ-SN.

Proof:
This is Theorem 2 in [9], whose full proof is given in [10]. ut

Lemma 4.1. Let M,N,
−→
Q be in λ and t,u,k,k′ be in λGtz.

1. F ′((λx.M)N
−→
Q ,k)→+

π (λx.F ′(M
−→
Q ,k))N.

2. F ′(F ′(M,k),k′)→+
π F ′(M,k@k′).

3. F(t[x := u]) = F(t)[x := F(u)].

4. (λx.F ′(x
−→
Q ,k))N→β F ′(N

−→
Q ,k), if x /∈ FV (k)∪FV (

−→
Q ).
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Proof:
1. By induction on k.

• k = ŷ.v.

F ′((λx.M)N
−→
Q , ŷ.v) = (λy.F(v))((λx.M)N

−→
Q ) (by def. of F)

→∗π1
(λy.F(v))((λx.M

−→
Q )N)

→π2 (λx.(λy.F(v))(M
−→
Q ))N

= (λx.F ′(M
−→
Q , ŷ.v))N (by def. of F)

• k = u :: k′.

F ′((λx.M)N
−→
Q ,u :: k′) = F ′((λx.M)N

−→
Q F(u),k′) (by def. of F)

→+
π (λx.F ′(M

−→
Q F(u),k′))N (by IH)

= (λx.F ′(M
−→
Q ,u :: k′))N (by def. of F)

2. By induction on k.

• k = x̂.v.

F ′(F ′(M, x̂.v),k′) = F ′((λx.F(v))F(M),k′) (by def. of F)

→+
π (λx.F ′(F(v),k′))F(M) (by 1.)

= F ′(M, x̂.vk′) (by def. of F)

= F ′(M,(x̂.v)@k′) (by def. of @)

• k = u :: k0.

F ′(F ′(M,u :: k0),k′) = F ′(F ′(MF(u),k0),k′) (by def. of F)

→+
π F ′(MF(u),k0@k′) (by IH)

= F ′(M,u :: (k0@k′)) (by def. of F)

= F ′(M,k@k′) (by def. of @)

3. The claim is proved together with F ′(M[x := F(u)],k[x := u]) = F ′(M,k)[x := F(u)]. The proof is by
simultaneous induction on t and k.

4. By induction on k.

• k = ŷ.v. From x /∈ FV (k) we get x /∈ FV (v).

(λx.F ′(x
−→
Q , ŷ.v))N = (λx.(λy.F(v))(x

−→
Q ))N (by def. of F)

→β (λy.F(v))(N
−→
Q ) (x /∈ FV (v)∪FV (

−→
Q ))

= F ′(N
−→
Q , ŷ.v) (by def. of F)
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• k = u :: k′. From x /∈ FV (k) we get x /∈ FV (u)∪FV (k′) and x /∈ FV (F(u)).

(λx.F ′(x
−→
Q ,u :: k′))N = (λx.F ′(x

−→
Q F(u),k′))N (by def. of F)

→β F ′(N
−→
Q F(u),k′) (by IH, as x /∈ FV (k′)∪FV (

−→
Q )∪FV (F(u)))

= F ′(N
−→
Q ,u :: k′) (by def. of F)

ut

Proposition 4.4. For all t ∈ λGtz, if F(t) is βπ-SN, then t is βπσµ-SN.

Proof:
Immediate consequence of the following properties of F :

(i) if t→βπ u in λGtz, then F(t)→+
π F(u) in λ.

(ii) if t→σµ u in λGtz, then F(t)→β F(u) in λ.

We formulate (i) and (ii) as a single statement:

(a) if t→R u in λGtz and R ∈ {β,π,σ,µ}, then there is n≥ 1 and S ∈ {β,π} such that F(t)→n
S F(u) in

λ and, moreover: either R = {β,π} and S = π; or R = {σ,µ} and S = β and n = 1.

We need a similar statement for contexts:

(b) if k→R k′ in λGtz and R ∈ {β,π,σ,µ}, then there is n≥ 1 and S ∈ {β,π} such that, for any λ-term
N, F ′(N,k)→n

S F ′(N,k′) in λ and, moreover: either R = {β,π} and S = π; or R = {σ,µ} and S = β

and n = 1.

We prove (a) and (b) together by simultaneous induction on t→R u and k→R k′.
Base case, R = β.

F((λx.t)(u :: k)) = F ′((λx.Ft)F(u),k) (by def. of F)
→+

π (λx.F ′(F(t),k))F(u) (by part 1 of Lemma 4.1)
= F(u(x̂.tk)) (by def. of F)

Base case, R = π.

F((tk)k′) = F ′(F ′(F(t),k),k′) (by def. of F)
→+

π F ′(F(t),k@k′) (by part 2 of Lemma 4.1)
= F(t(k@k′)) (by def. of F)

Base case, R = σ.

F(t(x̂.v)) = (λx.F(v))F(t) (by def. of F)
→β F(v)[x := F(t)]
= F(v[x := t]) (by part 3 of Lemma 4.1)
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Base case, R = µ. Let N be a λ-term and x /∈ FV (k).

F ′(N, x̂.xk) = (λx.F ′(x,k))N (by def. of F)
→β F ′(N,k) (by part 4 of Lemma 4.1)

We just show two inductive cases.
Case t ≡ t0k0→R t0k′0 ≡ u, with k0→R k′0. Let N = F(t0). Then, by IH, F ′(N,k0)→n

S F ′(N,k′0), for
some S and n, whence F(t)→n

S F(u).
Case k ≡ t :: k0→R t ′ :: k0 ≡ k′, with t →R t ′. Let N be a λ-term. By IH, F(t)→n

S F(t ′), for some S
and n. Then NF(t)→n

S NF(t ′). Hence,

F ′(N, t :: k0) = F ′(NF(t),k0) (by def. of F)

→n
S F ′(NF(t ′),k0) (*)

= F ′(N, t ′ :: k0) (by def. of F)

where (∗) follows from the fact

P→n
S P′⇒ F ′(P,k)→n

S F ′(P′,k)

which is obvious, and formally proved by induction on k.2

ut

Theorem 4.1. (Typeability⇒ SN)
If a λGtz-term t is typeable in λGtz∩≤, then t is βπσµ-SN.

Proof:
Suppose t is typeable in λGtz∩≤. Then, by Proposition 4.2, F(t) is typeable in D≤. So, by Proposition
4.1, F(t) is β-SN. Hence, by Proposition 4.3, F(t) is βπ-SN. Finally, by Proposition 4.4, t is βπσµ-SN.

ut

4.2. SN⇒ Typeability

The previous subsection proved soundness of λGtz∩≤ (and hence of λGtz∩). We move to completeness.

4.2.1. Typeability of normal forms

Recall the definition of βπσ-normal forms (Definition 2.1).

Proposition 4.5. βπσ-normal forms of λGtz calculus are typeable in λGtz∩ system. Hence so are βπσµ-
normal forms.

2An alternative, indirect proof can be based on facts known in the literature. F is the composition λGtz ( )∗−→ λs
( )]−→ λ, where

λs is the system of “delayed substitutions” defined in [9], ( )∗ is a mapping studied in [8], and ( )] is another mapping studied
in [9]. The present proposition follows from two simulation results, Proposition 1 of [8] about ( )∗, and Proposition 7 of [9]
about ( )], provided one supplements the statement of Proposition 1 in [8] with the remark - useless for the purposes of [8] but
needed now - that, in the simulating reduction sequence in λs, at least one π- or σ-step is present.
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Proof:
By simultaneous induction on the structure of βπσ-normal terms and contexts.

• Basic case: Every variable is typeable.

