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Abstract—In this paper, the multi-objective formulation of
an optimization problem arising from an activated sludge
(AS) system of a wastewater treatment plant (WWTP) design
optimization is solved through a multi-objective genetic algo-
rithm. Two multi-objective approaches are proposed. First, a
solution to the WWTP design is provided, regardless of its
location, date of construction or the involved unit operations.
The variables that mostly influence the cost of the system define
the objectives and are simultaneously optimized. Second, two
crucial objectives for the correct operation of the AS system
are simultaneously optimized: the investment and operation
costs are minimized and the effluent quality is maximized.
Since the objectives are conflicting, several trade-offs between
objectives are obtained through the optimization process. The
direct visualization of the trade-offs through Pareto curves
assists the decision-maker in the selection of crucial design
and operation variables. The numerical results show that the
proposed methodology produces improved results with physical
meaning when compared with previous work.

Index Terms—Activated sludge system, multi-objective opti-
mization, WWTP modelling.

I. INTRODUCTION

The high costs associated with the design of Wastewater
Treatment Plants (WWTP) have motivated research in the
area of process modelling and optimization of the treatment
water processes. Thus, one of the main research issues in
WWTP is focused on the search for the minimum cost
design. Several works on this area, mainly using simulation
procedures, may be found in literature [1], [2]. They choose
the most economic design among a set of selected and tested
designs by simulation. However, this choice does not guar-
antee that the found solution is optimal. More recently, an
interesting optimization of an activated sludge process based
on biodegradation kinetics correlation is proposed by Zhang
et al. [3]. The procedure aims to minimize the bioreactor
volume, and a sequence of computation steps follows until
there is a confirmation that the solution obtained is optimal,
within a certain tolerance. This is not a real optimization pro-
cedure. Due to the complexity of the involved mathematical
models, as well as the high computational costs associated
with the optimization, real optimization procedures related
with WWTP cost minimization are rare in the literature.

A cost function based on the structure proposed by Ty-
teca [4] has been used in previous studies [5], [6], [7].
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In the last two cited papers, an augmented Lagrangian
framework is used to minimize solely the WWTP cost. In
[5], a preliminary study has been carried out aiming to
simultaneously minimize the cost function and the amount
of pollution in the effluent of the WWTP. However, when the
objective is to minimize the cost function, both investment
and operation costs are considered. Both costs emerge as
depending on the decision variables that mostly influence
the cost of each unit operation considered in the study. The
aeration tank volume, air flow, settling tank area and settling
tank depth are the most important. Since the costs depend
on economic data that is collected in a particular region, and
at a specific time, the value of money can vary enormously.
Including both investment and operation costs in the same
analysis requires that the operation costs have to be updated
to a present value, so that they can be added to the investment
costs. This implies that a discount rate has to be predicted
to the life span of the WWTP.

The new alternative methodology that is herein proposed
considers the use of the variables that mostly influence the
cost separately as objectives to be minimized. This way no
knowledge about the local or when the WWTP is being
built are required. This allows to overcome the disadvantage
of using a cost function that is limited in space and time.
However, this alternative formulation comprises a multi-
objective approach to cost minimization via the simultaneous
minimization of, for example, the aeration tank volume, the
air flow, and the settling tank area and depth. This approach
allows a generic and flexible solution to the design of the
WWTP, in the sense that it does not depend on the location
and the date of construction.

When cost minimization is used, another objective could
be pursued since strict laws on effluent quality also demand
an efficient plant. Thus, the amount of pollution in the
effluent of the WWTP could also be minimized. Since these
goals are in conflict, a bi-objective approach to the WWTP
optimal design is then required [5].

These multi-objective approaches to the optimization pro-
blem with several criteria enable the decision-maker to
simultaneously consider the WWTP process from different
perspectives. Therefore, it is possible to optimally balance
between different conflicting design objectives and select the
final design. For instance, the cost is conflicting with the
effluent quality. When multi-objective problems are solved,
no single solution that is optimal with respect to all objectives
exists. Instead, there is a set of optimal solutions, known
as Pareto-optimal solutions, reflecting compromises between
the objectives.

The main contributions of this study are the following.
First, we address the approach that minimizes the influential
variables, while maintaining the effluent quality according
to the strict laws. This is mostly appropriate when a WWTP



draft project is required. No specific knowledge about the
location and date of construction are required for this anal-
ysis. Then, when a final decision is made to build a WWTP
in a specific region, a detailed optimal design process is to
be required. Our proposal relies on the previously referred
bi-objective approach to the WWTP optimization. In this
case, the cost function itself is minimized and the effluent
quality is maximized via the minimization of the amount
of pollution. We note that the cost function is non-convex,
and the other equations and inequalities arising from the
biological process modelling of the unit operation considered
in this study, defining the constraints of the problem, are
highly non-linear, and some are even non-differentiable. The
set of feasible solutions is also very small. Solving such a
mathematical programming problem is a challenging issue
for the continuous non-linear optimization area. Since the
bi-objective approach is a complex and difficult to solve
problem, the output of the first approach aims to define
tighter lower and upper bounds for the most influential
variables (aeration tank volume, air flow, settling area and
settler depth) and to generate an initial approximation closer
to feasibility, when solving the bi-objective problem.

To get the equality and inequality constraints of the
problem, we show the modelling process of an activated
sludge system using: i) the ASM1 model [8] for the aeration
tank; ii) a combination of the ATV design procedure [9]
with the double exponential model [10], that has proven
to be more robust than each one of the two models used
separately [11] for the secondary settler. We remark that this
is a general procedure that can be easily extended to other
models, operation modes or even to other units in the WWTP.

Addressing the WWTP design problem through multiple
objectives and solving it afterwards by considering an a
posteriori perspective is not a very common approach in this
area.

