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Summary 

Cardiovascular diseases are the main cause of death in Europe, with an estimate 

of 4.3 million deaths each year. The assessment of the regional wall deformation is a 

relevant clinical indicator, and can be used to detect several cardiac lesions. Nowadays, 

this study can be performed using several image modalities. In the current thesis, we 

focus on tagged Magnetic Resonance imaging (t-MRI) technique. Such technique 

allows acquiring images with tags on the myocardium, which deform with the muscle. 

The present thesis intends to assess the left ventricle (LV) deformation using 

radial and circumferential strain. To compute such strain values, both endo- and 

epicardial contours of the LV are required.  

As such, a new framework to automatically assess the LV function is proposed. 

This framework presents: (i) an automatic segmentation technique, based on a tag 

suppression strategy followed by an active contour segmentation method, and (ii) a 

tracking approach to extract myocardial deformation, based on a non-rigid registration 

method. The automatic segmentation uses the B-spline Explicit Active Surface 

framework, which was previously applied in ultra-sound and cine-MRI images. In both 

cases, a real-time and accurate contour was achieved. Regarding the registration step, 

starting from a state-of-art approach, termed sequential 2D, we suggest a new method 

(termed sequential 2D+t), where the temporal information is included on the model.  

The tracking methods were first tested on synthetic data to study the registration 

parameters influence. Furthermore, the proposed and original methods were applied on 

porcine data with myocardial ischemia. Both methods were able to detect dysfunctional 

regions. A comparison between the strain curve in the sequential 2D and sequential 

2D+t strategies was also shown. As conclusion, a smoothing effect in the strain curve 

was detected in the sequential 2D+t strategy. The validation of the segmentation 

approach uses a human dataset. A comparison between the manual contour and the 

proposed segmentation method results was performed. The results, suggest that 

proposed method has an acceptable performance, removing the tedious task related with 

manual segmentation and the intra-observer variability. Finally, a comparison between 

the proposed framework and the currently available commercial software was 

performed. The commercial software results were obtained from core-lab analysis. An 

acceptable result (r = 0.601) was achieved when comparing the strain peak values. 

Importantly, the proposed framework appears to present a more acceptable result. 
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Resumo 

As doenças cardiovasculares são a principal causa de morte na Europa, com 

aproximadamente 4.7 milhões de mortes por ano. A avaliação da deformação do 

miocárdio a um nível local é um importante indicador clínico e pode ser usado para a 

deteção de lesões cardíacas. Este estudo é normalmente realizado usando várias 

modalidades de imagem médica. Nesta tese, a Resonância Magnética (RM) marcada foi 

a técnica selecionada. Estas imagens têm marcadores no músculo cardíaco, os quais se 

deformam com o miocárdio e podem ser usados para o estudo da deformação cardíaca. 

Nesta tese, pretende-se estudar a deformação radial e circunferencial do 

ventrículo esquerdo (VE). Assim, um contorno do endo- e epicárdio no VE é essencial. 

Desta forma, uma ferramenta para o estudo da deformação do VE foi 

desenvolvida. Esta possui: (i) um método de segmentação automático, usando uma 

estratégia de supressão dos marcadores, seguido de uma segmentação c um contorno 

ativo, e (ii) um método de tracking para determinação da deformação cardíaca, baseado 

em registo não rígido. A segmentação automática utiliza a ferramenta B-spline Explicit 

Active Surface, que foi previamente aplicada em imagens de ultrassons e cine-RM. Em 

ambos os casos, uma segmentação em tempo real e com elevada exatidão foi alcançada. 

Vários esquemas de registo foram apresentados. Neste ponto, começando com uma 

técnica do estado da arte (designada de sequencial 2D), uma nova metodologia foi 

proposta (sequencial 2D+t), onde a informação temporal é incorporada no modelo. 

De forma a analisar a influência dos parâmetros do registo, estes foram 

estudados num dataset sintético. De seguida, os diferentes esquemas de registo foram 

testados num dataset suíno com isquemia. Ambos os métodos foram capazes de detetar 

as regiões disfuncionais. De igual forma, utilizando as curvas de deformação obtidas 

para cada um dos métodos propostos, foi possível observar uma suavização na direção 

temporal para o método sequencial 2D+t. Relativamente à segmentação, esta foi 

validada com um dataset humano. Um contorno manual foi comparado com o obtido 

pelo método proposto. Os resultados sugerem que a nova estratégia é aceitável, sendo 

mais rápida do que a realização de um contorno manual e eliminando a variabilidade 

entre observadores. Por fim, realizou-se uma comparação entre a ferramenta proposta e 

um software comercial (com análise de core-lab). A comparação entre os valores de 

pico da deformação exibe uma correlação plausível (r=0.601). Contudo, é importante 

notar, que a nova ferramenta tende a apresentar um resultado mais aceitável. 
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1. Introduction 

1.1.  Cardiac anatomy and physiology 

The heart is an intermittent pump that propels blood throughout the body [1]. 

This pump behavior is possible due to the characteristics of the cardiac muscle, also 

called the myocardium. The myocardium is composed of millions of small muscular 

cells with a specific organization. The inner surface is called the endocardium, while the 

outer surface is designated as the epicardium [2]. 

Anatomically, the heart has four chambers (Figure 1.1), the right and left atrium 

and the right and left ventricle (RV and LV).  The atrioventricular valves (tricuspid and 

mitral valve) open passively, allowing the transfer of blood between the atria and the 

ventricles, and prevent backflow. To prevent the prolapse of the atrioventricular valves, 

the ventricles have structures called papillary muscles. There are five papillary muscles 

on the ventricles, three in the RV and two in the LV. These structures are connected to 

the atrioventricular valves [1, 3, 4]. 

Regarding the blood circulation, the atrium ejects the blood into the ventricle, 

which will further expel the blood towards the rest of the body. The activity of these 

chambers is similar to two pumps in series. The two ventricles are responsible for the 

blood flow between two systems, the systemic and pulmonary [2, 5]. In the pulmonary 

circulation, the right ventricle drives deoxygenated blood to the lungs. In the lungs, an 

 

Figure 1.1 - The heart anatomy. Adapted from [6]. 
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Figure 1.2 – Distribution of the blood output from 

the LV [2]. 

oxygenation process occurs. Next, the 

blood continues to the left part of the 

heart, where the left ventricle pumps 

blood towards the rest of the body 

(Figure 1.2) [2]. 

In terms of structure, each 

chamber has different properties of the 

walls. The ventricles, which develop 

much higher pressures compared to the 

atria, have thicker muscular walls. The 

LV has a mass which is approximately three times higher than the RV and the 

myocardial wall is twice as thick. The pressure in this chamber (LV) is also typically 

three times higher than the RV. In resting conditions, each ventricle pumps 

approximately 5 l/min. During exercise, this value can increase up to 5 times [1, 3]. 

The heart function is a complex process, where the different cavities interact and 

the cardiac contraction should occur in a rhythmic and coordinated fashion [1]. The 

cardiac cycle can be divided into diastole and systole. End-diastole (ED) occurs when 

the ventricles are relaxed and marks the phase when they are maximally expanded. End-

systole (ES) is characterized by the maximum contraction of the heart [2]. 

The heart contraction is regulated by electric pulses that propagate throughout 

the myocardium. The electrocardiogram (ECG) is a system used to record electric 

activity of the heart from the surface of the body. The ECG signal can be divided into: 

the P wave caused by the activity of the atrium, resulting in a transport of blood towards 

the ventricles; the QRS complex, which originates from the contraction of the 

ventricles. This complex defines the ED moment; and the T wave represents the onset 

of ventricular relaxation [5]. 

1.2.  Cardiac motion  

1.2.1. Cardiovascular diseases 

Cardiovascular diseases (CVDs) contain the heart and circulatory system 

anomalies, and include for example coronary heart diseases, cardiomyopathies, heart 

failure and valvular heart diseases. 



Introduction 

 

5 

 

Coronary heart diseases (CHDs) are associated with a reduced blood supply of 

the myocardial tissue, which can lead to ischemia and cause damage or death of the 

cardiac cells. Consequently, the wall loses the capability to contract, and a regional 

dysfunction occurs. This reduction can originate from atherosclerosis of the artery, or an 

accumulation of lipids in the vessel wall, or complete occlusion of the artery [7]. 

Cardiomyopathies are diseases that primarily affect the myocardium. They are 

related with asymmetric grow of the heart muscle, which will affect the normal 

ventricular structure and function [2]. In hypertrophic cardiomyopathy, the thickness of 

the ventricular wall is locally enlarged, e.g. septal hypertrophy. The asymmetric growth 

will affect the normal heart function, and in severe cases can obstruct the ventricular 

output. This disease can be detected with ECG, since the thickened septum will affect 

the ventricular and atrial contraction. This anomaly can leads to heart failure with an 

increased end-diastolic volume and reduced ejection fraction from both ventricles [2].  

Heart failure corresponds to the loss of pumping performance by the heart. This 

problem will reduce the quantity of blood ejected into the aorta or the pulmonary artery. 

As such, the heart contraction is negatively affected due to the increased afterload. 

Heart failure can be caused by several causes, e.g. mitral stenosis, hypertrophic 

cardiomyopathy and aortic stenosis [1]. 

Finally, valvular heart diseases (VHDs) are related with the cardiovascular 

valves. When they function normally, they open passively during the heart contraction, 

and are responsible for a proper blood transfer between the cavities and the rest of the 

body. Malfunctioning can occur due to a (aortic and mitral valve) stenosis and leads to 

regurgitation. This will affect the heart pump activity, and the myocardial muscle 

typically enlarges and thickens [3, 8].   

1.2.2. Regional heart deformation 

The CVDs typically manifest themselves during the heart contraction. Since 

many CHDs result in local myocardial dysfunction, research on local wall motion and 

deformation has gained considerable attention over the last decade and is currently one 

of the main research topics.  

To quantify the heart function, mechanical principles can be used, such as strain. 

The strain value is an indicator about the deformation in a certain direction. This 

mechanical quantitative parameter can quantify the heart contraction at global and 

regional levels.  
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Studying heart function is not straightforward due to the difficult access to this 

organ. Invasive surgeries for visualizing the heart presents several drawbacks, and in the 

last years some methods based on medical imaging techniques were therefore proposed.  

Initially, the ventricular wall motion quantification was realized using implanted 

radiopaque markers and tracking them with X-ray in canine hearts [9]. However, these 

techniques are invasive and not feasible in clinical practice. To solve these problems, 

several studies were presented [10-15], where different methodologies were developed 

using echocardiographic imaging, cine magnetic resonance imaging (cine-MRI) and 

tagged MRI (t-MRI). The conventional image modalities, such as echocardiography and 

cine-MRI are useful to assess global cardiac function, but the assessment of the regional 

wall function can be challenging. t-MRI is an interesting technique for global and 

regional assessment of the heart’s mechanics. In section 1.2.3, a description about this 

technique will be presented. Finally, in section 1.3 an explanation about the medical 

image processing methods will be performed. 

1.2.3. Tagged Magnetic Resonance Imaging 

Tagged Magnetic Resonance Imaging is an imaging technique that induces a 

spatial line or grid pattern in the tissue of interest by spatially presaturating the tissue 

magnetization (Figure 1.3). This image modality differs from the other MRI 

acquisitions in the combination of radio-frequency (RF) and gradient pulses in order to 

define a regular pattern on the image. These patterns are called tags and they move and 

deform with the myocardium. The tags can be used to locally study the heart 

deformation. As advantages, the presence of tags on the myocardium wall makes 

studying the regional wall deformation easier and simplifies the assessment of certain 

motion components, such torsion. Nevertheless, the analysis of these datasets is 

challenging due to tag fading, the relatively low spatial resolution and the big variability 

in terms of tag properties between datasets, making it hard to delineate the cardiac 

anatomy (Figure 1.3) [16-18].  

To produce the tag patterns several popular imaging sequences can be used, for 

example: the spatial modulation of magnetization (SPAMM) [19],  delays alternating 

with nutations for tailored excitations (DANTE) [20], radial tags [21], hybrid 

SPAMM/DANTE [22], complementary spatial modulation of magnetization 

(CSPAMM) [23], sinc-modulated DANTE [24] and 3D-CSPAMM [25]. The 

advantages and disadvantages of these acquisition protocols are shown in Table 1.1. 
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Figure 1.3 - Five t-MRI sequences. 
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Table 1.1 - Tagging pulses acquisition protocols [16] 

 

The differences between the acquisition protocols are related to the tag 

properties, such as the sharpness of the tag pattern, the contrast-to-noise ratio of the tag 

compared to the myocardium and the tag persistence during the acquisition. The 

sharpness of the tag pattern is not an essential factor, but the myocardium tag contrast-

to-noise ratio should be high enough to allow detecting the heart motion [26]. 

 In the current master thesis, the t-MRI images used are acquired with the 

SPAMM protocol. As such, an explanation about this technique will be presented next. 

Regarding the SPAMM technique, initial work was performed by Zerhouni et 

al., in which a method for tagging a few parallel planes within the heart wall using 

selective RF excitation was suggested [26]. In 1989, Axel and Dougherty introduced the 

SPAMM technique to produce saturated parallel planes throughout the entire volume 

[18]. Figure 1.4 shows the method typically used by SPAMM. The tagging sequence is 

triggered by the upslope of the QRS from the ECG. After the trigger signal, image 

acquisition is performed and a magnetization storing sequence, composed of a crusher 

gradient and tagging pulse trains, is applied. The crusher gradient is used to dephase any 

transverse magnetization and the tagging pulse trains will define the tag pattern. 

Tagging pulse sequences are usually imposed at ED. Typically the grid is created based 

Method Advantages Disadvantages 

SPAMM [19] Fast, efficient. Sensitive to tag fading. 

CSPAMM [23] 
Longer net tag persistence; 

suppresses untagged blood. 

Longer image 

acquisition. 

DANTE [20] Faster than SPAMM. 
The RF technique is 

difficult to implement. 

Sinc-DANTE [24] Sharper tags. 
The RF technique is 

difficult to implement. 

SPAMM/DANTE [22] 

Less demanding on RF than full 

DANTE; Less demanding on 

gradient than SPAMM. 

Less benefits than either 

alone. 

Radial [21] 
Better performance in the 

circumferential direction. 
Inefficient to implement. 

3D CSPAMM [25] Real 3D tagging. Difficult to implement. 



Introduction 

 

9 

 

on the combination of horizontal and vertical stripes. After the tagging step, a new RF 

pulse will restore the magnetization back to its steady-state position [16, 17, 22]. The 

main drawbacks of SPAMM are its fast tag fading and the requirement of repeated RF 

excitations during imaging. 

 
Figure 1.4 - Schematic about the SPAMM tagging pulse methodology. Adapted from [26]. 

 

In 1993, Fischer et al., suggested a new approach to minimize tag fading using a 

complementary SPAMM (CSPAMM). In this case, two tagged SPAMM images, 180
º
 

out of phase with each other are acquired. The CSPAMM is then created by subtracting 

both images. The main disadvantage is the increased image acquisition time [23].  

Please note, these images allow assessing motion in-plane by following the tag 

deformation, but do not allow estimating the out-of-plane components. Given the three-

dimensional complex heart motion, the assessment of the strain using a 3D model 

would be beneficial. Some strategies have been proposed to solve this problem by 

combining short axis (SA) and long axis (LA) views (see Figure 1.5) [27].  

 

 
Figure 1.5 - Definition of the SA and LA views. Adapted from [28]. 

 

As an alternative, Ryf et al., proposed a real 3D tagging sequence (3D 

CSPAMM - Figure 1.6). The images are acquired with two 90
º
 block pulses, 

interspersed by a dephasing gradient. A strategy similar to SPAMM is used, where a 

sinusoidal modulation of magnetization is used to create a shaped tag pattern. To create 
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a 3D grid, the modulation is repeated in all 

three spatial directions. The second 90
º
 

pulse is used to create the complementary 

image, but in this case the modulation is 

inverted. The subtraction between the two 

images in each direction reduces the tag 

fading in the 3D tagging acquisition. As 

such, this technique can estimate the 3D 

motion, without the misalignment problems 

related with the combination of different SA 

and LA views [25]. 

 

Figure 1.6 - 3D tagging structure visualized 

by isosurface rendering of the 3D dataset 

[29]. 

 

1.3. Medical Image Processing 

Medical image processing focuses on the manipulation and analysis of medical 

images to enhance and illuminate important structures inside the data stream [30]. This 

research field is applied in clinical practice to improve diagnosis and monitor disease 

progression. 

Medical images can be acquired using a wide array of image modalities such as 

ultrasound (US), single photon emission computed tomography (SPECT), positron 

emission tomography (PET), computed tomography (CT) or MRI [31]. 

The main topics of research and challenges are: image enhancement and 

restoration, to improve the image quality; automated and accurate segmentation, to 

delineate anatomical structures; image fusion using registration, to combine information 

from different image modalities; disease progression studies, and, image tracking. 

1.3.1. Medical Image Segmentation 

Segmentation can be defined simply as the partitioning of a dataset into 

contiguous regions whose pixels/voxels have common and cohesive properties [30]. In 

medical imaging, this is commonly used to delineate important structures, e.g. 

pathologies, organs and tumors (Figure 1.7). The principal challenges are the image 

quality (noise, limited contrast), the large diversity of objects and images, the large 

variability in size and shape, and the unknown ground truth [30]. 

The segmentation can be done using manual, semi-automated or automatic 

approaches [32]. Manual segmentation is a tedious, time consuming and subjective task. 
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Semi-automated and automated approaches aim to solve these issues. The development 

of these methods is not straightforward and can be difficult to implement within clinical 

practice. The semi-automated segmentation requires a user dependent framework. In 

terms of final output, high efficiency and large applicability can be achieved, but 

variability between observers is expected. The automatic approaches are only based on 

the input image, and no user input is required. With these approach, the final result is 

independent of the variability and clinical experts [33]. 

Segmentation methods can be classified into image-based, model-based and 

hybrid methods [32]. The image-based methods only rely on image data and include the 

following techniques: thresholding [34], region growing [35], mathematical 

morphological operations [36], active contours [37], level sets [38], live wire [39] and 

watershed [40]. These methods typically achieve a high performance in high quality 

images. Model segmentation methods exploit object shape and/or appearance through 

the use of atlases [41], statistical active shape models [42] or statistical active 

appearance models [43]. These models can segment bad quality images and can contour 

correctly even if information is missing on the image [32]. 