• λx.tn f is typeable.
By IH, tn f is typeable, so Γ ` tn f : B. We examine two cases:

- If x : A ∈ Γ, then Γ = Γ′,x : A and we can assign the following type to λx.tn f :

Γ
′,x : A ` tn f : B

(→R)
Γ
′ ` λx.tn f : A→ B.

- If x : A /∈ Γ, then by Proposition 3.2 we get Γ,x : A ` tn f : B thus concluding

Γ,x : A ` tn f : B
(→R)

Γ ` λx.tn f : A→ B.

• x̂.tn f is typeable.
Proof is very similar to the previous one.

• tn f :: kn f is typeable.
By IH tn f and kn f are typeable, i.e. Γ1 ` tn f : A and Γ2;B ` kn f : C. Then, by Proposition 3.3 we
get Γ1∩Γ2 ` tn f : A and Γ1∩Γ2;B ` kn f : C, so we assign the following type to tn f :: kn f :

Γ1∩Γ2 ` tn f : A Γ1∩Γ2;B ` kn f : C
(→L)

Γ1∩Γ2;A→ B ` tn f :: kn f : C.

• x(tn f :: kn f ) is typeable.
By IH and the previous case, context tn f :: kn f is typeable, i.e. Γ;A→ B ` tn f :: kn f : C. We examine
3 cases:

- If x : A→ B ∈ Γ, then:

(Ax)
Γ ` x : A→ B Γ;A→ B ` tn f :: kn f : C

(Cut)
Γ ` x(tn f :: kn f ) : C.

- If x : D ∈ Γ, then Γ = Γ′,x : D and we can expand basis of x : A→ B ` x : A→ B to Γ′,x :
D∩ (A→ B) ` x : A→ B using Propositions 3.1 and 3.2. Also, by Proposition 3.1, we can
write Γ′,x : D∩ (A→ B);A→ B ` tn f :: kn f : C. Now, the corresponding type assignment is:

Γ
′,x : D∩ (A→ B) ` x : A→ B Γ

′,x : D∩ (A→ B);A→ B ` tn f :: kn f : C
(Cut)

Γ
′,x : D∩ (A→ B) ` x(tn f :: kn f ) : C.

- If x isn’t declared at all, by Proposition 3.2 we get Γ,x : A→ B;A→ B ` tn f :: kn f : C from
Γ;A→ B ` tn f :: kn f : C, and then conclude:

(Ax)
Γ,x : A→ B ` x : A→ B Γ,x : A→ B;A→ B ` tn f :: kn f : C

(Cut)
Γ,x : A→ B ` x(tn f :: kn f ) : C.

ut
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4.2.2. Subject expansion at root position

Lemma 4.2. If Γ ` u(x̂.tk) : A and x 6∈ Fv(u)∪Fv(k), then Γ ` (λx.t)(u :: k) : A.

Proof:
Γ ` u(x̂.tk) : A implies, by Generation lemma 3.4(iv), that there is a type B≡ ∩Bi, such that Γ ` u : Bi,
for all i and Γ;∩Bi ` x̂.tk : A. Further, this implies, by Generation lemma 3.4(iii), that Γ,x : ∩Bi ` tk : A
so then there is a C≡∩C j such that Γ,x : ∩Bi ` t : C j for all j and Γ,x : ∩Bi;∩C j ` k : A. By assumption,
the variable x is not free in k, so using Proposition 3.2 we can write the previous sequent as Γ;∩C j ` k : A.
Now, because of the equivalence ∩(∩Bi→C j)∼ ∩Bi→∩C j, we have:

Γ,x : ∩Bi ` t : C j, ∀ j
(→R)

Γ ` λx.t : ∩Bi→C j, ∀ j

Γ ` u : Bi, ∀i Γ;∩C j ` k : A
(→L)

Γ;∩Bi→∩C j ` u :: k : A
(Cut)

Γ ` (λx.t)(u :: k) : A.

ut
Lemma 4.3. (Inverse substitution lemma)

(i) Let Γ ` v[x := t] : A, and let t be typeable. Then there is a basis Γ′ and a type B ≡ ∩Bi, such that
Γ′,x : ∩Bi ` v : A and for all i, Γ′ ` t : Bi.

(ii) Let Γ;C ` k[x := t] : A, and let t be typeable. Then there is a basis Γ′ and a type B≡∩Bi, such that
Γ′,x : ∩Bi;C ` k : A and for all i, Γ′ ` t : Bi.

Proof:
By simultaneous induction on the structure of the term v and the context k.

• Basic case:

1. v≡ x
Then v[x := t] = x[x := t] = t. By the first premise we have Γ ` t : A and by the assumption
that t is typeable we have Γ∗ ` t : C, for some basis Γ∗. Variable x /∈ Fv(t), so according
to Proposition 3.2 we get that x /∈ DomΓ and x /∈ DomΓ∗. Now, for Γ′ ≡ Γ∩Γ∗ and for
B = A∩C, using (Ax), we get Γ′,x : A∩C ` x : A and using Proposition 3.3 we get Γ′ ` t : A
and Γ′ ` t : C.

2. v≡ y
In this case v[x := t] = y[x := t] = y, so Γ ` y : A. From the assumption that t is typeable we
get Γ∗ ` t : B. Since x /∈ Fv(t), x /∈ DomΓ∗ and x /∈ DomΓ. Now, for Γ′ ≡ Γ∩Γ∗ and by
Proposition 3.2 and Proposition 3.3 we conclude Γ′,x : B ` y : A and Γ′ ` t : B.

• v≡ λy.v′

v[x := t] = (λy.v′)[x := t] = λy.v′[x := t]. From Γ ` λy.v′[x := t] : A, by Generation lemma 3.4(ii)
we get that A ≡ ∩Ci → D, i ∈ {1, . . . ,n} and that Γ,y : ∩Ci ` v′[x := t] : D. Applying induction
hypothesis on v′ we obtain that there are Γ′ and ∩B j, j ∈ {1, . . . ,m} such that Γ′,x : ∩B j,y : ∩Ci `
v′ : D and for each j ∈ {1, . . . ,m}, Γ,y : ∩Ci ` t : B j. We conclude:

Γ
′,x : ∩B j,y : ∩Ci ` v′ : D

(→R)
Γ
′,x : ∩B j ` λy.v′ : (∩Ci→ D)≡ A.
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• k ≡ ŷ.t ′

Then k[x := t] = (ŷ.t ′)[x := t] = ŷ.t ′[x := t]. From Γ;C ` ŷ.t ′[x := t] : A, by Generation lemma 3.4(iii),
it follows that Γ,y : C ` t ′[x := t] : A. Applying induction hypothesis on t ′ we get that there are Γ′

and ∩Bi, i∈ {1, . . . ,n} such that Γ′,x :∩Bi ` t ′ : A and Γ′ ` t : Bi, ∀, i∈ {1, . . . ,n} . Since y /∈ Fv(t),
y /∈ DomΓ′, and using Proposition 3.2 we conclude:

Γ
′,x : ∩Bi,y : C ` t ′ : A

(Sel)
Γ
′,x : ∩Bi;C ` ŷ.t ′ : A.