Briefly, in [12], an interactive design tool using the GPS-
X simulator [13] and the IND-NIMBUS [14] multi-objective
optimizer is implemented. A multi-objective approach based
on genetic algorithms is used in [15]. However, the goal is
to select treatment trains where extent and reliability of the
treatment are high, whereas the capital, operation, mainte-
nance and land area requirements are low. The bi-objective
problem is then solved with NSGA [16], by minimizing
both the capital cost and overall environmental impact. In
[17], single-, two- and three-objective functions problems
are solved using NSGA-II [18]. This is an evolutionary
algorithm for multi-objective programming originally devel-
oped by Srinivas and Deb [16]. The problems are based
on a simple model for the aeration tank and the secondary
settler is assumed a perfect clarification tank. The authors
in [19] present support tools based on multicriteria decision
analysis to support the conceptual design of an activated
sludge system. In [20], a surrogate based method, ParEGO,
combined with an integrated urban wastewater model, is
used. The therein presented real time control problems are
solved and the obtained results are compared with those of
NSGA-II. In [21], a methodology that combines the multi-
objective genetic algorithm, NSGA-II [18], with WWTP
existing models and simulation software is used to provide a
framework for the evaluation, optimization and comparison
of WWTP control laws. The methodology is applied to

the BSM1 model [22]. In [23], an optimal control problem
concerning the management of a wastewater treatment sys-
tem comprising several plants is addressed through a multi-
objective approach using the weighting method to look for
the Pareto-optimal solutions. In [24], scalarization methods
and the NSGA-II are applied to the optimal design of a
biochemical reactor with respect to two conflicting economic
objectives. Other efficient multi-objective scalarization strate-
gies are available in [25], [26].

These various multi-objective approaches to WWTP de-
signs differ from the herein presented paradigm where we
use an evolutionary algorithm to produce a representative
set of approximations to the Pareto-optimal solutions. There-
fore, the search for optimality is performed without any a
priori preference information of the decision-maker. After
the optimization process, the decision-maker selects one
solution from the set of trade-off solutions according to
his/her preferences.

Genetic algorithms [27] are population-based algorithms
and, therefore, particularly suitable to tackle multi-objective
problems. They can, in principle, find multiple widely dif-
ferent Pareto-optimal solutions in a single run [28]. Further-
more, they do not require any differentiability or convexity
assumptions and can deal with complex search spaces, as
well as non-convex Pareto fronts. In this paper, we aim
at solving the highly non-linear constrained multi-objective
optimization problems, by using an efficient version of a
genetic algorithm, known as Multi-objective Elitist Genetic
Algorithm (MEGA for short). This variant of the genetic
algorithm (GA) relies on an elitist concept based on a
secondary population that prevents the loss of non-dominated
solutions found during the search and also improves the
convergence rate and the distribution of the solutions in
objective space [29], [30].

The remainder of the paper is organized as follows.
Sections II and III present a detailed description of the
mathematical model that contains the equality, inequality and
simple bound constraints of the proposed WWTP formula-
tion. Section IV introduces the objective functions developed
for both multi-objective approaches, and describes the multi-
objective elitist genetic algorithm. Section V is devoted to the
numerical results and we conclude and present some ideas
for future work in Section VI.

II. THE ACTIVATED SLUDGE SYSTEM

A typical WWTP has four units. The first unit is a primary
treatment, which is a physical process and aims to eliminate
the gross solids and grease, so avoiding the blocking up of
the secondary treatment. Although the dimensioning of such
a unit is usually empirical and based on the wastewater to be
treated, its cost is not affected by the (biological, chemical
and biochemical) characteristics of the wastewater. The cost
just corresponds to the civil engineering construction work
of a tank. This is the reason why this process is not included
in the optimization procedure. The next two units define
the secondary treatment of the wastewater. It is the most
important treatment in the plant because it eliminates the
soluble pollutants. This is a biological process which, in the
case herein studied, comprises an aeration tank and a clarifier
that aims to separate the biological sludge from the treated
water. There are other biological treatments but this is, by



far, the most widely used. Finally, the last unit is used to treat
the biological sludge that is wasted by the secondary settler.
When the wastewater is very polluted and the secondary
treatment does not provide the demanded quality, a tertiary
treatment, usually a chemical process, can be included. There
are many other possible WWTP layouts, but most of them
have the above described treatments.

This paper aims to address optimization approaches that
are based on computing optimal values for the decision
variables that mostly influence the WWTP cost. The values
of the variables are to be minimized simultaneously as
separate objectives. Furthermore, the operation and design
optimization of the plant, in terms of minimum total cost
function (investment and operation costs) and minimum of
daily pollution defined through a quality index function [22],
is then explored.

The work herein presented focus solely on the secondary
treatment, in particular on an activated sludge system that
consists of an aeration tank and a secondary settler. The
mathematical models used to describe the aeration tank and
the settling tank are the ASM1 model [8] and the ATV model
[9], combined with the double exponential model (DE) [10],
respectively.

III. THE MATHEMATICAL MODEL

A procedure to provide an efficient WWTP design opti-
mization that can be easily adapted to any WWTP, regardless
of its location or the involved unit operations, is hereupon
presented. The mathematical model can be subdivided into
seven types of equations, as it will be shown. The system
under study consists of an aeration tank, where the biological
reactions take place, and a secondary settler for the sedimen-
tation of the sludge and clarification of the effluent.

To describe the aeration tank we chose the activated sludge
model n.1 (ASM1), described by Henze et al. [8], which
considers both the elimination of the carbonaceous matter
and the removal of the nitrogen compounds. This model is
widely accepted by the scientific community, as it produces
good predictive values by simulation [22]. This means that
all state variables keep their biological interpretation. The
tank is considered a completely stirred tank reactor (CSTR)
in steady state.

