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ABSTRACT 

The paper presents the preliminary round of in-situ experimental tests carried out at “Hotel Comercio”, 

a historical construction located at the historical centre of Lima (capital of Peru). The building is a three story 

republican-type construction built at 19
th

 Century with composite structure of Adobe and “Quincha”. 

The experimental works consisted on Operational Modal Analysis (OMA) tests aiming at identifying the 

dynamic characteristics of the building using the environmental noise as source of excitation. The severe damage 

at the Hotel, as well as its complex boundary conditions made the dynamic identification process hard to carry 

out. The experimental results showed coupled global and local modes. The expected different behaviour of the 

Quincha panels and the Adobe in terms of flexibility was also verified. The Finite element model of the building 

was implemented and a preliminary numerical model updating was carried out. The modal comparison of the 

numerical and experimental results evidenced that few modes were accurately assessed by the analytical 

approach. An important contribution of the paper is the introduction of OMA as a tool for better understanding 

the structural behaviour which may also allow assessing the real damage condition of the buildings. 
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1. INTRODUCTION 

Peru is located in the centre of the pacific coast of South America which is one of the most active 

seismic zones of the world (known as “pacific ring of fire”) due to the subduction process of the Nazca 

and the South American Plates. The actual capital of Perú, Lima, was the main city of the Spanish 

Viceroyalty from 1531 to 1821 and because of the beauty of the constructions in its urban area, as well 

as the whole history involved, its Historical Centre was included in the UNESCO heritage list in 1991. 

Lima has suffered the occurrence of several strong earthquakes along time being the most destructive 

one the event of 1746 (ML 8.6) which almost destroyed the whole city and killed thousands of people 

[18]. For these reasons, the architectural style and the constructions typology of the buildings in the 

city had changed numerous times and resulted in improved “earthquake resistant” structural systems. 
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The present work aims at performing a first experimental and analytical assessment of the structural 

condition of “Hotel Comercio” which is a construction from 19
th
 century located in front of the 

Government Palace, one block from the main square of Lima. When performing structural diagnosis 

on historical buildings, it is mandatory to consider the modern conservation criteria of minimum 

intervention and preservation of the original construction. In these buildings, the task of creating 

accurate numerical models is difficult to achieve since the existing properties and conditions of the 

buildings are unknown. So far, there are several experimental methods that are used on existent 

structures which allow the assessment of local information and/or the estimation of their global 

properties. In this respect, one the most powerful methods for the quantitative diagnosis of structures 

are the experimental modal identification tests. 

The importance of this work relies in its innovative character since represents a first attempt for 

performing operational modal analysis in Peruvian earthen historical constructions. The paper starts 

with a general description of the architecture, the construction systems, and the structural 

characteristics of the building, which includes the survey of actual damage condition. The following 

Section is dedicated to the Operational Modal Analysis tests and comprises the description of their 

general characteristics, the description of the measurement systems and experimental setups, as well as 

the discussion of the experimental results. The characteristics of the numerical modelling and the 

results of a preliminary manual calibration process are next presented. Finally the conclusions and 

future works are stated. 

2. ARCHITECTURAL AND STRUCTURAL DESCRIPTION OF THE BUILDING 

The “Hotel Comercio” is a three story construction considered as a Peruvian National monument since 

1980. The construction is of Adobe walls at the first floor and a composite system of mud, timber, and 

canes (known as Quincha) at the second and third floors. The building is surrounded by other 

buildings since is part of a bigger block, has 1480 square‐meter footprint and is of 14 m height. 

According to Galvez [8], it was built in the middle of 19
th
 Century and was used as a Hotel until the 

decade of the 1980s. So far, the building is unoccupied and only the corner of the first floor is open to 

the public. Figure 1 shows the location of the building, and two pictures that illustrate the changes of 

its condition in the last century. 

 

 
 

 
 

Figure 1 Location and general views of the Hotel 

According to Cancino and Lardinois [2], the building is settled on a rocky soil and its foundations are 

of stone bricks masonry with lime and sand mortar with 0.50 to 0.80 m depth. The structure of the first 

floor is composed of Adobe walls with an average thickness of 0.90 m in the façades and 0.80 m in the 
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interiors. There were used clay bricks in the arches and openings and the resultant system was covered 

with 30 to 40 mm mud plaster and 2 mm thick gypsum finish coat. In the second and third floors, the 

structure is composed by a series of “Quincha” panels which are timber frames with diagonals filled 

with mud and canes. The thickness of the panels has high variability and the section is composed by a 

first mud/straw layer, followed by mud, and a gypsum finish coat (details are presented in Figure 1). 

The structure of the inter-story system varies throughout the building and in general is composed of 

wood arranged in a double layer configuration. The roof is also of wood covered by a thick layer 

(105 mm) of mud and compacted soil. 