 

Figure 1.7 - 3D endocardium segmentation in echocardiography image [44]. 

 

The hybrid methods use the properties of the last two classes to develop more 

powerful segmentation tools, with superior performance and robustness over the 

individual methods [32]. 
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1.3.2. Medical Image Registration 

Medical image registration is the process of finding the spatial transform that 

maps the points from one image to the corresponding points in another image (Figure 

1.8) [30]. Typically, the moving image represents the image where the transformation is 

applied, and the fixed image the reference for the alignment. The registration problem 

will search for the best transformation capable to map the moving image onto the fixed 

image. This transformation will minimize the differences between the two images.  

 
Figure 1.8 – Registration problem. Searching for the best transformation (T) capable to map the 

moving image on the fixed image with minimum error. 
 

Normally, the registration problem has a scheme similar to the Figure 1.9, where 

an iterative process is used to detect the optimal transformation between the two 

images. In each iteration, a different transformation is applied on the moving image, and 

a metric is used to compare the two images. The optimal transformation describes one 

image in terms of the other with the minimum error [45]. 

Several transformation classes can be defined, depending on the number of 

parameters to be optimized and the amount of deformation they can model, e.g. rigid, 

affine and non-rigid. The amount of parameters to be optimized will affect the 

computation time [45]. 

Rigid transformation has 6 degrees of freedom (DOFs), where translation and 

rotation are the only transformations allowed to be applied on the two images during the 

alignment (see Figure 1.10a). The affine transformation has 12 DOFs, and uses all the 

transformation from the rigid transformation plus scaling and skew between the two 

cases (Figure 1.10b). Finally, non-rigid transformation, also known as elastic image 

registration, is a more complex process, where more DOFs are available to detect and 

describe local deformations between the two images (Figure 1.10c) [30]. Obviously, in 

terms of computational time, the non-rigid registration has the highest value, and the 

rigid transformation the lowest one. 
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Figure 1.9 - Registration problem scheme. 

 

Three classes of registration can be distinguished: point-based, – minimizes the 

averages distance between corresponding points; surface-based, - minimizes the average 

distance between the surfaces; and, voxel-based registration, – minimizes the 

differences in terms of intensities between the two images. In the current work, we 

focus on voxel-based registration methodology. 
 

 

Figure 1.10 – Transformation models used by (a) rigid registration, (b) affine registration, and, (c) 

non-rigid registration [46]. 
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Multimodal and unimodal registration are two different problems of registration. 

The multimodal registration occurs between images acquired from different medical 

devices (e.g. MR and CT), where the images present different properties, for example 

intensity. Unimodal registration uses images acquired from the same image modality, 

with similar properties between them. In each situation, different registration 

configurations should be used. For example, in a multimodal registration we can not use 

a similarity metric based on intensities, since there are no relation between the 

intensities in the two cases. A metric only based on the difference in terms of intensity 

is typically used in a unimodal registration problem. 

Nowadays, image registration is useful within clinical practice and can be 

applied in several scenarios. For example, it can be used to assess disease progression 

by aligning multiple images acquired at different time instances (Figure 1.11) [30, 47].  

 
Figure 1.11 - Example of thorax tumor staging from PET and CT [46]. 

 

Another example is related with image fusion to combine the advantages from different 

modalities (e.g. CT and PET). In this case, an image with more information, compared 

to the individual images, can be created. For example, MR images have good soft tissue 

discrimination for lesion identification, while CT images provide good bone 

localization, which is useful for surgical guidance (see Figure 1.12) [47]. 

 
Figure 1.12 - Example of fusion data from MR and CT by image registration. (left) MR overlaid on 

CT and (right) CT overlaid on MR [46]. 



Introduction 

 

15 

 

1.4.  Motivation 

In 2008, a European study showed that cardiovascular diseases (CVDs) and 

circulatory system diseases are the main cause of death in Europe (Figure 1.13a). Each 

year, CVDs cause 4.3 million deaths in Europe and over 2.0 million deaths in the 

European Union. Overall, CVDs have a financial impact of €192 billion a year [48]. 

Figure 1.13b shows the CHDs prevalence in each country. The image indicates 

that the number of deaths is generally higher in Central and Eastern Europe then 

Northern, Southern and Western Europe [48]. 

 

  

Figure 1.13 - (a) Deaths by cause in Europe (b) Death rates from cardiovascular problem in each 

country of Europe [48]. 
 

A variety of diseases can affect the heart function and it is important to study 

wall motion and deformation. These two factors are important clinical indicators on 

regional heart function. 

 Since the LV is responsible to pump the blood to the whole body, the biggest 

pressures occurs inside this cavity. Based on this fact, a large number of diseases will be 

detected on the left ventricular wall. It is important to mention that all the heart cavities 

do not work independently, and a problem in one structure will influence the others. A 

complete study about the myocardial wall in all the cavities will be an important 

indicator to detect dysfunctional regions. In the present work, we focus only on studying 

the left ventricular wall, due to the biggest pressures, the large area and importance of 

this cavity during the cardiac cycle.  

Finally, it is important to mention that a regional quantitative assessment of the 

LV wall deformation is not straightforward, due the difficult to quantify the cardiac 

motion without specific software. 
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1.5. Aim  

In this project, we intend to develop a method to automatically assess the LV 

wall deformation using t-MRI. The t-MRI images are commonly used, due to the 

accurate results achieved in the computation of regional heart deformation and the 

possibility to study torsion effects [17].  

To automatically extract myocardial strain, we focus on both tracking the 

myocardium, as well as, automating the definition of the region-of-interest (ROI) by 

developing a segmentation algorithm for the endo- and epicardium. 

Smal et al. [49] compared four frequently used MRI tracking methodologies: 

optical flow, harmonic phase, B-spline snake grids and non-rigid registration based on 

free-form deformation (FFD) transformation model. Based on their results, non-rigid 

image registration was selected to be developed in this thesis. The registration problem 

was reformulated to include temporal information on the transformation model used. 

We expect to develop a more coherent tracking methodology, with high accuracy, and, 

able to estimate the motion field on a large number of images, available in different 

clinical t-MRI datasets. 

Segmentation of t-MRI images is a challenging task due to the high variability of 

t-MRI images properties. We therefore first propose a detagging step by filtering in the 

Fourier domain. Next, a B-Spline Explicit Active Surface (BEAS) framework is used to 

segment the myocardium and indicate a ROI for strain estimation. This framework has 

already been proven successful for the segmentation of the LV in US [44] and cine-MRI 

[33]. In the end of this task, we intend to develop an automated framework for LV 

segmentation in a large number of t-MRI images (with different image properties, e.g. 

image intensities, tag orientation). 
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1.6.  Thesis outline 

The second chapter describes the methodologies available in literature, for LV 

tracking, detagging and segmentation of t-MRI images.  

In the third chapter, an explanation about the fundamentals of the registration 

problem, image segmentation using active contours models and strain estimation is 

given. This chapter is essential as a rationale and basis for all the innovations that will 

be proposed in the next chapter. 

The fourth chapter describes all the methods developed during the master thesis. 

All the techniques indicated in this chapter are not available in literature, and a detailed 

description about the implementation and limitations is presented. This chapter focuses 

on the tracking problem, using a non-rigid registration method with a new formulation 

of the transformation model, and in a new methodology for detagging and segmenting t-

MRI images. 

In the fifth chapter we describe the datasets and the experiments used to validate 

the different steps of the developed framework. 

In the sixth chapter, we show the validation results for all the proposed methods. 

This is achieved by a direct comparison between the proposed methods and the 

available commercial software package. 

The seventh chapter discusses the results obtained in the previous chapter. 

Finally, in the eighth chapter, the main conclusion of the thesis, the limitations 

of the present framework, the contributions and possible future work are presented. 
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2. LV tracking and segmentation in t-MRI images  

In this chapter, a description about the methods available in the literature for LV 

tracking, LV detagging and LV segmentation in t-MRI is presented. Initially, all the 

tracking categories used for these images are explained. During this explanation we will 

emphasize the available non-rigid registration methodologies, due the importance for 

the current work. In a second part of this chapter, the available detagging and 

segmentation methods are presented. 

2.1.  LV tracking methods 

Techniques to track the myocardium within t-MRI images can be grouped into: 

tracking landmarks, harmonic phase (HARP), local sine wave modeling, gabor filter 

banks, deformable models, optical flow methods and registration based methods [18]. A 

comparison between the different methods is available on the Table 2.1. 
 

Table 2.1 - Advantages and problems of the different methodologies for LV tracking 

Method Advantages Disadvantages 

Tracking 

Landmarks 

The method uses only 

information based on the tag 

positions; 

Sensitive to the tag fading and 

dependent of the image properties; 

HARP 

The motion field is estimated 

in the frequency domain; 

The method is fast; 

Can fail in the presence of a large 

amount of motion; 

Local sine 

wave 

modeling 

Less sensitive to artifacts, 

faster, better noise reduction 

and with higher accuracy when 

compared with HARP; 

Fail in the presence of a large amount of 

motion; More difficult to implement 

when compared with HARP; Few 

works using this methodology; 

Gabor Filter 

Banks 

More adaptive to large tag 

deformation; 

More dependent of the images 

properties, when compared with HARP; 

Deformable 

Model 

High feasibility to estimate the 

motion field. 

Some approaches use a tag extraction 

step; High computational time; 

Optical 

Flow 

Does not require explicit 

modeling of the tags. 

Fail in the presence of a large amount of 

motion; Sensitive to the tag fading; 

Non rigid 

registration 

High accuracy; Less sensitive 

to tag fading; 
Intensive computation required; 
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The tracking landmarks method directly uses the tags position present in the 

image to estimate the displacement field (see Figure 2.1) [18].  Kerwin and Prince 

estimate the 3D displacement field using this technique. In their approach, each tracked 

point is located at the intersection of the three tag surfaces, which is estimated using 

splines and an iterative approach [50]. Amini et al. proposed a similar technique, where 

B-splines are used to estimate the displacement and create a parametric representation 

of the tags with a low computation time [51]. 

 
Figure 2.1 - Block scheme of strain estimation using tracking landmarks. 

 

HARP is an image processing technique, where the original image is analyzed in 

the frequency domain, using a fast fourier transform (FFT). In the frequency domain, 

the t-MRI images show distinct spectral peaks, each of which containing information 

about the motion. The inverse Fourier transform of a single peak, extracted using a 

bandpass filter, is a complex image whose phase is linearly proportional to a directional 

component of the motion (see Figure 2.2). These algorithms are typically fast and 

automatic, but have a lower performance when large motions occur [18]. Ryf et al. 

improved the HARP technique, using the positive and negative tag peak to increase the 

accuracy [29]. On the other hand, Sampath et al. created a new pulse sequence method 

to acquire only a small region around the selected spectral peak. This allowed to reduce 

the acquisition time considerably and assess the heart motion in real-time [52]. Previous 

approaches only measure the motion in 2D, as such Pan et al. extended the traditional 

HARP method to 3D. This 3D analysis uses a stack of SA and LA images [53]. Another 

technique capable to estimate the 3D motion was proposed by Abd-Elmoniem et al. 

[54]. Here, the Z-HARP pulse sequence method estimates motion in-plane and through-

plane from a single image plane [54]. Liu et al. suggested a new refinement method to 

improve the robustness of the 3D estimation algorithm. In this case, the method 

searches the optimal motion for each pixel in the original image by solving a single 

shortest path problem. They showed that errors could be reduced in images with large 

motion [55]. Additionally, it is important to mention that the HARP is used in current 

commercial packages for motion estimation in t-MRI images [56]. 
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Figure 2.2 - Block scheme of strain estimation using HARP. 

 

The local sine wave modeling is a frequency-based method similar to the HARP 

methodology. In this method, the phase and frequency of each pixel are directly 

estimated from the frequency domain. Then, the displacement is calculated from the 

ratio of phase difference and local frequency. Arts et al. shows that the proposed 

technique is as fast as HARP but with higher accuracy, noise reduction and lack of 

artifacts [57]. 

Another commonly used technique to estimate the motion field, is based on 

gabor filter banks. This technique uses a band-pass filter with a gaussian form 

multiplied by a complex sinusoid. The phase response can then be used to track the tags 

and heart motion (see Figure 2.3) [18]. Montillo et al. presented a work using this 

technique to estimate motion in a 2D approach and proposed the parameters that 

maximize the filter response [58]. Qian et al. extended the previous work to 3D [59]. 

Chen et al. proposed a new technique to estimate motion in 3D with high accuracy, 

combining the response of the gabor filters, gradient information of the original images, 

an intensity probabilistic model and a spatio-temporal smoothness constraint [60]. 

 
Figure 2.3 - Block scheme of strain estimation using gabor filter bank. 

 

Deformable models typically use a model to fit the data using energy 

minimization criteria (see Figure 2.4) [18]. Clarysse et al. proposed a cosine series 

based model to get a mathematical expression of the reconstructed displacement field 

for 2D t-MRI images. The coefficients of the cosine model were obtained by 

minimizing the distance between the projection of deformed tag lines and undeformed 

ones [61]. Other methods using 3D or 4D B-splines were suggested later in, e.g. [62, 

63]. In these works, the model fitting is expressed as an energy minimization problem, 

where the objective is the optimization of the cost function which encodes the distance 

between the isoparameteric planes and MRI tags planes. In these cases, the output was a 

time-varying B-spline solid whose knot planes reconstructed the tag surfaces in the 
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three orthogonal directions for all the points. Tustison et al. further improved this 

approach using a new internal energy, based on the information over the entire 4D space 

[64]. The same authors proposed an alternative transformation model based on Non-

Uniform Rational B-splines (NURBS) model. This model was implemented in polar 

and cylindrical coordinates and restricted to the ventricular wall [65]. 

 
Figure 2.4 - Block scheme of strain estimation using deformable models. 

 

Optical flow techniques track tissue based on a differential analysis of motion. 

The spatial gradient and spatial time derivative at each pixel is used during the 

computation. The method assumes that the image intensity remains constant between 

consecutives frames (see Figure 2.5). This assumption may be violated in t-MRI, due to 

the tag fading during the cardiac cycle [18]. Prince and McVeigh overcame this 

limitation by proposing a term in the optical flow formulation which accounts for the 

variable brightness of the tag lines [66]. Dougherty et al. used a similar method, but in 

this case a Laplacian filter was used to compensate intensity differences [67].  

 
Figure 2.5 - Block scheme of strain estimation using optical flow methodology. 

 

The registration based method uses an iterative process to determine the optimal 

transformation between two images. The optimal transformation is used to estimate the 

strain between each frame (see Figure 2.6).   

 
Figure 2.6 - Block scheme of strain estimation using non-rigid registration. 

 

Chandrashekara et al. adopted a non-rigid image registration framework for t-

MRI [68]. It was inspired by the work of Rueckert et al. [69], which was previously 

applied on breast MR images. In the original work of Rueckert et al., Mutual 

information (MI) was used as a similarity metric and an initial global transformation is 

firstly found followed by a local transformation to refine motion [69]. On the other 

hand, Chandrashekara et al. omitted this initial global transformation since no large 

motion differences were expected over the cardiac cycle. The normalized mutual 
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information (NMI) was selected [68] as a similarity metric and the reference image was 

always the ED frame (in this thesis termed “pairwise 2D alignment”, see Figure 2.7a). 

In the same year, Chandrashekara et al. proposed another approach, where the temporal 

information was included in the registration [70]. In this case, the registration problem 

was defined between two image sequences: a fixed image sequence with a repeated ED 

frame, and a moving image sequence containing the actual cardiac sequence (termed 

“fixed 2D+t alignment”, see Figure 2.7b). The proposed method was compared with the 

first approach in [68], and the results suggested that the fixed 2D+t alignment [70] 

allowed estimating the motion with a higher accuracy compared to a traditional pairwise 

strategy. Inspired by the approach of Rueckert et al. [69], Oubel et al. adopted the same 

image registration scheme (“pairwise 2D alignment”, Figure 2.7a) [71, 72] but with a 

new similarity metric, α-MI. In 2007, they extended their work from 2D to 3D, by 

combining information from the SA and LA views [73]. In 2011, Oubel et al. proposed 

an alternative registration scheme. Instead of the typical pairwise registration, a set of 

transformations were first defined with the reference image always being the ED frame. 

All the transformation were then optimized simultaneously to minimize α-Entropy 

(“joint 2D+t alignment”, Figure 2.7c) [10]. This new technique was compared with the 

pairwise 2D alignment approach of Chandrashekara et al. [68], and a higher accuracy 

was obtained. Lastly, Shi et al. described a new idea, where cardiac motion was 

estimated using information from t-MRI and non-tagged MRI. Their results suggest that 

combining t-MRI with untagged MRI may leads to a higher accuracy compared to 

registration methods solely based on t-MRI or cine-MRI [74]. 

 

 

Figure 2.7 - Different registrations schemes: a) pairwise 2D [68], (b) fixed 2D+t alignment [70], (c) 

joint 2D+t alignment [10]. 
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2.2.  LV segmentation methods 

The main problems to segment t-MRI images are typically related with the tag 

properties: myocardial boundaries are often obscured or corrupted by the tagging lines; 

increase of the intensity contrast between tagged and un-tagged tissues with a lower 

contrast between the myocardium and the blood pool; and, myocardium and blood pool 

intensities varies during the cardiac cycle due to the tag lines fading in the myocardium 

and being flushed away in the blood [75]. 

To cope with some of these challenges, several methods have been developed 

(Figure 2.8).  

 

Figure 2.8 - Methods to segment t-MRI images. 
 

One group of those has focused on suppressing the tags first, followed by a 

segmentation based on deformable models, or, by image registration with other MRI-

image (see section 2.2.1). The main drawback of these methods is the detagging step, 

where a filter is used to remove the tag frequencies, which result in a blurred and low 

contrast image. The other group of methods is based on machine learning. However, the 

segmentation result is largely dependent on the images used (number of cases and 

variability between images) during the training step of the algorithm (see section 2.2.2).  

A comparison between the different methods proposed in the literature for LV 

segmentation in t-MRI is showed in the Table 2.2. 