For the settling tank, a combination of the ATV design
procedure [9] with the DE model [10] is used. The ATV
model is usually used as a design procedure to new WWTP.
It is based on empirical equations that were obtained by ex-
periments and does not contain any solid balances, although
it contemplates peak wet weather flow (PWWF) events. The
DE model is the most widely used in simulations and it
produces results very close to reality. However, since it
does not provide extra sedimentation area needed during
PWWF events, the resulting design has to consider the
use of security factors that yield an over-dimensioned and
expensive unit. Previous work [11] shows that this combined
model is prepared to overcome PWWF events without over
dimensioning and provided the most equilibrated WWTP
design when compared with the other two used separately.
When these three designs were introduced in the GPS-X
simulator [13] and a stress condition of a PWWF value of
five times the normal flow was imposed, only the combined
model was able to support this adverse condition maintaining

the quality of the effluent under the values imposed by the
portuguese law.

A. Mass balances around the aeration tank

The first set of equations come from the mass balances
around the aeration tank. The Peterson matrix of the ASM1
model [8] is used to define the model for the mass balances.
For a CSTR, it is assumed that the mass of a given compo-
nent entering the tank minus the mass of the same compound
in the tank, plus a reaction term (positive or negative) equals
the accumulation in the tank of the same compound:

Q
Va

(ξin−ξ )+∑
j

νξ jρ j =
dξ

dt
, (1)

where Q is the volumetric flow of the effluent, Va is the
aeration tank volume and ξ represents the concentration of
the compound (in g COD/m3). It is convenient to refer that
in a CSTR the concentration of a compound is the same at
any point inside the reactor and at the effluent of that reactor.
The second term on the left hand side of equation (1) defines
the reaction term for the compound in question, and is the
sum of the product of the stoichiometric coefficients, νξ j,
with the expression of the process reaction rate, ρ j, of the
ASM1 Peterson matrix [8].

In steady state, the accumulation term given by dξ

dt is
zero, because the concentration is constant in time. The
ASM1 model involves 8 processes incorporating 13 different
components. The mass balances for the inert materials, SI
and XI , are not considered because they are transport-only
components.The process rates are the following:
• Aerobic growth of heterotrophs

ρ1 = µH

(
SS

KS +SS

)(
SO

KOH +SO

)
XBH ; (2)

• Anoxic growth of heterotrophs

ρ2 = µH

(
SS

KS+SS

)(
KOH

KOH+SO

)(
SNO

KNO+SNO

)
ηgXBH ; (3)

• Aerobic growth of autotrophs

ρ3 = µA

(
SNH

KNH +SNH

)(
SO

KOA +SO

)
XBA; (4)

• Decay of heterotrophs

ρ4 = bHXBH ; (5)

• Decay of autotrophs

ρ5 = bAXBA; (6)

• Ammonification of soluble organic nitrogen

ρ6 = kaSNDXBH ; (7)

• Hydrolysis of entrapped organics

ρ7 = kh

XS
XBH

KX+
XS

XBH

[(
SO

KOH+SO

)
+ηh

(
KOH

KOH+SO

)(
SNO

KNO+SNO

)]
XBH ;

(8)
• Hydrolysis of entrapped organic nitrogen

ρ8 = ρ7
XND

XS
; (9)

where µH , ηg, µA, bH , bA, ka, kh and ηh are kinetic
parameters.



Using the process rates and equation (1), the mass balances
for the state variables can be obtained. As an example, the
mass balance for the soluble substrate (SS) is

Q
Va

(SSin −SS)−
1

YH
ρ1−

1
YH

ρ2 +ρ7 = 0, (10)

where YH is one of the stoichiometric parameters. Similar
equations can be obtained for the other state variables: slowly
biodegradable substrate (XS), heterotrophic active biomass
(XBH ), autotrophic active biomass (XBA), particulate products
arising from biomass decay (XP), nitrate and nitrite nitrogen
(SNO), NH+

4 + NH3 nitrogen (SNH ), soluble biodegradable
organic nitrogen (SND), particulate biodegradable organic
nitrogen (XND), alkalinity (Salk), and oxygen (SO).

B. Composite variables

In a real system, some state variables are, most of the
time, not available from direct measurements. Thus, readily
measured composite variables are used instead. They are
defined as follows:
• Particulate chemical oxygen demand:

X = XI +XS +XBH +XBA +XP;
• Soluble chemical oxygen demand: S = SI +SS;
• Chemical oxygen demand: COD = X +S;
• Volatile suspended solids: V SS = X

icv ;
• Total suspended solids: T SS =V SS+ ISS;
• Biochemical oxygen demand:

BOD = fBOD (SS +XS +XBH +XBA) ;
• Total nitrogen of Kjeldahl:

T KN = SNH + SND + XND + iXB (XBH +XBA) +
iXP (XP +XI) ;

• Total nitrogen: N = T KN +SNO;
where icv and fBOD define ratios to convert units.

C. Quality constraints

Quality constraints are usually derived from environmental
law restrictions. The most used are related with limits in
COD, N, and T SS at the effluent. In mathematical terms,
these constraints are defined as CODe f ≤ CODlaw , Ne f ≤
Nlaw , T SSe f ≤ T SSlaw, where the subscript “e f ” means
effluent.

D. Constraints of the secondary settler

Traditionally, the importance of the secondary settler is
underestimated when compared with the aeration tank. How-
ever, it plays a crucial role in the activated sludge system. For
example, the clarification efficiency of the settling tank has
great influence on the treatment plant efficiency because the
particulate fraction arising from biomass contributes to the
major portion of effluent COD. Further, it has been observed
that the investment cost of a typical settling tank in a WWTP
context could reach 25% of the total [31]. Thus, when trying
to reduce both investment and operation costs, the importance
of the secondary settler is by far emphasized.

A good settling tank has to accomplish three different
functions. As a thickener, it aims to produce a continuous
underflow of thickened sludge to return to the aeration tank;
as a clarifier, it produces a good quality final effluent; and
as a storage tank it allows the conservation of the sludge in

peak flow events. None of these functions could fail. If that
happens the effluent will be of poor quality and the overall
behavior of the system can be compromised. The behavior of
a settling tank depends on its design and operation, namely
the hydraulic features, as the flow rate, the physical features,
as inlet and sludge collection arrangements, site conditions,
as temperature and wind, and sludge characteristics. The
factors that most influence the size of the tank are the
wastewater flow and the characteristics of the sludge. As the
influent flow is known, the optimization of the sedimentation
area and depth must rely on the sludge characteristics, which
in turn are related with the performance of the aeration tank.

