
Paulo Adelino Dias Almeida

An Open Source Virtual Globe for Android

Dissertação de Mestrado

Mestrado em Engenharia Informática

Trabalho efetuado sob a orientação do

Professor Jorge Gustavo Rocha

Outubro de 2013

Agradecimentos

Em primeiro lugar gostaria de expressar um importante agradecimento ao Pro-

fessor Jorge Gustavo Rocha, por todo o seu apoio, motivação e partilha de con-

hecimentos, que tornaram esta tese possível.

Queria também agradecer aos colegas que partilharam o gabinete comigo du-

rante a duração deste projecto e proporcionaram um óptimo ambiente de trabalho.

Por último, agradeço aos meus pais e à minha irmã por terem sempre acreditado

em mim e terem sempre me oferecido todo o seu apoio e carinho.

i

Abstract

Virtual globes have a number of key bene�ts as a platform for communicating

and visualizing geospatial data over traditional technologies. Virtual globes have

increased in popularity and several implementations are available that cater to

di�erent audiences from education to industry.

Despite these advantages, an open source virtual globe solution is still not

available for mobile environments.

Our goal is the development on an open source globe for Android, able to

receive 3D scenes from a W3DS server. We present the architecture and the im-

plementation decisions. We choose to develop the virtual globe on top of osgEarth

which takes advantage of the OpenSceneGraph toolkit. Based on this decision, we

explain how osgEarth was extended to consume new 3D data sources and how it

was ported to the Android platform. Porting to Android requires major changes in

the OpenGL API usage. Embedded devices only support a subset of the OpenGL

API.

We provide a virtual globe application that runs natively on the Android op-

erating system. It is implemented on top of the osgEarth framework. osgEarth

was ported to Android and expanded to support additional features. Pointers to

the source code repositories are provided.

With the work developed in this project, mobile virtual globe solutions can

be customized and deployed, providing powerful visualizations and more intuitive

interactions.

iii

Resumo

Nos últimos anos, aplicações de globo virtual sofreram um grande aumento na

sua popularidade e proliferação. Este tipo de aplicação oferece um grande conjunto

de vantagens em relação às soluções tradicionais para a visualização e interação

com dados geoespaciais.

Estas vantagens levaram a um elevado interesse na presença desta solução em

ambientes móveis. No entanto, uma solução open source para globos virtuais em

Android ainda não se encontra disponível.

O objectivo principal deste trabalho é então disponibilizar em Android uma

solução de globo virtual open source. O globo implementado terá também de ser

capaz de consumir o serviço W3DS recentemente especi�cado.

Apresentamos a arquitectura da nossa solução e as escolhas realizadas. Es-

colhemos basear a nossa solução no osgEarth, framework de globos virtuais que

recorre ao OpenSceneGraph para as suas necessidades de rendering. Esta decisão

implicou um processo de porting destas libraries para Android, efectuando to-

das as adaptações necessárias. De especial importância a adaptação do código

dos shaders responsáveis pelo rendering grá�co, uma vez que em Android apenas

há disponível o OpenGL ES, especi�cação limitada do OpenGL. O osgEarth foi

também expandido de forma a ser capaz de consumir o W3DS.

Disponibilizamos uma solução de globo virtual que corre nativamente em An-

droid e é capaz de consumir o W3DS. A framework osgEarth foi assim expandida

com novas funcionalidades e passou também a estar disponivél para Android.

Com o trabalho realizado, globos virtuais móveis podem ser personalizados e

implementados fácilmente.

v

Contents

List of Figures xi

List of Tables xiii

Listings xv

1 Introduction 1

1.1 Motivation . 3

1.2 Problem . 3

1.3 Goal . 4

1.4 Thesis structure . 5

2 State of the Art 7

2.1 Mobile Devices and Android . 7

2.1.1 Android Operating System 8

2.1.2 Developing in Android . 9

2.1.3 Android Native Development 11

2.2 OpenGL . 13

2.2.1 OpenGL ES . 13

2.3 Virtual Globes . 16

2.3.1 Existing open source solutions 21

2.4 OGC Services . 23

2.4.1 Web Map Service . 24

2.4.2 Web 3D Service . 24

2.4.3 OGC Client Applications . 25

vii

viii CONTENTS

3 Architecture 27

3.1 Requirements . 27

3.2 Main di�culties . 28

3.2.1 Data volume . 29

3.2.2 Rendering challenges . 29

3.2.3 Mobile Environment . 30

3.3 Solution . 31

3.3.1 Choice and implications . 32

3.3.2 Integrating the osgEarth framework 32

4 Development 37

4.1 Porting to Android . 37

4.1.1 Cross Compiling . 38

4.1.2 OpenGL ES support . 40

4.2 Extensions to osgEarth . 43

4.2.1 W3DS plugin . 44

4.2.2 Caching 3D entities . 46

4.2.3 Changes to the scene graph 46

5 Results 49

6 Conclusions and Future Work 55

6.1 Conclusion . 55

6.2 Future Work . 56

Bibliography 58

A Build Manual 61

List of Figures

2.1 Diagram displaying the possible states and respective transitions in

an Android activity (source [1]). 12

2.2 Example of a virtual globe implemented using the VRML language

(source [2]). 17

2.3 Initial screen of Microsoft Encarta's virtual globe solution (source

[3]). 19

2.4 Presentation of EarthViewer, the �rst 3D geobrowser (source [4]). . 20

2.5 Di�erent types of clients and servers when using OGC services

(source [5]). 25

3.1 Components that compose the osgEarth framework. Components

altered for our solution are highlighted with di�erent background

colours (original image). 33

5.1 Initial screen and option menu of our application. 50

5.2 Example representation of several kml �les served by a W3DS, and

load test with several identical entities. 51

5.3 Representation of a model with a di�erent visual e�ect after selec-

tion and a view of the screen with the speci�c attributes of a selected

model. 52

5.4 Set of menus through which the user can personalise the graphic

information displayed in the application. 53

ix

List of Tables

2.1 Top smartphone operating systems: shipments (in millions) and

market share. Source: IDCWorldwide Mobile Phone Tracker, Febru-

ary 14, 2013. 9

2.2 Level of support of each virtual globe application for a set of major

features. 21

2.3 Technologies used for implementation, rendering, and GIS support

by each virtual globe application. 22

xi

Listings

4.1 Sample Application.mk �le, used in this project to compile a set

of auxiliary libraries. 38

4.2 Portion of the �le geos.mk, used in the project to build an Android

version of the geos library. 39

4.3 Vertex Shader code for application with access to the �xed-function

pipeline . 41

4.4 Fragment Shader code for application with access to the �xed-

function pipeline . 41

4.5 Vertex Shader code for application without access to the �xed-

function pipeline . 42

4.6 Fragment Shader code for application without access to the �xed-

function pipeline . 42

4.7 Example of a W3DS data source being de�ned in a .earth �le. . . 45

xiii

Chapter 1

Introduction

There is a growing interest in the visualisation of and interaction with geographic

information. Recent years have seen the appearance and popularisation of a high

number of solutions where geospatial and georeferenced data play a key role. Con-

sequently several e�orts have been made in developing standards and services for

the representation and processing of geographic information. Along with these

e�orts, the need for a uniform and unifying medium for the visualisation and in-

teraction of this data became an obvious priority. This led to the development of

several client applications with this purpose, however most of these applications

have been limited to a speci�c type of data, functionality, or scienti�c domain.

Thus, an event that greatly contributed for the increase of popularity that ge-

ographic solutions and systems have displayed among the general public was the

appearance of virtual globe applications. This type of application allows the user

to interact with a 3D multi-resolution representation of the planet, while integrat-

ing several types and sources of geographic information.

Virtual globes allow us to display attributes of the geographic data that a clas-

sical top-down view can not easily convey. Information related to the topography

and elevation of the terrain, or 3D dimensions of buildings and city infrastructure

are intuitively perceived when represented in a virtual globe.

Virtual globe solutions also provide a uniform and familiar interface for inter-

acting with data from a wide range of sources and disciplines. For example, the

1

2 CHAPTER 1. INTRODUCTION

digital terrain model of a given area can be presented with integrated information

related to the topography of the terrain and the weather data collected for that

area. All this information is then accessed, navigated, and controlled in a uniform

manner.

The representation of data about underground phenomena and structures, that

usually requires specialised and expensive software to render and analyse also gains

greatly by the intuitive and �exible representation o�ered in virtual globes. The

possibility of performing and record virtual �y-throughs and output them in a

video format allows for a visually compelling, easily distributable method to illus-

trate spatial data. Thus, virtual globes make data much more accessible, which is

important for communicating scienti�c data to a broad audience.

The growing interest that geographic applications have been presenting, to-

gether with the numerous bene�ts associated with the treatment of this type of

information on a virtual globe, resulted in the desire of having this type of solution

available in all kinds of platforms, speci�cally mobile devices.

Initially this interest demonstrated by the public was impossible to be ful�lled.

The limited capabilities associated with these devices meant that applications such

as a virtual globe would have its implementation in mobile devices either made

impossible or extremely limited. However, in the last few years we have witnessed

a great increase in processing, storage, and graphic capabilities of mobile devices,

making its di�erences to a desktop platform progressively less signi�cant. This

opens the possibility for the development of applications and functionalities that

have, so far, been impossible to implement in these types of devices. With this

elimination of previous limitations, the associated solutions based on removed func-

tionalities, simpli�cations, and server-side processing are no longer an imposition.

Obviously some limitations are still present when compared to desktop plat-

forms. These limitations are always be a concern to the developer. In the particular

case of interactive 3D rendering, the necessity to increase the complexity or the

number of the entities rendered will always be limited by the capabilities of the

mobile device.