2.2.1. LV segmentation after un-tagging t-MRI images 

In 1994, Guttman et al. used a morphological closing operation to remove the 

presence of tag lines in a ROI defined by the user. The Sobel filter was then applied on 

the closed image and the result in terms of magnitude and angle was used to detect the 

concentric circles. Since the Sobel filter will detect several boundaries on the image, 

dynamic programming is used to detect the optimal contour, using the method proposed 
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Table 2.2 - Comparison between different methods available in literature for LV segmentation 

Authors Advantages Disadvantages 

Guttman 

et al. [76] 

The first work proposed for LV 

segmentation in t-MRI, using 

only classical operations; 

The method was validated in a few 

number of images; The method was 

only applied in line tag pattern images; 

Manglik 

et al. [77] 

A more adequate suppression 

technique is used. Better 

results are expected when 

compared with [76]; 

The method was only applied in line tag 

pattern images; 

Milles et 

al. [78] 

Less dependent of the image 

properties; 

The method was validated in a few 

number of images; 

Zhen et 

al. [59] 

The window of the filter is 

adapted to the tag frequencies. 

The method was only applied in line tag 

pattern images; 

Camara 

et al. [79] 

High accuracy for the 

estimation of LV contour; 

The registration can introduce some 

errors; High computational time; 

Huang et 

al. [80] 

The method was applied in a 

large number of images, with a 

high TPF; 

The method was only applied in line tag 

pattern images; High computational 

time; Dependent of the images used 

during the test phase; 

Qian et 

al. [75] 
High accuracy is expected; 

The method was only applied in line tag 

pattern images; High computational 

time; Dependent of the images used 

during the test phase; A small number of 

images were used during the validation; 

 

in [81]. Furthermore, the cavity is assumed to be darker than the myocardium (see 

Figure 2.9). The method was applied in 8 images, and the authors suggest a good 

correspondence, by visual assessment, between the detected contours and the cardiac 

boundaries [76]. 

 
Figure 2.9 - Block scheme for segmentation in t-MRI using the strategy proposed in [76]. 
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Manglik et al. used a 2D Gabor filter (a band-pass filter) to remove the tags, 

with the central spatial frequency of the filter set equal to the frequency of the tags on 

the image. The proposed filter only removes the tags, while keeping the lower or higher 

spatial frequency components of the image. After the tag suppression, the contours for 

the LV and RV are obtained using an active contour methodology. The method was 

compared with a ground truth (obtained using a manual segmentation), and the error 

was of 8% (see Figure 2.10) [77].  

 
Figure 2.10 - Block scheme for segmentation in t-MRI using the strategy proposed in [77]. 

 

Milles et al. suggested a three steps technique to automatically segment the LV 

from a t-MRI sequence using motion information (Figure 2.11). The preprocessing step 

is used to compute motion fields using a methodology similar to HARP. A band-pass 

filter centered on the tag frequency is used to create an envelope of the tags. The last 

two steps are the template initialization and a segmentation of the LV based on the 

deformable template model proposed in [82]. The method was tested on simulated and 

in vivo datasets, with 2 pigs dataset, 1 health volunteer dataset and 2 pathologic dataset. 

A manual contour of each dataset was developed. A true positive fraction (TPF) of 

88.0±6.8, 82.0±8.5, 83.0±4.6, and 83.3±7.3 was obtained for the simulated, pig, normal 

volunteer and pathologic datasets, respectively [78]. 

 
Figure 2.11 - Block scheme for segmentation in t-MRI using the strategy proposed in [78]. 

 

Qian et al. described another method for tag suppression based on a 2D band-

stop filtering technique (Figure 2.12) [83]. The purpose of the band-stop filtering is to 

attenuate the tag frequency components in the 2D spectrum. The region of the band-stop 

filtering was designed in such way that it completely suppresses the tags components, 

but preserves the low and high frequencies as much as possible. To define the filter 

region, the spectrum is partitioned into several regions around the energy peaks 
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corresponding to the tag frequencies. A Principle Component Analysis (PCA) is then 

used to detect the optimal sized 2D asymmetric Gaussian to model the harmonic region. 

The segmentation is obtained using the deformable model proposed in [84]. The 

proposed method was applied successfully on more than 150 clinical tagged cardiac MR 

images acquired with different imaging settings, suggesting this technique to be robust. 

 
Figure 2.12 - Block scheme for segmentation in t-MRI using the strategy proposed in [83]. 

 

Camara et al. fuse information from cine-MRI images and t-MRI using image 

registration (Figure 2.13) [79]. The LV is first segmented on the cine-MRI images as it 

is easier to detect. The contours are then propagated to the t-MRI image sequence by 

image registration. In order to successfully register both sequences, the tags in the t-

MRI image are first suppressed. The tag suppression is done using a steerable pyramid 

image decomposition methodology. This type of methods allows a multi-resolution and 

multi-orientation image decomposition where the analysis could be realized using 

different supports and orientations. The authors suggest the use of five orientation 

bands. The oblique orientation coefficients with magnitude above a given threshold are 

set to zero. The authors compare the presented technique with the methodology based 

on band stop filters, and conclude that the new strategy leads to a lower computational 

cost, and is more robust to noise and scale invariant due to the multi-resolution strategy 

[79]. 

 

Figure 2.13 - Block scheme for segmentation in t-MRI using the strategy proposed in [89]. 
 

2.2.2. LV segmentation on the original t-MRI image 

Huang et al. developed a framework for learning a joint shape and appearance 

model for segmentation in t-MRI (see Figure 2.14). The algorithm starts with a global 

alignment of the training examples under a reference frame. A local registration using 

MI and a gradient descent optimization was applied to solve the dense correspondence 

problems. To define the features of the statistic shape and appearance model, a PCA 
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method was applied on the FFD control lattices to capture variations in shape and 

intensity. The method was applied on 320 images from two 4D t-MRI datasets. A TPF 

of 97.9% and 96.2% was obtained for the first and second dataset, respectively [80].  

 
Figure 2.14 - Block scheme for segmentation in t-MRI using the strategy proposed in [80]. 

 

Qian et al. implemented an active shape model to introduce a priori knowledge 

in the method (Figure 2.15). An Adaboost classifier was used for the learning step of the 

segmentation. The method was applied on three datasets acquired from three different 

patients. The method does not require any human interaction and the authors claim that 

it is highly accurate [75]. 

 
Figure 2.15 - Block scheme for segmentation in t-MRI using the strategy proposed in [75]. 

 

2.3. Summary 

During this chapter, we explained and discussed the different methods available 

in literature for LV tracking and segmentation in t-MRI. Based in all the tracking 

techniques, we focused on image registration approaches, due the high accuracy and 

high feasibility to estimate the motion field, independently of image properties. It is 

important to mention, that there are image registration methods where the temporal 

information is incorporated on the transformation model. The results suggested that 

these formulations appear to be more accurate. 

Regarding the segmentation problem, we can see that some works were 

proposed during the last years. The comparison between the different techniques is not 

straightforward, due the difference between the images, the low number of images used 

during the validation, and the lack of a benchmark datasets. At same time, we observed 

that a method based on tag suppression followed by a deformable model appear to be 

the most commonly used technique to segment the LV cavity. 
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3. Mathematical Background 

In this chapter, we provide the mathematical background for several topics that 

will be developed further in the upcoming chapters.  

3.1. Motion estimation: Non rigid image registration 

Non-rigid registration is an imaging technique that estimates the optimal 

transformation              to align each point         in the moving image (    ) 

with the fixed image (    ). Image registration can be defined as a minimization 

problem: 

 ̂        
 

                   (3.1) 

where   is the cost function and   is the parameter vector that defines the 

transformation. To estimate the optimal transformation an iterative process is used, 

where different parameters are tested (see Figure 3.1). The individual components will 

be introduced in the next subsections. 

 

Figure 3.1 - The basic components of the registration framework. 

 

3.1.1. Transformation Model 

The transformation model will define all the parameters that describe the motion 

during the iterative process. In each iteration, a different transformation is applied on 

the moving image. Since we are using a non-rigid registration methodology, a high 

number of parameters will be used for the definition of the transformation between the 

fixed and moving image. 

Mathematically, the transformation model (T) represents the displacement field 

(u) that we need to apply to the initial position (r) to achieve the optimal result, and can 

be formulated as: 
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                   (3.2) 

In the present work, the displacement field (u) is described with a two-

dimensional third order B-spline tensor-product: 

            ∑ ∑      
 (

    
 

  
)  
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) (3.3) 

with    and    the control point location and spacing respectively,   [     ] are the 

parameters of the transformation field and    is the set of control points within the 

compact support of the B-spline              The B-spline tensor product has a local 

support, which means that the transformation of a point can be computed only from a 

limited amount of surrounding control points (Figure 3.2). This leads to a 

computationally efficient algorithm. Additionally, the interpolation nature of the tensor-

product B-spline transformation model enforces continuity during the motion 

estimation, and this naturally leads to an additional smoothness constraint. 

 

Figure 3.2- B-spline mesh overlaid over the reference image. The transformation parameters   are 

only defined on the mesh knot   [47]. 
 

In order to efficiently estimate the optimal transformation, a multi-resolution 

approach is commonly used (Figure 3.3). In the first level, i.e. at the coarsest level, the 

transformation uses a high value for the spacing between the control points (   . In the 
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subsequent levels, the value of    is gradually refined. By using the information from 

the previous levels, the local deformation can be efficiently defined [85]. 

 

Figure 3.3 - Conceptual representation of the multi-resolution registration process [85]. 
 

3.1.2. Cost function 

The cost function, which is calculated in each iteration, determines the quality of 

alignment after applying the current transform on the moving image. 

Typically the cost function (E) is defined as: 

        (3.4) 

where SM is a similarity metric, R a regularization term and   a term to modulate the 

influence of the regularization factor. 

 The SM is the factor responsible to compare the two images and to quantify the 

differences between them. The metric “drives” the optimization and should be chosen 

properly based on the properties of the images to be registered. Many metrics exist in 

literature [85] but in the present work we will focus on the sum-of-square differences 

(SSD) and mutual information (MI).  

 

3.1.3. Similarity Metrics 

Sum-of-squared differences (SSD) 

SSD is an intensity-based metric which assumes a linear relationship between the 

gray levels in the fixed and in the moving image [86]: 

     
 

 
∑ [            (    )]

 

      

 (3.5) 

This metric is particularly suited for unimodal image registration problems. 
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Mutual Information (MI) 

MI is a more complex metric based on the calculation of the joint histogram of 

the images and is useful for both unimodal and multimodal registration problems [86].  

MI  measures the statistical dependence between two images or equivalently the 

amount of information that one image contains about the other, without any assumption 

regarding the relationship between the gray levels in both images [87]. Mathematically, 

this method computes the statistical dependence between the actual joint intensity 

probability          , in the fixed image (    ) and moving image (    ), and the 

intensity distribution probability in the case of complete independence (marginal 

distributions)             , using the follow expression: [88] 

               ∑ ∑      

         

    

      

    

         

            
 (3.6) 

Contrarily to the SSD, where we intend to minimize intensity differences, in the 

MI approach the optimal transformation is determined when the metric reaches its 

maximum value. In this case, the equation (3.1) is not applied, and the image 

registration problem should be formulated as a maximization problem: 

 ̂        
 

               (3.7) 

To easily understand how this statistical measure is computed, consider Figure 

3.4 where two binary synthetic images A and B are shown (with black corresponding to 

intensity 0, and white to intensity 1). In this case, the probability of a voxel have a gray 

level will be       and      , and the joint probability will be defined as          

[86]. 

 

Figure 3.4 - Binary synthetic image. The black squares represent 0, and the white represent 1. 
 

In this specific case,       
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. Based on these values, and using equation (3.6), the value of MI for this 

pair of images will be: 

    
 

  
    

    

       
 

 

  
    

    

       
 

 

  
    

    

       

 
  

  
    

     

       
       

In practice, the joint probability distribution           is estimated using the 

joint histogram (Figure 3.5). The joint histogram can be defined as a function of two 

variables, where one variable/axis represents the gray levels intensity in the fixed image 

and the other, the gray levels intensity in the moving image. Each coordinate on the 

histogram represents the number of points with the same pair of intensities in the fixed 

and the moving image [89]. 

 

Figure 3.5 - Joint histogram used in a registration problem between a CT and MR example [87]. 
 

Typically, for a more efficient computation, the joint histogram uses ranges to 

combine the different gray levels (termed bins). This process is essential due the high 

number of intensities commonly presented in medical imaging. A large number of 

different intensities will generate quite large matrices, which would imply a high 

computational cost. At the same time, the bins approach prevents a quite sparse 

histogram, which will affect the performance of the metric. During the current master 

thesis, 32 bins are used to compute the joint histogram. 

Based on the initial formulation of the mutual information in [87], other related 

metrics where proposed. In this project, we will focus on the Mattes Mutual Information 

(MMI) [90] and the Normalized Mutual Information (NMI) [91]. 
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Mattes Mutual Information (MMI) 
 

MMI computes the metric based on the equation (3.6), but the computation of 

the joint and marginal probabilities are based on a B-spline parzen window. The B-

spline parzen window is defined as [92]:  

 (      )   
 

 
∑                  

    

                               (3.8) 

with N the number total of pixels,    and    representing the fixed and moving B-

spline parzen windows;    and    scaling factors that must be equal to the intensity bin 

widths. 

The B-spline parzen window (Figure 3.6) is essentially a data interpolation 

technique to estimate a continuous probability density function from which the samples 

were derived. This methodology is typically used to reduce the high computational time 

associated with the joint histogram calculation [85].  

 

Figure 3.6 - Parzen Window (blue), constructed by superimposing kernel functions centered on the 

samples of the image [85]. 
 

Normalized Mutual Information (NMI) 

The NMI uses the principles proposed in [87], but with a different formulation 

during the computation of the metric (see equation 3.9). As in MMI, to improve the 

computation time, a B-spline parzen window is used to compute the joint and marginal 

probabilities [92]. 

Mathematically, the NMI is defined as [92]: 
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(3.9) 
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3.1.4. Regularization Term 

As indicated in equation (3.4), the cost function is based on a similarity measure 

and a regularization factor. 

The regularization term is used to prevent non-physical deformation (Figure 

3.7). Due to the high number of DOFs, this constraint should be used to guarantee a 

smooth motion. It is important to mention that the B-spline tensor transformation model 

already imposes a certain degree of smoothness in the transformation field. 

Several regularization techniques are available in the literature [85, 92], but in 

the present work we focus on the bending energy (BE) method proposed by Rueckert et 

al. [69]. It is based on the bending energy of a thin sheet of metal and is defined as: 
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   (3.10) 

with  =[       the transformation vector and r representing each point in the reference 

image and        . 

Equation (3.10) will sum all the components of the Jacobian in all the directions. 

Since we aim for a smooth motion, this value should be always low. In case of a non-

physical deformation (Figure 3.7b) the value of the regularization will be high. This will 

result in a high value of the cost function. As such, this solution will be discarded, since 

we intend to minimize the cost function (in the case of SSD). 

 

Figure 3.7 - Regularization effect. (a) Normal registration result, (b) Non-physical deformation. 
 

3.1.5. Optimization 

Ideally, all parameters combinations should be tested to identify the optimal 

solution, but in practice this is not possible, due to the large set of possibilities. To solve 

this limitation, optimizers are typically used. 

The optimization block will lead the iterative process to minimize the cost 

function, and define the changes that should be applied on the parameters to rapidly 
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detect the optimal result. In general, the optimizer will update the parameters using the 

following strategy [93]: 

               (3.11) 

where    is the search direction at iteration k, and    is a scalar gain factor controlling 

the step size along the search direction. 

Based on this description, it is evident that an intensive computation time is 

associated with the optimizer block. Optimizers can be categorized into non-gradient 

methods (Powell and simplex methods) and gradient approaches (gradient descent, 

conjugate gradient, quasi-newton and Levenberg-Marquardt methods) [85, 93]. In the 

current work, we chose the limited memory Broyden Fletcher Goldfarb Shannon 

optimizer with simple bounds (LBFGSB), because of its good performance for optimize 

a large amount of parameters while also eliminate the need for storing the inverse of the 

Hessian matrix during the routine [94]. The optimization step of the LBFGSB optimizer 

can be defined by adapting equation (3.11) to: 

            
  

   
 (3.12) 

where    is a scalar gain factor controlling the step size along the search direction and 

   is an approximation to the inverse of the Hessian matrix. 

3.1.6. Image interpolators 

During the iterative process and based on the transformation applied on the 

images, some points can be mapped to a non-grid position. In this case, an interpolation 

method is used to assess the image intensity and map the point to a valid position. The 

interpolation method, affects the overall computation time, given that this interpolation 

step is executed thousands of times during each iteration [85]. 

The most common interpolation schemes are nearest neighbor, linear 

interpolation and B-spline interpolation (Figure 3.8) [85]. 

 

Figure 3.8 - Interpolators. a) Nearest neighbor, b) Linear, c) B-spline. 
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The nearest neighbor simply uses the intensity of the nearest grid position to 

calculate the intensity of the point. It is fast in terms of computational time, but assumes 

that the image intensity is constant [85]. 

The linear interpolation scheme assumes that the intensity varies linearly 

between the grid positions [85]. 

The B-spline interpolator represents the image intensity using B-spline basis 

functions. The intensity at non-grid positions is computed by multiplying the B-spline 

coefficients with shifted B-spline kernels within a small support region of the request 

position. Since the smoothing effect is intrinsic to B-splines, this approach assures a 

higher smoothing effect during the computation of the intensity of the point, but with a 

higher computational cost compared to linear and nearest neighbor interpolation [85]. 

During this project, we choose linear interpolation, since it consists of a good 

trade-off between computational time and accuracy [85, 92]. 

Finally, for more details about the image registration, we recommend the PhD 

thesis from Dirk Loeckx (KULeuven) [47], the PhD thesis from Brecht Heyde 

(KULeuven) [95] and the ITK manual [85] or the elastix manual [92]. 

3.1.7. Traditional motion estimation scheme: sequential 2D FFD 

formulation 

Using the tools presented above, one can formulate a sequential 2D FFD scheme 

to estimate motion from an image sequence. This subsection describes the 

implementation of Heyde et al. [96], which was previously applied on the study of the 

regional heart strain and deformation in echocardiography. 

In this framework a pairwise scheme between two consecutives frames f and f+1 

is considered (Figure 3.9) to compute the motion field during the cardiac cycle. 

 

 

Figure 3.9 - Sequential 2D formulation [96]. 
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In this case, the transformation and deformation field that represent the 

difference between the two consecutives frames can be expressed similar to the 

equations (3.2 and 3.3). 