  
(a) (b) 

Figure 2 Typical structural configuration of the Quincha: (a) panel at the 2
nd

 level; (b) panel at the 3
rd

 level 

In the last years, severe damage has evidenced in the building due to the occurrence of small-medium 

earthquakes, the unused condition, and the lack of conservation and preservation works. Figure 2 

presents a general overview of the damage condition of the building. As shown, even in the façade 

walls, which receive a continuous treatment of re-plastering and re-painting for the aesthetic of the 

Lima’s Historical Centre, light pattern of cracks and some humidity marks are visible (see Figure 2b). 

The condition of these walls does not reflect the actual situation of the building since inside there are 

zones with collapsed walls, floors, corridors, and stairs (see Figure 2a and Figure 2c). In general, the 

plaster of large zones of walls inside is in bad condition (some walls has not plaster any more) which 

causes problems of humidity in the walls, and deterioration of the wood and canes. 

 
  

 
 

 
(a) (b) (c) 

Figure 3 Damage condition of the building: (a) plant view of the first floor [adapted from 2]; (b) elevation view 

of the front façades [adapted from 2]; and (c) interior of the building 
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3. OPERATIONAL MODAL ANALYSIS TESTS AT THE HOTEL COMERCIO 

3.1. Basic concepts 

As stated by Farrar and Worden [7], experimental modal identification tests are used to study civil 

engineering structures since the early 1980s. These tests aim at characterizing the dynamic properties 

of the structures by measuring their in-situ response and their results are used as a tool for performing 

analytical models calibration, quality control, damage detection, etc. Most of the modal identification 

studies are related to large and flexible structures by means of bridges and tall buildings. In case of 

historical constructions, there are also numerous applications (mainly in stone and clay brick masonry 

buildings) such as churches and temples [1; 3; 11; 13], towers [9; 10; 15; 16], arch bridges [4], and 

minarets [14]. 

Experimental modal analysis tests are classified depending on the excitation source in two different 

groups namely, Input-Output and Output-Only (also known as Operational Modal Analysis – OMA) 

techniques. Input-Output techniques are based on the estimation of a set of Frequency Response 

Functions (FRFs) relating an applied excitation (input) to the corresponding response along the 

structure (output), while OMA is based on the premise that ambient noise (wind, traffic, etc) 

adequately excite structures in the frequencies of interest. Due to the nature of the excitation, the 

structural response includes not only the modal contributions of the ambient forces and the system 

itself, but also the contribution of the noise signals from undesired sources. Therefore, the 

measurements reflect the response from the structural system and the ambient forces and thus, the 

signal processing algorithms must be able to separate them. Parametric (Stochastic Subspace 

Identification, Least Square Complex Exponential, Ibrahim Time Domain) and Non Parametric (Peak 

Picking, Frequency Domain Decomposition, Enhanced Frequency Domain Decomposition, Random 

Decrement, PolyMax) methods are used for processing the acquired data in these tests Cunha et al. [6]. 

As reported by Ramos et al. [12], the main drawback of non parametric methods is that their results 

depend on the quality of the environmental noise. This drawback is overpassed by the use of 

parametric methods which results are in general of good quality and reliability due to the robust 

numerical algorithms used for performing the signal processing. 

3.2. Experimental test design 

OMA tests were carried out in the Hotel on September 2011 aiming at characterizing the modal 

properties of the building. Due to the complexity of the structure (neighbouring constructions are 

surrounding the building, the presence of large damaged areas, and the variability of materials) only 

the left appendix at the corner of the building was studied (see Figure 5a). Four piezoelectric 

accelerometers with 10 V/g of resolution and ± 0.5 g of measurement range were used together with 

an USB-powered 24 bits resolution DAQ. As shown in Figure 5a, due to reduced number of 

transducers, the acquisition process was carried out considering nine measurement setups. The 

reference nodes and the central acquisition unit were located on the ceiling and over the base of the 

second floor, respectively. The signal acquisition process considered a moderate sampling rate of 

200 Hz and a sampling time of 10 min aiming at obtaining good quality time domain signals with 

enough resolution in frequency domain. Figure 5b illustrates the acquisition and measurement 

processes. 