1.1. MOTIVATION 3

1.1 Motivation

The objective of this project was to develop a 3D viewer for geographic and geo-

referenced information that would run natively on mobile devices, speci�cally on

devices running the Android operating system. As an additional requirement, the

viewer application would also have to be able to consume the newly speci�ed Web

3D Service (W3DS).

Taking into account the previously referred advantages associated with virtual

globes when compared to traditional geospatial technologies, in particular in terms

of uniformity and usability, this application was chosen as the preferred solution for

our problem. Also, seeing as the development of a plugin for the consumption of

the newly speci�ed W3DS service is part of our main goal it becomes fundamental

to have an easily expandable system.

This expandability is an feature most commonly associated with open-source

solutions. These kind of solutions are generally the base for the development of

new capabilities and functionalities. They are usually preferred in new case studies

for providing a great level of liberty and �exibility to the developer, in contrast to

proprietary solutions that only provide a standard API.

Despite all the interest and potential present in virtual globes, we veri�ed that

there still exists a small number of open source implementations available. This

lack of solutions is even more pronounced in mobile platforms, where open source

implementations are practically non-existent.

1.2 Problem

This work follows from previous projects where several geographic information

services were developed. These services were implemented to manage and provide

e�cient access to georeferenced information of city infrastructures, speci�cally in-

frastructures related to telecommunications. From the implementation of these

services, the need for client applications able to present the existing information

and allowing a set of users to interact with it became apparent. After the devel-

opment of client applications for the desktop environment the need for a solution

present in mobile platforms was revealed as being of much more utility.

4 CHAPTER 1. INTRODUCTION

Because of its considerable popularity and widespread use, and also because

of the greater ease and support for software development, the Android operative

system was chosen as the mobile platform used in the implementation of our so-

lution.

The recent increase in popularity and general use of virtual globe applications

in conjunction with the signi�cant set of advantages, previously presented, that

this type of solution o�ers led to its choice for client application in our system.

1.3 Goal

In this project we propose the development of an open-source virtual globe solution

for the Android operating system. The implemented solution should be able to

display 2D and 3D geographic information correctly positioned on the globe. The

developed client application should be responsible for the rendering of the graphic

components displayed. Another main requirement for the developed system is the

capability of the client application to consume the newly speci�ed W3DS.

This ultimate goal can be disaggregated into a set of speci�c tasks, from which

we can highlight the following:

• Identi�cation and study of existing open source implementations for virtual

globe solutions in the desktop environment;

• Study and implementation of the necessary steps for the process of cross

compiling applications for the Android Operative System;

• Preparation and execution of the porting process for all the necessary soft-

ware modules;

• Analyse and comparison of the existing OpenGL support in the desktop

environment in relation to embedded solutions;

• Development of shaders compatible with mobile device's GPU;

1.4. THESIS STRUCTURE 5

• Development of all the necessary logic to asynchronously consume geographic

information services, in particular WMS and W3DS;

• Study and development of the best practises for applying styles on the client

side.

1.4 Thesis structure

The remainder of this thesis is organised in �ve major chapters.

In the following chapter 2 we will present the state of the art relevant for our

project. We begin by focusing on the Android operating system. Characterising

the main points associated of developing software solutions for this environment

and how this operating system presents some limitations when one needs to use

the OpenGL API. Then, we present the speci�c concepts connected with virtual

globe applications, also identifying and characterising existing solutions.

The analysis of the problem associated with the development of an Android

virtual globe solution is presented in chapter 3. In this chapter we also analyse

and design our approach to solve the enunciated problem.

In chapter 4 the major steps in the development of our solution are presented.

We begin by the characterisation of the porting process, focusing on the speci�c

modi�cations required by the OpenGL API. We also detail the steps and di�culties

overcome in the extension of osgEarth in order to consume a W3DS.

We present the results obtained in this project, in chapter 5. Finally, in chap-

ter 6, where we present the conclusions reached in the execution of this project

and identify areas of possible future development.

6 CHAPTER 1. INTRODUCTION

Chapter 2

State of the Art

The implementation of a virtual globe application like the one we propose in this

thesis implies the resolution of several problems relating with the rendering of

3D graphics and to the computation of geographic transformations and models.

In addition to this particular challenge we propose to make this implementation

natively in the mobile environment, speci�cally for the Android operating system,

fact that will also provide additional constraints and challenges that need to be

addressed. In this chapter we will present the major technologies and concepts

associated with a virtual globe application for the mobile environment. We begin

by introducing the Android operating system and what are the main characteristics

associated with programming for this environment. Then we present OpenGL as

the technology for the rendering of 3D graphics. This technology implies the most

signi�cant challenges and particularities in our implementation. Then the focus is

given to the speci�c concepts associated with a virtual globe application. A brief

history of the development of the concept of virtual globe is presented along with

an analysis of several existing solutions.

2.1 Mobile Devices and Android

In the last few years we have witnessed a great proliferation of mobile devices.

This kind of devices are now common among the general population, representing

a research area and a market slice impossible to ignore. Consequently all solutions

7

8 CHAPTER 2. STATE OF THE ART

implemented nowadays strive to be present in some way in these platforms.

Along side with the great increase in presence among the common user, mobile

devices have been experiencing a constant increase in processing, storage, and

graphic capabilities, making it's di�erences to a desktop platform progressively

less signi�cant. This opens the possibility for the inclusion of functionalities that

have, so far, been impossible to implement in mobile devices.

With this elimination of previous limitations, the associated solutions based on

removed functionalities, simpli�cations, and server-side processing are no longer

an imposition. Obviously some limitations when compared to desktop platforms

are still present, even if to a smaller degree, and will most probably always be a

concern to the developer. In this particular case of interactive 3D rendering, the

necessity to increase the complexity or the number of entities rendered will always

be limited by the capabilities of the mobile device.

2.1.1 Android Operating System

With the proliferation of mobile devices there was also a great variety of new

operating systems that were developed for those devices. In this initial approach

each new series of devices would have a speci�c operating system. Consequently

hardware and software portability were a serious and expensive problem. In order

to address this problem a group of companies, led by Google, formed a consortium

named Open Handset Alliance (OHA).

The OHA was established in 2007 with the primary objective of developing a

standard platform for mobile devices [6]. For this objective they choose the oper-

ating system Android as the common platform for mobile devices.

Android is an open source Linux-based operating system developed primarily

for mobile devices. Android was created by the company Android, Inc, later

bought by Google in 2005. As was previously mentioned its main goal was to

provide a common platform so that hardware and software developers could limit

its e�orts and expenses in achieving portability between devices. This simultaneous

decrease in expenses and increase in portability of developed solutions allows for a

greater competition between manufacturers bringing lower prices to the consumers.

2.1. MOBILE DEVICES AND ANDROID 9

Operating System Unit Shipments Market Share
Android 159.8 70.1%
iOS 47.8 21.0%
BlackBerry 7.4 3.2%
Windows Phone/Windows Mobile 6.0 2.6%
Linux 3.8 1.7%
Others 3.0 1.3%
Total 227.8 100.0%

Table 2.1: Top smartphone operating systems: shipments (in millions) and market
share. Source: IDC Worldwide Mobile Phone Tracker, February 14, 2013.

Software applications will also bene�t greatly by a common platform, limiting

compatibility issues to the existing di�erences in hardware and capabilities of each

device.

Android is clearly the most widespread mobile operating system, according to

IDC data from the fourth quarter of 2012 (see table 2.1).

2.1.2 Developing in Android

The development of software solutions for Android is based on the Dalvik virtual

machine. This virtual machine uses a register-based architecture and is optimised

for systems that are constrained in terms of memory and processor.

One of its main features is the implementation of a garbage collection system

that executes its function of freeing memory that is not currently being used while

trying to maintain as much used memory as possible. This behaviour is responsible

for the fact that Android applications are generally not destroyed or removed from

memory, being only passed to the background [1]. Only when the user explicitly

calls for a termination or when the system needs memory for a higher priority

process, the application is �nished and removed from memory. This behaviour

allows the system to take advantage of the fact that the set of applications regularly

used in a mobile device is relatively small, and more important, there is a couple

of applications, like the calling and messaging applications, that are almost in

constant use.

An application in Android is composed by a set of essential components. These

components provide di�erent points of communication and interaction with the

10 CHAPTER 2. STATE OF THE ART

system and with the user. Despite the fact that each component exists as a self-

contained entity, its through their collaboration that the desired behaviour of the

application is implemented. In order to declare the existing components of an

application, enabling the Android system to start each component, a manifest �le

is provided along with the application. This �le is responsible for the de�nition of

all the components that make up the application.

The components that have the greatest in�uence on the functionality of an

application are the activities. An activity is represented by a single screen with

an user interface, and a standard execution of an application normally implies a

�ow through several activities. As is the case with all application components,

each individual activity of a given application is independent of the others. As

such, any application can start the activities from other applications, given explicit

authorization from the activity's original application.

This independence in addition to the previously referred garbage collection

method, to which the activities are also subjected, results in a life cycle for Android

activities that is a little unique and di�erent from what is normally present in a

desktop environment.

An Android activity is composed of four main stages:

Running if the activity is currently on the screen (at the top of the stack);

Paused if the activity is still visible but as lost focus (for example when a new non-

full size or transparent activity is launched). A paused activity is completely

alive retaining all state information, however it can be killed by the system

in case of extreme low memory;

Stopped if the activity is completely obscured by other activity. A Stopped activity

retains all state information, however, it is often killed by the system if

memory is needed elsewhere;

Killed when the activity was dropped from memory, when it is launched again by

the user it must be completely restarted.

These stages are further detailed in image 2.1 along with the methods called

for each stage transition.