                 (3.13) 
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The optimal inter-frame transformation field was estimated iteratively with a 

LBFGSB optimizer [94], by minimizing the cost function (E) defined as: 
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with d the number of points r, and     a factor to modulate the influence of the BE 

penalty [69]. The LBFGSB uses the optimization step of equation (3.12). 

In their implementation an isotropic grid spacing was used with 3 scales (multi-

resolution approach), while halving the spacing in the spatial direction at every scale. 

3.2. Image Segmentation 

3.2.1. Active Contours 

Active contours are a class of deformable models where an optimization 

problem is proposed to segment the object shape in a target image (Figure 3.10) [44]. 

An energy minimization function is used, where prior knowledge about the target can 

be added to guide the proposed model during the iterative phase [33]. 

 

Figure 3.10 - Active contours propagation. The dashed yellow line is the initialization. 



Mathematical Background 

  

43 

 

 

Active contours need to be initialized to a given shape (Figure 3.10). This is also 

the major drawback since misinitialization can easily guide the propagation of the 

contour towards an undesirable result [97]. Two categories of active contours can be 

distinguished, depending on the definition of the energy function: the edge-based [98] 

and the region-based approaches [97, 98].  

The edge-based approaches use the gradient of the image (Figure 3.11a) to 

detect the object boundaries and limit the iterative approach during the model 

propagation. Given that a high number of interfaces can be detected using the gradient 

of the image, initialization plays a crucial role. This method is also sensitive to image 

noise. On the other hand, the region-based methods use a statistical model, based on the 

image intensity, for the definition of the background and the foreground. Typically,  the 

best results are achieved if a regional assessment is used instead of a global image 

assessment (Figure 3.11b) [97].  

 

Figure 3.11 - a) Gradient of the image used in edge based approach, b) Regional assessment of the 

intensity for the definition of the statistically model used in region based methods [97]. 
 

The region-based methods are less dependent on the initialization and the image 

noise, but the segmentation of the objects with high heterogeneity are challenging 

(Figure 3.12) [97]. 

Finally, the evolution model is the optimization or the energy minimization step 

[33]. For the definition of the energy, several factors as elasticity term, curvature term, 

smoothing term, etc, are normally added to regularize the contour and help to detect the 

optimal result. 
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Figure 3.12 - Synthetic image presented in [97] . (a) initialization, (b) unsuccessful result of region-

based segmentation, (c) successful result of edge-based segmentation technique [97]. 
 

3.2.2. B-spline Explicit Active Surfaces 

The BEAS framework was proposed by Barbosa et al. in 2012 [44], with the key 

novelty being the formulation of the interface as an explicit function. Geometrically, 

this implies that one of the coordinates of the points of the interface,            is 

expressed as a function of the remaining coordinates, i.e.              . Such 

explicit formulation allows reducing the dimensionality of the segmentation problem.  

Inspired by the work presented by Bernard et al. [99], Barbosa et al. [44] defined 

the interface   ) as a linear combination of B-splines basis functions: 

              ∑     

      

  (
  

 
  ) (3.16) 

where   (.) is the uniform symmetric (n-1) dimension B-spline of degree d. The knots 

of the B-splines are located on a regular grid defined on the chosen coordinate system, 

with a scale given by h. The coefficients of the B-spline are defined by c[k]. By using 

the geometric functions and the B-spline formulation [44], a smooth interface can be 

calculated in an efficient manner, allowing to achieve real-time computation even for 

3D segmentation problems. 

Following the principles of active contours, the BEAS framework can handle 

both global and localized region-based energy formulations. The first is based on the 

method proposed by Chan-Vese [100]. However, given that BEAS is based on B-

splines, the authors are intrinsically adding a regularization term, which is an advantage 

over the initial Chan-Vese formulation. The second type of energies is based on the 

work of Lankton and Tannenbaum [97]. To maintain a low computational cost, Barbosa 

et al. [44] added a restriction on the region size used for the computation of the 

localized energy. 
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BEAS was originally used for real-time segmentation of the endocardium in 3D 

ultrasound data. An extension of the method was proposed by Queirós et al. [33], where 

both endo- and epicardial contours were modeled as a combination of two explicit 

functions. Mathematically, each interface     was modeled as: 

            
       

    (3.17) 

           
       

    (3.18) 

where    
    represents the center position of the myocardial wall as a function of   

and    
    encodes half of the myocardial wall thickness. This formulation divides the 

image space into three regions, namely the blood pool, the myocardium and outer 

structures. Moreover, since both contours are coupled, the optimal position is estimated 

simultaneously. Finally, the application of different B-spline scales for     
 and    

, 

gives two degrees of freedom during segmentation, allowing separate smoothing of the 

local variation of the myocardial position and thickness [33]. 

Regarding the used energy function, Queirós et al. chose the localized Chan-

Vese energy and added weights for each region of the interface, in order to push the 

contours towards (or away) from the myocardium and surpass the problem of trabeculae 

and papillary muscles. Moreover, Queirós et al. added a combined global and local 

formulation of the myocardium, taking advantage of the homogeneity of the 

myocardium and increasing the robustness against initialization [33].  

Based on the coupled segmentation, the resulting energy is formulated as: 
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where, 
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and           and      are the scalar weight applied on each region,        and        

represent the local intensity means in the vicinity of the   for the inner and outer 

regions.         corresponds to the value                           , which 

represents mean local intensity of the myocardium (        and the mean global 
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intensity estimated using the entire myocardium (       .    
 is the Heaviside operator 

applied to the level-set like function    [33]. 

Based on the energy minimization derivation presented in Barbosa et al. [44] 

and applied by Queirós et al.[33], the evolution equations are represented as: 
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with, 
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For more details about this framework, we recommend the original paper from 

Barbosa et al. [44], the PhD thesis from Daniel Barbosa (KULeuven) [101] and the 

master thesis from Sandro Queirós (University of Minho) [102]. 
 

 

3.3. Improving the initialization: template matching 

One drawback in active contour approaches is associated with the required 

initialization process. In this section we will describe an interesting approach, called 

template matching, for a first estimation of the endo- and epicardial contours.  

The template matching techniques are useful tool for the detection of pre-defined 

patterns on the image, based on the profile of different regions or the intensity variation 

on the image  [103]. These methodologies use the principle of block matching search, 

and can be defined as an optimization problem, where the maximum correlation 

between a region of the image and a template is searched. 

In terms of LV delineation, some assumptions are normally used. First, the 

anatomic structure has an elliptical or a circular shape and, secondly, the myocardium 

has a dark appearance when compared to the blood pool. Based on this knowledge, 

template matching approaches were previously proposed for the estimation of the both 

contours, endocardium and epicardium, in cine MRI images [33, 104]. 

Queirós et al. [33] proposed a new template matching strategy with low 

computational time and high feasibility demonstrated in a MICCAI database of, 45 

cine-MRI datasets. This work, which is an evolution of the method proposed by Ciofolo 
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et al.[104], uses an affine transformation to estimate elliptical templates, instead of 

circular ring templates only (proposed on the original methodology). This affine 

transformation is essential and improves the robustness of the template matching, since 

the LV frequently presents an elliptical shape. 

The method proposed by Queirós et al. creates several kernels with different 

possible shapes, thicknesses and sizes of the myocardium (Figure 3.13a). These kernels 

are formed based on a first initialization of the template, where 3 variations of the value 

in radii, 4 variation of the standard deviations (related with the wall thickness), 5 

orientations are used (0 ,               , and 4 axis ratios. In total, 240 kernels are 

considered for the block matching approach. During the optimization problem, this 

method uses the normalized cross correlation to detect the optimal result between the 

region of the image and a given template (Figure 3.13b). The best template (Figure 

3.13c) will define the optimal center, orientation, radius and axes ratio for a first 

estimation of the endocardial and epicardial contours (Figure 3.13d). 

 

Figure 3.13 - Template matching methodology proposed in [33]. (a) Design of various kernels to use 

as templates, (b) optimization problem to detect the optimal template, (c) original image and 

optimal template, (d) original image and first estimation of the contours. 
 

3.4. Application: the BEAS threshold algorithm 

The template matching requires an initial template, based on certain parameters, 

such as radii, standard deviation and orientation. If these parameters are similar to the 

real properties of the myocardium, the performance of the template matching will 

improve significantly.  

The BEAS threshold is a region growing algorithm capable to estimate with high 

accuracy the properties of the endo- and epicardial contours, thus being a useful tool to 

define the parameters of the initial template. This method was proposed in the master 

thesis of Sandro Queirós (Univeristy of Minho) [102]. The advantage of this method is 
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the low computational time, the smoothing on the contours during the iterative process 

and the correction of the center of the heart in each iteration. 

The method needs a threshold to limit the evolving process. In the original work, 

an expectation maximization algorithm for an automatic definition of this threshold is 

applied. In this case, the algorithm was applied in gray images, and therefore an 

adaptive threshold should be used, based on the image properties.  

Regarding the region growing formulation, this method works as an iterative 

process. Initially, the algorithm creates a small radius based on a pre-defined center 

position (Figure 3.14a) and evolves the contours using the threshold. In that step, if the 

intensity signal at the current position of a contour point is higher than the threshold, the 

contour grows. In the inverse situation, the contour shrinks (Figure 3.14b).  

The algorithm also estimates a new center of the contour in each iteration 

(Figure 3.14c, where the green point is the new center point estimation based on the 

contour’s center of gravity and the blue point represents the original center point used 

on the first iteration) and re-initializes the contour. The method only stops when the area 

enclosed by the contour does not significantly change for a few iterations (Figure 

3.14d).   

 

Figure 3.14 - Region growing based on BEAS framework. (a) Initialization of the algorithm using a 

pre-defined center position, (b) Contour evolution, (c) Optimal solution, where is possible to see a 

difference between the initial center position (blue point) and the new center position (green point), 

(d) optimal solution. 
 

3.5.  Evaluating image segmentation quality 

The computation of metrics to assess the differences between a manual contour 

and automatic contour is typically performed using the Dice metric, the average 

perpendicular distance (APD) and the Hausdorff distance [105].  

The Dice metric [106] measures the similarity between the two used contours, 

by the computation of the area overlap. A range between [0-1] is then obtained, with the 
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maximum value implying total correspondence and the minimum value implying that 

no relation between the two areas exists. This metric can be computed as: 

      
     

     
 (3.27) 

with                representing the intersection area, the area of the first contour and 

the area of the second contour. 

The APD value represents the mean value of the perpendicular distance between 

the two contours, calculated over all points. As such, the lower the APD value, the 

better correspondence between both contours. 

Finally, the Hausdorff distance is the maximum perpendicular distance between 

contours, which indicates the maximum local error.  

As a last comment, it is important to mention that these metrics are applied 

separately for the endocardial and epicardial contours. 
 

3.6. Strain estimation 

During this master thesis, the principal objective is the study of the deformation 

of the heart. For this study, two important clinical indicators, related of the heart 

function, are the radial and circumferential strains. The radial direction its perpendicular 

to the epicardium, pointing outwards and the circumferential direction is perpendicular 

to the radial direction (Figure 3.15) [107]. In terms of normal values, the normal radial 

strain has a value between 46-80% and the normal circumferential strains shows a 

negative value (the negative value is used by convention) [108]. It’s important to 

mention that during the computation of these two strains, a definition of the endocardial 

and epicardial contours is required.   

Figure 3.15 shows an overview of the technique used to compute the strain. With 

this method, we intend to calculate the regional deformation for a set of points 

positioned within the myocardial walls, using the methodology proposed by Heyde et 

al. [13]. These points are defined in the ED frame, and will be propagated, during the 

cardiac motion, based on the optimal transformation obtained during the registration. 
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Figure 3.15 - Estimation of the radial and circumferential strain. 
 

In each segment, 5 and 10 points are used in the radial and circumferential 

direction, respectively. The displacement of this set of points relative to the initial 

position is then found by cumulating the transformation fields (Figure 3.16).  

In the sequential 2D formulation [96], the pairwise transforms (        were 

cumulated as: 

                                      (3.28) 

 

Figure 3.16 - Displacement computation from the frame f to ED based on the optimal alignment. 
 

The differences between the motions of these points are used to compute the 

strain value    using: 

       
           

     
 (3.29) 

where       is the distance between two adjacent sample points in either the radial or 

circumferential direction at time t, and similarly       being the respective initial 

distance [107]. 

The equation (3.29) represents the distance between points at the time t when 

compared with the distance at the initial (undeformed) state [107] (Figure 3.17). 
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Figure 3.17 - Strain of a one-dimensional object is limited to lengthening or shortening. Strain is the 

deformation of an object relative to its original shape [107]. 
 

An alternative formulation of the strain is based on continuum mechanics theory 

[109]. The strain along a certain direction at each time t can be estimated as [110]: 

   
‖  ‖

‖  ‖
    √          (3.30) 

where    is an arbitrary material line segment which is deformed to   . N corresponds 

to a unit vector representing the strain direction and F is the spatial gradient of the 

transformation field, and is thus given by the Jacobian matrix of the transformation field 

[109, 110]. 

Normally, in MRI studies, only SA acquisitions are used. The heart performance 

is typically studied using the  16 model proposed by Cerqueira et al. [111], where three 

slices are assessed and divided in different segments. The apical slice is acquired near 

the apex of the heart; the mid slice is obtained in the middle position of the cardiac 

structure; and the basal slice is acquired near the base of the heart (see Figure 1.5). Each 

slice has different properties (e.g. shape and dimension), and different number of 

segments should be used in the study. The authors of the work in [111] mention that in 

the apical slice the myocardium should be divided in 4 segments, while in the remaining 

slices 6 segments should be used (Figure 3.18). 

 

Figure 3.18 – Definition of the segments in the basal, mid and apical slice [111]. 
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4. Methodology 

In this chapter, an automatic method is proposed to investigate regional cardiac 

function from short-axis t-MRI images. 

4.1.  Overview 

The proposed method uses several steps as shown schematically in Figure 4.1. 

 

Figure 4.1 – Proposed automatic framework to study cardiac deformation. “T” means tracking. 
 

LV contouring for strain estimation on t-MRI images is challenging due to the 

lack of contrast between the myocardial borders and the blood pool at the beginning of 

the cardiac cycle. We therefore focused first on the development of an automatic 

segmentation strategy. In this work we adapt the BEAS framework, which was 

previously shown successfully on 3D US images  [44] and cine-MRI [33] images.  For 

this purpose, an efficient pre-processing strategy to suppress the tags is first proposed. 

Next, motion between subsequent frames is estimated by applying non-rigid 

image registration techniques. A novel registration technique is proposed by including 

the temporal information directly in the framework. 

Finally, by using the obtained motion field, the myocardial contour can then be 

propagated over time and regional myocardial strain can be extracted.  

4.2. Automatic myocardial segmentation 

4.2.1. Overview 

In this section, the methodology developed for automatic LV contouring in t-

MRI images is described.  

As mentioned in section 2.2, a common strategy to segment t-MRI images is to 

first suppress the tags tags, followed by an active contour segmentaion to define the 

boundaries [17]. 

Figure 4.2 schematically shows the data flow to automatically segment the 

myocardium. 
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Given that the blood pool contains tags in the initial ED frame, and given that 

the tags fade over the cardiac cycle, we propose to use the 4
th

 frame (see Appendix I, 

Figure 10.1) of the sequence to segment the myocardium (see Figure 4.2A). Since we 

are interested in cardiac strain with respect to ED, a strategy to propagate the 

myocardial contour between the 4
th

 frame and ED frame is required. This strategy will 

be described in section 4.4.1. 

 

Figure 4.2 - Scheme used for automatic segmentation of LV in t-MRI images. 
 

The strategy used to segment the myocardium consists of the following steps: (i) 

starting from the 4
th

 frame, we automatically detect the LV and define a ROI (see Figure 

4.2B). This is then used as input to (ii) detag the images based on spectral analysis (see 

Figure 4.2C) and (iii) automatically initialize BEAS based on template matching (see 

Figure 4.2D); (iv) Finally, BEAS is then used to define endo- and epicardial borders 

(see Figure 4.2E).  
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4.2.2. Automatic detection of the LV 

In order to automatically detect the LV, several consecutive steps were 

performed. These were inspired by the techniques of several papers found in literature 

[112-114]. In the end of this strategy, a ROI will be defined where the LV is positioned 

in the center of the image. At the same time, we will reduce the region used in the next 

steps. This last factor is essential during the computation of the FFT, since the tags are 

in the whole image. Using this ROI, the spectrum will more easily show the LV tag 

frequencies. 

 

Computation of the variance over the cardiac cycle 

 

First, Cocosco et al. [112] suggested that the intensity variance over the cardiac 

cycle, can be used to detect the myocardium. Since tags deform with the myocardium, a 

high variance indicates the position of the myocardium. In the current approach, we 

computed the variance between frame number 4 and 8 (Figure 4.3A). We are using a 

limited amount of frames due to the effect of tag fading. 

 

Figure 4.3 - Methodology used to determine the center of the myocardium. 
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The obtained variance image is further post-processed by noting that the 

myocardium is more likely to be centered in the image. As such, points were weighted 

according to their distance to the center (Figure 4.3B). In certain situations, this 

penalization can be essential to remove artifacts that appear on the image. 

These steps will also enhance the myocardium relative to the background. Using 

a simple binarization operation based on the 1% of the pixels with highest intensity will 

therefore detect the majority of the myocardium, in addition to some false positive 

points e.g. originating from the right ventricle (see Figure 4.3C).  

 

Estimate the LV position 

 

After the binarization, three techniques are combined to estimate the center of 

the LV. First, the Hough transform is used to detect the LV position since it will favor 

regions having a dense number of points with a circular shape (more details in the next 

sub-section – “Hough Transform”, see Figure 4.3D). Using this result, an initial ROI 

around the center of LV is defined. Please note that this method can fail in some 

situations, e.g.: (i) the presence of the RV and (ii) the difficulties to detect the complete 

septal wall in the binary image (Figure 4.4). It is important to mention that we have 

difficulties to detect the septal wall based on the variance measure, because it has little 

motion compared to the other regions of the myocardium.  

 

Figure 4.4 - Definition of the LV, RV and septum after the binarization step. 
 