The ATV design procedure contemplates the PWWF
events, in which the sludge mass transferred from the biolog-
ical reactor is ∆X Va, where ∆X is the change in the sludge
concentration within the aeration tank. A reduction of 30%
on the sludge concentration for a PWWF event is considered.
A higher reduction of the sludge concentration into the
biological reactor may compromise the entire process.

A way of turning around this problem is to allocate a
certain depth, defined by h3 = (∆XVaDSV I)/(480As), where
As is the sedimentation area and DV SI is the diluted sludge
volume index, to support the fluctuation of solids during
these events. This sludge storage depth depends on the mass
that needs to be stored during a PWWF.

When this zone is considered, a reduction in the sedi-
mentation area is allowed. The transferred sludge causes the
biological sludge concentration in the reactor at PWWF to
decline, which allows a higher overflow rate and therefore a
smaller surface area. However, the greater the decrease in re-
actor concentration is, the greater is the mass of sludge to be
stored in the settler tank, so the deeper the tank needs to be.
The ATV procedure allows a trade-off between surface area
and depth and one may select the area/depth combination
that suites the particular site under consideration.

The compaction zone where the sludge is thickened in
order to achieve the convenient concentration to return to
the biological reactor, depends only on the characteristics of
the sludge, and is given by h4 = (XpDSV I)/1000, where Xp
is the sludge concentration in the biological reactor during a
PWWF event.

The clear water zone, h1, and the separation zone, h2, are
set empirically, in our case to 1 m. The depth of the settling
tank, h, is the sum of these four zones.

The sedimentation area is still related to the peak flow,
Qp, by the expression Qp/As ≤ 2400(XpDSV I)−1.34 .

On the other hand, the double exponential model assumes
a one dimensional settler, in which the tank is divided into
ten layers of equal thickness.Some simplifications are consid-
ered. No biological reactions take place in this tank, meaning
that the dissolved matter concentration is maintained across
all the layers. Only vertical flux is considered and the solids
are uniformly distributed across the entire cross-sectional
area of the feed layer ( j = 7, in our case). This model is
based on a traditional solids flux analysis but the flux in a
particular layer is limited by what can be handled by the
adjacent layer. The settling function, described by Takács et
al. in [10], which represents the settling velocity, is given by
νs, j =max(0,min(ν ′0,w0)) , where νs, j is the settling velocity



in layer j,

w0 = ν0

(
e−rh(T SS j− fnsT SSa)− e−rp(T SS j− fnsT SSa)

)
, (11)

T SS j is the total suspended solids concentration in each of
the ten considered layers of the settler, T SSa is the T SS in
the feed layer (T SSa = T SS7) and ν0, ν ′0, rh, rp and fns are
the settling parameters [13].

The solids flux due to the bulk movement of liquid may
be up or down, νup and νdn respectively, depending on
its position relative to the feed layer, and consequently
νup = Qe f /As and νdn = (Qr +Qw)/As. The subscript “r”
is concerned with the recycled sludge and “w” refers to the
wasted sludge.

The sedimentation flux, Js, for the layers under the feed
layer ( j = 7, . . . ,10) is given by Js, j = νs, jT SS j and above the
feed layer ( j = 1, . . . ,6) the clarification flux, Jclar, is given
by

Jclar, j =

{
νs, jT SS j if T SS j+1 ≤ T SSt
min(νs, jT SS j,νs, j+1T SS j+1) otherwise

(12)
where T SSt is the threshold concentration of the sludge.
The resulting solids balances around each layer, considering
steady state, are the following:
• for the layers above the feed layer ( j = 1, . . . ,6)

νup(T SS j+1−T SS j)+ Jclar, j−1− Jclar, j

h/10
= 0, (13)

• for the feed layer ( j = 7)
Q T SSa

As +Jclar, j−1−(νup+νdn)T SS j−min(Js, j ,Js, j+1)

h/10 = 0, (14)

• for the intermediate layers under the feed layer ( j =
8, . . . ,10)

νdn(T SS j−1−T SS j)+min(Js, j ,Js, j−1)−min(Js, j ,Js, j+1)

h/10 = 0. (15)

By convention, Jclar,0 = Js,11 = 0.

E. Flow and mass balances around the system

The system behavior, in terms of concentration and flows,
may be predicted by balances. In order to achieve a consistent
system, these balances must be done around the entire system
and not only around each unit operation. This is crucial to
reinforce the robustness of the model. Furthermore, these
balances may not be a sum of the mass balances of the
individual components since the PWWF events are contem-
plated in the ATV design included in the settler modelling.
The balances were done to the suspended matter, dissolved
matter and flows.

In the case of the suspended matter, the mass bal-
ances concern the organic (X) and inorganic (XII)
solids are (1+ r)Qin f Xin = Qin f Xin f + (1+ r)Qin f X −
(VaX)/(SRT Xr)

(
Xr−Xe f

)
−Qin f Xe f , and Qin f 0.2T SSin f =

(VaXII)(SRT Xr)
(

XIIr −XIIe f

)
+ Qin f XIIe f , where r is the

recycle rate. The subscripts “in f ” and “in” denote the influent
and the entry of the aeration tank, respectively.

The balances of the dissolved matter are done for each one
of the dissolved components SS, SO, SNO, SNH , SND, Salk, as
shown in the SS case: (1+ r)Qin f SSin = Qin f SSin f + rQin f SSr .
Besides the mass balances, flow balances are also necessary:
Q = Qin f +Qr and Q = Qe f +Qr +Qw.

F. System variables definition
To complete the model, some definitions are added:
• Sludge retention time: SRT = (VaX)/(QwXr);
• Hydraulic retention time: HRT =Va/Q;
• Recycle rate: r = Qr/Qin f ; r = T SS/(T SSrmax −T SS);
• Recycle rate in a PWWF event:

rp = 0.7T SS/(T SSmaxp −0.7T SS);
• Recycle flow rate during a PWWF event: Qrp = rpQp;
• Maximum overflow rate: Qp/As ≤ 2.