2.1. MOBILE DEVICES AND ANDROID 11

2.1.3 Android Native Development

Shortly after the popularisation of software development for Android, users started

to question whether it made sense for this development to stay exclusively on

the Java layer. Signi�cant interest, and possible advantages, were identi�ed in

the use of C/C++ code in developed applications. Users wanted to be able to

reuse existing code developed in these languages, as well as take advantage of the

greater e�ciency they allow [7]. To address this interest Google introduced the

Native Development Kit (NDK). This toolset comes to address this exact need,

allowing developers to implement parts of their application using native languages

as C and C++ [8].

With the NDK, native classes and methods can be called from Java code run-

ning under the Dalvik virtual machine. To make this possible Android compatible

libraries have to be built from the native code. The tool ndk-build enables the

developer to execute this process, originating libraries that can then be made acces-

sible to the Java code with the system call System.loadLibrary. The inclusion

of native code in the application does not mean that it undergoes fundamental

changes to its basic structure. The application is still packed in a texttt.apk �le

and will still be executed inside the Dalvik virtual machine on the device, without

introducing major operating issues. To call a native method from the Java code

after the inclusion of the relevant compatible library, the developer must use the

Java Native Interface (JNI).

Before the decision to include native code, through the use of the NDK, several

factors have to be considered. While it is true that certain performance critical

portions of the code can bene�t from the e�ciency associated with C and C++ code,

the use of native libraries and the NDK also implies a signi�cant increase in the

complexity of the application. Only in cases where this increase in performance

is indispensable, or where the reuse of existing code libraries written in these lan-

guages is a major factor, does the greater complexity associated with programming

with the NDK become justi�able.

12 CHAPTER 2. STATE OF THE ART

Figure 2.1: Diagram displaying the possible states and respective transitions in an
Android activity (source [1]).

2.2. OPENGL 13

2.2 OpenGL

OpenGL is a multi-platform graphic rendering API developed by Kronos. At the

moment, it is one of the most important standards for the render of 3D graphics.

With an implementation based on a system of extensions, that allows for the

introduction of new functionalities in a �exible and e�cient way, this API is mainly

characterized by its direct communication with the graphic rendering hardware

bypassing the operating system.

The process involved in rendering a given geometry with OpenGL can be sum-

marized in the passing of the geometry's de�ning vertices through the pipeline of

the graphic rendering hardware. In this pipeline several methods and transforma-

tions can be applied and the end result is then passed on to the display.

Initially this graphic pipeline presented a �xed nature, the developer was not

able to de�ne the operations and transformations performed to the geometry. How-

ever, with the introduction of OpenGL 2.0, the possibility to program some of the

operations performed in the graphic hardware was introduced.

This programmable pipeline presents certain points where the developer can

provide custom programs that will de�ne the transformations applied to the ge-

ometry rendered.

These programs, referred to as shaders and implemented in the programming

language GLSL [9], are responsible for a huge gain in the quantity and �exibility

of methods that the developer is able to implement, opening the possibility for

the application of several techniques and e�ects that were impossible with the

�xed-function pipeline.

2.2.1 OpenGL ES

With the proliferation of mobile platforms among the common user, an imple-

mentation of this API speci�c for these platforms became increasingly necessary.

OpenGL ES is then introduced with the objective of providing a graphic render-

ing API optimized for devices with limited resources. The speci�c constraints that

OpenGL ES addresses are, limited processing capabilities and memory availabil-

14 CHAPTER 2. STATE OF THE ART

ity, low memory bandwidth, great sensitivity to power consumption, and lack of

�oating-point hardware.

To accomplished this goal several functionalities and attributes present in

OpenGL, whose purpose was in some way replicated in the API, were removed.

A good example of this is in the speci�cation of geometry. While in OpenGL

the rendering primitives were originally described by issuing a begin command for

a set of primitives, and then updating the current vertex positions, normal vec-

tors, colors, or texture coordinates in an arbitrary order, and �nally ending the

primitive. This creates a very complicated state machine that does not run at an

optimal speed. In current OpenGL versions, the vertex data is provided through

vertex arrays and is rendered using calls to glDrawElements or glDrawArrays.

OpenGL ES adopted only these simpler and more e�cient approaches.

OpenGL ES 1.x

This �rst version of the OpenGL ES speci�cation is based on the desktop version

OpenGL 1.3. Besides the previously referred removal of several redundant fea-

tures this speci�cation is characterized by the extinction of per vertex operations,

privileging the use of vertex arrays, the more e�cient alternative. OpenGL ES

1.1 was developed based on OpenGL 1.5 and is completely backwards compatible

with OpenGL ES 1.0. Several optimizations to memory and power usage were

introduced in this version as well as considerable improvements to image quality.

Previous restrictions on texture dimensions (in OpenGL ES 1.0 textures had to be

square and with dimensions multiple of 2) were also removed, even though these

restrictions are still recommended for e�ciency motives.

OpenGL ES 2.0

De�ned relative to OpenGL 2.0 this version of OpenGL ES has as its main feature

the possibility to access the programmable rendering pipeline. With this API the

user is capable of de�ning and using shader programs written in the OpenGL ES

Shading Language [10]. Relative to the desktop version of OpenGL there are some

limitations in the use of the programmable pipeline, seeing as the user can only

de�ne vertex and fragment shaders.

2.2. OPENGL 15

The use of the programmable pipeline is actually an imposition in this version,

seeing as the �xed-function pipeline is no longer available. Consequently, unlike

OpenGL 2.0, which implements a programmable pipeline but also provides full

backward compatibility to older versions of OpenGL that implement a �xed func-

tion pipeline this speci�cation is not backwards compatible with other versions of

OpenGL ES. This drop of backwards compatibility is explained by the fact that,

once you have a programmable pipeline, there is no reason to use the �xed func-

tion version, as you can directly program the e�ects you want to render with a

lot more liberty and �exibility. In addiction, the OpenGL ES 2.0 driver's memory

footprint would be much larger if it had to support both the �xed function and

programmable pipelines. Taking into consideration the kind of devices targeted

by OpenGL ES that fact is of great importance, outweighing the disadvantages of

removing that feature.

OpenGL ES 3.0

This version of OpenGL ES was introduced in August 2012 and is backwards

compatible with OpenGL ES 2.0. Several improvements were introduced to the

rendering pipeline in this version, emphasizing the implementation of a new version

of the OpenGL ES Shading Language with full support for integer and 32-bit

�oating point operations.

WebGL

WebGL is an API developed in JavaScript for the rendering of 2D and 3D graphics

in compatible web browsers. This API provides a communication interface between

the JavaScript code and the OpenGL ES 2.0 speci�cation, whose implementation

is a responsibility of all compatible browsers. Thus, any web page running in a

WebGL compatible browser is capable of rendering 3D content, making use of

the programmable rendering pipeline and directly injecting user code in the GPU.

This issue is often times raised as a problem for the integrity and security of client

applications and is the reason that several browser implementations shy away from

providing WebGL compatibility [11] [12].

16 CHAPTER 2. STATE OF THE ART

2.3 Virtual Globes

Since a long time ago, the visual representation that is most intuitive and descrip-

tive of the planet Earth is the globe. Early terrestrial globes emerged following the

establishment of the sphericity of the planet in the middle of the second century

BC, being the Erdapfel [13], created in 1492, the oldest surviving exemplar at the

present day.

The interest in transferring this physical representation of the Earth to a virtual

environment arises with the development of the modeling language Virtual Reality

Modeling Language (VRML) [14]. This language was introduced in 1994 and had

as its main objective the representation of 3D animated worlds via the Internet.

With the introduction of GeoVRML in 1998, the language begins to be extended

to allow the representation of georeferenced information, thereby enabling the use

of this language for the development of virtual globes. However the great e�ort re-

quired in the programming of these globes, together with a growing evolution of 3D

graphics that this language failed to follow, led to the extinction of VRML, and to

the relatively small popularity of the virtual globes it allowed to develop [2]. This

modeling language was eventually replaced by the X3D standard. An example of a

globe implemented with the aid of this modeling language can be seen in image 2.2.

In 1996 starts the EarthBrowser project, developed as an application for the

rendering of the planet based on ray-tracing algorithms. This application, while

prior to the current concept of virtual globe, displayed some characteristics and

features that would than be part of the de�nition of this concept. This application

begins with the aim of simulating the formation and motion of clouds. Several fea-

tures were subsequently added, such as high-resolution maps, possibility to drag

and rotate the planet, and the capability of zoom in a speci�c area.

The concept of virtual globe as we know it today has its origin in the Digital

Earth (DE) project, introduced in 1998 by the Vice President of the United States

at the time, Al Gore. He proposes a virtual version of the globe characterized as

a three-dimensional and multi-resolution representation of the planet, where there

can be included large amounts of georeferenced information [15].

2.3. VIRTUAL GLOBES 17

Figure 2.2: Example of a virtual globe implemented using the VRML language
(source [2]).

The Digital Earth is then introduced with the purpose of assuming the role of

point of connection between producers and consumers of this type of information.

A virtual globe application, according to the concepts introduced, is composed by

two main components. A navigable 3D viewer of the planet, available at various

levels of resolution, and the mechanisms needed to integrate and present spatial

information from various sources.

The concept of Digital Earth is, from its conception, idealized as a global

project comparable to the Web. This comparison is established in the sense that

18 CHAPTER 2. STATE OF THE ART

this project can not be of the responsibility of any organization or government,

bene�ting from the contribution of thousands of people from di�erent places, cul-

tures, and academic training. Thus enabling many possibilities for the community

to contribute freely with geographic information through interaction with the vir-

tual globe, giving rise to a knowledge base that can be used in a large number

of scenarios. For example, giving aid to urban planning decisions, tracking the

incidence of a virus, or even as a support tool in the response to natural disasters.