In order to solve these limitation, a morphological operator (closing followed by 

an opening) was applied over the binary image, to define the myocardial wall (Figure 

4.3E). To define the final ROI (measuring a 50x50 pixels) a template matching scheme 

(see section 3.3) is applied (Figure 4.3F). The template matching will detect the final 

LV position (see Figure 4.3G). 
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As a last comment, it is important to mention that the present methodology 

estimate the LV position with an acceptable performance. A high accuracy to detect the 

LV center position is not expected, but in this step we only intend to detect a point 

inside the LV. As such, some errors to estimate the LV center position are acceptable.  

 

Hough Transform 

 

The Hough transform is an image processing technique used to detect specific 

object shapes on the image. 

This approach was previously used for LV detection in cine-MRI [113, 115], 

and in the current thesis we intend to expand this technique to estimate the initial LV 

position in t-MRI images. 

This method is applied on a binary image (Figure 4.5a). In each white point a 

virtual circle is drawn (Figure 4.5b) with different radius (the minimum value is 10 

pixels and the maximum 30 pixels). A large range of radius should be used, due the 

variability of the properties of the heart. The location of the center of the heart will be 

the point where the intersection between all the virtual circles has the maximum value 

(Figure 4.5c).  

 

Figure 4.5 - (a) Binary image, (b) Virtual circle in some white points of (a), (c) result of the Hough 

transform method. 
 

4.2.3. Image detagging 

In this section, the method to remove/attenuate the presence of tags is described. 

This method is similar to the techniques previously presented in the section 2.2.1, where 

we intend to remove the frequency of the tags from the Fourier domain (Figure 4.6). 

Given our intention to use the BEAS segmentation framework (see section 3.2.2) to 

segment the myocardium, this step will be critical to ensure a proper evolution of the 
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contour. Without a detagging step, the original tagged MRI would contain too many 

interfaces near the myocardial borders due to the presence of tags. 

 

 

Figure 4.6 - Method used to suppress the tags in the t-MRI images. 
 

 

Calculating the image spectrum 

 

The spectrum (Figure 4.6B) is computed using a 2D FFT [34]. In t-MRI, since 

the tags present a certain orientation, this will translate in a specific representation on 

the Fourier Domain. In the spectrum (Figure 4.6B), a central peak defining the DC 

component, and 8 secondary peaks representing the first harmonic of the tag frequencies 

are shown. The orientation of the peaks is related to the orientation of the tags. In the 

images with tags acquired at 45
º
 the spectrum will be rotated 45

º
 when compared with 

the images acquired with tags at 0
º
 (Figure 4.7). 

 

Figure 4.7 - Differences in spectrum between two t-MRI images with different tag orientations. 
 

As shown in Figure 4.6E, a combination of two filters is used to pre-process the 

t-MRI. The first is a low pass filter (Figure 4.6C), to suppress noise and the second is a 

more specific filter (Figure 4.6D), which will attenuate only the frequencies 

corresponding to the tags. 
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Low pass filter 

 

To design the low pass filter, we start from the tag positions in the spectrum. 

These positions will define the cutoff frequency. We intend to preserve the DC 

components, and attenuate the high frequency to suppress noise. In the spectral image, 

the DC component has the highest intensity followed by the tag frequencies. To detect 

the cutoff frequency, we first transform the spectrum to the polar domain by using the 

center position of the spectral image. Next, we create a binary image using only the 3% 

of pixels with highest intensity. In order to retain the tag frequency components only, 

we remove the first 10 lines of the polar image corresponding to the DC component (see 

Appendix I, Figure 10.2). Finally, a mathematical morphology (closing) operation is 

applied to generate an image where the white groups represent the tag positions (Figure 

4.8). 

 

Figure 4.8 - Binary polar image used to define the cutoff frequency. 
 

To obtain the cutoff frequency for the low pass filter, we detect the minimum 

line in each tag group (red lines in the Figure 4.8). Since we are using the polar space, 

each red line represents the radius in the cartesian space. The red line with minimum 

value will be used as cutoff frequency. 

Figure 4.9 shows the resulting filter in the Cartesian space and its profile. 

 

Figure 4.9 - (a) - Low pass filter, (b) - Profile of low pass filter on the yellow line. 
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Filter to attenuate the tag frequencies 

 

A second filter will be used to attenuate only the frequencies corresponding to 

the tags. As such, it will have a more specific region of action. 

First, we remove the DC component using the cutoff frequency obtained from 

the low pass filter. Without the DC component, the tag peaks are the structures with 

higher intensity in the spectrum image. 

To detect the tag frequencies (first harmonic, see blue circle in Figure 4.7) an 

iterative approach is used. Initially, the method will search for the eight pixels with 

highest intensity in the spectrum image (Figure 4.7). In the next step, we will compare 

the distance between these 8 candidates. If the distance is lower than 10 pixels, the 

candidate with the lowest intensity is considered invalid (Figure 4.10a). The method 

continues until the 8 candidates representing the tag frequencies in all directions are 

detected (Figure 4.10b). 

In the following steps we aim to fit a square to the 8 candidates. This fit 

increases the robustness of the methodology, removing errors that may occur during the 

detection of the candidates. To calculate the size of the square, we compute the 

difference between all 8 candidates and the center position (Figure 4.10b). Then, we 

calculate the mean value between them. This value will be used to define the size of the 

square (Figure 4.10c).  

Finally, a morphological dilation of 3 pixels is applied on the 8 candidate points. 

At the same time, the intensities of the image are inverted. These regions are then 

convolved with a Gaussian filter to prevent the ringing effect. The resulting 8 regions 

are used in the filter to attenuate the tag frequencies (Figure 4.10d and Figure 4.10e). 

 

Figure 4.10 - Peak filter design. (a) Detection of 8 candidates with restrictions in terms of distance, 

(b) the 8 candidates pixels (white points), the blue lines represent the method used to compute the 

difference to the center of the image (red point), c) The perfect square used in the method, (d) Filter 

design, application of a morphological dilate in (c) and convolution with a Gaussian filter, (e) 

Profile of the filter using as a reference the red line present in the figure (d). 
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Combination of the two filters 
 

The combination of the two filters previously described, should efficiently 

suppress the tag components. A 3D visualization of the final filter profile is shown in 

Figure 4.11. The DC component is not attenuated and the biggest attenuation occurs on 

the tags frequency. It is important to mention that this combined filter is applied on the 

spectral image (Figure 4.6B), removing the tag components. Then, a 2D FFT
-1

 method 

will transform the resulting spectrum to the spatial domain (Figure 4.6F). 

Please note that only the frequency corresponding to the first harmonic was 

removed. Some tests were done to remove first and second harmonics, but no difference 

was found when compared with the actual methodology (see Appendix I, Figure 10.3). 
 

 

Figure 4.11 - 3D profile of the filter design to suppress the tags. 
 

4.2.4. Automatic Initialization 

The BEAS segmentation framework (as described in section 3.2.2) requires an 

initialization step, based on the LV center position, radius and estimate of the initial 

contour (Figure 4.12). An automatic initialization strategy could be based on the tagged 

image or the detagged image (obtained in section 4.2.3). However, we do not use the 

latter image due to the low contrast between the blood pool and the myocardium. 

 

Figure 4.12 - Methodology used to automatically initialize the BEAS framework. 
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Definition of the myocardial wall 

 

The first step presented in the Figure 4.12 is the binarization method. As 

proposed in [33] a multilevel Otsu methodology [116] with 3 classes is currently used. 

The first class represents the background and the tags, the second class represents the 

transition between the background and the brighter points and the third class represents 

the myocardial structures with higher intensity. The first two classes are joined and 

considered as background. The third class is used to define the myocardial wall. After 

the binarization, an image with the region between tags is observed (Figure 4.12B). In 

the next step, mathematical morphology (opening) is applied to join the points. This 

technique will remove isolated points and join sets, creating a binary image that will be 

used to detect the majority of myocardial wall (Figure 4.12C). 
 

Template Matching 
 

As previously explained in section 3.3, during the computation of the template 

matching we need a prior information about the radius and the center position of the 

heart. For the definition of the first template, we are using a region growing algorithm 

based on the BEAS framework (section 3.4, see Figure 4.12D). The BEAS Threshold is 

initialized using the estimated LV center position obtained from section 4.2.2 (Figure 

4.13a). Please note that in the initial formulation of this method, the author [102] uses 

an expectation maximization algorithm to define a threshold. In the current approach, 

we are not using this method since we are working with a binary image (Figure 4.13).  

The BEAS Threshold method can correct the center of the heart and estimate the 

radius of the LV cavity (Figure 4.13). This method can fail in the cases where only a 

small part of the myocardium wall was detected or when the method suggested in the 

section 4.2.2 is unsuccessful.  

 

Figure 4.13 - Region growing based on BEAS framework. (a) Initialization of the algorithm, (b) 

Contour evolution, (c) Contour evolution with a result similar to the optimal solution, where is 

possible to see a difference between the initial center position (red point) and the new center 

position (green point), (d) optimal solution. 
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When the region growing techniques fails or the estimation of the radius has an 

impossible value, we develop a second methodology that will estimate the radius of the 

LV. This new method is only used when the BEAS threshold technique fails, since 

more accuracy is expected in the first formulation.  

Using the LV center position estimated in section 4.2.2 and the binary image 

showed in Figure 4.12B, it is possible to compute an image, in the polar space, as 

demonstrated in Figure 4.14a. As referred previously, in the polar space each line 

represent the radius on the Cartesian space. In that case, we will compute for each line, 

the number of points that belong to the myocardium – black points on the image (Figure 

4.14b). In the end, we use the maximum value as a reference for the minimum radius. 

Obviously, this method has many disadvantages: first, we need a good estimation of the 

center of the heart; second, we assume a circular shape of the LV. 

 

Figure 4.14 - Estimation of the minimum radius. (a) Image in polar space, and (b) number of points 

from the myocardium in each line of the polar image. 
 

Based on the minimum radius and the center position, the template matching 

approach is applied. As result, a first estimation of the endo- and epicardial contours is 

created. This estimate will be used as initialization for the BEAS framework. 

 

Segmentation parameters 

 

In t-MRI is difficult to have access to a viable ground truth. As such we used the 

parameters proposed by Queirós et al. [33] in the development of a fully automatic 

approach for LV segmentation in cine-MRI. In that case,   (scale, see section 3.2.2) was 

set to 2
2
 and 2

3
 for the wall position and thickness respectively and 64 points were used 

on each boundary for the contour discrete representation. A local region of size 11x11 

was used to compute the local region means. 
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4.2.5. Segmentation propagation 

A t-MRI acquisition typically consists of 3 slices (apical, mid and basal slice). 

These slices are acquired independently, and may therefore potentially introduce 

misalignments between them.  

In this section, we describe a technique to propagate information inter-slices. We 

are propagating the LV center position between consecutive slices, to prevent failures 

during the section 4.2.2, principally on the apical slice.  

As such, the result of the segmentation on basal slice will be used to define the 

center position on the next slices, as demonstrated on the Figure 4.15. Please note that 

since we are using the BEAS threshold algorithm, we can correct offsets that occur due 

the misalignments.  

As a last comment, it is important to mention that all the methodology presented 

in Figure 4.2 is only applied on the basal slice. In this slice the myocardium is easily 

detected, the image noise is low and a low number of tags are seen on the blood pool. 

Finally, in the mid and apical slices are only applied the methods explained in sections 

4.2.3 and 4.2.4. 

 

 

Figure 4.15 – 3D methodology used to propagate the LV center position. 
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4.3. Cardiac Motion estimation 

4.3.1. Sequential 2D+t FFD formulation 

In this section, the traditional sequential 2D formulation introduced in section 

3.1.7, is further extended to include the temporal information. The proposed sequential 

2D+t approach poses the problem of tracking myocardial motion as a 3D registration 

problem (Figure 4.16). This formulation was published by Morais et al. [117]. 

 

Figure 4.16 - Schematic used for the proposed sequential 2D+t FFD. 
 

The images to be registered are two 3D sets represented by: 
 

  {            }  (4.1) 

 

and a temporal shifted version of F: 
 

  {          }  (4.2) 

 

where N represents the number of frames in the cardiac sequence.  

To create this strategy, a straightforward extension of the FFD model to include 

the temporal dimension would lead to following the description of the transformation 

model: 

                             (4.3) 

and the following deformation field: 
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with    and    the control point location and spacing respectively, and    the set of 

control points within the compact support of the B-spline    (γϵ[x,y,t]). In the proposed 

approach the temporal information is represented by a temporal B-spline with compact 

support   .   
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However, a trivial but undesirable solution to this registration formulation would 

be the transformation field which just shifts the sequence in time, i.e. T(r,t)=(0,t-1). This 

result is obvious, since we are dealing with a 3D registration problem between two 

shifted blocks.  

In the next part of the work we will explain the method used to constrain the 

optimization. To prevent optimization in the temporal direction, several considerations 

should be made. 

First of all, the transformation should be constrained to only recover inter-frame 

registrations which are optimized in a joint way. This can be achieved by noting 

                in equation (4.4) and setting: 

       (4.5) 

Equation (4.5) guarantees that the deformation in the temporal direction will always be 

zero, such that the transformation will never move any point in this direction. In 

practice, this restriction can easily be implemented by setting    
      

    in the 

optimization step (equation 3.12), while keeping the update functions unchanged in the 

spatial direction. As such, we only use the in-plane image gradients to update the 

transformation parameters. 

Secondly, since we want to align the whole image sequence, the original 

formulation of the cost function in (3.15) should be modified to: 

  
 

 
∑                     

   

 
       

∑ ‖
        

       
‖

       

 

   (4.6) 

where the classic expression of the bending energy [69] is extended in time as: 
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with              and       representing each point in the constructed image 

sequence F. Please note that due to the imposed restriction in the optimizer, the 

following terms are always zero, since the gradient in this direction is never updated: 

    

    
          (4.8) 

However, without further modifications, equation (4.7) would lead to an over-

smoothing effect in the time due to the contributions of the second order derivative 



Methodology 

 

69 

 

terms in time. To solve this limitation during the computation of the BE, the following 

constrain was added: 

    

    
        (4.9) 

where           and        . 

Finally, the expression of the bending energy becomes:   
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 (4.10) 

This implies that the BE expression (4.10) is comparable to the 2D formulation (3.10) 

and the temporal smoothness is achieved only due to the compact support of the 

temporal B-spline. 

As a last comment, please note that an anisotropic grid spacing was used, 

keeping the temporal support fixed over all the 3 scales, while halving the spacing in the 

spatial direction in every scale. 

4.3.2. Fixed 2D+t FFD formulation 

As described in section 2.1, Chandrashekara et al. [68] proposed a strategy 

similar to the sequential 2D+t formulation. In this work, the reference block F is fixed, 

using the ED frame (Figure 4.17). Within the context of the current thesis, their strategy 

is therefore termed fixed 2D+t FFD formulation.  

In order to compare the influence of the registration scheme, we also 

implemented their method. We prevent the optimization in the temporal direction, using 

the constraints suggested for the sequential 2D+t. It is important to mention that these 

constraints are not indicated on the original work [68], but a similar strategy to prevent 

optimization in the temporal direction is expected. 

 

Figure 4.17 - Schematic used for the fixed 2D+t FFD. 
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4.4.  Strain estimation 

4.4.1. Strain estimation in the sequential 2D+t and fixed 2D+t FFD 

formulation 

In section 3.6, we described a method to estimate strain using a series of 

pairwise registrations. By cumulating the transformation, it was shown it is possible to 

describe the motion of each point in the frame f relatively to the ED frame. 

In the proposed sequential 2D+t formulation, only one transformation is used to 

describe the motion of each point       of block F to a new position in block M. As 

such, we can’t cumulate the transformation as described before. 

In the sequential 2D+t methodology, the displacements can therefore be 

cumulated (Figure 4.18) by taking the corresponding time frames: 
 

                                              (4.11) 

 

For the fixed 2D+t FFD formulation, transformations do not have to be 

cumulated, since all the transformations are defined relative to the ED frame. 

As a last comment, using the obtained transformation fields, strain can then be 

computed by using the expression (3.29) or (3.30). 

 

Figure 4.18 – Cumulating the displacement field in the proposed sequential 2D+t. 
 

 

4.4.2. Contours definition on the ED frame 

Since we are using the 4
th 

frame to start the automatic segmentation 

methodology, we need to modify the strategy proposed for the computation of the strain 

values.  The method presented in section 3.6 and expanded in 4.4.1, calculates the strain 
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values using the ED frame as reference. To solve this problem, we implement a second 

registration problem as shown in the Figure 4.19. One of the registration problems will 

be used to detect the optimal transformation between 4
th 

frame and the ED frame 

(Figure 4.19). The optimal transformation will define the contours in the ED. The other 

registration problem will be used to compute the strain value, using the method 

explained in the section 3.6 and 4.4.1. Please note that in this step we use whole the 

cardiac sequence. 

 

Figure 4.19 - Strategy used to pass the contours from the frame number 4 for the ED frame. 
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5. Methods 

In this chapter, all the experiments performed during the current master thesis 

are described.  

5.1. Datasets  

In this master thesis, three different datasets are used: a synthetic dataset with 

ground truth, a porcine dataset and a human clinical dataset. 

The synthetic dataset
1
 (Figure 5.1) has four image sequences with different 

signal noise ratio (SNR). In each sequence, a total of 30 frames were acquired. Several 

tag positions were tracking during the cardiac cycle, creating the ground-truth. Please 

note, that these datasets are not capable to simulate the tag fading. 

1
 

Figure 5.1 - Synthetic images with (a) SNR = 18db and (b) SNR = 6dB [49]. 
 

In the porcine dataset (Figure 5.2), unhealthy and healthy exams are available. 

An experimental database of a pre-clinical porcine model of chronic myocardial 

ischemia, with an induced left-anterior descending coronary artery lesion, resulting in a 

small but variable anterior, anterospetal infarct is used in the lesion cases. Datasets were 

acquired on a 3T MRI unit (TRI-tim, Siemens, Erlangen, Germany). From these 

datasets a short-axis image with grid tagging was tracked and compared to the 

corresponding short – axis of the delayed-enhancement dataset. Tagging datasets were 

acquired with a 6 mm space grid, using gradient echo readout, with ECG triggering and 

during suspended respiration. In plane resolution was 1.3x1.3 mm and slice thickness 

was 6 mm. Echo time was 3.96ms, repetition time 41 ms and flip angle 10
º
. Delayed-

enhancement datasets (Figure 5.2) were acquired 15 min after 0.2 mmol/kg Gadolinium 

injection, with a voxelsize of 1.8x1.8x6mm. Inversion time was adapted to obtain 

                                                 
1
 The author would like to thank Smal et al. for providing access to the synthetic dataset. 
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optimal nulling of the healthy myocardium (340-370ms), repetition time was 2.19 ms, 

echo time 0.78 ms and flip angle 15
º
. 