• v≡ t ′k
In this case v[x := t] = (t ′k)[x := t] = (t ′[x := t])(k[x := t]), so by premise Γ ` (t ′[x := t])(k[x :=
t]) : A and by Generation lemma 3.4(iv) we get that there is a type ∩Ci i ∈ {1, . . . ,n} such that
∀i ∈ {1, . . . ,n}, Γ ` t ′[x := t] : Ci and Γ;∩Ci ` k[x := t] : A. By induction hypothesis on t ′ we
get that there are Γ1 and ∩B′j, j ∈ {1, . . . ,m} such that Γ1 ` t : B′j and Γ1,x : ∩B′j ` t ′ : Ci. By
induction hypothesis on k we get that there are Γ2 and ∩B′′k ,k ∈ {1, . . . , p} such that Γ2 ` t : B′′k and
Γ2,x : ∩B′′k ;∩Ci ` k : A. Finally, for Γ′ ≡ Γ1∩Γ2 and ∩Bl ≡ (∩B′j)∩ (∩B′′k ) we get that for each l
holds Γ′ ` Bl and

Γ
′,x : ∩Bl ` t ′ : Ci Γ1,x : ∩Bl;∩Ci ` k : A

(Cut)
Γ
′,x : ∩Bl ` t ′k : A,

by Proposition 3.2 and Proposition 3.1.

• k ≡ t ′ :: k′

k[x := t] = (t ′[x := t]) :: (k′[x := t]), so from Γ;C ` t ′[x := t] :: k′[x := t] : A, by Generation
lemma 3.4(v), it follows that C≡∩Di→ E, i∈ {1, . . . ,n} , Γ ` t ′[x := t] : Di, for each i∈ {1, . . . ,n}
and Γ;E ` k′[x := t] : A. By induction hypothesis on both parts we get Γ′ ` t : B′j, Γ′,x :∩B′j ` t ′ : D ,
Γ′′ ` t : B′′k and Γ′′,x :∩B′′k ;E ` k′ : A. For Γ1≡ Γ′∩Γ′′ and ∩Bl ≡∩B′j∩(∩B′′k ) we conclude Γ1 `Bl
and

Γ1,x : ∩Bl ` t ′ : D Γ1,x : ∩Bl;E ` k′ : A

Γ1,x : ∩Bl;C ` t ′ :: k′ : A,

that completes the proof.
ut

Lemma 4.4. (Inverse append lemma)
If Γ;B ` k@k′ : A then there is a type C ≡ ∩Ci such that Γ;B ` k : Ci, ∀i and Γ;∩Ci ` k′ : A.

Proof:
By induction on the structure of k.

• Basic case: k ≡ x̂.v
In this case k@k′ = (x̂.v)@k′ = x̂.vk′. From Γ;B ` x̂.vk′ : A, by Generation lemma 3.4(iii), we
have that Γ,x : B ` vk′ : A. Then, by Generation lemma 3.4(iv), there is a C ≡ ∩Ci such that
Γ,x : B ` v : Ci, ∀i and Γ,x : B;∩Ci ` k′ : A. From the first sequent we get Γ;B ` x̂.v : Ci, ∀i . From
the second one, considering that x is not free in k′, we get Γ;∩Ci ` k′ : A.
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• k ≡ u :: k′′

In this case, k@k′ = (u :: k′′)@k′ = u :: (k′′@k′). From Γ;B ` u :: (k′′@k′) : A, by Generation
lemma 3.4(v), B ≡ ∩Ci → D, Γ;D ` k′′@k′ : A and Γ ` u : Ci, for all i. From the first sequent,
by induction hypothesis, we get some E ≡ ∩E j such that Γ;D ` k′′ : E j, ∀ j and Γ;∩E j ` k′ : A.
Finally, for each j,

Γ ` u : Ci, ∀i Γ;D ` k′′ : E j
(→L)

Γ;∩Ci→ D(≡ B) ` u :: k′′ : E j

so the proof is completed.
ut

Proposition 4.6. (Subject expansion at root position)
If t → t ′, t is the contracted redex and t ′ is typeable in λGtz∩, then t is typeable in λGtz∩, provided that,
if t ≡ u(x̂.v)→σ v[x := u]≡ t ′, u is typeable.

Proof:
We examine four different cases, according to the applied reduction.

• (β) : Directly follows from Lemma 4.2.

• (σ) : We should show that typeability of t ′ ≡ v[x := u] leads to typeability of t ≡ u(x̂.v).
Assume that Γ ` v[x := u] : A and u is typeable. By Lemma 4.3 there are a Γ′ and a B≡ ∩Bi such
that Γ′ ` u : Bi, ∀i and Γ′,x : ∩Bi ` v : A. Now

Γ
′ ` u : Bi, ∀i

Γ
′,x : ∩Bi ` v : A

(Sel)
Γ
′;∩Bi ` x̂.v : A

(Cut)
Γ
′ ` ux̂.v : A.

• (π) : We should show that typeability of t(k@k′) implies typeability of (tk)k′. Γ ` t(k@k′) : A, by
Generation lemma 3.4(iv) yields that there is B≡∩Bi such that Γ ` t : Bi, ∀i, and Γ;∩Bi ` k@k′ : A.
By applying Lemma 4.4 on previous sequent, we get Γ;∩Bi ` k : C j, ∀ j, and Γ;∩C j ` k′ : A, for
some type C ≡ ∩C j. Now, for each j,

Γ ` t : Bi, ∀i Γ;∩Bi ` k : C j
(Cut)

Γ ` tk : C j

So Γ ` tk : C j, ∀ j. We obtain Γ ` (tk)k′ : A with a further application of (Cut).

• (µ) : It should be shown that typeability of k implies typeability of x̂.xk. Assume Γ;B ` k : A.
Since x /∈ k we can suppose that x /∈ DomΓ, and by using Proposition 3.2 write Γ,x : B;B ` k : A.
Now

Γ,x : B ` x : B Γ,x : B;B ` k : A
(Cut)

Γ,x : B ` xk : A
(Sel)

Γ;B ` x̂.xk : A.
ut
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Theorem 4.2. (SN⇒ typeability)
All strongly normalising (βσπ−SN) expressions are typeable in λGtz∩ system.

Proof:
The proof is by induction over the length of the longest reduction path out of a strongly normalising
expression E, with a subinduction on the size of E.

• If E is a βσπ-normal form, then E is typeable by Proposition 4.5.

• If E is itself a redex, let E ′ be the expression obtained by contracting redex E. Therefore E ′ is
strongly normalising and by IH it is typeable. Then E is typeable, by Proposition 4.6. Notice
that, if E ≡ u(x̂.v)→σ v[x := u] ≡ E ′, then, by IH, u is typeable - since the length of the longest
reduction path out of u is not larger than that of E, and the size of u is smaller than the size of E.

• Next suppose that E is not itself a redex nor a normal form. Then E is of one of the following
forms: λx.u, x(u :: k), u :: k, or x̂.u (in each case with u or k not βπσ-normal). Each of the above u
and k is typeable by IH, as the subexpressions of E. It is easy then to build the typing of E, as in
the proof of Proposition 4.5.

ut

Corollary 4.1. Given a λGtz-term t, the following statements are equivalent:

1. t is βπσµ-SN;

2. t is typeable in λGtz∩;

3. t is typeable in λGtz∩≤.

Proof:
1.⇒2. By Theorem 4.2. 2.⇒3. By Proposition 3.5. 3.⇒1. By Theorem 4.1. ut

5. Sub-classes of terms

We can recover λ-terms, possibly with generalised application or explicit substitution, as λGtz-terms, and
then study intersection type assignment to such terms via λGtz∩.

5.1. Generalised applications and explicit substitutions

In this section we consider two extensions of the λ-calculus: the ΛJ-calculus, where application M(N,x.P)
is generalised [16]; and the λx-calculus, where substitution M〈x := N〉 is explicit [24]. Intersection types
have been used to characterize the strongly normalising terms of both ΛJ-calculus [20] and λx-calculus
[19].