Thereby, it becomes apparent the dual nature of this type of applications. One

can use this type of solution for a casual querying of the topology of an area pre-

vious to an intended visit, and, at the same time, there is also the possibility to

make requests of a highly technical and scienti�c nature, thus making it a powerful

academic tool.

The �rst examples of an implementation of a virtual globe, according to the

principles outlined in the Digital Earth project, were introduced by the encyclopae-

dia Microsoft Encarta Virtual Globe 1998 Edition [16] and by Cosmi's 3D World

Atlas, released in 1999. In these applications the user was presented with a 3D

model of the planet in which users can navigate the maps of various cities and

view a set of multimedia content associated with certain locations. The image 2.3

displays the initial screen of the virtual globe provided by Microsoft Encarta.

In these early iterations of virtual globes implemented according to the concept

of Digital Earth, developers proceeded to the implementation of local applications,

both in its execution and in relation to the data consumed. However, these days

the term virtual globe is most commonly associated with client applications that

implement their consumption and rendering functions of large amounts of geo-

graphic information through interactions with various services through the Web.

This type of applications can also be referred to as geobrowsers [17].

This change started taking place with the development of the virtual globe

Earth 3D Viewer by Keyhole Inc. Introduced in 2001, during the 5th African GIS

Conference in Nairobi, Kenya, it was the �rst virtual globe based on the consump-

tion of information provided by a set of servers distributed globally. The visual

e�ect produced by the presentation of a 3D model of the Earth composed from a

2.3. VIRTUAL GLOBES 19

Figure 2.3: Initial screen of Microsoft Encarta's virtual globe solution (source [3]).

set of global coverage satellite images, combined with the possibility to apply the

overlay of several types of relevant data representations to the display, originated

an immediate impact with several governments representatives and journalists [4].

An image of this presentation is available in �gure 2.4. Despite the signi�cant

popularity that this virtual globe bene�ted among organizations, especially among

journalists, famously being used in the coverage of the invasion of Iraq in 2003, its

acceptance by the general public never reached very signi�cant levels.

The �rst online virtual globe to collect signi�cant popularity among the general

public was NASA World Wind, released in 2004. This virtual globe project is

being developed by NASA in conjunction with the open source community and

provides large amounts of spatial information for various planets and celestial

bodies. Thus, in addition to ful�lling the role of geobrowser for the general public,

presenting information in the public domain, it is also being used in scienti�c

missions on land, sea and space. The open source nature of World Wind, allowing

for the expansion and customization of the geobrowser through the development

of custom plugins, led to a high growth of functionality and data availability. This

20 CHAPTER 2. STATE OF THE ART

Figure 2.4: Presentation of EarthViewer, the �rst 3D geobrowser (source [4]).

characteristic openness to the community is responsible for the unique potential of

this virtual globe to aggregate a multitude of geographic information, public and

private, providing access to information from government institutions, industries,

and the general public [18].

In 2005, after acquiring Keyhole Inc in the previous year, Google launches

Google Earth, an updated version of the virtual globe application Earth 3D Viewer.

This implementation is responsible for the extreme popularization of virtual globes,

causing an increase to 10 times the previous level in the media coverage regarding

to these type of application [19]. Several factors can be considered to explain this

success such as the fame and proliferation of the Google search engine and also of

the web mapping software Google Maps, where it was added an image layer from

the database of Google Earth [2].

Since the introduction of Google Earth several other similar iterations of vir-

tual globe applications were implemented. Some of the major examples are Bing

Maps 3D, Marble and ESRI ArcGIS Explorer, virtual globe client of the ArcGIS

2.3. VIRTUAL GLOBES 21

Server and leader in the professional Geographic Information Systems market.

The implementation challenges associated with the virtual globe concept are

mainly associated with the large amount of information that its de�nition requires

to process. Its characterization as a multi-resolution representation of planet Earth

implies the possibility to view the world in a extremely large number of contexts.

We can, for example, begin to see the planet from a point in space proceeding to

seamlessly travel until we can view the street of our university. The processing

and representation of all relevant information between these moments of visual-

ization would demand una�ordable computing and storage requirements. Thus

causing the need to de�ne services that provide access and e�cient handling of

the necessary information to di�erent viewing contexts.

2.3.1 Existing open source solutions

In our analysis of the existing open source virtual globes we choose to focus in a

set of important factors. Primarily, the support given by said solutions to a set

of relevant features, the programming languages and frameworks used, and the

�exibility and expandability of the implementation.

In table 2.2 it is possible to see a comparison between the support to a set of

relevant technologies o�ered by some major open source virtual globes.

Table 2.2: Level of support of each virtual globe application for a set of major
features.

WMS Raster Vector Elevation 3D models

NASAWorld Wind

Java SDK
full full full partial full

ossimPlanet full full full partial missing
gvSIG 3D full full full full full
osgEarth full full full full full
Earth3D missing partial missing partial missing
Google Earth full full full missing full

22 CHAPTER 2. STATE OF THE ART

As one can see, there is little di�erence between NASA World Wind Java SDK,

gvSIG 3D, osgEarth, and Google Earth in terms of support to these fundamental

features. Despite the fact that feature support is in fact the main point of con-

sideration, when deciding which virtual globe to work with, often times, another

important factor to consider is the APIs, programming languages and frameworks

used in the implementation of each of these globes. Table 2.3 presents the tech-

nologies that support them.

Table 2.3: Technologies used for implementation, rendering, and GIS support by
each virtual globe application.

Language Rendering GIS

NASAWorld Wind

Java SDK
Java

JOGL
(OpenGL)

ossimPlanet C++
OSG
(OpenGL)

ossim
GDAL/OGR

gvSIG 3D
C++
Java

OSG/JOGL
(OpenGL)

gvSIG
GDAL/OGR

osgEarth C++
OSG
(OpenGL)

GDAL/OGR

Earth3D C++/Java
OpenGL/
JOGL

Google Earth C++
OpenGL
DirectX

Considering the information presented in table 2.2 and 2.3 two main baselines

were identi�ed for our project. These baselines were NASA World Wind Java SDK

and osgEarth.

NASA World Wind

Released in 2004, NASA World Wind was the �rst online virtual globe to col-

lect signi�cant popularity. This project [20] is currently developed by NASA in

conjunction with the open source community and o�ers large amounts of spatial

information for various planets and celestial bodies. Thus, in addition to ful�lling

the role of geobrowser for the general public, representing information in the public

2.4. OGC SERVICES 23

domain, it is also used in scienti�c missions on land, sea, and space.

NASA World Wind is available as an SDK implemented in Java. The rendering

engine provided with this virtual globe is based on OpenGL using the wrapper

library JOGL. The expansion of the solution is possible through a system of custom

plugins.

osgEarth

Open-source virtual globe solution supported by Pelican Mapping. osgEarth [21]

is implemented in C++ and is supported by OpenSceneGraph [22] for all its ren-

dering needs.

This SDK provides a di�erent way to display the terrain, in the sense that

it does not require the user to build a 3D terrain model before he can display

it. Instead, it will access provided raw data sources at application run time and

composite them into a 3D map on the �y.

2.4 OGC Services

In order to satisfy the primary requirement of an e�cient generation and access

to geo-referenced data, a virtual globe client application normally resorts to the

inclusion of a set of services speci�ed by the Open Geospatial Consortium (OGC).

This organisation has as its main objective the development of standard spec-

i�cations for the representation, access, and processing of geographic information

and services [5].

The e�ort made in the speci�cation and establishment of these standards is not

made with the single goal of providing easy and e�cient methods to manage and

access geographic data. All standards speci�ed and accept are also responsible in

ensuring the interoperability between the various existing geographic information

systems. Thus, the services speci�ed by OGC assume a great importance and are

in fact a central point for the functioning of these systems [17]. The standards

speci�ed by OGC that will assume greater importance in the context of the de-

velopment of a virtual globe solution are, the Web Map Service (WMS) and the

Web 3D Service (W3DS).

24 CHAPTER 2. STATE OF THE ART

2.4.1 Web Map Service

The WMS speci�cation characterises a service for the construction of maps of

georeferenced information using as source a database of geographic data [23]. This

speci�cation is also responsible for the de�nition of the methods associated with the

management of and access to these geographical maps. The service is implemented

using an interface based on HTTP requests. These requests are made over a speci�c

geographic area and layer of interest. The response to these requests is provided

on the form of an image �le that can be represented in a format based on pixels

or vectors.

2.4.2 Web 3D Service

The recent speci�cation proposal for the W3DS [24] characterises a set of methods

and procedures to build, access, and collect georeferenced 3D scenes containing

information about the terrain, textures and infrastructures. The geographic in-

formation produced by the service is delivered in the form of scenes composed of

several graphic elements. The W3DS also strives for the optimisation of all scenes

delivered, with the purpose of making possible the rendering of these scenes in real

time with interactive frame rates.

The goals and premises de�ned in the design of this service imply that any

implementation of this speci�cation must be able to handle scenes with varying

degrees of complexity without signi�cant change in e�ciency or response delay.

From a full representation of the Earth to the individual lamps in a particular

street, all requests must be handled without introducing too big of a delay in

the system and all produced scenes must allow for an e�cient rendering of its

composing elements. This feature represents an interesting challenge, requiring

the inclusion of information to multiple levels of detail for each object in order to

maintain the possibility for an e�cient rendering, without sacri�cing quality.

The construction, handling, and delivery of these replies of higher complexity

and size will demand the implementation of several optimised algorithms for the

construction and delivery of each requested scene. These optimisations are mostly

based in the restriction of the data handled and delivered in the reply ensuring

that only the geographical area and level of detail speci�ed in the request are con-

2.4. OGC SERVICES 25

sidered [25].