A fixed value for the relation between volatile and total sus-
pended solids was considered V SS/T SS = 0.7,where T SSrmax

is the maximum total suspended solids concentration allowed
in the recycle flow and T SSmaxp is the maximum total
suspended solids concentration allowed in the recycle flow
during a PWWF event.

G. Simple bounds
All variables must be non-negative, although more re-

stricted bounds are imposed to some of them due to op-
erational consistencies, 0 ≤ KLa ≤ 300, 0.05 ≤ HRT ≤ 2,
800 ≤ T SS ≤ 6000, 0.5 ≤ r ≤ 2, 2500 ≤ T SSr ≤ 10000,
6≤ Salk ≤ 8, 6≤ Salkin ≤ 8, and SO ≥ 2.

IV. MULTI-OBJECTIVE APPROACHES

In this paper we aim to optimize the WWTP design, in
terms of a secondary treatment, in a way that the strict laws
on effluent quality are accomplished. The WWTP design
optimization plays, in essence, two roles:

i) minimizing simultaneously the variables that mostly
influence the operation and investment costs of an
activated sludge system - the influential variables - using
them separately;

ii) minimizing the total cost, hereupon denoted by TC,
which is the sum of investment and operation costs, and
maximizing the effluent quality measured by a quality
index function, represented by the variable QI.

The herein presented paradigm uses the output of the first
approach to make the bi-objective problem easy to solve.
For practical reasons, the observed trade-offs between the
influential variables of the Pareto fronts are used to define
tighter lower and upper bounds for those variables and help
to generate an initial approximation closer to feasibility.

A. Minimizing the influential variables
To avoid the use of cost functions that are time and

local dependent, four objective functions, each describing a
variable that influences the investment and operation costs of
a WWTP, in each unit operation, are used.

As far as the aeration tank is concerned, the variables that
mostly influence the costs are the volume (Va) and the air
flow (GS). In terms of investment, the first variable influences
directly the cost of construction of the tank, and the second
will influence the required power of the air pumps. In terms
of operation, both variables will determine the power needed
to aerate the sludge properly, as well as the maintenance, in
terms of electromechanical and civil construction material,
due to deterioration.

As to the secondary settler, and assuming that the settling
process is only due to the gravity, the variables that most
influence the costs are the sedimentation area (As) and the
tank depth (h), for obvious reasons.



B. Minimizing the total cost function

The objective cost function represents the total cost and
includes both investment and operation costs. In this paper,
for the sake of simplicity, no pumps are considered, which
means that all the flows in the system move by the effect of
gravity. The total cost is given by the sum of the investment
(IC) and operation (OC) costs. To obtain a cost function
based on portuguese real data, a study was carried out
with a WWTP building company. The basic structure of
the model is C = aZb [32], where a and b are parameters
that depend on the region where the WWTP is being built,
and have to be estimated. Variable Z is the characteristic of
the unit operation that is influencing the cost, for example,
Va and GS for the case of aeration tank. Parameters a and
b were estimated by a least squares technique, giving the
following investment cost function for the aeration tank
ICa = 148.6V 1.07

a +7737G0.62
S .

The operation cost is usually estimated on an annual basis,
so it has to be updated to a present value using the updating
term Γ:

Γ =
N

∑
j=1

1

(1+ i) j =
1− (1+ i)−N

i
, (16)

where i represents the discount rate (rate of return), i.e., the
rate that is used to valuing a project using the concept of
the time value of money, over a certain amount of time,
for example, N years. This is also taken as the average
life-expectancy of a WWTP. In this study, i = 0.05 and
N = 20 years are used. Since the collected data come from
a set of WWTP in design, operation data are not available.
However, from the company experience, the expected life
span for the civil engineering construction works is 20
years and the maintenance expenses are around 1% of
the investment costs during the first 10 years and around
2% during the remaining ones. Although the replacement
costs of the electromechanical components are negligible,
they are usually replaced after 10 years. The predominant
cost comes from the energy used for pumping the air flow
into the aeration tank. The power cost (Pc) in Portugal is
0.08 e/kWh. With this information and with the updating
term Γ in equation (16), the operation cost of the aera-
tion tank is OCa =

[
0.01Γ+0.02Γ(1+ i)−10

]
148.6V 1.07

a +

(1+ i)−107737G0.62
S +115.1ΓPcGS.

The term (1+ i)−10 is used to bring to present a future
value, in this case, 10 years from now.

Similarly, the least squares technique is used to fit the basic
model to the available data, and the correspondent investment
cost function, ICs = 955.5A0.97

s , and the operation cost func-
tion (concerned only with the maintenance for the civil con-
struction), OCs =

[
0.01Γ+0.02Γ(1+ i)−10

]
148.6(As h)1.07,

are obtained for the settling tank. The objective cost function
(TC) is then given by the sum of all the previous functions:

TC = 174.2V 1.07
a +12487G0.62

S +114.8GS +955.5A0.97
s

+41.3(As h)1.07 .
(17)

C. Minimizing the quality index function

To be able to attain effluent quality at a required level, a
quality index function may be used to measure the amount
of pollution in the effluent.

The Quality Index (QI) defined by the BSM1 model [22]
gives a measure of the amount of daily pollution, in average
terms during seven days. It depends on the quality of the
effluent in terms of T SS, COD, biochemical oxygen demand
(BOD), total Kjeldahl nitrogen (T KN), SNO and the effluent
flow (Qe f ). The obtained function is

QI = (2T SS+COD+2BOD+20T KN+2SNO)
Qe f

1000
. (18)

D. Multi-objective elitist genetic algorithm

Mathematically, a multi-objective optimization problem
with q objectives and n real decision variables can be
formulated as, without loss of generality:

min
x∈Ω

fk(x), k = 1, . . . ,q

s.t. hi(x) = 0, i = 1, . . . ,m, g j(x)≤ 0, j = 1, . . . , p
(19)

where x is an n dimensional vector and Ω ⊂ Rn (Ω = {x ∈
Rn : l ≤ x ≤ u}), fk(x) are the objective functions, h(x) = 0
are the equality constraints and g(x) ≤ 0 are the inequality
constraints. The vectors l,u ∈Rn define the lower and upper
bounds on x, respectively.