Both in [20] and [19] the “natural” typing rules for generalised application or substitution had to be
supplemented with extra rules (the rule app2 in [20]; the rules drop or K−Cut in [19]) in order to secure
that every strongly normalising terms is typeable. Indeed, examples of terms are given whose reduction
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in ΛJ or λx always terminates, but which would not be typeable, had the extra rules not been added to
the typing system. The examples in ΛJ [20] and λx [19] are

t0 := (λx.x(x,w.w))(λz.z(z,w.w),y.y′), y′ 6= y,

t1 := y′〈y := xx〉〈x := λz.zz〉,

respectively. Two questions are raised by these facts: first, why the “natural” rules fail to capture the
strongly normalising terms; second, how to characterize in terms of reduction the terms that receive a
type under the ‘natural” typing rules. We now prove that λGtz and λGtz∩ are useful for giving an answer
to these questions.

Definition 5.1. Let t be a λGtz-term.

1. t is a λJ-term if every cut occurring in t is of the form t(u :: x̂.v).

2. t is a λx-term if every cut occurring in t has one of the forms t(u :: x̂.x) or t(x̂.v).

We adopt the terminology “λJ-term” (instead of “ΛJ-term”) for the sake of uniformity. We use the
following abbreviations:

t(u,x.v) stands for t(u :: x̂.v);
t(u) stands for t(u :: x̂.x);
v〈x := t〉 stands for t(x̂.v).

Using the above abbreviations we can give the following inductive characterization:

(λJ-terms) t,u,v ::= x |λx.t | t(u,x.v)
(λx-terms) t,u,v ::= x |λx.t | t(u) |v〈x := t〉

Considering the rules in Figure 5, in addition to those of Figure 2, we define the following typing
systems:

Definition 5.2.

1. λJ∩ := (Ax)+(→R)+(Gen.Elim).

2. λx∩ := (Ax)+(→R)+(Elim)+(Subst).

λJ∩ is a “natural” system for typing λJ-terms, in two senses. First, the rules in λJ∩ follow the
natural deduction format. Notice that we retained in λJ∩ only the rules of λGtz∩ that act on the RHS
formula of sequents, and replaced the other rules of λGtz∩ by the elimination rule. Second, no extra
rule for typing generalised applications is needed, contrary to [20]. Similarly, λx∩ is a “natural” system
for typing λx-terms. Again, we retained in λx∩ only the rules of λGtz∩ that act on the RHS formula of
sequents, and replaced the other rules of λGtz∩ by the elimination and substitution rules. In addition, no
extra cut or substitution rules are needed, contrary to [19].

The following is both an addenda to, and an easy corollary of, the Generation lemma (Proposi-
tion 3.4).
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Γ ` t : ∩Ak→ B Γ ` u : Ak ,∀k ∈ {1, · · · ,n}
Γ ` t(u) : B

(Elim)

Γ ` t : Ak, ∀k ∈ {1, · · · ,n} Γ,x : ∩Ak ` v : B
Γ ` v〈x := t〉 : B

(Subst)

Γ ` t : ∩Ak→ Bi ,∀i ∈ {1, · · · ,m} Γ ` u : Ak ,∀k ∈ {1, · · · ,n} Γ,x : ∩Bi ` v : C
Γ ` t(u,x.v) : C

(Gen.Elim)

Figure 5. More typing rules for assigning intersection types

Proposition 5.1. In λGtz∩ one has:

1. Γ` t(u,x.v) : C iff there are A1, . . . ,An, B1, . . .Bm such that Γ` t :∩Ak→Bi, for all i; and Γ` u : Ak,
for all k; and Γ,x : ∩Bi ` v : C.

2. Γ ` t(u) : B iff there are A1, . . . ,An such that Γ ` t : ∩Ak→ B and Γ ` u : Ak, for all k.

3. Γ ` v〈x := t〉 : B iff there are A1, . . . ,An such that Γ ` t : Ai, for all i; and Γ,x : ∩Ai ` v : B.

Proof:
We just sketch the proof of statement 1. The “only if” implication follows by successive application of
Generation lemma. As to the “if” implication, let A1, . . . ,An, B1, . . .Bm be such that Γ ` t : ∩Ak→ Bi, ∀i,
Γ ` u : Ak, ∀k, and Γ,x :∩Bi ` v : C. Here we use ∩Ak→∩Bi ∼∩(∩Ak→ Bi). Recall t(u :: x̂.v) is written
t(u,x.v).

Γ ` t : ∩Ak→ Bi, ∀i

Γ ` u : Ak, ∀k

Γ,x : ∩Bi ` v : C
(Sel)

Γ;∩Bi ` x̂.v : C
(→ L)

Γ;∩Ak→∩Bi ` u :: x̂.v
(Cut)

Γ ` t(u :: x̂.v) : C
ut

We can easily prove the following proposition.

Proposition 5.2. (Conservativity)

1. Let t be a λJ-term. λGtz∩ derives Γ ` t : A iff λJ∩ derives Γ ` t : A.

2. Let t be a λx-term. λGtz∩ derives Γ ` t : A iff λx∩ derives Γ ` t : A.

Proof:
The “if” implications are proved by induction on Γ ` t : A in λJ∩ and λx∩ respectively, using the fact
that (Gen.Elim), (Elim), and (Subst) are the rules derived rules from λGtz∩. The “only if” implications
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are proved by induction on t, and rely on Generation lemma (Proposition 3.4) and its addenda (Proposi-
tion 5.1). ut

As a corollary, we get an equivalence between typeability of t in the “natural” systems λJ∩ and λx∩
and strong normalisability of t as a sequent term.

Corollary 5.1.

1. Let t be a λJ-term. t is βπσµ−SN iff t is typeable in λJ∩.

2. Let t be a λx-term. t is βπσµ−SN iff t is typeable in λx∩.

Therefore, the “natural” systems λJ∩ and λx∩ do capture the strongly normalising terms, the point
being what we mean by “strongly normalising”. Going back to the examples t0 and t1 of the beginning
of this section, although t0 and t1 are strongly normalising in ΛJ and λx, respectively, they are not
so in λGtz. Indeed, after one β-reduction step, t0 becomes (λz.z(z,w.w))x̂.((x(x,w.w))ŷ.y′), which, by
abbreviation, is y′〈y := x(x)〉〈x := λz.z(z)〉, that is t1! After one σ-reduction step, t1 becomes the clearly
non-terminating y′〈y := (λz.z(z))(λz.z(z))〉. So, in this sense, it is correct that the natural typing systems
λJ∩ and λx∩ (as well as the typing systems of [20] and [19] without extra-rules app2, drop, and K−Cut)
fail to give a type to t0 and t1, because these terms are, after all, non-terminating. Why were these terms
not so in their native reduction systems? In ΛJ, t0 becomes y′ after one step of β-reduction because the
two substitutions of t1 cannot be formed and hence are immediately executed. In λx, the execution of the
outer substitution in t1 is blocked because λx has no composition of substitutions.

5.2. Lambda calculus

We saw that there is a λJ-term and a λx-term which are SN in the respective native systems but not so in
λGtz. In this subsection we prove that this cannot happen with λ-terms.

Definition 5.3. Let t be a λGtz-term. t is a λ-term if every cut occurring in t is of the form t(u :: x̂.x).

An inductive characterization is:

(λ-terms) t,u,v ::= x |λx.t | t(u)

We had introduced the ordinary λ-terms in Section 2. Notice that a λGtz-term is what we are calling
here a “λ-term” iff it is in the range of mapping G : λ→ λGtz defined in that section. In fact, mapping
G is just a notational transliteration between ordinary λ-terms and these “λ-terms” living inside λGtz.
Similar transliterations exist for λJ-terms and λx-terms. To avoid proliferation of terminology, we use
“λ-term” to designate both ordinary λ-terms and the terms of Definition 5.3, exactly as we did before for
λJ-terms and λx-terms. No confusion can arise, except for one thing: β and π mean different things in λ

and λGtz. So we will be careful, when needed, in specifying in what system a λ-term is reduced or is SN.