 

Figure 5.2 - Registration validation using t-MRI and DE-MRI images. 
 

The human dataset is obtained from a multi-center study with core-lab analysis. 

The data used in the current master thesis, corresponds to patients with suspicion of 

ongoing (chronic) myocardial ischemic heart disease and has been acquired in two 

different laboratories in Europe (Figure 5.3), while being analyzed in a core lab whose 

expertize focuses on t-MRI images. All the acquisitions present the short-axis images at 

base, mid and apical slice. In center 1 (Figure 5.3), the images were acquired with tag 

orientation at 0
º
, resolution 1.367x1.367 mm and a slice thickness of 14 mm. The center 

2 (Figure 5.3) presents images with tag orientation at 45
º
 degrees, resolution 1.25x1.25 

mm and a slice thickness of 6 mm. 

 

Figure 5.3 - t-MRI acquired in two different centers. 
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5.2. Experiments 

5.2.1. Parameter tuning 

The validation in a registration problem is not a straightforward task, due to the 

difficulty in creating an acceptable ground-truth. 

In the first experiment of the current master thesis, we intend to study the 

influence of different parameters on the performance of the algorithm, e.g. final grid 

spacing        , BE weight    , number of scales used in the multi-resolution 

registration problem and the used metrics in the cost function. Two images obtained 

from the synthetic dataset are used (the image with highest SNR, SNR = 18dB; and the 

image with lower SNR, SNR = 6dB). Using the available ground truth, a comparison 

between the sequential 2D FFD formulation and the proposed sequential 2D+t FFD 

formulation is performed. The root mean square error (RMSE) and end-of-systole error 

(EES) were used to compare the different methodologies.  
 

5.2.2. Detection of (dys)functional regions  

During this experiment, 8 MRI studies were randomly selected from the porcine 

dataset with chronic myocardial ischemia. Additionally, 4 MRI studies of normal 

animals were included. Radial and circumferential strain maps were computed and 

compared with DE-MRI regions to investigate whether dysfunctional areas could be 

identified. Next, the myocardium was divided using a standard six-segmental model as 

described in section 3.6 and each segment was classified as an infarct, adjacent or 

normal region as indicated by the corresponding delay-enhancement Magnetic 

Resonance Imaging (DE-MRI). A paired t-test between these regions was used, for the 

sequential 2D FFD formulation and the proposed sequential 2D+t FFD formulation, to 

assess whether or not dysfunctional regions could be localized. 
 

5.2.3. Validation of the (semi-) automatic segmentation approach 

In this experiment, 40 exams from the center 1 and 43 exams from the center 2 

are used to validate the segmentation technique.  

First, two non-experts create a manual contour of these datasets. The non-experts 

mentioned that they were not capable to segment the first frame. As such, they segment 

the frame number 4. To facilitate the manual segmentation, the non-experts can use 

temporal information.  
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Second, using the (semi-) automatic approach we define the automatic contour. 

Please note, in some cases a user input is needed to correct the contours. A friendly user 

interface was therefore developed (Figure 5.4) to visualize the automatic contours and 

correct them. Two types of corrections are possible: correction of the LV center position 

and correction of the contour based in one click on the image.  

Then, we study the intra-observer variability, the inter-observer variability 

(comparing with the automatic contour) and the differences between a mean contour, 

using the non-experts delineation, and the automatic result. The comparison was done 

using the APD distance, dice value, the Hausdorff distance (see section 3.5), the 

correlation coefficient and the BIAS value (a paired t-test is used to verify if the 

differences are statistically significant), using the area of the endocardium and 

epicardium. At the same time, a statistical study using boxplots is suggested, to verify 

the variability of the results and the number of outliers. 

 

Figure 5.4 - Interface developed for assess the automatic segmentation of the LV in t-MRI. 
 

5.2.4. Validation of the proposed sequential 2D+t FFD formulation 

During this experiment, we compared the different registration schemes 

presented in this master thesis (sequential 2D, sequential 2D+t and fixed 2D+t). The 

comparison is performed using the global strain curve in the radial and circumferential 

direction. This curve was obtained by averaging strain over the 6 segments in a mid-

slice case. The contours are defined using the (semi-) automatic methodology. One case 

(selected randomly) from the human clinical dataset is used. At same time, we compare 

trajectories of individual points. 
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5.2.5. Comparison of the proposed algorithm with a commercial state-of-

the art solution 

In this experiment, we compared the proposed methodology with the 

commercial solution (diagnosoft-HARP), using the human clinical dataset from a multi-

center study (Doppler CIP). The HARP results are obtained from core-lab analysis. As 

such, we don’t have any information about the initial contour. The core-lab analysis 

only has the circumferential strain value.  

Cases where the result from the commercial software showed a positive 

circumferential strain value at ES defined by physician were excluded. This result is not 

physiologic. As such, for center 1, 40 exams were acquired, but only 30 mid, 30 basal 

slices and 23 apical slices were using in the comparison. In center 2, 43 exams were 

acquired, but only 16 apical, 34 mid slice and 35 basal slices were used.  

A linear regression and a Bland-Altman analysis (a paired t-test is realized to 

verify if the BIAS is statistically significant) are performed between the presented 

methods and the commercial software. Two studies are suggested, the first uses the ES 

frame defined by the physician as reference, and the second study uses the strain peak 

value in each technique as reference. The methods used are: sequential 2D FFD, and the 

proposed sequential 2D+t FFD formulation, with           and       Please 

note, a global and a regional study is shown. 

A comparison between the mean peak values using the global and segmental 

strain curve, in each technique, is realized. To verify if the differences are statistically 

significant, a paired t-test was used. 

The last study consists in an ANOVA table. During this study only the 

segmental strain value are used. At same time, we perform an unpaired t-test to verify if 

the two methods used (proposed framework and commercial software) are capable to 

distinguish the strain value in each slice. 

 

  



Cardiac motion and deformation estimation in tagged magnetic resonance imaging 

 

80 

 

 

  



Results 

 

81 

 

  

Results 



Cardiac motion and deformation estimation in tagged magnetic resonance imaging 

 

82 

 

 

  



Results 

 

83 

 

6. Results 

6.1.  Parameter tuning 

The RMSE and EES in the simulated data (image with signal noise ratio (SNR) 

equal to 18dB) are shown in Figure 6.1.  

The RMSE and the EES in the simulated data (image with SNR = 18dB) are 

shown in Figure 6.2 using three different registration metrics for the computation of the 

cost function. During the formulation of the registration method we suggest a multi-

resolution approach with 3 scales. In this image, the result using 4 scales is shown. 

In the Figure 6.3 we can observe the results in terms of RMSE and EES for the 

image with SNR = 18dB. In this figure, 64 bins are used to compute the joint histogram. 

In Figure 6.4, a similar comparison is done in terms of RMSE and EES using 

three different metrics, but using an image with low SNR (SNR = 6dB). 

Figure 6.5 shows the RMSE and EES for the synthetic image with SNR = 6 dB 

[49] using different values for the final grid spacing and the weight     using a multi-

resolution approach with 4 scales. 
 

 

Figure 6.1 - Influence of the     weight in image with SNR =18dB [49]. The vertical axis represents 

the error in pixels. The results with sequential 2D (red) and the proposed sequential 2D+t (blue) 

approaches are presented, in terms of RMSE (solid line) and EES (dashed line), using different 

metrics and different final grid spacing (FGS) values. 
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Figure 6.2 - Influence of the     weight in image with SNR =18dB [49] using 4 scales. The vertical 

axis represents the error in pixels. The results with sequential 2D (red) and the proposed sequential 

2D+t (blue) approaches are presented, in terms of RMSE (solid line) and EES (dashed line), using 

different metrics and different final grid spacing (FGS) values. 
 

 

Figure 6.3 - Influence of the     weight in image with SNR =18dB [49] using 64 bins to compute the 

joint histogram. The vertical axis represents the error in pixels. The results with sequential 2D 

(red) and the proposed sequential 2D+t (blue) approaches are presented, in terms of RMSE (solid 

line) and EES (dashed line), using different metrics and different final grid spacing (FGS) values. 
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Figure 6.4 - Influence of the     weight in image with SNR =6dB [49]. The vertical axis represents 

the error in pixels. The results with sequential 2D (red) and the proposed sequential 2D+t (blue) 

approaches are presented, in terms of RMSE (solid line) and EES (dashed line), using different 

metrics and different final grid spacing (FGS) values 
 

 
Figure 6.5 - Influence of the     weight in image with SNR =6dB [49] using 4 scales. The vertical 

axis represents the error in pixels. The results with sequential 2D (red) and the proposed sequential 

2D+t (blue) approaches are presented, in terms of RMSE (solid line) and EES (dashed line), using 

different metrics and different final grid spacing (FGS) values 
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6.2. Detection of (dys)functional regions  

Figure 6.6 presents an example strain map obtained from the in-vivo porcine 

datasets using the proposed 2D+t and the sequential 2D approaches. A comparison 

between the registration result for the detection of the dysfunctional regions (blue 

regions) and the DE-MRI is presented. 

Figure 6.7 shows a normal porcine dataset, which can be proved by the DE-MRI 

image (Figure 6.7d). The results in terms of radial and circumferential strain for the 

sequential 2D and the proposed sequential 2D+t approaches are illustrated. 

In Figure 6.8 the ability to detect infarct regions using either the sequential 2D+t 

or the sequential 2D approaches is shown. 

 

 

Figure 6.6 - (Dys)functional regions detection using different methodologies. (a) t-MRI at end-

systole, (d) DE-MRI, (b/e) radian strain map and (c/f) circumferential strain map using the 

sequential 2D (top) and the proposed sequential 2D+t (bottom). The arrows represent the borders 

of the dysfunctional region. 
 



Results 

 

87 

 

 

Figure 6.7 - (Dys)functional regions detection using different methodologies. In this situation a 

normal dataset is used. (a) t-MRI at end-systole, (d) DE-MRI, (b/e) radian strain map and (c/f) 

circumferential strain map using the sequential 2D (top) and the proposed sequential 2D+t 

(bottom). 

 

 

Figure 6.8 - Capability to distinguish between dysfunctional and normal regions by assessing (a) 

radial and (b) circumferential strain. The different bars indicate the respective functional regions: 

(blue) infarct, (green) adjacent and (red) normal. *p<0.05, **p<0.001. 
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6.3.  Validation of the (semi-) automatic segmentation approach  

Table 6.1 and Table 6.2 show the intra-observer differences, inter-observer 

differences comparing with a (semi-)automatic approach and the differences between a 

mean contour and the (semi-)automatic approach, using all the datasets available in each 

center, for the endocardium and epicardium, respectively. At the same time, it is 

important to mention that the (semi-) automatic approach was capable to segment more 

slices than the non-experts. 

In Figure 6.9, we present a study in terms of percentiles and outliers point for the 

segmentation validation. The following comparisons are shown: 1) between the non-

experts (E1 and E2); E1 and E2 with the (semi-) automatic approach (Auto); and a mean 

contour (using the intermediary contour between E1 and E2) with Auto. 

 

Table 6.1 - Dice value, average perpendicular distance (APD), Hausdorff value for the endocardium 

using different comparisons between the non-experts (E1 and E2), the (semi-) automatic approach 

(Auto) and the mean contour (MC) obtained from E1 and E2. At same time, we compute the area of 

the endocardium and determine correlation coefficient (r) and BIAS. *Statistically significant 

(p<0.05) 

 Dice APD (mm) 
Hausdorff 

      (mm) 

Correlation  

coefficient (r) 
BIAS 

E1 and E2 0.881 0.084 2.202 1.402 5.106       0.904 157.357* 

E1 and Auto 0.867       2.683       5.790      0.868 94.611* 

E2 and Auto 0.837       3.203       6.570       0.854 251.968* 

MC and Auto 0.864       2.690       5.634       0.882 181.681* 

 

 

Table 6.2 - Dice value, average perpendicular distance (APD), Hausdorff value for the epicardium 

using different comparisons between the non-experts (E1 and E2), the (semi-) automatic approach 

(Auto) and the mean contour (MC) obtained from E1 and E2. At same time, we compute the area of 

the epicardium and determine correlation coefficient (r) and BIAS. *Statistically significant 

(p<0.05) 

 Dice APD (mm) 
Hausdorff        

(mm) 

Correlation 

coefficient (r) 
BIAS 

E1 and E2 0.943       1.743       4.282       0.943 -45.157* 

E1 and Auto 0.916       2.512       5.789       0.901 -95.461* 

E2 and Auto 0.909       2.763       6.215       0.886 -140.618* 

MC and Auto 0.9177       2.475       5.535       0.907 -111.675* 
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Figure 6.9 - Validation of the (semi-) automatic segmentation technique. First line, test the intra-

observer variability, the second line compare the first observer with the proposed method, the third 

line present the result between the second observer and the (semi-)automatic approach and the last 

line shows the results between a mean contour and the (semi-) automatic approach. The 

comparison was performed in terms of APD (average perpendicular distance) – first column, dice 

value – second column, and Hausdorff value – third column. 
 

6.4. Validation of the proposed sequential 2D+t FFD formulation 

Figure 6.10a shows an example of a global strain curve. The panel (b) illustrates 

the differences between the sequential 2D and the proposed method in terms of the 

trajectories of individual points.  
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Figure 6.11a presents a global strain map illustrating the influence of    on the 

performance of the proposed 2D+t approach. The contours are obtained using the 

automatic segmentation method. Using the same values for   , panel (b) shows the 

differences in terms of the trajectories of individual points. 

Figure 6.12 shows the differences between the methodology proposed 

(sequential 2D+t) and the state-of-the-art approach (fixed 2D+t). 

Figure 6.13 shows the result in terms of contour propagation during the cardiac 

cycle using the fixed 2D+t formulation presented in [68]. The first line uses the SSD as 

metric, while the second line uses the NMI. 

 

Figure 6.10 - (a) Global radial (red) and circumferential (blue) strain by using different 

methodologies: (solid line) the sequential 2D, (dotted line) sequential 2D+t using equation (4.7) and 

(dashed line) sequential 2D+t using equation (4.10) [proposed]. (b) Tag trajectory examples 

showing the difference between (blue) sequential 2D and (red) the sequential 2D+t approach. 
 

 

Figure 6.11 - (a) Global radial (red) and circumferential (blue) strain by using different spacing in 

time direction: (dotted line)   =3, (dashed line)   =2 and (solid line)   =1. (b) Tag trajectory 

examples showing the difference between the proposed 2D+t approach with (blue)   =1, (red)   =2 

and (green)   =3. 
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Figure 6.12 - (a) Global radial (red) and circumferential (blue) strain using different 

methodologies; (solid line) proposed sequential 2D+t approach, (dashed line) fixed 2D+t approach 

using NMI and (dotted line) fixed 2D+t approach using SSD as metric. 
 

 

 

Figure 6.13 - Validation of the methodology proposed for the fixed 2D+t FFD formulation 

presented in [70]. The first line shows the results using SSD and in the second line we present the 

results in terms of contour propagation using the NMI. In each line, the third and fourth columns 

are consecutive frames. The red arrow represents the “jump” of one frame between consecutive 

frames. 
 

6.5. Comparison of the proposed algorithm with a commercial state-of-

the art solution 

Study 1 
 

Table 6.3 presents the results from the multi-center study in terms of linear 

regression and Bland-Altman analysis. In this table, we are comparing the result with 

different methodologies (sequential 2D and sequential 2D+t FFD formulations) in the 

ES defined by physicians. 
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Figure 6.14 shows the correlation between the commercial software and 

proposed method (NRR) and the Bland-Altman analysis for the best result in the Table 

6.3 (sequential 2D+t with      . 

Table 6.4 indicates the results from the multi-center study in terms of linear 

regression and Bland-Altman analysis. This analysis focuses only on the segmental 

circumferential strain. In this table, we are comparing the result using different 

methodologies (sequential 2D and sequential 2D+t). Based on the results of this table, 

we illustrate in the Figure 6.15 the best result (sequential 2D+t with      , using 

linear regression between the commercial software and proposed framework. The 

Bland-Altman analysis is also shown. 

 

Table 6.3 - Results from Doppler CIP study, in terms of global circumferential strain, using 

different methodologies. *Statistically significant (p<0.05)  

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.242 4.815* [-6.568;16.198] 

2 
Sequential 2D+t 

(      
0.260 4.196* [-7.222;15.616] 

3 
Sequential 2D+t 

(      
0.232 4.161* [-7.334;15.655] 

4 
Sequential 2D+t 

(      
0.248 4.131* [-7.61;15.274] 

 

 

Figure 6.14 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of global 

circumferential strain. 
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Table 6.4 - Results from Doppler CIP study, in terms of segmental circumferential strain,  using 

different methodologies. *Statistically significant (p<0.05) 

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.182 4.834* [-14.113;23.784] 

2 
Sequential 2D+t 

(      
0.188 4.358* [-14.607;23.323] 

3 
Sequential 2D+t 

(      
0.182 4.306* [-14.804;23.416] 

4 
Sequential 2D+t 

(      
0.178 3.985* [-15.454;23.425] 

 

 

Figure 6.15 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of segmental 

circumferential strain. 
 

Study 2 

The normal procedure used by the physician to detect the ES moment, consists 

in searching for the frame where the area of the endocardium is lower. This is a 

subjective process, which can create an error of 1 or 2 frames.  

Some works [118] use the circumferential peak value as an important clinical 

indicator. Since this methodology was previously applied and accepted, we compare the 

peak value, obtained with the proposed method, with peak value from the commercial-

software. We present in Table 6.5 and Table 6.6 the results for the global and segmental 

strain, respectively. 