The W3DS will then assume a similar role to WMS, despite the increased

degree of complexity in the data delivered, in that it does not directly provide

spatial information relevant to the application's request but a visual representation

thereof. This representation is devoid of any information regarding the semantics

or possible existing attributes associated with the geographic data delivered.

2.4.3 OGC Client Applications

There are several di�erent premises and criteria to consider before initiating the

design and implementation of a client application for OGC services. In �gure

2.5 we can see the major types of client-server pairs that one can consider before

deciding which solution better applies to the problem at hand.

Figure 2.5: Di�erent types of clients and servers when using OGC services (source
[5]).

As we can see in the previous image, these clients can adopt a simpler con�gura-

tion, leaving the vast majority of computational logic to the servers or to additional

26 CHAPTER 2. STATE OF THE ART

layers of middle ware. Clients that assume this con�guration are usually referred

to as thin clients. An example of a client that usually follows this philosophy can

be found in web mapping applications. These applications are characterised by

the simple presentation of images, providing limited interaction with the elements

present in the system [5]. The inclusion of a higher level of interactivity with

existing features, and enabling the execution of complex operations on them, such

as requesting that a given geometry be clamped to the ground, already implies a

greater level of complexity to be present in the client application, giving origin to

an intermediate solution.

In the particular case of applications such as a virtual globe, the high degree

of complexity inherent to the data processed serves as a limiting factor in the

choice of type of client to implement. The most pressing case of this complexity

relates to the render of and interaction with the data provided by the W3DS,

originating the need for much of the computational logic of the system to be

present on the client side. Consequently, the client application ends up being

responsible for the majority of the logic of the rendering system, as well as for

all the methods necessary for any possible interaction with the rendered elements.

In this iteration of the client-server pair, the primary role of the servers is then

restricted to providing the answer to queries for information access.

Chapter 3

Architecture

In this chapter we will present the architecture of the propose solution for our

project. We will begin by outlining the factors that will in�uence the design of

any possible solution. The requirements enunciated in the genesis of the project

are then presented. These requirements, as well as the general nature of the

project, entail several speci�c challenges and di�culties that are than presented.

Taking into account both the requirements and the main di�culties identi�ed we

present our approach to solving our problem as well as the main components of

our solution.

3.1 Requirements

As was previously stated we propose the development of a virtual globe applica-

tion capable of consuming the geographic services implemented in our system and

capable of running natively in the Android operative system. In order to achieve

this objective an analysis of the relevant existing solutions, presented in the pre-

vious section, was made. This analysis allowed us to identify and outline several

speci�c requirements for the design of a possible solution, in addition to the gen-

eral requirements related with the nature of this project (such as the requirement

for the application to run in Android).

These requirements are as follows:

• The application implemented must run natively in the Android Operative

27

28 CHAPTER 3. ARCHITECTURE

System;

• Common functionalities characteristic of virtual globes should be present

(such as zoom, pan, drag, ...);

• The gestures associated with virtual globe solutions in mobile environments

should be supported (for example: pinch to zoom, two �nger drag to tilt,

etc..);

• The implemented solution must be compatible with the geographic services

previously developed, in particular the newly speci�ed W3DS;

• Existing graphic models for 3D geometry must be supported. In alternative a

method for an acceptable conversion to a supported model must be provided;

• The implemented solution must allow the exchange of the geographic services

consumed in a simple and quick manner;

• The application developed must be �exible in terms of the geometry repre-

sented, allowing the user to enable and disable speci�c sets of entities when

needed;

• The application should allow the selection of a particular model geometry

presenting the relevant information inherent to the selected entity;

• The application must support the inclusion and presentation of models pro-

vided locally by the user.

• The solution developed in this project must be made available to the open

source community, allowing its expandability in a simple manner and pro-

viding adequate documentation for the setup of the application.

3.2 Main di�culties

Along with the identi�cation of the speci�c requirements that a virtual globe

application implies, the analysis presented in the previous chapter permitted the

identi�cation of a set of major challenges associated with the proposed project.

3.2. MAIN DIFFICULTIES 29

Most of the di�culties identi�ed for the implementation of this project and

ful�lment of the requisites identi�ed arise from the complexity associated with

virtual globe solutions and from the development of this application for the mobile

environment.

3.2.1 Data volume

The �rst major challenge associated with the implementation of a virtual globe

application is the great amount of information that this type of solution handles

at any given time. The fact that a virtual globe must provide an accurate repre-

sentation of the Earth from a multitude of points of view, being it from space or

at street level, implies the need for the e�cient management of and access to sig-

ni�cant quantities of data. Normally, this problem is addressed by the recourse to

several standard services, being the applications responsible for the implementation

of the necessary methods for the consumption of these services. Any implemented

solution will also have to handle the high and constant throughput of information

that the consumption and representation of the data provided by these services

entails. The data that characterises the scene rendered is constantly changing

putting a strain in the rendering engine and in the network.

3.2.2 Rendering challenges

The unusually large spectrum for which a virtual globe solution is suppose to

provide an accurate visual representation of the Earth raises several problems that

must be addressed in the implementation of the rendering engine of the application.

These challenges are mainly present in terms of:

Precision: the mere size of the Earth in addition with the possibility for the user to

seamlessly zoom between various levels of detail may result in the temptation

to use an unreasonably large coordinate space. However the use of large,

single-precision, �oating-point coordinates leads to z-�ghting and jittering.

Accuracy: the common approximation of assuming the representation of the Earth as

a perfect sphere enables several simpli�cations, however this representation

30 CHAPTER 3. ARCHITECTURE

does not correspond to the truth, since in fact, the Earth has a bigger diam-

eter across the equator than between the poles. Virtual Globe applications

can not resort to this approximation, seeing as it introduces errors when po-

sitioning assets on the globe. Mathematical models to accurately model the

Earth are than an important necessity.

Curvature: the curvature of the Earth also represents an issue to take into account,

seeing as lines in a planar world are represented as curves on the Earth,

possibly giving rise to oversampling near the poles.

Datasets: the high amount of data that each entity represented by the rendering engine

can imply, is not compatible with the storage present in the GPU memory

or even in a local hard drive. This entails the recourse to huge server-side

datasets through which the data is accessed and paged during runtime, taking

into consideration a set of view-parameters.

3.2.3 Mobile Environment

Perhaps the major challenge of this project is the fact that we are proposing

the development of an application with the complexity of a virtual globe in the

mobile environment. These type of devices are normally connected with several

restrictions in terms of its processing and graphic power, available storage and

network, and limited power supply. In fact, only very recently did the development

of a virtual globe application in a mobile device became a possibility. All the issues

so far identi�ed in the process of implementing a virtual globe application become

much more pronounced in the mobile environment and will thus imply further

approximations and optimisations to produce an acceptable result.

The major areas of concern when implementing a virtual globe natively for a

mobile device relate to:

Data storage: mobile devices are usually greatly limited in relation to the amount of stor-

age available for use by an application. Be it physical or virtual memory

the developer will have to adapt the application and algorithms to these

constraints. The implementation of caching algorithms, for example, will

3.3. SOLUTION 31

have to take this factor in consideration, introducing a new concern in the

management of assets and entities.

Network: mobile devices are also limited in terms of the quality and availability of

a network connection. Transfers of high amounts of data can introduce a

great delay in the response of the system and are preferably avoided. This

factor implies the inclusion of several parameters to �lter the requests made

to the network in order to ensure that the necessary relevant information is

transferred while each request results in reasonably sized answers.

Rendering: the render of 3D graphics in mobile devices is limited by the fact that in these

devices the support to common rendering methods is limited. In Android the

standard API for graphic rendering, OpenGL, is only present as its subset

OpenGL ES. This implies several constraints and limitations that will result

in several adaptations to existing rendering methods.

3.3 Solution

The �rst step taken in order to solve the problem enunciated in chapter 1, and

address the challenges and di�culties presented in this section, was a wide research

of the open-source virtual globe solutions that exist currently for the desktop

environment. This research was presented in section 2.3.1 and enabled us to further

identify and understand the necessary steps and algorithms for the development

of a virtual globe application.

We testi�ed the high degree of complexity associated with the rendering engine

for a virtual globe, also noted were all the geographic models and transformations

that this application implies. Several dependencies to auxiliary libraries for coor-

dinate transformation and geographic model computation were identi�ed. Taking

into account this high level of complexity and interdependence, starting an im-

plementation of a virtual globe solution for the mobile environment from scratch

would be a super�uous e�ort. Consequently we choose to take a desktop imple-

mentation of an open source virtual globe application and use it as basis for our

project, proceeding to the execution of the porting process of said solution to the

Android operative system.

32 CHAPTER 3. ARCHITECTURE

3.3.1 Choice and implications

Taking into account the support o�ered by each solution, in addition to the tech-

nologies present in each virtual globe identi�ed, we chose osgEarth as the base

project for the implementation of our virtual globe solution. This choice is related

to the greater e�ciency associated with its implementation and with the �exibility

it o�ers in the de�nition and consumption of new data sources and data types.

The recourse to osgEarth means that the implementation of the methods and

algorithms necessary for the rendering engine and also for all the geographic trans-

formations and models is no longer the major concern of the project. The main

challenge is now the adaptation of these methods available in the desktop version

of osgEarth to the mobile environment.