Definition 5.4. λ∩ := (Ax)+(→R)+(Elim).

In this definition (Ax) and (→R) come from Figure 2 and (Elim) comes from Figure 5.
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Proposition 5.3. (Conservativity)
Let t be a λ-term. λGtz∩ derives Γ ` t : A iff λ∩ derives Γ ` t : A.

Proof:
Similar to the proof of Proposition 5.2. ut

Corollary 5.2. Let t be a λ-term. t is βπσµ−SN iff t is typeable in λ∩.

In the λ-calculus, let β0 be the rule IM→M, where I := λx.x. Hence β0 ⊂ β. For a λ-term t, one has
F(t)→∗

β0
t, simply because F(t(u)) = I(F(t)F(u)) (see Definition 4.1 for the definition of the function

F).

Lemma 5.1. In the λ-calculus:

1. If t→β t1 and t→β0 t2, then there is t3 such that t1→∗β0
t3 and t2→β t3.

2. If t→β t1 and t→∗
β0

t2, then there is t3 such that t1→∗β0
t3 and t2→β t3.

Proof:

1. There are only three situations to consider: (i) the β0-redex is IM and the β-redex is in M; (ii) the
β-redex is (λx.P)Q and the β0-redex is in P; (iii) the β-redex is (λx.P)Q and the β0-redex is in Q.
In all cases, the desired commutation is obvious.

2. Immediate consequence of statement 1.
ut

Lemma 5.2. For all λ-terms t, t is β-SN in the λ-calculus iff F(t) is β-SN in the λ-calculus.

Proof:
“If” statement: because F(t)→∗

β0
t. “Only if” statement: because part 2 of Lemma 5.1 allows us to map

an infinite reduction sequence from F(t) to an infinite reduction sequence from t (as F(t)→∗
β0

t). ut

Theorem 5.1. (PSN)
For a λ-term t, t is β-SN in the λ-calculus iff t is βπσµ-SN in the λGtz-calculus.

Proof:
“If” statement: immediate from Proposition 2.1. “Only if” statement: suppose t is β-SN. From Lemma
5.2 we get that F(t) is β-SN in the λ-calculus. By Proposition 4.3, F(t) is βπ-SN in the λ-calculus. From
Proposition 4.4 we conclude that t is βπσµ-SN in the λGtz-calculus. ut

Unlike Corollary 5.1, Corollary 5.2 can now be combined with a PSN-result, yielding a new charac-
terisation of β-strong normalisability in the λ-calculus.

Corollary 5.3. For a λ-term t, t is β-SN in the λ-calculus iff t is typeable in λ∩.

Proof:
From Corollary 5.2 and Theorem 5.1. ut
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6. Sub-classes of types

In this section we first introduce the sub-classes of proper and strict types. Then we consider systems
for assigning these types to λGtz-terms. Finally we consider assignment to other classes of terms. We
obtain type systems that combine syntax-directedness with small equivalence classes, without loosing
the characterisation of strong normalisability.

6.1. Proper types and strict types

We distinguish two kinds of intersection types: proper types and strict types. These classes of types
were introduced by van Bakel [27], except that here we do not have the type constant ω (and that the
designation “proper type” is proposed by us). These classes are defined simultaneously as follows:

(Proper Types) S,T,U ::= a | S∩T

(Strict Types) a,b,c ::= p | S→ b

If the second clause in the grammar of proper types were forbidden, then we would have Proper Types=
Strict Types = SimpleTypes. By allowing that clause one has:

SimpleTypes⊂ Strict Types⊂ Proper Types⊂ Types .

The set of proper types is by definition closed under ∩. As to arrow, we know that S→ T is a type,
but we want a proper type.

Definition 6.1. Let S, T be proper types. The proper type S→◦ T is defined by recursion on T as follows:

S→◦ a = S→ a

S→◦ (T ∩U) = (S→◦ T )∩ (S→◦ U) .

Following [27], we define:

Definition 6.2. Pre-order ≤◦ over the set of proper types is the smallest relation that satisfies the fol-
lowing properties:

1. S≤◦ S;

2. S∩T ≤◦ S and S∩T ≤◦ T ;

3. S≤◦ T and T ≤◦ U implies S≤◦ U ;

4. U ≤◦ S and U ≤◦ T implies U ≤◦ S∩T .

Two proper types are equivalent, S∼◦ T , if and only if S≤◦ T and T ≤◦ S.
∼◦ is a congruence w.t.r. ∩. On the other hand, by an easy induction on S ≤◦ T , we prove that

S ≤◦ T ⇒U →◦ S ≤◦ U →◦ T . So, S ∼◦ T ⇒U →◦ S ∼◦ U →◦ T , and we say that ∼◦ is a congruence
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on the r.h.s. of→◦. ∩ is commutative, associative, and idempotent w.r.t ∼◦. For instance S∩ (T ∩U)∼◦
(S∩T )∩U .

We would like to use the notation ∩n
i=1ai. For this notation we postulate

∩1
i=1ai ∼◦ a1 (1)

∩n+1
i=1 ai ∼◦ (∩n

i=1ai)∩an+1 (2)

The following, expected properties of ∩n
i=1ai follow easily from these postulates.

Lemma 6.1.

1. (∩n
i=1ai)∩ (∩m

j=1b j)∼◦ ∩n+m
k=1 ck, where ck = ak, if 1≤ k ≤ n; and ck = bk−n, if n+1≤ k ≤ n+m.

2. {a1, · · · ,an}= {b1, · · · ,bm}⇒ ∩n
i=1ai ∼◦ ∩m

j=1b j.

3. {a1, · · · ,an} ⊇ {b1, · · · ,bm}⇒ ∩n
i=1ai ≤◦ ∩m

j=1b j.

4. S∼◦ ∩n
i=1ai, for some n,a1, · · · ,an.

5. T ∼◦ ∩n
i=1ai⇒ S→◦ T ∼◦ ∩n

i=1(S→◦ ai).

Proof:
1. Easy induction on m. It uses (1), (2) and associativity of ∩.
2. By induction on n. The base case follows by (1) and reflexivity of ∼◦. As to the inductive

case, let {a1, · · · ,an,an+1} = {b1, · · · ,bm,bm+1}. This equality can be rewritten as {a′1, · · · ,a′n}∪{c} =
{b′1, · · · ,b′m}∪{c}, where {a′1, · · · ,a′n} = {b′1, · · · ,b′m}. Using (1), (2), statement 1 of this lemma, and
associativity and commutativity of ∩ as needed, we get

∩n+1
i=1 ai ∼◦ (∩n

i=1a′i)∩ c ,

∩m+1
j=1 b j ∼◦ (∩m

j=1b′i)∩ c .