 Figure 6.16 and Figure 6.17 show the linear regression between the diagnosoft-

HARP and the proposed framework and the Bland-Altman analysis for the best situation 

in Table 6.5 (sequential 2D+t with       and Table 6.6 (sequential 2D). 
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Table 6.5 - Results from Doppler CIP study, in terms of global circumferential strain, using 

different methodologies. *Statistically significant (p<0.05)  

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.591 2.561* [-4.736;9.858] 

2 
Sequential 2D+t 

(      
0.601 1.965* [-5.322;9.252] 

3 
Sequential 2D+t 

(      
0.598 1.750* [-5.568;9.068] 

4 
Sequential 2D+t 

(      

 

0.596 

 

1.211* [-6.223;8.646] 

 

Table 6.6 - Results from Doppler CIP study, in terms of segmental circumferential strain, using 

different methodologies. *Statistically significant (p<0.05) 

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.353 1.755* [-12.038;15.549] 

2 
Sequential 2D+t 

(      
0.339 1.294* [-12.216;14.805] 

3 
Sequential 2D+t 

(      
0.334 1.172* [-12.613;14.957] 

4 
Sequential 2D+t 

       
0.332 0.537 [-13.438;14.513] 

 

Figure 6.16 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of global 

circumferential strain. 
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Figure 6.17 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of segmental 

circumferential strain. 
 

Analysis of the strain peak values 

 

Table 6.7 and Table 6.8 compare the mean strain value, using the global strain 

and segmental strain (both cases using the peak value as reference) in the commercial 

software and the proposed framework, respectively. The global strain value, suggest 

differences between the two methods that are statistically significant (p<0.05). 

Table 6.9 shows the ANOVA study, based on the segmental strain peak values, 

for the HARP and the proposed method. The homogeneity was achieved by removing 

5% of the cases, which were outlier’s points. Statistically, the elimination of this 

percentage is acceptable and not statistically significant. The validation of present study 

is available on the Appendix VIII. 

Figure 6.18 illustrates the difference in terms of marginal mean value for the 

commercial software and the proposed method. The figure is based on the Table 6.9 and 

we remove the outliers, as indicated before. In the commercial software there are no 

differences statistically (p<0.05) significant between the apical and mid slice. In the 

other situations, the differences are statistically significant. 
 

 

Table 6.7 – Mean strain value in terms of global circumferential strain. The mean result for the 

commercial software and the proposed approach (NRR) are shown 

Software 
Mean value for the global circumferential 

strain (%) 

diagnosoft-HARP -16.533 

NRR -19.094 
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Table 6.8 – Mean strain value in each slice for the different segments (S1, S2, S3, S4, S5, S6). The 

segmental peak results are used. In each slice we present the strain result for the commercial 

software and the proposed approach (NRR) 

Slice Software 

Mean value for each segment in terms of 

circumferential strain (%) 

S1 S2 S3 S4 S5 S6 

Apical 
diagnosoft-HARP -18.449 -15.307 -17.497 -17.471 - - 

NRR -20.973 -19.248 -19.337 -21.015 - - 

Mid 
diagnosoft-HARP -18.782 -15.735 -15.735 -15.075 -16.046 -17.856 

NRR -15.624 -18.941 -18.730 -17.928 -18.822 -21.425 

Base 
diagnosoft-HARP -18.872 -15.590 -14.857 -12.743 -14.639 -17.164 

NRR -17.395 -16.995 -16.965 -15.799 -15.748 -20.168 

 

 

Table 6.9 - ANOVA table using the segmental peak strain results in each slice for the different 

software’s presented 
 

Source Sum of squares DOF Mean Square Fischer value Significance 

Slices 1366.1 2 683.05 23.274 0.000 

Software 3212.689 1 3212.689 109.469 0.000 

Slice and Software 268.406 2 134.203 4.573 0.010 

Error 55262.180 1883 29.348   

Total 60109.375 1888    

 

 

 

Figure 6.18 - Estimated Marginal Means values for each slice. The blue line represents the 

commercial software, and the red line the proposed methodology based on registration. 
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7. Discussion 

7.1.  Parameter tuning 

Based on the results presented in Figure 6.1, it is evident that, using different 

values for the final grid spacing or different registration metrics, a sub-pixel accuracy is 

achieved in terms of RMSE and EES. In all the cases, the differences between the 

sequential 2D and the proposed sequential 2D+t approach are small. The best result in 

terms of RMSE is 0.2 and 0.18 pixels for the sequential 2D and the sequential 2D+t 

approaches, respectively. In terms of EES, the best result was 0.23 and 0.25 pixels for 

the sequential 2D and sequential 2D+t, respectively. 

A comparison between the three metrics proposed, suggests that the SSD has the 

best result, but with a small difference relative to the NMI. In Figure 6.1, the MMI 

appears to have the worst result, but keeping the sub-pixel accuracy, what is 

satisfactory. Another difference is related to the value of    . In the SSD, high values 

should be used, since it is a metric based on the difference in terms of intensities 

between the two images, while in the MI a range between 0-12 should be used, due the 

probability value associated with this metric.  

About the influence of the     in each metric, we can observe that  high value 

leads to worst result in terms of RMSE and EES error, due a high regularization; on 

other hand, a lower value will lead to worst results, which happens due the large degrees 

of freedom allowed. In the case of SSD a value in the range [1000-10000] and the MI 

approaches a value in the range [0.5 – 2] should be used. 

In Figure 6.2 is possible to see the influence of 4 scales, instead the 3 scales 

previously used (multi-resolution technique used in the registration problem). At the 

same time, in Figure 6.3, the influence of 64 bins used during the computation of the 

joint histogram is shown. In these results, no big difference between the different 

parameters was found, suggesting some robustness for the current methodologies.  

Regarding the image with lower SNR (Figure 6.4), the results revealed a high 

value for the RMSE and EES. In this case, it is possible to see that a metric based on MI 

has a better result than SSD. This was expected, since the MI approach is not based on 

the intensity of the image, but on the histogram of the image. As such, it is more 

appropriate for images with noise. Looking in Figure 6.4, it is also possible to observe 

no big differences between different final grid spacing values. In terms of      a 

performance similar to the image with high SNR was found, but with other ranges for 
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the optimum result. This last observation proves that a study about the regularization 

factor is essential, when we change the properties of the image. The best result for the 

SSD  in terms of RMSE is 2.68 and 3 pixels for the sequential 2D and the proposed 

sequential 2D+t with optimal range for the     between [10000-1000000]. About the 

result with Mutual Information, the MMI has the best result in terms of RMSE of 1.76 

and 1.52 pixels for the sequential 2D and the proposed sequential 2D+t, respectively. In 

terms of EES, the best result was 2.35 and 2.16 pixels for sequential 2D and sequential 

2D+t, respectively, using a range between [1-5] for    . Relatively the NMI, the best 

result was 2/3.45 and 1.58/2.36 pixels for the RMSE/EES with optimal range between 

[0.5-5]. In Figure 6.5, the RMSE and EES results using 4 scales instead 3 scales are 

shown. Again, no big difference was found between the two results, proving that     is 

the factor with higher impact on the final result of the registration problem. 

As a final comment, it is important to note that the image with SNR = 6dB is an 

“extreme” situation, where the influence of the noise might be big. In clinical t-MRI, 

image quality is generally better, and the results obtained in the image with SNR = 

18dB (Figure 6.1) should be used as a reference for the parameter study.  

7.2.  Detection of (dys)functional regions  

Figure 6.6 illustrates that the sequential 2D and the proposed sequential 2D+t 

show reduced (and even inversed) strain values at the lesion location as identified in the 

corresponding DE-MRI image. The center of the lesion was more clearly visible in the 

circumferential strain map, compared to the radial strain map. The inverse strain pattern 

seen in the circumferential strain map is likely caused by passive stretching due to the 

contraction of the neighboring viable segments. However, in the radial strain map, part 

of the lesion was (wrongly) classified as having a high positive strain value (represented 

as a red area). These detection errors in the strain map may be related to the initial 

segmentation which was used to delineate a ROI for strain estimation, or due to the 

influence of the papillary muscle on tracking accuracy. The difference between the 

strain map of both methods is also small. This is expected, since the sequential 2D+t 

approach does not impose additional spatial smoothing. 

In Figure 6.7, the strain map of a healthy heart is shown. In that case, both 

approaches were capable to estimate an acceptable strain map for the image. The 

regions that are presented as a blue (represent a lesion) typically appear on the borders 

of the contour, suggesting that this can happen due the manual initial segmentation. 
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The statistic study available in the Figure 6.8 demonstrates that both approaches 

were capable to separate dysfunction from normal regions. The circumferential strain 

seems best suited for this purpose. No significant differences were found between the 

adjacent region and the normal or infarct region. Nevertheless, the strain behavior was 

as expected, with an increasing strain gradient from infarct to normal tissue. It should be 

noted that the present segmental classification may be too coarse as the infarct borders 

from the DE-MRI images did not necessarily coincide with borders between the 

standard segments. Adapting this classification may thus improve these results. 
 

7.3.  Validation of the (semi-) automatic segmentation approach 

Table 6.1 and Table 6.2 show high intra-observer variability. This is expected, 

due the presence of tags. Normally some observers adapt the contours to the limit of the 

tags and others prefer to use a mean tag position. This difference can cause large 

variability in the final result, since one tag typically has 3 or more pixels. At the same 

time, since the experts need to look in the temporal direction to detect the endocardium 

and epicardium, due the image noise, some errors in the manual segmentation are 

expected. As a last comment, the non-experts remarked that this task was tedious and 

the differences, in terms of dice value, APD value and Hausdorff distance, between the 

observers are acceptable. In clinical practice, we expect a similar result. 

Comparing each non-expert (E1 and E2) with the automatic result, it is possible 

to see that the differences, in terms of Dice, APD and Hausdorff distance are higher 

than in the last situation, particularly in the case of E2. This result is expected, since the 

automatic approach will remove the intra-observer variability, presenting always the 

same behavior.  

In terms of Dice value and APD value, the epicardium has a better result than 

the endocardium. This is not expected, since if we analyze the tracking results of the 

contours, the endocardium appears to have a more robust result than the epicardium. 

These differences can prove that the actual “ground truth” could present some errors, 

but these problems are related with properties of the t-MRI images. If we analyze the 

correlation coefficient in terms of area, we also observe a best result for the epicardium. 

Looking for the BIAS value, we can observe that E1 and E2 typically draw an 

endocardium more inward than the automatic approach and an epicardium more 

outward than the automatic approach.  
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To solve the limitation related with intra-observer variability, we created a mean 

contour between the E1 and E2. The results obtained are in accordance with the 

previous observations. 

Figure 6.9 presents a detailed statistic study about the contours. This result 

supports the previous observations. It is important to mention that with this task we 

intend to validate the proposed (semi-) automatic methodology, but we are not 

comparing with a benchmark database. As such, these results demonstrate that the 

proposed approach can create an acceptable contour. 

Finally, during the discussion we refer that we are using a (semi-) automatic 

approach, but initially we propose to develop an automatic methodology. All the work 

was focused on an automatic methodology, but due the high variability of the images 

and problems during the acquisition (e.g. heart is not in the center of the image) in some 

situations a user input was used. Appendix II indicates the number of cases where the 

physician needs to insert some information, for example the LV position. It is important 

to mention that the user input was used in a small number of cases. In these cases, the 

physician only needs to click one or two times on the image, which is less time 

consuming than manual segmentation. As such, the results suggest that this framework 

could be useful for the physician. About the number of apical fails (Table 11.1), in all 

these cases the physician was also not capable to process the image.  

7.4. Validation of the proposed sequential 2D+t FFD formulation 

In the next part of the discussion, we focus on difference between the 

registration scheme described in the section 3.1.7 (sequential 2D) and the approaches 

proposed in the section 4.3 (sequential 2D+t and fixed 2D+t). 

Using the automatic contours we intend to assess the different methodologies 

proposed for tracking. The motion and strain behavior seen in Figure 6.10, which is 

temporally smoother for the proposed 2D+t approach, is also in line with expectations. 

Taking motion estimates from neighboring frames into account eliminates noisy or 

jaggy motion trajectories caused by the original assumption that pairwise registrations 

are independent. Furthermore, by adapting the BE formulation (equation 4.10), an over-

smoothing effect of the strain curves can be avoided. In this situation, the over-

smoothing effect is not so big, but it is possible to see a strain curve really similar to a 

B-spline. The high influence of the adaptation of BE formulation can be shown in a 

published result by Morais et al. [117] (Appendix IV). 
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Figure 6.11 shows the influence of the B-spline spacing factor on the time 

directions. The results prove, as expected, that if we increase this factor, a larger 

smoothness effect can be observed. Increasing the spacing implies that we are using 

information from more distant frames. Due to use of B-splines in the transformation, 

large temporal grid spacing will increase the smoothness of the global strain curve. A 

small value should be used on this parameter to prevent an over-smoothed result. 

To validate the proposed methodology, we decided to create a comparison with a 

state of the art approach, using temporal information on the transformation model. The 

work proposed by Chandrashekara et al. in 2004 was implemented, during the 

development of this master thesis, based on the information presented in the paper 

published in [70]. Initially, we implemented the methodology using SSD. Since in the 

fixed 2D+t approach we are registering each frame in the cardiac cycle with the first 

frame, highest differences are expected in term of intensities. This factor is problematic 

in the case of t-MRI, since the ED frame presents different contrast and tags on the 

blood pool. Using SSD, we are not capable to estimate the motion field (Figure 6.12 – 

dotted line), and it is possible to see that the contours typically fail in the frames with 

biggest deformation (first line in Figure 6.13). During these phases, the contours 

typically have biggest changes between consecutives frames and it is possible to see a 

“jump” of almost one tag spacing (first line in Figure 6.13).  

Using the same methodology as a reference, the fixed 2D+t, we implemented a 

new non-intensity based metric, called Mutual Information. Two approaches were 

available, MMI and NMI. We were only capable to estimate the motion field with NMI. 

The result presented in Figure 6.12 (dashed line) and in Figure 6.13 (second line), 

suggests that this methodology can estimate an acceptable strain curve result. No reason 

was found to explain why MMI fails to compute the motion field, but this can be related 

with the parameters used. Finally, we compared the result between the fixed 2D+t using 

NMI and the proposed approach using SSD (proposed sequential 2D+t), and it was 

possible to see a more smooth effect and a more normal curve in the proposed 

sequential 2D+t. During the current master thesis, we don’t study the parameters for the 

fixed 2D+t approach using normalized mutual information. The parameters used for the 

computation of the strain curve were obtained using the reference values from the study 

realized in Figure 6.1. Possibly, this parameter study could improve the final result of 

the fixed 2D+t method, but we don’t expect a more smooth effect on fixed 2D+t 

methodology, when compared with the proposed sequential 2D+t approach. 
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7.5. Comparison of the proposed algorithm with a commercial state-of-

the art solution 

Initially, we intend to discuss the feasibility of the proposed method. The new 

method was capable to segment and estimate the strain value in all the cases. As such, a 

feasibility of 100% was achieved. 

Now, during the next step of the discussion, we will compare the cardiac strain 

values between the commercial software and the proposed methodology, based on 

elastic registration. We intend to assess the circumferential strain value in the ES frame, 

since this is an important indicator about heart function. Two studies were proposed to 

compare the two methodologies. The first is based on the ES defined by the physician 

using visual assessment (searching for the frame where the endocardium present a lower 

area); and the second study is based on the peak value between the diagnosoft-HARP 

and the proposed approach. 

Initially, in Appendix V a problem of the HARP results is detected. The t-MRI 

sequences normally do not contain a full cardiac cycle, so the circumferential strain 

should never be higher than zero. A value of zero means that the heart recovers the 

original shape and a value higher than zero means that the heart is not contracting 

correctly. Obviously, these values can happen in the case of abnormal heart function 

(e.g. infarct region), but all the results from the core lab have the same problem (values 

high than zero in terms of circumferential strain in the end of the dataset). The current 

dataset has abnormal situations, but also has normal cases. This is not limitative, since 

we only want to study the strain at the ES. The proposed methodology also has some 

problems at the end of the cycle, due to the loss in the image contrast, but we never 

achieve a circumferential strain value higher than zero, which is not normal in clinical 

practice. 

 One possible explanation for the results obtained with the HARP technique, is 

related to tag fading. At the end of the cycle, the HARP method, which is based on the 

study of the frequency, typically fails since the peaks on FFT (as demonstrated in Figure 

4.7) start to disappear. Without the peaks, the HARP method is not capable to compute 

the correct phase image and consequently it is not capable to estimate the strain value. 

Other problem referred by the physician is related with tag orientation. The 

commercial software is prepared to estimate strain in images with tags at 45
º
. During 

this study, one of the centers is using tags at 0
º
, so the physician needs to rotate the 
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image to estimate the strain. The proposed approach is better on this point, since we 

don’t assume any tag orientation, and the results prove that we can estimate the strain 

with tags at 0
º
 and 45

º
. 

In terms of global strain values, Table 6.3 presents a low correlation coefficient 

between the two strategies and has a positive BIAS statistically significant (best result 

with        ). The ES frame defined by the physician was obtained by visual 

assessment, which can create some errors. Other problem is related with the HARP 

result. As referred before, we removed from the study the cases where the 

circumferential strain is higher than zero at ES. This assumption works as a “threshold”, 

and the cases where the value of the strain is approximately zero are included (see 

Figure 6.14a).  Obviously, these cases will influence the correlation and a low value is 

expected. The Bland-Altman analysis presented in Figure 6.14 shows the high value of 

the BIAS and a large limit of agreement, which prove a high variability on the result. 

Table 6.4 and the respective Figure 6.15 are consistent with the last conclusions, but in 

this case we are using the segmental strain (best situation with        ). In terms of 

results, we expect always worst values on the segmental study, due the regional 

analysis. It is important to note, that the segments were defined by the model proposed 

by Cerqueira et al.[111], but some variability on the limits can occur between the result 

with the proposed approach and the core lab analysis.  

The previous results were not capable to validate the proposed methodology, and 

more statistical tests should be done to see if there is some correlation between the 

commercial software and the proposed method. 

In the second test, we compare the strain peak value between the diagonosft-

HARP and the elastic registration methodology [118]. It is important to mention that 

since we are using core lab analysis, we do not have access to the initial contour of the 

image, which has a high impact on the strain estimation. Based on this difference a high 

correlation between the two methodologies is not expected. 