For a multi-objective minimization problem, a solution x∈
Rn dominates y ∈ Rn, i.e., x ≺ y if and only if, ∀k∈{1,...,q} :
fk(x)≤ fk(y) ∧ ∃k∈{1,...,q} : fk(x)< fk(y). A solution x ∈
Rn is Pareto-optimal if and only if, there is no solution y∈Rn

which dominates x, i.e., @y∈Rn : y≺ x.
The main goal of a multi-objective algorithm is to find

a good and balanced approximation to the Pareto-optimal
set. In order to produce a good approximation to the Pareto-
optimal front, evolutionary algorithms generate a popula-
tion of points [29], [28]. Other recent strategies for multi-
objective optimization are in [33], [34], [35]. We apply
the Multi-objective Elitist Genetic Algorithm (MEGA), de-
scribed in [36] as a solution method to the previously pro-
posed multi-objective mathematical formulations. It can find,
in a single run, multiple approximations to the solutions of
the Pareto-optimal set without the need of fixing any weights
and a well distributed representation of the Pareto-optimal
frontier induced by the use of diversity-preservation mecha-
nisms. We now shortly describe some technical features and
the parameters of the MEGA paradigm (see Algorithm 1).

Algorithm 1 Multi-objective Elitist Genetic Algorithm
Require: e ≥ 1, s > 1, 0 < pc < 1, ηc > 0, 0 < pm < 1, ηm > 0,

sSP > s, σshare > 0
1: k← 0
2: Randomly generate the main population P ∈Ω

3: while stopping criterion is not met do
4: Fitness assignment FA(P,σshare) for all points in P
5: Update SP with the non-dominated points in P
6: Introduce in P the elite with e points selected from SP
7: Select by tournaments s points from P
8: Apply SBX crossover to the s points, with probability pc
9: Apply mutation to the s points with probability pm

10: k← k+1
11: end while
12: Update SP with the non-dominated points in P
13: return Non-dominated points from SP

MEGA starts from a population of points P of size s.
In our implementation, a real representation is used since



we are leading with a continuous problem. Additionally,
a secondary population SP that archives potential Pareto-
optimal solutions found so far during the search process is
maintained. The elitist technique implemented is based on
the secondary population with a fixed parameter e (e ≥ 1)
that controls the elitism level, i.e., e is the maximum number
of non-dominated solutions of the secondary population that
will be introduced in the main population. Excessive levels
of elitism can conduct to the stagnation of the search by
loosing diversity in the main population. Conversely, if the
elitism level is excessively low the convergence may be
compromised [30].

In order to handle constraints, we implemented the con-
strained tournament method in which a new dominance
relation is defined [37]. A solution x ∈ Rn constraint-
dominates y ∈ Rn, i.e., x ≺c y if and only if: x is feasible
and y is not; x and y are unfeasible, but x has a smaller
constraint violation; x and y are feasible, x dominates y,
i.e., x ≺ y. The constraint violation measure herein used is
viol = ∑

m
i=1 |hi(x)|+∑

p
j=1 max(0,g j(x)), and if viol ≤ 10−2

then the solution is considered feasible. During the search,
any generated point x that does not satisfy the box constraints
is projected onto the set Ω, component by component (for
i = 1, . . . ,n): xi = max{li, min{xi,ui}} .

The solutions are evaluated according to a fitness assign-
ment function FA(P,σshare) (Algorithm 2) that is based on the
constraint-dominance relation between points. All solutions
are ranked in terms of dominance defining several fronts.
In order to maintain diversity, a sharing scheme depending
on an initial parameter σshare is applied to the solutions
belonging to the same front. For this purpose, an adaptive
sharing scheme on objective space was adopted for diversity
preservation as described in [29]. The fitness of a solution x
belonging to front Prank depends on two components: the
rank of the front containing the solution (rank), and the
niche count of the solution (nc(x,σshare)), i.e., the number of
solutions in the same front that are within the radius σshare.
In each iteration, non-dominated points in main population

Algorithm 2 Fitness Assignment
Require: P, σshare > 0

1: f itness← 0; rank← 1; Pcurrent ← P
2: while Pcurrent 6= /0 do
3: Find the non-dominated solutions set P′ according to ≺c
4: Prank← Pcurrent\P′
5: Compute σshare for Prank
6: F(x)← f itness+ rank× nc(x,σshare) for each x in Prank
7: f itness←max(F(x)) for all solutions x in Prank
8: Pcurrent ← Pcurrent\Prank
9: rank← rank+1

10: end while
11: return Fitness values of solutions in P

are archived in SP. The SP update implies the determination
of Pareto optimality of all solutions stored so far, in order
to eliminate those that became dominated. As the size of
SP grows, the time to complete this operation may become
significant. So, in order to prevent the growing computation
times, in general, a maximum sSP > s size is imposed.

A tournament selection that guarantees that better points
are more likely to be selected was used to select points from
the main population. New points in the search space are
generated by the application of genetic operators (crossover

and mutation) to the selected points from main population. A
Simulated Binary Crossover (SBX) [38] that combines two
points in order to generate new ones was implemented. Two
points, z(1) and z(2), are randomly selected from the pool and,
with probability pc, two new points, w(1) and w(2) are gener-
ated according to w(1)

i = 0.5
(
(1+βi)z

(1)
i +(1−βi)z

(2)
i

)
and

w(2)
i = 0.5

(
(1−βi)z

(1)
i +(1+βi)z

(2)
i

)
for i = 1, . . . ,n. The

values of βi are obtained from the following distribution:

βi =

 (2ri)
1

ηc+1 if ri ≤ 0.5(
1

2(1−ri)

) 1
ηc+1

if ri > 0.5
(20)

where ri ∼U(0,1) and ηc > 0 is an external parameter of
the distribution. This procedure is repeated until the number
of generated points equals the number of points in the pool.