3.3. Experimental results 

Table 1 shows the time domain results by means of the registered maximum accelerations and Root 

Mean Square (RMS) values. As shown, the maximum peak value registered was of 4 mg while the 

higher RMS was of around 0.5 mg (g is the acceleration of gravity). These results evidence the low 

amplitude level of excitations that are normally registered in OMA tests and explain the importance on 

appropriate choosing the characteristics of the measurement system and the data processing method. 
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(a) (b) 

Figure 4 Operational Modal Analysis tests setups: (a) plant view of the instrumented area and details of the 

measurement setups; and (b) signal acquisition and measurement process 

 
Table 1 Peak acceleration values and RMS during the Operational Modal Analysis tests 

 
Peak Acceleration [mg] RMS [mg] 

 CH 01 CH 02 CH 03 CH 04 CH 01 CH 02 CH 03 CH 04 

Setup 1 1.247 0.609 3.026 0.596 0.0738 0.0964 0.2411 0.1173 

Setup 2 1.858 1.117 2.357 1.622 0.1053 0.1251 0.3169 0.1589 

Setup 3 1.475 0.934 1.182 0.884 0.0785 0.0996 0.0877 0.1009 

Setup 4 0.476 0.824 0.718 0.715 0.0714 0.1037 0.1273 0.1127 

Setup 5 0.681 0.887 1.918 2.684 0.0699 0.1061 0.2258 0.2849 

Setup 6 0.555 0.611 1.689 0.789 0.0645 0.0976 0.199 0.1135 

Setup 7 0.641 0.966 1.825 2.235 0.1031 0.1411 0.3042 0.3582 

Setup 8 0.742 1.05 2.505 2.594 0.1353 0.1667 0.4173 0.4618 

Setup 9 0.767 1.087 3.361 3.953 0.1299 0.1608 0.5101 0.5427 

 
The modal identification process was carried out using the Artemis software [17]. The dynamic 

properties of the building were calculated using different modal identification methodologies namely 

the FDD, EFDD, and the SSI-data methods. The results of the singular values of the spectral density 

matrices and the stabilization diagrams are presented in Figure 6. The frequency domain results 

(Figure 6a) indicate two closely separated peaks around 4 Hz and other sharp peaks in higher 

frequencies which evidence the presence of undesired noise. The results of the SSI method (Figure 6b) 

indicate the complexity of the identification process since several columns of stable poles appear at 

different frequencies throughout the whole measurement setups. The final selection of the proper 

model order as well as the columns of stable poles (Figure 6c) was carried out considering consistency 

not only in frequency but also in damping and modal shapes results. 
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(a) (b) 

 
(c) 

 

Figure 5 Data processing details: (a) average of the normalized singular values of the Spectral Density 

Matrices - EFDD method; (b) stabilization diagram of Setup 01 - SSI method; and (c) selection and linking 

process across all tests setups - SSI method 

Figure 6 shows the results of the identified natural frequencies and damping ratios with the three 

methodologies. As shown, the FDD and EFDD methods allowed the identification of only the first two 

frequencies while the SSI method resulted in an improved identification of nine natural frequencies. In 

case of the first two frequencies, it is feasible to observe the small variability of the results on the three 

methods (see Figure 6a). Less reliable results were obtained for the damping ratios (see Figure 6b) 

which confirm the uncertainties on this value and the difficulties on properly identifying this 

parameter by the use of OMA. Despite of this, the results of damping ratios are coherent varying in the 

range of 2% to 5% in the whole cases. 

  
(a) (b) 

Figure 6 Modal identification results: (a) identified natural frequencies; (b) identified damping ratios 

The modal shape results are presented in Figure 7. These results evidence the complexity of the 

structure and confirm the fact that the existent damage affects the behaviour of the whole system. The 

first two mode shapes seem global translational modes parallel to the façades Y-Y and X-X, 

respectively (see Figure 4). In these modes, it is evidenced the effect of the neighbouring 

constructions, and the different behaviour of the first Adobe floor (rigid part with almost no 

movement) and the others second and third Quincha levels (which shows high flexibility). The third 

and fourth mode shapes indicates an unexpected behaviour since the façade wall parallel to the Y-Y 

side is not moving in consistency to the back part. This phenomenon may indicate that the diaphragms 

conformed by the floors of the building are not properly connecting the walls. The results of the fifth 

to the ninth mode corroborate this effect and shows mainly complex modes of the façade. The results 
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of the tests evidence a structural problem that should be studied in detail in further studies. In these 

studies, in addition to the solutions for repairing the areas with evident damage, it should be studied 

the condition of the façade wall parallel to the Y-Y axis in Figure 4. 

    
f1 = 3.39 Hz 

ξ1 = 3.7% 

 

f2 = 3.58 Hz 

ξ2 = 2.9% 
f3 = 4.85 Hz 

ξ3 = 4.2% 
f4 = 6.90 Hz 

ξ4 = 4.5% 

     
f5 = 10.42 Hz 

ξ5 = 2.5% 
f6 = 12.41 Hz 

ξ6 = 3.2% 
f7 = 13.55 Hz 

ξ7 = 3.3% 
f8 = 15.50 Hz 

ξ8 = 2.7% 
f9 = 17.09 Hz 

ξ9 = 2.4% 
Figure 7 Experimentally identified modal shapes of the Hotel 

4. NUMERICAL MODEL OF HOTEL COMERCIO 

The numerical model of the Hotel was built in SAP2000 [5] aiming at having a better understanding of 

the uncertainties of the measured structural behaviour. Only the instrumented area was modelled using 

shell elements for the Adobe and Quincha walls, and frame elements for the inter-story system. The 