By IH ∩n
i=1a′i ∼◦ ∩m

j=1b′j. By congruence and transitivity, ∩n+1
i=1 ai ∼◦ ∩m+1

j=1 b j.
3. Given statement 2 of this lemma, it suffices to prove the case {a1, · · · ,an} ⊃ {b1, · · · ,bm}. In this

case, {a1, · · · ,an}= {b1, · · · ,bm,bm+1, · · · ,bm+l}, for some l ≥ 1 and some bm+1, · · · ,bm+l . Now

∩n
i=1ai ∼◦ (∩m

j=1b j)∩ (∩l
k=1bm+k)≤◦ ∩m

j=1b j ,

where the equivalence follows by statement 1 of this lemma.
4. By induction on S. The case S = a follows by (1). The inductive case follows by IH, statement 1

of this lemma, and the fact that ∼◦ is a congruence w.r.t. ∩.
5. Straightforward induction on n. Uses (1), (2), Definition 6.1, and the fact that ∼◦ is a congruence

on the r.h.s. of→◦ . ut

Up to ∼◦, every proper type has the form ∩n
i=1ai. In [27] it is stated that S∼◦ T iff T can be obtained

from S by “permuting its strict components”. We now make this sentence precise. First, we define the
set of the “strict components” of a proper type.
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Definition 6.3. The support of S, denoted [[S]], is a finite, non-empty set of strict types defined by recur-
sion on S as follows:

[[a]] = {a} ,

[[S∩T ]] = [[S]]∪ [[T ]] .

Lemma 6.2.

1. [[∩n
i=1ai]] = {a1, · · · ,an}.

2. S≤◦ T ⇔ [[S]]⊇ [[T ]].

3. S∼◦ T ⇔ [[S]] = [[T ]].

4. a≤◦ b⇔ a = b⇔ a∼◦ b.

5. ∩n
i=1ai ≤◦ ∩m

j=1b j⇔{a1, · · · ,an} ⊇ {b1, · · · ,bm}.

6. ∩n
i=1ai ∼◦ ∩m

j=1b j⇔{a1, · · · ,an}= {b1, · · · ,bm}.

Proof:
First we establish

S≤◦ T ⇒ [[S]] ⊇ [[T ]] , (3)

S∼◦ T ⇒ [[S]] = [[T ]] . (4)

(3) is proved by an easy induction on S≤◦ T . (4) is an immediate consequence of (3).
1. By induction on n. Case n = 1: by (1) and definition of [[a]]. Inductive case:

[[∩n+1
i=1 ai]] = [[(∩n

i=1ai)∩an+1]] (by (2) and (4))
= [[(∩n

i=1ai)]]∪{an+1} (by def. of [[ ]])
= {a1, · · · ,an}∪{an+1} (by IH)

= {a1, · · · ,an+1}.

2. ⇒ is (3). ⇐. Let S ∼◦ ∩n
i=1ai, T ∼◦ ∩m

j=1b j and suppose [[S]] ⊇ [[T ]]. By (4) and 1., we get
{a1, · · · ,an} ⊇ {b1, · · · ,bm}. By 3. of Lemma 6.1, we conclude S≤◦ T .

3. Immediate consequence of 2.
4. Using 2., 3., and def. of [[ ]]: a≤◦ b⇔{a} ⊇ {b}⇔ a = b⇔{a}= {b}⇔ a∼◦ b.
5. Follows from 1. and 2.
6. Immediate consequence of 5.

ut

So far, we gave a self-contained development of the theory of proper and strict types, in the sense
that we did not compare the operation S→◦ T and the relations S ≤◦ T and S ∼◦ T with S→ T , S ≤ T ,
and S∼ T . We do this now.

It is easy to see that, on proper types, ≤=≤◦ and ∼=∼◦. The following function is useful to prove
this.
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Definition 6.4. We define a function ( )◦ : Types→ Proper Types by:

p◦ = p
(A→ B)◦ = A◦→◦ B◦

(A∩B)◦ = A◦∩B◦

Lemma 6.3.

1. A≤ B⇒ A◦ ≤◦ B◦ and A∼ B⇒ A◦ ∼◦ B◦.

2. a◦ = a and S◦ = S.

3. S≤ T ⇔ S≤◦ T and S∼ T ⇔ S∼◦ T .

Proof:

1. The second statement is an immediate consequence of the first. We prove that A≤ B implies A◦≤◦
B◦ by induction on A ≤ B. The clauses in Definition 3.3 either translate to similar clauses in Definition
6.2, or correspond to the fact that, for proper types U,S,T , U →◦ (S∩T ) = (U →◦ S)∩ (U →◦ T ).

2. Easy, simultaneous induction on a and S.
3. The second statement is an immediate consequence of the first. We prove the first. ⇒: if S ≤ T ,

then S◦ ≤◦ T ◦ (by (i)), whence S≤◦ T (by (ii)).⇐: Induction on S≤◦ T . It suffices to say that all clauses
in Definition 6.2 are clauses in Definition 3.3. ut

So, in a context, as ours, where ≤ and ∼ are available, there is no need to keep the notations ≤◦
and ∼◦; moreover, as we work modulo ∼, postulates (1) and (2) define the notation ∩n

i=1ai; and to have
the same support becomes an identity criterion for proper types (statement 3. in Lemma 6.2). It is also
immediately seen (by induction on T ) that S→◦ T ∼ S→ T . So, given that we work modulo ∼, the two
types are the same, and there is no need for the notation S→◦ T .

Now, we go even further and make the abuse of identifying a proper set with its support. In particular,
we identify a with {a}. This means that we no longer write [[S]], and we apply set-theoretical notation
a∈ S, S⊆ T , and S∪T directly to proper types, by seeing a proper type as the set of its strict components.

For instance, if S = a∩ b and T = a, then we may write S = {a,b}, T = {a}, a ∈ T , a ∈ S, T ⊆ S,
and S∪T = S = a∩ b∩ a, where the first of these equalities is a trivial set-theoretical fact. Notice that
S∩T = (a∩b)∩a = a∩b∩a = S∪T !

With set-theoretical notation we have, in general:

S = ∩a∈S a = {a|a ∈ S}
S≤ T iff S⊇ T
S∼ T iff S = T (set-theoretical equality)
S→ T = ∩b∈T (S→ b) = {S→ b|b ∈ T}

S∩T = S∪T

These statements are justified by restoring [[ ]]. For instance, the last equation comes from Definition 6.3.
Without the symbol [[ ]], the last equation seems paradoxical, but is not: ∩ is a primitive symbol of the
type system, used to form a type S∩T , which can be seen as a set; ∪ is notation in the meta-language,
that can be applied only when proper types S and T are identified with their supports.
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6.2. Assignment of proper and strict types

We present the systems λGtz∩◦ and λGtz∩], for assigning proper and strict types, respectively. According
to the previous subsection, both in λGtz∩◦ and λGtz∩], we have no ≤ and no equivalence (except that, at
the level of proper types, we work modulo commutativity, associativity and idempotency of ∩).

In λGtz∩◦ bases are sets of declarations x : S where all term variables are different. Sequents have
two forms: Γ ` t : T and Γ;S ` k : T . Typing rules are given in Figure 6.

S⊇ T
Γ,x : S ` x : T

(Ax)

Γ,x : S ` t : T
Γ ` λx.t : S→ T

(→R)
Γ ` u : a, ∀a ∈ S Γ;T ` k : U

Γ;S→ T ` u :: k : U
(→L)

Γ ` t : a, ∀a ∈ S Γ;S ` k : U
Γ ` tk : U

(Cut)
Γ,x : S ` v : U
Γ;S ` x̂.v : U

(Sel)

Figure 6. λGtz∩◦: proper type assignment system for λGtz-calculus

Bases in λGtz∩] are as in λGtz∩◦. Sequents in λGtz∩] have the forms Γ ` t : b and Γ;S ` k : b. Typing
rules are given in Figure 7.

b ∈ S
Γ,x : S ` x : b

(Ax)

Γ,x : S ` t : b
Γ ` λx.t : S→ b

(→R)
Γ ` u : a, ∀a ∈ S Γ;T ` k : b

Γ;S→ T ` u :: k : b
(→L)

Γ ` t : a, ∀a ∈ S Γ;S ` k : b
Γ ` tk : b

(Cut)
Γ,x : S ` v : b
Γ;S ` x̂.v : b

(Sel)

Figure 7. λGtz∩]: strict type assignment system for λGtz-calculus

Proposition 6.1.