A Polynomial Mutation is applied, with a probability pm,
to the points produced by the crossover operator. Mutation
introduces diversity in the population guarantees that the
probability of creating a new point t(l) closer to the previous
one w(l) (l = 1, . . . ,s) is more than the probability of creating
one away from it. It can be expressed by t(l)i = w(l)

i +(ui−
li)ιi for i = 1, . . . ,n. The values of ιi are given by:

ιi =

{
(2ri)

1
ηm+1 −1 if ri < 0.5

1− (2(1− ri))
1

ηm+1 if ri ≥ 0.5
(21)

where ri∼U(0,1) and ηm > 0 is an external parameter of the
distribution. The search ends when a given stopping criterion
is satisfied. The best approximations to the Pareto-optimal set
are archived in SP.

V. NUMERICAL RESULTS

In order to illustrate the performance of the above de-
scribed solution method MEGA when solving both multi-
objective mathematical formulations, the models were coded
in the programming language MATLABTM (MATLAB is a
registered trademark of the MathWorks, Inc.). Both models
have 113 variables, 103 equality constraints and one inequal-
ity constraint. All the variables are bounded below and above.
During the experiments, the values set to all stoichiometric,
kinetic and operational parameters are those available from
the benchmark simulation model n. 1 [22] since they are
usually found in real activated sludge based plants.

The MEGA algorithm was coded in MATLAB program-
ming language and the numerical results were obtained with
a Intel Core2 Duo CPU 1.8GHz with 2GB of memory. The
MEGA parameters are: s= 40, e= 4, pc = 0.9, ηc = 20, pm =
1/113, ηm = 20, sSP = ∞ and σshare = 0.1. The maximum
number of objective function evaluations allowed is 50 000.
MEGA uses elitism based on a secondary population which
proves to be very useful in finding good approximations to
the Pareto-optimal set. The constrained tournament method
is coupled with MEGA for an efficient handling of the linear
and non-linear constraints of the problem. The importance of
controlling the level of elitism with a secondary population
has been emphasized on comparison studies [36], [30] with
other evolutionary algorithms, like NSGA-II [18] and SPEA,
developed by Zitzler and Thiele [39], when a set of small
benchmark multi-objective problems is used. In the present
study, where a real world application is considered and



a highly constrained problem with linear and non-linear
constraints is addressed, the MEGA algorithm has been
shown to behave rather well. The previously stated 10%
of elitism have reinforced the convergence properties of
MEGA even with large and difficult problems. We remark
that some commercial implementations of NSGA-II, namely
the function gamultiobj in the Global Optimization Tool-
box of MATLAB, do not provide any constraint-handling
mechanism for non-linear constraints. Therefore, they are not
suited for numerical comparisons with MEGA when solving
the herein presented multi-objective optimization problems.

In both approaches, an initial approximation, x0, obtained
from the GPS-X simulator [13], when real influent data is
provided to the simulator, was introduced in the initial pop-
ulation. Further, tighter bounds for the influential variables
were provided to the bi-objective modelling, after the trade-
offs between the influential variables of the Pareto fronts
from the first approach have been analyzed. The remaining
points of the main population were randomly generated.
Several experiments were conducted without introducing this
initial approximation in the population and the algorithm
failed to achieve a feasible point within the previously
defined maximum number of objective function evaluations.
No feasible solution was found even when the algorithm
was allowed to run for 1 000 000 function evaluations,
corresponding to 387.5 seconds. As a consequence, these
experiments were not further explored.

The characteristics of the influent to test the model are:
Q = 1050 m3/day, Qp = 108 m3/h, BOD = 810 g/m3 COD =
2000 g/m3, and T SS = 750 g/m3. All the state variables are
defined as function of the composite variables, according
to the GPS-X Technical Reference [13]. The proportion of
particulate inert inorganic material (XII) in the T SS is set to
0.3.

A. Influential variables minimized

When the problem which consists of minimizing As, h, Va
and GS is addressed, the following solutions are obtained.
Figures 1a to 1c show the most important bi-dimensional
projections of the Pareto front. All the plotted solutions are
non-dominated and represent different compromises between
the objectives.

Figure 1a shows that the sedimentation area and the
aeration tank volume are conflicting and we have found
four possible trade-offs between the two variables. We can
see that the larger Va, the smaller As is. In physical terms,
this makes sense since when Va is larger, the sludge is less
concentrated allowing a smaller As. A similar behavior is
observed in Figure 1b, since the sedimentation depth has
the same kind of relation with the aeration tank volume. In
Figure 1c we can see the relation between the settling area
and depth. Because of the ATV model, there is a compromise
between these two variables. The larger is the settling area,
the smaller the depth needed, and vice-versa. This is a very
important observation because, for example, if the land area
available for building the WWTP is small, one can choose
to build a deeper settling tank, achieving a similar design in
terms of costs. We observed that the air flow and the aeration
tank volume are not conflicting and so this projection showed
only one point. This is also expectable since if the aeration

tank is larger, a bigger amount of air is needed to maintain
the required dissolved oxygen level. We remark that all the
solutions are feasible. The total computational time is about
380 seconds.

Finally, an important remark concerned with the reduced
number of points in the observed Pareto fronts. The points
correspond to the non-dominated as well as feasible solu-
tions. Since the decision variables of the problem are con-
strained mainly by equality constraints, the feasible region
is rather small. Thus, very few non-dominated points are
feasible. However, we highlight the fact that these points are
well distributed in the space of the objectives.

From Figure 1a we may conclude that only one solution
is in the region of the good compromise solutions. Thus,
the choice is obvious, unless other important issues are to
be considered during decision making. A similar argument
applies to the Figure 1b. Three good compromise solutions
are depicted in Figure 1c. Our view is that the most right
solution of the three is to be preferred, if a large building area
is available, since depth excavation turns out to be harder and
more expensive than width excavation. However, if a reduced
area for building the WWTP is provided, then the left most
solution is to be preferred.