The results obtained during this study suggests an acceptable value for the 

correlation coefficient (        and         for  the best situation in the global 

and segmental strain, respectively) between the two software’s and a statistically 

significant BIAS in the case of global strain (see Table 6.5 and Figure 6.16) and 

segmental strain (see Table 6.6 and Figure 6.17), which prove that the proposed 

methodology typically presents a peak value more negative than the commercial 

software. This last point is important, and can be explained due the method used by the 
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physician for the definition of the endo- and epicardial contour. Due the difficulties to 

understand some results obtained by the commercial software, we inquire the physician 

about the technique used for the definition of the endocardium and epicardium. This 

definition is done using manual segmentation, and the physician does not draw the 

contours in the endocardium structure, but a little bit within the myocardium, following 

the recommendation by the inventor of the software. Obviously, this difference in the 

definition of the endocardial contour can explain the BIAS and prove why we typically 

have a lower value, as presented on the Table 6.7 and Table 6.8. In this second study 

was possible to observe that the limits of agreement are not so large, so we can see a 

decrease on the variability of the data. Comparing the sequential 2D and the proposed 

sequential 2D+t methodologies, no statistically significant differences were found. 

Again, we showed that the smoothness on the temporal direction is the principal 

advantage of the sequential 2D+t methodology when compared with the sequential 2D. 

The Appendix VI presents the result of the second test (comparison between 

peak values) in each slice. The results prove that the basal slice has the most acceptable 

correlation (       ) and the apical slice the lowest correlation (        . This is 

expected and this proves why the basal slice is the best option, in t-MRI, for start the 

automatic segmentation approach.  

In Appendix VII, we propose a different study to compare the two 

methodologies. Using the diagnosoft-HARP results as a “viable ground truth”, which is 

adequate since it is the generally accepted commercial software, we use the strain peak 

value to define the ES frame. After, using this frame we determine in the proposed 

methodology the respective strain value. This study, shows the highest correlation 

(        and         for the global and segmental strain, respectively) comparing 

with the two studies presented before (ES defined by physician and the strain peak 

value). In terms of Bland-Altman analysis, we can see that the limits of agreement have 

the most acceptable results. This appendix, suggests that the proposed approach has a 

high correlation with the HARP result until the HARP peak value, after that, the 

commercial software start failing. This observation is valid for the global (Table 16.1 

and Figure 16.1) and the segmental circumferential strain (Table 16.2 and Figure 16.2). 

In Table 6.8, it is also possible to observe a gradient between the apical and 

basal slice. Looking for the results obtained with the proposed method, we can see that 

the apical slice has a high strain value and this value reduces in all the segments towards 
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the base. This is expected in the clinical practice. The same behavior is not observed in 

all the slices of the commercial software, which was not expected and can be analyzed 

as a drawback of the current commercial software. A statistical study, based on the 

ANOVA table (Table 6.9) proves that there are statistically significant differences in the 

combination, different software’s and different slices. The differences can be easily seen 

on the Figure 6.18, where the proposed method has a linear behavior. The same is not 

visible on the commercial software.  

During the discussion, we are creating some suspicions about the current 

commercial software. To detect what method is better to estimate the cardiac strain 

value, a fair comparison should be done in future work, using a phantom. The proposed 

approach appears to present more adequate results. The same can be observed, if we 

study the difference between the ES defined by the physician, and the ES frame defined 

by the strain peak value. The results show that the absolute difference is 1.637 and 

1.363 frames for the commercial software and the proposed methodology, respectively 

(statistically is not significant using a paired t-test with p<0.05). Without the absolute 

value, the final results are 1.230 and -1.129 frames, for the diagnosoft-HARP and 

registration approach, respectively. This result proves that the ES (using as reference the 

strain peak value) in the HARP occurs before the ES defined by the physician, while in 

proposed approach occurs after. A global analysis about the last results, suggests that 

the proposed methodology appears to be more robust than the commercial software. 
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8. Conclusions and contributions 

8.1 Conclusions 

In conclusion, this work presents an automatic framework to estimate the LV 

deformation in t-MRI. The LV tracking and segmentation methods are described and 

validated, showing acceptable results for clinical practice. 

In this work, different registration schemes to track tissue motion and to estimate 

cardiac deformation from t-MRI are described. A pairwise approach termed the 

sequential 2D is first explained. The results suggest that the method can estimate the 

motion field, but with the general assumption that there is independence between 

registrations. A sequential 2D+t approach is presented to solve the last assumption and 

the results show a smoothing effect in the strain curve. At same time, we describe a 

state-of-the art technique, termed as fixed 2D+t. This method was capable to estimate 

the motion field using non-intensity based metric, but without a high smoothing effect 

in the temporal direction. As such, the proposed sequential 2D+t appears to be a more 

adequate methodology. More tests should be done in future work. 

No significant differences were found between the sequential 2D and sequential 

2D+t approaches in the detection of the dysfunctional regions. More exams and a 

refinement of the segments should be used to improve the results. 

In future work, we intend to improve the proposed sequential 2D+t. Currently, 

this methodology was only applied on short axis data. Out-of-plane motion may have 

therefore introduced additional errors. Including longitudinal strain measurements from 

long-axis views or extending the method to 3D tagged MR images may further extend 

its appeal. Furthermore, the analysis of the clinical dataset is not straightforward. As 

such, we intend to apply the current strategy in the recent STACOM challenge [119]. 

Regarding the proposed segmentation approach, a technique to automatic define 

of the LV contours was not achieved. We proposed a strategy for automatic definition 

of the myocardium, but the results prove that in a few cases a user input, based in one or 

two clicks, was needed. As a result, we develop a (semi-) automatic approach, where we 

remove the tedious task, related with the manual segmentation, and the intra-observer 

variability. 

The semi-automatic approach used for LV contouring presents acceptable 

results, when compared with the manual segmentation. In future work, a benchmark 

database should be used to validate the methodology. 
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A comparison between the proposed framework (LV tracking and segmentation) 

and the commercial software (diagnosoft-HARP) to estimate cardiac deformation in t-

MRI is shown. Several problems were detected in the commercial software, but these 

problems are related with the manual contouring used. Since we are using a core lab 

analysis, we don’t have any information about the initial endo- and epicardial contour. 

As such, some differences in the strain curves are expected. The two techniques appear 

to have an acceptable correlation, when we compare the strain peak values. The same is 

not observed, if we use the ES frame defined by the physician. In future work, we 

intend to develop a phantom to compare, with high accuracy, the two methods. 

As last conclusions, the entire proposed framework can estimate, with 

acceptable results, the global and segmental strain curve.  At the same time, a global 

analysis of all the results suggests that the proposed framework appears to be more 

adequate than the currently available commercial software to estimate motion in t-MRI 

images. 

8.2 Contributions 

The main contributions during the present master thesis are as follow: 

1. A new registration formulation was proposed (sequential 2D+t), where the time was 

included on the transformation model formulation. 

a. Validation of the new methodology was performed in synthetic, porcine 

dataset with dysfunctional regions and human clinical dataset; 

b. A study about the parameters, such as bending energy factor, the final grid 

spacing and different similarity metrics was developed; 

c. A new formulation for the strain estimation was developed; 

d. A comparison between the proposed formulation (sequential 2D+t) and a 

state-of-the art approach (fixed 2D+t) was performed. 

2. A study about active contours methods, with particular interest on the formulation of 

the BEAS [44] method was presented. At the same time, some studies were done 

about tag suppression methods using the t-MRI images. 

a. Development of a methodology to automatic detection of the LV cavity and 

tag suppression in t-MRI images. 

b. Development of a new technique for automatic initialization of the LV 

contours, based on the original t-MRI image. In this step, the template 

matching approach described in [33] is used. 
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c. Application of the BEAS framework in t-MRI images, using the coupled 

myocardial segmentation method proposed in [33]. The method is not 

applied in the original image, but in an un-tagged image. 

d. Validation of the (semi-) automatic approach used for LV contouring. We 

compare the results obtained using the proposed technique with a ground 

truth, created by two non-experts. 

3. Using the entire framework we can automatically compute the radial and 

circumferential strain curves. A comparison between the proposed framework and 

the current commercial software was developed. The images used are obtained from 

a multi-center study with core lab analysis. 

a. A statistical study was performed using as reference the ES frame defined by 

the physician. 

b. In the second step, a comparison between the strain peak values in each 

strategy was shown. In this step, we also present the strain differences in 

each slice. 

c. We detect a gradient, in terms of strain values, between the apical and basal 

slice. An ANOVA study was developed to validate the last observation. 

d. Differences between the two strategies were detected, in terms of mean 

global and segmental strain. Also, a comparison between the ES in each 

strategy (using the peak value as reference) and the ES defined by the 

physician was presented. 
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10. Appendix I – Details about the automatic segmentation method 

During the proposed segmentation technique, we use the 4
th

 frame to delineate 

the LV contours. We can’t use the 1
st
 and 2

nd
 frames due to the presence of tags inside 

the blood pool (Figure 10.1). In Figure 10.1, we can see that the 3
rd

 frame has a small 

number of tags on the blood pool. Comparing the 3
rd

 frame with the 4
th

 frame, the last 

option appears to be more adequate, but with a small difference. It is important to 

mention that we can’t use a frame in the middle of the cycle, due to the tag fading. 

 

 

Figure 10.1 - Differences of tags inside the blood pool between the 1
st
 frame and 4

th
 frame. 

 

The low pass filter used is computed using a polar image based on the spectrum 

image. A binarization based on the intensities will be performed. The DC component 

has the highest intensities on the image. To remove the DC component, we eliminate 

the first 10 lines of the polar image. Figure 10.2 shows the components that are removed 

(please note the red line). We can confirm that the range assumed (10 lines) only 

removes the DC component. As such, the binarization method will detect the tag 

positions as expected.  
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Figure 10.2 - Polar image used to compute the low pass filter. 
 

In the current thesis, we suppress the tags using a combination of two filters. 

One filter will attenuate the high frequencies (low pass filter) and the second will 

remove the tag frequencies. In the proposed methodology, the second filter only 

removes the 1
st
 harmonic of the tag frequencies. Figure 10.3 shows an alternative 

technique, where the 1
st
 and 2

nd
 harmonics of the tag frequencies are removed. Looking 

for the final result in each case (Figure 10.3), no significant difference was found. 

 

Figure 10.3 - Differences in the detagged image using a filter where the 1st harmonic of the tag 

frequencies is removed (first line) and the 1
st
 and 2

nd
 harmonics of the tags frequencies are 

removed. 
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11. Appendix II – Number of correction in the automatic contour 

During this work, we refer that we are developing an automatic segmentation 

approach, but due the image properties and high variability of t-MRI a (semi-) 

automatic method is proposed. Typically, the physician can use this framework for 

automatic definition of the endocardial and epicardial contours, but in some situations 

due the previous assumptions (e.g., the heart should be positioned in the center of the 

image) a user input to correct the contours is used. Table 11.1 indicates the number of 

cases where user input was needed, and the number of cases where the apical was 

unsuccessful segmented. The mid and basal slice was always contoured with success. 

 

Table 11.1 - Number of cases where the user input was used. We count the number of slices  where 

the user need to change the first estimation of the LV center position (Center Correction), the 

number of slices where the user change one point in the automatic initialization method (One Point 

Correction) and the number of cases where the apical slice was not segmented (Apical Contour fail) 

Center 
Nº of cases in 

Slices 

Center 

Correction 

One Point 

Corrected 

Apical 

contour fail 

1 120 5 2 3 

2 129 5 10 9 
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12.  Appendix III – LV tracking and segmentation results 

Figure 12.1 shows the results of the registration framework for five different 

datasets. A virtual grid line was imposed on first frame, where the tags present a regular 

shape. This grid moves during the cardiac cycle based on the optimal transformation, 

following the tags. 

In Figure 12.2 we illustrate some examples of the automatic contour (first 

column) and the propagation of the contour during the cardiac cycle. The segmentation 

delineated in first frame is propagated during the cycle based on the optimal 

transformation, using elastic registration. 
 

 

Figure 12.1 - Tag tracking result of the proposed sequential 2D+t methodology in five human 

datasets. 
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Figure 12.2 - (Semi) Automatic segmentation result. In the image we present five different 

situations, with images from different slices, obtained from different centers. 

 

  



Cardiac motion and deformation estimation in tagged magnetic resonance imaging 

 

132 

 

13. Appendix IV – Validation of the proposed sequential 2D+t FFD 

formulation using a published result 

In this appendix, we illustrate a result (Figure 13.1) published by the author of 

the current master thesis in [117]. The differences between the sequential 2D and the 

sequential 2D+t approach, using and not a new adaptation of BE formulation (equation 

4.10), are shown in the Figure 13.1. Please note, in this result the contours are defined 

manually. 

 

 

Figure 13.1 - (a) Global radial (red) and circumferential (blue) strain by using different 

methodologies: (solid line) the sequential 2D, (dotted line) sequential 2D+t using equation (4.7) and 

(dashed line) sequential 2D+t using equation (4.10) [proposed]. (b) Tag trajectory examples 

showing the difference between (blue) sequential 2D and (red) the sequential 2D+t approach [117]. 
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14.  Appendix V – Global strain curve obtained in proposed framework 

and in commercial software 

Figure 14.1 presents some cases, selected randomly, available in the multi-center 

study with core-lab analysis. We intend to compare the global circumferential strain 

curve between the commercial software (red line) and the proposed 2D+t methodology 

(blue line). 

 
Figure 14.1 - Comparison between the software commercial (red line) with the proposed approach 

(blue line) in different cases.  
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15.  Appendix VI – Results obtained in each slice for the proposed 

framework and commercial software  

Table 15.1, Table 15.2 and Table 15.3 show the correlation coefficient and the 

limit of agreement for the apical, mid and base slice, respectively. All these results are 

based on the comparison between the strain peak value in the commercial software and 

the proposed methodology (NRR), based on registration. 

At same time, we illustrate in Figure 15.1, Figure 15.2 and Figure 15.3 the linear 

regression and the Bland-Altman analysis for the best situation in each slice.  

 

Table 15.1 - Results from Doppler CIP study, in terms of global circumferential strain in the apical 

slice, using different methodologies. *Statistically significant (p<0.05) using a paired t-test 

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.389 3.247* [-6.146;12.641] 

2 
Sequential 2D+t 

(      
0.446 2.686* [-5.929;11.302] 

3 
Sequential 2D+t 

(      
0.436 2.631* [-5.884;11.146] 

4 
Sequential 2D+t 

(      
0.460 2.009* [-6.978;10.995] 

 

 

Figure 15.1 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of global 

circumferential strain for the apical slice. 
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Table 15.2 - Results from Doppler CIP study, in terms of global circumferential strain in the mid 

slice, using different methodologies. *Statistically significant (p<0.05) using a paired t-test 

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.536 2.485* [-5.287;10.257] 

2 
Sequential 2D+t 

(      
0.531 2.119* [-6.008;10.247] 

3 
Sequential 2D+t 

(      
0.530 1.867* [-6.196;9.297] 

4 
Sequential 2D+t 

(      
0.525 1.494* [-6.526;9.515] 

 

 

Figure 15.2 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of global 

circumferential strain for the mid slice. 
 

 

Table 15.3 - Results from Doppler CIP study, in terms of global circumferential strain in the base 

slice, using different methodologies. *Statistically significant (p<0.05) using a paired t-test 

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.755 2.217* [-2.780;7.234] 

2 
Sequential 2D+t 

(      
0.739 1.374* [-3.783;6.531] 

3 
Sequential 2D+t 

(      
0.725 1.099* [-4.285;6.483] 

4 
Sequential 2D+t 

(      
0.725 0.447 [-4.905;5.798] 
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Figure 15.3 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of global 

circumferential strain for the basal slice. 
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16.  Appendix VII – Validation of the proposed framework using the 

commercial software results as ground truth  

Table 16.1 and Table 16.2 present the correlation and the Bland-Altman analysis 

in the global and segmental strain, respectively. Since the diagnosoft-HARP has a 

clinical validation, we are using these results as a “ground truth”. The ES moment will 

be defined using the HARP results. The circumferential peak value will be used to 

determine the ES frame. Then, we compute in the proposed approach the 

circumferential strain at the ES defined by the diagnosoft-HARP results. 

 

Table 16.1 - Results from Doppler CIP study, in terms of global circumferential strain, using 

different methodologies. *Statistically significant (p<0.05) using a paired t-test 

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.632 -0.001 [-6.319;6.312] 

2 
Sequential 2D+t 

(      
0.691 -0.501 [-6.525;5.523] 

3 
Sequential 2D+t 

(      
0.691 -0.629* [-6.655;5.398] 

4 
Sequential 2D+t 

(      
0.674 -0.904* [-7.173;5.364] 

 

Table 16.2 - Results from Doppler CIP study, in terms of segmental circumferential strain, using 

different methodologies. *Statistically significant (p<0.05) using a paired t-test 

Study Method 
Correlation 

Coefficient (r) 

Bland-Altman Analysis 

Bias LOA (         

1 Sequential 2D 0.408 -0.052 [-12.706;12.603] 

2 
Sequential 2D+t 

(      
0.394 -0.594 [-12.960;11.772] 

3 
Sequential 2D+t 

(      
0.392 -0.635 [-13.27;12.000] 

4 
Sequential 2D+t 

(      
0.388 -1.02* [-13.829;11.789] 
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Figure 16.1 and Figure 16.2 show the linear regression between the commercial 

software and the proposed approach (NRR) and the Bland-Altman analysis for the best 

result present in the Table 16.1 (sequential 2D+t with       and Table 16.2 

(sequential 2D). 

 

Figure 16.1 - (a) Linear regression, and (b) Bland-Altman Analysis in terms of global 

circumferential strain. 

 

Figure 16.2- (a) Linear regression, and (b) Bland-Altman Analysis in terms of segmental 

circumferential strain. 
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17.  Appendix VIII – Details about the ANOVA table 

In this appendix, we prove the assumptions of the ANOVA table. Using the 

Levene’s test, we obtain a significant value of 0.335 which proves the homogeneity of 

the sample, assuming p<0.05. The Table 17.1 shows the study of the residual values, 

where it is possible to see a mean residual value equal to zero. The Kolgmogorov-

Smirnov test demonstrates the normality of the study, with a significance of 0.2 

(assuming p<0.05). In the end, Figure 17.1 presents a boxplot with the distribution of 

the samples. In this boxplot, outlier’s points are not detected. 
 

Table 17.1 - Residual values table 

 Statistic 
Standard 

Error 

Residual 

values 

Mean Value 0 0.023 

95 % Confidence 

Interval for mean 

Lower Bound -0.0451  

Upper Bound 0.0451  

5% Trimmed Mean -0.005  

Median -0.0309  

Variance 1.001  

Standard deviation 1.0003  

Maximum -2.41  

Minimum 2.41  

Range 4.82  

Interquartile Range 1.36  

 

 

Figure 17.1 - Boxplot of samples distribution. 