(i) If λGtz∩] derives Γ ` t : a, then λGtz∩◦ derives Γ ` t : a.

(ii) If λGtz∩◦ derives Γ ` t : S, then λGtz∩ derives Γ ` t : S.

Proof:
(i) A typing derivation in λGtz∩] is a typing derivation in λGtz∩◦. (ii) A typing derivation in λGtz∩◦ is a
typing derivation in λGtz∩. ut

Proposition 6.2. If λGtz∩◦ derives Γ ` t : T , then, for all b ∈ T , λGtz∩] derives Γ ` t : b.
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Proof:
We also prove that, if λGtz∩◦ derives Γ;S ` k : T , then, for all b∈ T , λGtz∩] derives Γ;S ` k : b. The proof
is by simultaneous induction on Γ ` t : T and Γ;S ` k : T . Cases according to the last typing rule used. All
cases are straightforward. The only case slightly interesting is (→R), which we prove. By IH we know
that, for each b ∈ T , λGtz∩] derives Γ,x : S ` t : b. So, for each b ∈ T , λGtz∩] derives Γ ` λx.t : S→ b.
Since S→ T = ∩b∈T (S→ b), we actually have that, for each c ∈ S→ T , λGtz∩] derives Γ ` λx.t : c. ut

The following rules are admissible in λGtz∩◦.

Proposition 6.3.

(i) If Γ ` t : T and a ∈ T , then Γ ` t : a.

(ii) If Γ;S ` k : T and a ∈ T , then Γ;S ` k : a.

Proof:
Follows from the statements proved in the previous proposition, together with the fact that derivations in
λGtz∩] are derivations in λGtz∩◦. ut

We define Γ◦ = {(x : A◦) : (x : A) ∈ Γ}.

Proposition 6.4. If λGtz∩ derives Γ ` t : A, then λGtz∩◦ derives Γ◦ ` t : A◦.

Proof:
We also prove that, if λGtz∩ derives Γ;B ` k : A, then λGtz∩◦ derives Γ◦;B◦ ` k : A◦. The proof is by
simultaneous induction on Γ ` t : A and Γ;B ` k : A. Cases according to the last typing rule used.

• (Ax). We want to prove that λGtz∩◦ derives Γ◦,x : ∩n
i=1A◦i ` x : A◦j , with j ∈ {1, · · · ,n}. This

sequent is derived in λGtz∩◦ with an application of (Ax), because ∩n
i=1A◦i ⊇ A◦j .

• (→R) and (Sel). Straightforward.

• (→L). We are given by IHs Γ◦ ` u : A◦i (for each i ∈ {1, · · · ,n}) and Γ◦;B◦ ` k : C◦. We have to
derive the sequent Γ◦;(∩n

i=1Ai→ B)◦ ` u :: k : C◦ in λGtz∩◦. Let S = ∩n
i=1A◦i . We now claim that,

for each a ∈ S, Γ◦ ` u : a. Let a ∈ S. Then there is i ∈ {1, · · · ,n} such that a ∈ A◦i (because in fact
S = ∪n

i=1A◦i ). From Γ◦ ` u : A◦i and a ∈ A◦i and Proposition 6.3 we conclude Γ◦ ` u : a. The claim
is proved. From the claim and Γ◦;B◦ ` k : C◦ we obtain, with one application of (→L), the sequent
Γ◦;S→ B◦ ` u :: k : C◦. This is what we want, because (∩n

i=1Ai→ B)◦ = (∩n
i=1A◦i → B◦) = S→ B◦.

• (Cut). Similar to case (→L).
ut

Hence we get two alternative characterisations of the strongly normalising terms of λGtz.

Theorem 6.1. Let t be a λGtz-term. The following are equivalent:

(i) t is typeable in λGtz∩;
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(ii) t is typeable in λGtz∩◦;

(iii) t is typeable in λGtz∩].

Proof:
Immediate from Propositions 6.1, 6.2, and 6.4. ut

6.3. Strict types for sub-classes of terms

We now consider assignment of restricted forms of intersection types to restricted classes of terms. To
avoid multiplication of systems, we just consider assignment of strict types.

Considering the rules in Figure 8, together with (Ax) and (→R) from Figure 7, we define the follow-
ing typing systems:

Definition 6.5.

1. λJ∩] := (Ax)+(→R)+(Gen.Elim).

2. λx∩] := (Ax)+(→R)+(Elim)+(Subst).

3. λ∩] := (Ax)+(→R)+(Elim).

Γ ` t : S→ b Γ ` u : a ,∀a ∈ S
Γ ` t(u) : b

(Elim)

Γ ` t : a, ∀a ∈ T Γ,x : T ` v : b
Γ ` v〈x := t〉 : b

(Subst)

Γ ` t : S→ b ,∀b ∈ T Γ ` u : a ,∀a ∈ S Γ,x : T ` v : c
Γ ` t(u,x.v) : c

(Gen.Elim)

Figure 8. More rules for assigning strict types

We now make a direct comparison between a typing system S and the corresponding S].

Proposition 6.5. Let S ∈ {λJ∩,λx∩,λ∩}. If S] derives Γ ` t : a, then S derives Γ ` t : a.

Proof:
A typing derivation in S] is a typing derivation in S . ut

Proposition 6.6. Let S ∈ {λJ∩,λx∩,λ∩}. If S derives Γ ` t : A, then, for all a∈ A◦, S] derives Γ◦ ` t : a.

Proof:
The proof has three parts, one for each S . In each case, the proof is by induction on Γ ` t : A, with cases
according to the last typing rule used. First consider S = λ∩.
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• (Ax): Let j ∈ {1, · · · ,n} and a ∈ A◦j . We want Γ,x : ∩n
i=1A◦i ` x : a. But a ∈ ∩n

i=1A◦i , since A◦j ⊆
∪n

i=1A◦i = ∩n
i=1A◦i . Hence, Γ,x : ∩n

i=1A◦i ` x : a is derived by (Ax) in λGtz∩].

• (→R): By IH we have Γ◦,x : A◦ ` t : b, for all b ∈ B◦. Hence we have Γ◦ ` λx.t : A◦→ b, for all
b ∈ B◦. Since (A→ B)◦ = A◦→ B◦ = ∩b∈B◦(A◦→ b), we actually have, for each c ∈ (A→ B)◦,
Γ◦ ` λx.t : c.

• (Elim). By IH we have: (i) for each c ∈ (∩Ak → B)◦, Γ◦ ` t : c; and (ii) for each k ∈ {1, · · · ,n},
and each a ∈ A◦k , Γ◦ ` u : a. We want, for each b ∈ B◦, Γ◦ ` t(u) : b. Let b ∈ B◦. Let S = ∪A◦k .
Observe that S→ b ∈ (∩Ak → B)◦, as (∩Ak → B)◦ = ∩b∈B◦((∩Ak)

◦→ b) = ∩b∈B◦(∩A◦k → b) =
∩b∈B◦(∪A◦k → b). So, from (i) we get Γ◦ ` t : S→ b. On the other hand, from (ii) we get, for each
a ∈ S, Γ◦ ` u : a. Hence, we obtain Γ◦ ` t(u) : b with one application of (Elim).

So, S = λ∩ is done. In order to complete the proof for the other two systems, we have to consider rules
(Subst) and (Gen.Elim).