In order to achieve this porting process we begin with the cross compilation

of the osgEarth framework and all relevant auxiliary libraries to the Android op-

erative system. This cross compilation entails an initial preparation step where

the constraints and limitations of the Android developing environment have to be

met. As was previously stated, one of these limitations, and the one that will

result in the major changes to the existing framework, is the obligation to use

OpenGL ES for the rendering engine, instead of its desktop counterpart. Another

factor to consider is the fact that Android NDK resorts to a non-standard C li-

brary, requiring some caution when compiling code that was not developed with

this library in mind. For example, when compiling for Android a library that

uses the method isnan(), one has to take into consideration that in Android's

C library isnan() is still provided as a macro, as was the case in C's standard

version C99. This fact creates a con�ict when the libraries intend to use isnan()

as a method originating a compilation error. An appropriate possible solution is

to alter the c++config.h �le in the Android NDK include directory adding the

de�nition #define _GLIBCXX_USE_C99_MATH 1, in order not to use this macro

and similar others.

3.3.2 Integrating the osgEarth framework

Before initializing the process of porting osgEarth to Android it is necessary to

analyse and identify the modules that make up this framework. This analysis is

3.3. SOLUTION 33

performed with the objective of identifying the modules that will need to be altered

in order to be able to execute the cross compilation to Android and to support all

the functionalities needed to ful�l the requirements presented in section 3.1.

In �gure 3.1 it is possible to identify the major components and modules that

compose the existing desktop solution as well as the relations between each module.

Highlighted with di�erent background colours are the components and modules

that were altered for this project.

Figure 3.1: Components that compose the osgEarth framework. Components
altered for our solution are highlighted with di�erent background colours (original
image).

As one can see in the presented diagram, we can divide the osgEarth frame-

work in three major components. A primary component with all the modules

that make up osgEarth, responsible for originating the globe and also for all the

necessary methods to place additional graphic elements and information in spe-

34 CHAPTER 3. ARCHITECTURE

ci�c locations on the globe. To achieve this general functionality these modules

resort to two auxiliary components, the OpenSceneGraph (OSG) library, and a

geographic component composed by the libraries GDAL/OGR and geos.

The component responsible for the rendering engine is then the OSG library.

The rendering engine implemented by this library is based on the scene graph data

structure and uses the OpenGL API. Seeing as there is already an OSG Android

version, no alterations are necessary prior to compiling this library to Android.

The osgEarth framework calls upon GDAL/OGR in order to interpret and

convert geographic data, producing a visual representation of the information con-

tained. When there is a need to calculate the extent occupied by some speci�c

data or to determine possible intersections or inclusions between data sets, os-

gEarth uses the geos library. The process of cross compiling these libraries is

straightforward, seeing as they have no incompatibilities with the Android compi-

lation environment. The cross compilation process used in this project is explained

in subsection 4.1.1.

The major changes needed in order to enable the porting of the osgEarth

framework to Android have to be made in the modules that compose osgEarth's

core, speci�cally the package osgEarth. This package is responsible for setting

up the globe model, handling the generation of the map, and managing image

textures and terrain models. In this process several graphic nodes are created

and added to the scene graph. This raises several possible incompatibilities in the

cross compilation of this package for Android, seeing as the shader code that will

then be responsible for the representation of these nodes is also composed in this

package. Now, as was previously stated, in Android we only have access to the

subset library OpenGL ES, the reduced support and functionalities of this library

will then imply several necessary changes prior to the successful porting of this

package. Subsection 4.1.2 presents the limitations of the OpenGL ES API and the

necessary changes for a successful porting process.

The package osgEarthDrivers is responsible for the support to several dif-

ferent data types and data sources. Seeing as one of the main requirements of

this project is the consumption of the W3DS service, a plugin for this service was

developed and integrated into this package. The steps and concerns taken in the

implementation of this plugin are explained in section 4.2.

3.3. SOLUTION 35

With these steps we are able to port the osgEarth framework to Android and

extend it in order to ful�l all the requirements enunciated for our project. Our

Android virtual globe application implemented using the resulting extended ported

framework is then presented in chapter 5.

36 CHAPTER 3. ARCHITECTURE

Chapter 4

Development

In this chapter we will present the steps that were necessary to take in order to

obtain a framework that would be able to solve the problem that was enunciated

for this project.

With our choice to use an existing open source virtual globe solution as base for

our project it became necessary to make sure that this solution would be available

in our developing environment, the Android operative system. We will then present

the necessary steps that need to be executed in order to set up the compilation

process to build each necessary component into a version that is compatible with

Android. We will also explain the changes that were made in order to overcome

the limitations introduced by the Android environment, speci�cally in terms of

the usage of the embedded systems speci�cation of OpenGL.

Seeing as one of the major requirements of this project is the ability to consume

a W3DS, feature not supported in the base framework chosen, a plugin for this data

source is presented. This plugin takes into consideration several speci�c challenges

associated with this service. The steps taken in order to overcome these challenges

are also explained in this chapter.

4.1 Porting to Android

In order to be able to execute the porting process of the osgEarth framework to

Android one has to overcome some constraints and limitations of the Android

37

38 CHAPTER 4. DEVELOPMENT

build environment. As was previously stated, the major limitation in terms of

support o�ered by this environment is related to the absence of the OpenGL

graphic rendering API. The need to resort to the embedded systems speci�cation

of OpenGL will induce several incompatibilities. Only after these incompatibilities

are resolved does it become possible to carry out the cross compilation process that

will generate each Android compatible library.

4.1.1 Cross Compiling

The process of porting the osgEarth framework to Android also implicates the

need to cross compile to this environment several auxiliary libraries to which the

framework refers. Among the most signi�cant cases, one can refer to the libraries

geos, proj, and, most important, the library responsible for the rendering engine,

OpenSceneGraph.

It is exactly through the an analysis of the OpenSceneGraph library that this

process is initiated, given that Android versions of this library are already available.

Thus, the method we followed for the porting of the necessary additional libraries

was based on this existing porting of OpenSceneGraph.

This porting process is characterised by the de�nition of a set of .mk �les,

integrating part of the compilation for Android systems, that will be introduced

in the cmake build environment. Through the use of a cross compiling process,

made possible by the use of Android's ndk-build tool, libraries compatible with

the Android system are then compiled.

Regarding the .mk �les, the ones that arise with the utmost importance are

the Application.mk, and the Android.mk �le. The �rst is responsible for the

de�nition of which modules will be included in the compilation. It also sets up

the Android platform version for which the compilation will take place. In the

listing 4.1 an example of one such �le is present. This �le is used in this project in

the building process of Android compatible versions of the libraries geos and proj.

1 #ANDROID APPLICATION MAKEFILE

2 APP_BUILD_SCRIPT := $(call my-dir)/Android.mk

3 APP_PROJECT_PATH := $(call my-dir)

4

5 APP_OPTIM := release

4.1. PORTING TO ANDROID 39

6

7 APP_PLATFORM := 8

8 APP_STL := gnustl_static

9 APP_CPPFLAGS := -fexceptions -frtti

10 APP_CPPFLAGS := -Os -mthumb -interwork -fno -short -enums

11 APP_CPPFLAGS := -Wl ,--no -undefined

12

13 APP_ABI := armeabi armeabi -v7a

14

15 APP_MODULES := geos proj sqlite3

Listing 4.1: Sample Application.mk �le, used in this project to compile a set of

auxiliary libraries.

Normally, the Android.mk �le is used in order to set some global variables and

include several auxiliary �les corresponding to each of the modules that one wishes

to build. In each such �le there is present a listing of all source code �les that

de�ne each compiled module. A portion of the �le used in this project to build

the Android compatible version of the library geos is presented in listing 4.2.

1 include $(CLEAR_VARS)

2

3 LOCAL_MODULE := geos

4 LOCAL_C_INCLUDES := \

5 $(GEOS_PATH)/src \

6 $(GEOS_PATH)/include

7 LOCAL_CFLAGS := \

8 $(LOCAL_C_INCLUDES :%=-I%) \

9 -DHAVE_LONG_LONG_INT_64

10 LOCAL_SRC_FILES := \

11 $(GEOS_PATH)/capi/geos_c.cpp \

12 $(GEOS_PATH)/capi/geos_ts_c.cpp \

13 $(GEOS_PATH)/src/algorithm/Angle.cpp \

14 (...)

15 $(GEOS_PATH)/src/simplify/TaggedLinesSimplifier.cpp \

16 $(GEOS_PATH)/src/simplify/TopologyPreservingSimplifier.cpp \

17 $(GEOS_PATH)/src/util/Assert.cpp \

18 $(GEOS_PATH)/src/util/GeometricShapeFactory.cpp \

19 $(GEOS_PATH)/src/util/Profiler.cpp \

40 CHAPTER 4. DEVELOPMENT

20 $(GEOS_PATH)/src/util/math.cpp

21 include $(BUILD_STATIC_LIBRARY)

Listing 4.2: Portion of the �le geos.mk, used in the project to build an Android

version of the geos library.

Now, in order for the modules de�ned in these �les to compile successfully

it is necessary to take into consideration the existing di�erences and limitations

of the Android build environment, making all the necessary alterations. These

limitations are most common and more severe in the libraries that depend on

OpenGL, which, as previously stated, is not present in Android. The changes that

have to be made in order to adapt existing code to the subset library OpenGL ES,

only version present in Android, are explained in the following subsection.

4.1.2 OpenGL ES support

As was previously stated, one of the main challenges in the process of porting the

osgEarth framework to Android is related to the graphic rendering of 3D scenes.

In the desktop version of osgEarth this rendering is done using the API for graphic

rendering, OpenGL. However the Android operating system only has available the

speci�cations of this API developed for embedded systems. Given the fact that

these embedded speci�cations correspond only to a subset of the features available

in OpenGL, some limitations and constraints that need to be addressed will become

apparent.