B. Cost and quality index minimized

To analyze the effect of the population size on the per-
formance of MEGA when solving the bi-objective problem,
three values of s were tested: 40, 80 and 120. The larger
the population size is the higher is the likelihood of having
more non-dominated solutions. Figure 2a shows the Pareto-
optimal front defined by the approximations to the Pareto-
optimal solutions, for each of the three tested values of s.
In this figure, the compromise solutions between QI and TC
are plotted. The values of the TC are in millions of Euros
(M e). We may observe that the quality of the solutions is
not greatly affected by s, although the computational time
increases hugely with s. Figure 2b aims to show that the
pair QI and TC that corresponds to the slightly infeasible
initial approximation x0 (represented by ‘•’, in full red) is
closer to the Pareto front than the other pairs that come from
randomly generated approximations (represented by ‘+’).

Due to the stochastic nature of the algorithm, the problem
was solved more than once to confirm the consistency of
the obtained results. Apart from the provided x0, the other
initial approximations required by MEGA were randomly
generated, thus slightly different results although with similar
trade-offs between the objectives were obtained.

In Table I, the most important decision variables of the
obtained approximations to the Pareto-optimal solutions are
presented, namely, the area and depth of the secondary
settler, as well as COD and T SS, for the case s = 40. In
all the obtained Pareto solutions, Va = 1567, GS = 100 and
N = 15 were obtained. It can also be observed that the
sedimentation area maintains almost the same value in all the
non-dominated solutions, being the settler depth the variable
with the most significant differences. The total computational
time is about 190 seconds. We can observe that the non-
dominated solutions indicate that the followed methodol-
ogy produces improved results with physical meaning. The
obtained WWTP designs represent compromises that are
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Fig. 1: Bi-dimensional representation of the Pareto fronts

1.48 1.5 1.52 1.54 1.56 1.58 1.6 1.62
20

40

60

80

100

120

140

160

180

200

Total Cost

Q
u

a
lit

y
 I

n
d

e
x

 

 

s=40

s=80

s=120

(a) TC and QI for s = 40, s = 80, and s = 120

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

Total Cost

Q
u

a
lit

y
 I

n
d

e
x

 

 

s=40

initial approximation

random approximations

(b) Initial and random approximations for s = 40

Fig. 2: Pareto curves for the Total Cost and Quality Index

TABLE I: Optimal values of the non-dominated solutions for
the most important variables

As h COD T SS TC (M e) QI
816 3.3 36.2 12.2 1.488 184.8
816 3.3 36.1 12.2 1.489 184.4
816 3.4 37.1 12.0 1.496 162.0
816 3.4 37.1 12.0 1.496 162.0
815 3.6 37.1 11.1 1.508 128.6
815 3.6 37.1 11.1 1.508 127.9
816 3.9 35.0 11.7 1.524 97.7
816 3.9 34.4 11.7 1.526 96.0
816 3.9 34.4 11.7 1.526 95.2
812 4.2 28.1 9.2 1.539 56.2
812 4.2 28.0 9.3 1.539 55.7
813 4.2 28.7 8.4 1.545 43.7
813 4.3 28.7 8.3 1.551 43.5
813 4.6 27.5 8.2 1.565 43.1
813 4.6 26.1 8.1 1.567 40.8
813 4.8 22.9 7.3 1.583 36.7
813 4.8 22.7 6.6 1.583 35.2
813 4.9 22.6 6.6 1.584 35.1
813 4.9 22.7 6.6 1.588 35.1

economically attractive with convenient quality indexes and
satisfy the law limits. Moreover, these limits in terms of COD
and T SS are below the law limits, showing the robustness of
the solution. It is easily observed from Figure 2a that from a
certain point on (corresponding to a total cost of about 1.54
M e) the solutions are no longer attractive, since a small
improvement in the quality index implies a much higher raise
in the total cost.

To validate the goodness of the proposed methodology

based on two multi-objective approaches, a comparison with
results obtained by a hybrid genetic algorithm for uni-
objective programming is included [6]. The therein obtained
minimum Total Cost is 1.04 M e. This solution was obtained
after 1 035 200 function evaluations and corresponds to
a Quality Index of 285, which is much higher than the
herein reported value. Thus, the multi-objective approaches
to the WWTP optimal design have indeed supplied a valuable
procedure to identify good trade-offs between conflicting
objectives.

VI. CONCLUSIONS

The paper presents new and expeditious methodologies to
model and solve a WWTP design optimization problem that
can be extended to any WWTP unit operation modelling,
regardless adjusting to each particularity of the problem
under study. Two multi-objective approaches are proposed.
The influential variables minimization strategy is more suit-
able for a draft project, when the exact location and time
where the WWTP is going to be built is still unknown. The
decision-maker has, observing the Pareto-optimal solutions,
a set of alternatives from which he/she can choose from.
This information might help to elaborate a first version
of the project, allowing to study all the alternatives, even
with different unit operations. When the specific location
and moment in time are defined, the analysis based on
the minimization of the two objective functions – the total
cost and the quality index – is to be preferred. With the
information gather from the first approach, the decision-
maker may provide tighter lower and upper bounds for the



influential variables and other input data aiming to make
the bi-objective optimization problem easy to solve and to
improve the solution.

The results obtained in this study clearly show that the
multi-objective modelling is an effective tool to WWTP
design optimization. The achieved optimal solutions are
meaningful in physical terms. Investment and operation costs
are highly influenced by the optimized variables, meaning
that the obtained solutions are economically attractive. Both
multi-objective approaches to WWTP design optimization
provide a set of non-dominated solutions from which the
decision-maker can choose according to his/her preferences.

In the future we intend to introduce the game theory [40]
to assist the solution selection process, defining supra-criteria
to obtain a compromise solution acceptable to all the players.
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