• (Subst): By IH we have: (i) for each k ∈ {1, · · · ,n} and each a ∈ A◦k , Γ◦ ` t : a; and (ii) for each
b ∈ B◦, Γ◦,x : ∩A◦k ` v : b. We need to show that, for each b ∈ B◦, Γ◦ ` v〈x := t〉 : b. From (i) we
get (iii) for each k ∈ {1, · · · ,n} and each a ∈ ∩A◦k , Γ◦ ` t : a, since A◦k ⊆ ∪n

i=1A◦i = ∩n
i=1A◦i . We

obtain the desired result from (iii) and (ii) using (Subst).

• (Gen.Elim): By IH we have: (i) for each b ∈ (∩Ak→ Bi)
◦ and for each i ∈ {1, · · · ,m}, Γ◦ ` t : b;

(ii) for each a∈A◦k and for each k∈{1, · · · ,n}, Γ` u : a; and (iii) for each c∈C◦, Γ◦,x :∩B◦i ` v : c.
Let us use the following abbreviations: ∩B◦i = T and ∩A◦k =∪A◦k = S. Then (∩Ak→ Bi)

◦=∩A◦k→
B◦i = ∩d∈B◦i (∩A◦k → d) = ∩d∈B◦i (S→ d). (i) becomes Γ◦ ` t : b, for each b ∈ ∩d∈B◦i (S→ d), which
means that Γ◦ ` t : S→ d, for each d ∈ T ; (ii) becomes Γ◦ ` u : a, for each a ∈ S; (iii) becomes
Γ◦,x : T ` v : c. We get the desired result from (i), (ii), and (iii) using (Gen.Elim).

ut

Theorem 6.2.

1. Let t be a λJ-term. Then t is typeable in λJ∩ iff t is typeable in λJ∩].

2. Let t be a λx-term. Then t is typeable in λx∩ iff t is typeable in λx∩].

3. Let t be a λ-term. Then t is typeable in λ∩ iff t is typeable in λ∩].

Proof:
Immediate from Propositions 6.5 and 6.6. ut

Having in mind Corollaries 5.1 and 5.2 one gets, in each of the three cases, yet another characterisa-
tion of a term of the appropriate class being βσπµ-SN.

But in the case of the λ-calculus, one gets a little more:

Corollary 6.1. Let t be a λ-term. t is β-SN in the λ-calculus iff t is typeable in λ∩]

Proof:
From Corollary 5.3 and part 3 of Theorem 6.2. ut

This is a (known [28]) characterisation of β-strong-normalisability in terms of assignment of strict types.
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7. Final remarks

This paper gives a characterisation, via intersection types, of the strongly normalising intuitionistic se-
quent terms. This expands the range of application of the intersection types technique.

One of the points of extending the Curry-Howard correspondence to sequent calculus is that such
exercise will shed light on issues like reduction, strong normalisability, or typeability in the original sys-
tems in natural deduction format. In this paper this promise is fulfilled, because the characterisation of
strong normalisability in the sequent calculus proves useful for analysing recent applications of inter-
section types in natural deduction system containing generalised applications or explicit substitutions.
This analysis confirms that there is a delicate equilibrium between clean typing systems and expressive
reduction systems.

The journey through sequent calculus also gives something new for the λ-calculus itself: the charac-
terisation of β-strong normalisability via typeability in λ∩; and a new proof of the characterisation via
assignment of strict types. In the last case, it is worthwhile contrasting the formerly known and the new
proofs. The original one [28] involves a proof, via a computability predicate, of strong normalisation of
“cut-elimination”, a reduction relation defined at the level of derivations. Here we obtain the result as an
easy consequence of the characterisation for λGtz (which itself rests on the characterisation via D≤) and
of a PSN result.

Recall typing system D [18], the well-known system obtained from D≤ by restricting typing rule
(≤) to the cases A1∩A2 ≤ Ai, i = 1,2. D is a system with rules for introducing and eliminating ∩ whose
notion of typeability also characterises β-strong normalisability. As regards beauty and simplicity, the
characterisation via λ∩] is only comparable to the one via D . Actually, these two characterisations are
somewhat dual. In D , ∩ is given the highest profile, something like a connective; in λ∩], ∩ is given
the lowest profile, just that little extra of machinery for making the ordinary rules for assigning (simple)
types capturing strong normalisability.

In [21] one finds a system that uses strict types (but assigns what we call proper types). This system
is somewhere between λ∩] and D , because it has a rule for introducing ∩; in addition, when typing
abstraction one has to distinguish between relevant and non-relevant abstraction, which is unpleasant,
when one sees that the simplicity of λ∩] works.

The characterisation of weak normalisation in the λGtz-calculus is still an open problem that might
be the first direction for future research. Introduction of some additional operators, such as the operators
of explicit contraction and explicit weakening, might broaden the expressiveness of the system.
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J. Espı́rito Santo, J. Ivetić, S. Likavec / Characterising strongly normalising intuitionistic terms 37

[5] P.-L. Curien and H. Herbelin. The duality of computation. In Proc. 5th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2000, pages 233–243, Montreal, Canada, 2000. ACM Press.

[6] D. Dougherty, S. Ghilezan, and P. Lescanne. Intersection and union types in the λµµ̃-calculus. In M. Coppo
and F. Damiani, editors, Intersection types and related systems ITRS 2004, volume 136 of ENTCS, pages
153–172. Elsevier, 2005.

[7] D. Dougherty, S. Ghilezan, and P. Lescanne. Characterizing strong normalization in the curien-herbelin
symmetric lambda calculus: Extending the Coppo-Dezani heritage. Theoretical Computer Science, 398(1-
3):114–128, 2008. Festschrift Coppo, Dezani, Ronchi.

[8] J. Espı́rito Santo. Completing Herbelin’s programme. In S. Ronchi Della Rocca, editor, Proc. 8th Inter-
national Conference on Typed Lambda Calculi and Applications TLCA 2007, volume 4583 of LNCS, pages
118–132. Springer-Verlag, 2007.

[9] J. Espı́rito Santo. Delayed substitutions. In F. Baader, editor, Proc. 18th International Conference on Rewrit-
ing Techniques and Applications RTA 2007, volume 4533 of LNCS, pages 169–183. Springer-Verlag, 2007.

[10] J. Espı́rito Santo. Addenda to “Delayed Substitutions”, 2008 (Manuscript available from the author’s web
page).
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[12] J. Espı́rito Santo, J. Ivetić, and S. Likavec. Intersection type assignment systems for intuitionistic sequent
calculus. In 4th Workshop on Intersection Types and Related Systems ITRS 2008, 2008.

[13] J. Espı́rito Santo and L. Pinto. Permutative conversions in intuitionistic multiary sequent calculi with cuts. In
Proc. 6th International Conference on Typed Lambda Calculi and Applications TLCA 2003, volume 2071 of
LNCS, pages 286–300, 2003.

[14] H. Herbelin. A lambda calculus structure isomorphic to Gentzen-style sequent calculus structure. In Proc.
8th International Workshop on Computer Science Logic CSL 1994, volume 933 of LNCS, pages 61–75.
Springer-Verlag, 1995.
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[19] S. Lengrand, P. Lescanne, D. Dougherty, M. Dezani-Ciancaglini, and S. van Bakel. Intersection types for
explicit substitutions. Information and Computation, 189(1):17–42, 2004.

[20] R. Matthes. Characterizing strongly normalizing terms of a λ-calculus with generalized applications via
intersection types. In ICALP Satellite Workshops, pages 339–354, 2000.

[21] P. M. Neergaard. Theoretical pearls: A bargain for intersection types: a simple strong normalization proof.
Journal of Functional Programming, 15(5):669–677, 2005.
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