For this work we chose to focus on the speci�cation OpenGL ES 2.0. The

reasons that led us to this choice are mainly related with the greater �exibility

and e�ciency ensured in this version, mainly by the access to the programmable

rendering pipeline.

In order to be able to successfully compile all libraries with this version of

OpenGL it becomes necessary to �rst identify which existing di�erences and limita-

tions will involve making changes in our application, making then all the necessary

alterations to the code.

4.1. PORTING TO ANDROID 41

Limitations and necessary changes

The main changes to take into account in our case are mostly related to the lack

of features o�ered by the �xed function pipeline of OpenGL. In addition to this,

there are several di�erences in methods and data types available to perform the

rendering of geometric primitives.

Although OpenGL ES 2.0 has been chosen by us for the fact that it allows the

access to a programmable rendering pipeline, through the use of vertex and frag-

ment shaders, this speci�cation has the problem of not being backward-compatible

with the previous versions of OpenGL ES. With the introduction of the possibility

to use these shader programs, the responsibility to implement the functionalities

previously performed in the �xed-function pipeline is now completely delegated to

the shader code. Consequently, the functions and data structures present in the

�xed-function pipeline were totally removed in this version of the speci�cation.

Thus, �xed functions previously used to perform coordinate transforms, materials

or lighting calls are no longer supported. This change triggered the application of

very di�erent shaders compared to the desktop version of osgEarth. In listings 4.3

through 4.6, it is possible to compare the code of the shaders needed for a simple

application, which will apply the colours present on a texture to geometry, in each

of these cases.

1 void main()

2 {

3 gl_Position = ftransform ();

4 gl_TexCoord [0] = gl_MultiTexCoord0;

5 gl_FrontColor = gl_Color;

6 }

Listing 4.3: Vertex Shader code for application with access to the �xed-function

pipeline

1 uniform sampler2D diffuseMap;

2

3 void main()

4 {

5 vec4 base = texture2D(diffuseMap , gl_TexCoord [0].st);

6 gl_FragColor = base * gl_Color;

42 CHAPTER 4. DEVELOPMENT

7 }

Listing 4.4: Fragment Shader code for application with access to the �xed-function

pipeline

1 varying mediump vec4 texCoord0;

2 varying mediump vec4 vColor;

3

4 attribute vec4 osg_Vertex;

5 attribute vec4 osg_Color;

6 attribute vec4 osg_MultiTexCoord0;

7

8 uniform mat4 osg_ModelViewProjectionMatrix;

9

10 void main()

11 {

12 gl_Position = osg_ModelViewProjectionMatrix * osg_Vertex;

13 texCoord0 = osg_MultiTexCoord0;

14 vColor = osg_Color;

15 }

Listing 4.5: Vertex Shader code for application without access to the �xed-function

pipeline

1 varying mediump vec4 texCoord0;

2 varying mediump vec4 vColor;

3

4 uniform sampler2D diffuseMap;

5

6 void main()

7 {

8 mediump vec4 base = texture2D(diffuseMap , texCoord0.st);

9 gl_FragColor = base * vColor;

10 }

Listing 4.6: Fragment Shader code for application without access to the �xed-

function pipeline

It becomes apparent that the lack of methods and data structures available

in the �xed-function pipeline will force the necessary information to be explicitly

4.2. EXTENSIONS TO OSGEARTH 43

stated in the shaders, being than passed through the application code to attributes

and uniforms. The same precautions must be taken in order to perform the ren-

dering of di�erent materials and light e�ects, given that functions and data struc-

tures like gl_LightSource, gl_FrontLightProduct, gl_FrontMaterial, etc., are

no longer available.

Another important change is related to the fact that in OpenGL ES it is not

possible to group vertices using the nomenclature Begin/End, or the associated

methods to specify individual information for each vertex. This mechanism must

be replaced by passing a pointer to a bu�er array with all vertices that will be

represented. This pointer is then used in a function call to DrawArrays or in the

case of specifying individual elements of the array, the function DrawElements.

The fact that the function DrawElements in OpenGL ES is limited to the data

types unsigned byte or unsigned short can also originate some problems. In

our case it forced the modi�cation of the 3D models serviced by our W3DS. These

models, which were previously de�ned using the data type unsigned int, then

had to be converted to a compatible version. Seeing as this W3DS service continues

to serve clients in which this limitation is not present we decided not to change

the data served to the other service consumers. In this sense the graphical models

converted for use with OpenGL ES were made available by de�ning a new style

on the server.

4.2 Extensions to osgEarth

In the design of the solution for our project we identi�ed as a primary requirement

the capability of our virtual globe application to consume data provided by a

W3DS. The importance of this objective is related to the fact that it is only through

the use of this service that it becomes possible to obtain a dynamic behaviour for

our application in relation to the geographic areas represented. It is by its use

that we will be able to render 3D data relevant to a particular geographical area

without the need for any preparation steps speci�c for each location.

This requirement to consume a W3DS entails a well thought out solution, given

that despite the already mentioned similarities with the WMS, the complexity of

44 CHAPTER 4. DEVELOPMENT

the data processed by W3DS implies a set of more complicated challenges.

The amount of information that the representation of a standard graphic scene

requires to transfer and render emerges as a major obstacle to overcome in an

application that consumes the W3DS. Requests to the service have to be restricted

only to the most relevant geographical areas. These requests also have to be

managed in a way that the transfer of data packets becomes compatible with

real-time rendering, without introducing large delays between the navigation to

a relevant area and the representation of 3D scenes, thus keeping this process

transparent to the user.

The complexity inherent to render these elements will require careful manage-

ment in relation to the graphic elements to keep in scene. In the course of using

the application several 3D scenes will be transferred and represented, the perma-

nence of all these scenes in the rendering graph is not compatible with interactive

frame rates. Consequently, it has to be found a balance between a realistic repre-

sentation of the entire �eld of view presented in the virtual globe and the need for

maintaining interactive frame rates.

4.2.1 W3DS plugin

To implement all the logic associated with the construction and render of the

requests to the W3DS service we chose to develop an extension to the WMS plugin

already present in the osgEarth framework. In order to support the increased

complexity inherent to W3DS, special attention was given to the amount of data

processed in each request.

For each layer of data, information is kept on which areas are already in mem-

ory, with the assistance of a auxiliary data structure. Thus, requests over areas

already represented in, at least almost, its entirety are not carried out immediately.

The level of detail in which each layer is active also deserved special attention so

as to �lter requests that would implicate an unbearable amount of data. A di�er-

ent solution for this problem would be to change the response logic of the W3DS

server so that the level of detail would have an in�uence in the graphic scenes

generated, �ltering the entities included in each scene according to their relevance

at that level of detail. This way the quantity of data passed in a response would

4.2. EXTENSIONS TO OSGEARTH 45

be �ltered in the server according to the level of detail requested. Even if a re-

quest were made for an area expanse otherwise unbearable to the application only

information corresponding to some, more important structures, would be sent.

In order to perform the management of the number of components present in

the rendering graph, we resort to the auxiliary data structure referred to previously.

This structure, in addition to indicate the geographical areas of each layer that

are already represented in the scene, also stores a reference to the "father" node

in the graph of the group of graphical components corresponding to that area.

The management of the components in the scene thus consists in computing the

geographical distance between the current view position and the centre of the

bounding box that includes all the elements of a particular group. If this distance

exceeds a certain threshold then the group is marked for removal, logging this

operation in a changes queue.

With this plugin, any W3DS data source that we want to include in our appli-

cation is easily integrated, being it during the implementation of the application or,

preferably, in a .earth con�guration �le. Listing 4.7 displays an example .earth

�le where the layer pt_postes, with a W3DS data source, is added to a virtual

globe application.

1 <map name="readymap.org" type="geocentric" version="2">

2

3 <image name="readymap_imagery" driver="tms">

4 <url>http:// readymap.org/readymap/tiles /1.0.0/7/ </url>

5 </image>

6

7 <image name="readymap_streets" driver="tms">

8 <url>http:// readymap.org/readymap/tiles /1.0.0/35/ </url>

9 </image>

10

11 <image name="pt_postes" driver="w3ds">

12 <url>http:// webgis.di.uminho.pt:8080/geoserver2/sig3d/wms

?& styles=osg_poste </url>

13 <layers >sig3d:SIG3D_POSTES </layers >

14 <format >kml</format >

15 </image>

16 </map>

46 CHAPTER 4. DEVELOPMENT

Listing 4.7: Example of a W3DS data source being de�ned in a .earth �le.

4.2.2 Caching 3D entities

Seeing as the consumption of a service like W3DS requires a signi�cant e�ort in

terms of network and processing, the use of a caching data structure assumes great

importance. Especially in cases where several city infrastructures are represented.

Structures like light and energy poles are spread in great number throughout a

speci�c area, however, every instance of each of this structures is normally repre-

sented by the same 3D model. This implies some possible gains in the process of

building the representing 3D scene in the application, since the graphic model for

each type of structure only as to be transferred and processed once. Thus, despite

the fact that each instance has di�erent attributes and a di�erent location, all

the iterations of a model previously treated make use of a cached instance of the

same 3D model. The transformations needed in order to place the model in each

location are obtained by attaching a matrix node with all geographical transforma-

tions. The individual information and attributes necessary to correctly represent

the new instance are also associated by attaching a node with the relevant speci�c

information.

4.2.3 Changes to the scene graph

Another challenge that the consumption of the W3DS introduces and that our

solution will have to address is the fact that said consumption implies constant

changes to the set of graphical components represented in the scene. Now, since

the rendering environment in this application is based on the scene graph data

structure, special care is needed when applying any changes to it. It is necessary

to ensure that the changes arising from the consumption of scenes served by the

W3DS never occur during a rendering pass of the graph. This precaution is ex-

tremely important since changes to the structure of the graph during a rendering

pass will most likely break said pass and lead to an application freeze or even to

an actual crash of the application. To avoid this issue we implemented a queue

4.2. EXTENSIONS TO OSGEARTH 47

system to store records of impending changes to the scene graph.