Elasticity Modulus (E-modulus) of the Quincha at the second and third floor was estimated using a 

solid model of a typical panel. From these solid models, the E-modulus and the effective bending 

thickness of the shell elements were assessed using deflection equations. Figure 8 shows the process of 

the analytical determination of the mechanical properties of the Quincha. The results show that the E-

modulus of the Quincha is 2.7 GPa and 4.2 GPa in the second and third floor, respectively; the specific 

weight if of around 10 kN/m3 in both floors, and the effective thickness is almost the same in 

perpendicular directions. The detailed results are presented in Table 2. 

 

Figure 8 Quincha modelling process 

 

Table 2 Mechanical characteristics of the materials at the Hotel 

 
First story 

(Adobe) 

Second story 

(Quincha 2
nd

 floor) 

Third story 

(Quincha 3
rd

 floor) 

Modulus of Elasticity (GPa) 0.65 2.70 4.20 

Membrane Thickness (m) 1.00 0.30 0.15 

Bending Thickness (m) 1.00 0.27 0.13 

Specific Weight (kN/m3) 16 10 10 

 

  

    

Typical Quincha panels  

Solid Model 

subjected to an 

horizontal force 

 
Deformed shape 

of the solid model 
 

Equivalent 

deformed shape of 

the shell model 
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The initial FE model of the Hotel Comercio was created considering no neighbouring constraints 

conditions. The modal results of this model evidenced a similarity (Modal Assurance Criterion Ratio – 

MAC = 0.697) between the first numerical mode and the second experimental one. For calibration 

purposes, it was decided not to consider the first experimental mode since what was registered 

corresponded to a local behaviour. The rest of the numerical modes presented complex behaviour and 

thus, for practical purposes, it was decided to carry out a preliminary manual calibration considering 

only one mode. 

Joint springs were defined in the numerical model to simulate the missing part of the Hotel, and the 

neighbouring conditions (see Figure 9a). The model calibration process consisted in tuning the 

stiffness of the springs verifying the correspondence of frequencies and modal shapes between 

analytical and experimental results. The preliminary manual updating evidenced the contribution of 

the normal stiffness in the missing part and in the interaction limit with the other neighbouring 

buildings (Figure 9b). As shown in the MAC and frequency comparison plot (Figure 9c), even if the 

results show small differences in frequencies (11%) and acceptable MAC values of 0.75, the process is 

still not completed. Further works might be oriented in an extensive experimental campaign aiming at 

measuring more nodes in the structure and the implementation of automatic routines with an 

optimization algorithm for a proper calibration of the numerical model.  

 

 

(a) (b) 

 
(c) 

Figure 9 Numerical analysis of the Hotel Comercio: (a) FE model; (b) stiffness properties; and (c) MAC – 

Frequency comparison plot of the first natural frequency 

  

Initial Model Updated Model 

Spring  

Stiffness 

(kN/m) 
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frequency 

(Hz) 

Spring 
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5. CONCLUSIONS 

The present study consisted in the structural evaluation of a 19
th
 Century Adobe and Quincha 

construction located at Lima´s Historical Centre. The studied building was a Hotel unoccupied since 

the 1980s which is subjected to severe damage due to the lack of restoration and preservation works 

along time.  

The main objective of the study consisted on carrying out Operational Modal Analysis tests for 

assessing the real dynamic behaviour of the building. The tests carried out consisted on twenty 

uniaxial measurements along the three levels of the structure using four high sensitivity piezoelectric 

accelerometers, and one high resolution data acquisition equipment. The modal identification process 

was carried out using different techniques namely the Frequency Domain Decomposition, the 

Enhanced Frequency Domain Decomposition, and the Stochastic Subspace Identification methods. 

The experimental results indicate that in case of damaged structures (such as the one presented in this 

study), the measurement of a dense grid of nodes is important to proper characterize their dynamic 

behaviour. The complexity of the results evidence severe structural problems in the building. Future 

works may consider a detailed analysis of the diaphragms as well as a second series of modal 

identification tests, this time considering measuring more degrees of freedom with a dense mesh of 

sensors. 

In this type of structures, the numerical modelling is also hard to implement, not only for the difficulty 

on representing the actual damage and assessing the materials properties, but also for a proper 

representation of the real boundary conditions of the building (neighbouring constructions, also 

severely damaged, are located all around the building). Further works in this area might consider the 

development of more refined models and the implementation of automatic calibration routines. 
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