In order to assist the decision making analysis performed in the changes queue,

two �ags were de�ned as attributes of each graphic node. These �ags serve the

purpose of indicating if said node is currently part of the rendering graph, and if

its marked for removal or not. The state of these �ags is altered when a new scene

is consumed in the W3DS service, and when the node's distance to the viewing

position is greater, or smaller, than a certain threshold. Based on these �ags, a

method was implemented to manage the state of the rendering graph. A node is

added to the rendering graph if it is currently not part of it and is not marked for

removal. The removal of a node occurs if it is marked for removal, and is currently

part of the rendering graph. The method responsible for analysing the changes

queue and make the implied changes to the rendering graph is then registered in

a callback system that calls the function between rendering passes, ensuring the

safety of each operation.

Thus, with the help of the developed attributes and methods, and using a

callback mechanism, we are able to ensure that these changes are never made

during a pass over the rendering graph.

48 CHAPTER 4. DEVELOPMENT

Chapter 5

Results

In the previous chapter we presented the steps taken in order to port and extend

the osgEarth framework. At the end of this process we obtained an Android

compatible framework that provides all the necessary features and functionalities

in order to develop a virtual globe application as the one we proposed in the goals

for this project.

In this chapter we will then present the virtual globe application that was im-

plemented with the aid of the developed framework.

The developed application initialises, as is common for virtual globe applica-

tions, with a view of the Earth from space. The user is than able to navigate the

view with the set of typical gestures in the Android environment. The user is then

able of zooming in or out, through the pinch open and pinch close gestures, move

along the view, through the swipe gesture, and tilting the view, through a two

�nger swipe. The initial screen of our application is displayed in �gure 5.1(a). In

�gure 5.1(b) its possible to see the main option menu made available to the user.

As is possible to see in the option menu, the user is capable of loading local

kml �les. The application will then process, place, and represent all the supported

elements present in this �le, moving the view in a �y-through animation to a

view point relevant for the �le. Another possible source of georeferenced graphical

information is through W3DS. These services can be added to the application via

source code or by editing a .earth con�guration �le.

49

50 CHAPTER 5. RESULTS

(a) Initial screen (b) Main option menu

Figure 5.1: Initial screen and option menu of our application.

In �gure 5.2 we present a graphic scene containing several models of city in-

frastructure consumed from a W3DS. We also display a load test, loaded from

a local .kml �le, where several entities represented by the same graphic model

rendered. With our caching system all these entities share the same graphic node

while maintaining unique attributes.

The virtual globe developed also allows the user to select each individual rep-

resented model. This functionality can be used for several features. In the imple-

mentation of our application we used this functionality in order to apply di�erent

e�ects to the selected model or display individual attributes and information of

the model. In �gure 5.3 both these features are displayed.

51

(a) Representation of city infrastructure (b) Load test from a local kml �le

Figure 5.2: Example representation of several kml �les served by a W3DS, and
load test with several identical entities.

In order to provide greater control to the user in relation to the information

represented in the application we implemented the possibility to change in runtime

all the data sources present in the application. This way the user is capable of

changing both the map image provider and to decide which layer of pre-de�ned

W3DS data sources are visible in the viewer. Figure 5.4(a) displays the settings

menu through which the user can access these options. In �gure 5.4(b) the available

pre-de�ned map image providers are presented.

All the developed code is available in a BitBuckect repository. A manual ex-

plaining all necessary dependencies and build steps, through which the end results

of this project can be replicated, is available in appendix A.

52 CHAPTER 5. RESULTS

(a) Model with an edge e�ect obtained
through the use of GL_LINES

(b) Information associated with a selected
graphic model

Figure 5.3: Representation of a model with a di�erent visual e�ect after selection
and a view of the screen with the speci�c attributes of a selected model.

53

(a) Settings menu (b) Pre-de�ned image providers

Figure 5.4: Set of menus through which the user can personalise the graphic
information displayed in the application.

54 CHAPTER 5. RESULTS

Chapter 6

Conclusions and Future Work

6.1 Conclusion

The overall objective of this thesis was the development of a powerful and expansi-

ble client for several geospatial data types and services. This client would have to

consume the newly speci�ed W3DS and be compatible with the Android operating

system.

In the analysis of existing solutions relevant to our project the concept of

virtual globe was quickly identi�ed as the one that would imply the most attractive

set of advantages in the resolution of our problem. However, further research

resulted in the conclusion that the number of virtual globe implementations for the

mobile environment was very limited. Being identi�ed a complete absence of open

source implementations, a necessary characteristic in order to develop new custom

functionalities, compatible with our preferred mobile development environment.

We then set out to provide an open source solution for the development of

virtual globe applications in the Android build environment. We choose to make

use of an existing open source solution in the desktop environment as base for our

project, making all the necessary changes in order to port all necessary components

to Android. osgEarth was identi�ed as the open source solution that best met the

needs of our project.

We claim that we were able to port osgEarth to Android, making and docu-

menting the necessary steps and alterations that this process entails. We identi�ed

55

56 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the recourse to the OpenGL API as the major obstacle to the porting process given

the limited support that is present in the embedded speci�cations of this API. Be-

cause of this limited support, changes to the shader programs responsible for the

3D rendering where made thus obtaining an Android compatible rendering engine.

We also describe the advantages and di�culties inherent to the consumption of

the W3DS. The process of expanding osgEarth in order to support this new data

source and the steps taken to implement a new plugin to consume this service

while overcoming said di�culties is also presented.

We were then able to obtain an open source framework for the development of

Android compatible virtual globes. The process of porting existing similar libraries

to the Android operative system, making all necessary preparations and alterations

was also analysed and explained in this work.

With the developed framework we implemented a virtual globe application

for the Android operating system. In addition to the most common features,

our virtual globe o�ers the user an above average control over the data sources

represented at all times and is able to integrate the newly speci�ed W3DS.

The result product of this project is highly �exible and expandable and is

available as open source, from a public BitBucket repository.

6.2 Future Work

In terms of the osgEarth framework ported in this project to the Android operative

system, most of the possible future development is related with expanding the set

of data types and data sources supported. In particular the collada .dae type

has signi�cant interest seeing as it is broadly used through several systems as

the standard for the representation of graphic models. A detailed analysis of

the performance given by the framework for various mobile device con�gurations

identifying existing stress points and possible optimisations is also an area where

further work should be made.

In terms of the virtual globe application developed, there is signi�cant interest

in implementing an o�ine mode, where the application would consume packages

of pre-prepared areas giving to the user the possibility of using the application in

locations where there is limited or non-existent network connections. In addition

6.2. FUTURE WORK 57

to the o�ine mode, the possibility of editing the data served by the W3DS is also of

great interest. Functionalities such as the creation of new entities or elimination of

existing ones, and consequent alteration to the service database, and the possibility

of editing the attributes associated with each entity, would further contribute to

the usability of this solution as a major tool in geographical information systems.

58 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] Google. (Accessed in October 1 2012) Activities. https://developer.android.com/guide/

components/activities.html.

[2] B. T. Tuttle, S. Anderson, and R. Hu�, �Virtual Globes: An Overview of Their History,

Uses, and Future Challenges,� Geography Compass, vol. 2, no. 5, pp. 1478�1505, Sep. 2008.

[3] DinSide. (2000, (Accessed in November 18 2012)) Encarta world atlas. http://www.dinside.

no/18813/encarta-interactive-world-atlas.

[4] T. Foresman, �Digital Earth visualization and web-interface capabilities utilizing 3D geo-

browser technology,� Proceedings of the 20th ISPRS Congress, 2004.

[5] G. Percivall, C. Reed, L. Leinenweber, C. Tucker, and T. Cary, �OGC Reference Model,�

2011.

[6] O. H. Alliance. (Accessed in August 18 2013) Alliance overview. http://www.

openhandsetalliance.com/oha_overview.html.

[7] L. Batyuk, A.-D. Schmidt, H.-G. Schmidt, A. Camtepe, and S. Albayrak, �Developing

and benchmarking native linux applications on android,� in MobileWireless Middleware,

Operating Systems, and Applications, ser. Lecture Notes of the Institute for Computer

Sciences, Social Informatics and Telecommunications Engineering, J.-M. Bonnin,

C. Giannelli, and T. Magedanz, Eds. Springer Berlin Heidelberg, 2009, vol. 7, pp.

381�392. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-01802-2_28

[8] Google. (2009, (Accessed in October 7 2012)) Introducing android 1.5 ndk. http://

android-developers.blogspot.pt/2009/06/introducing-android-15-ndk-release-1.html.

[9] D. Wol�, OpenGL 4.0 Shading Language Cookbook. Packt Publishing Ltd., 2011.

[10] A. Munshi, D. Ginsburg, and D. Shreiner, OpenGL ES 2.0 programming guide. Pearson

Education, Inc., 2008.

[11] J. Forshaw. (2011, (Accessed in March 19 2013)) Webgl - a new di-

mension for browser exploitation. http://www.contextis.com/research/blog/

webgl-new-dimension-browser-exploitation.

59

https://developer.android.com/guide/components/activities.html
https://developer.android.com/guide/components/activities.html
http://www.dinside.no/18813/encarta-interactive-world-atlas
http://www.dinside.no/18813/encarta-interactive-world-atlas
http://www.openhandsetalliance.com/oha_overview.html
http://www.openhandsetalliance.com/oha_overview.html
http://dx.doi.org/10.1007/978-3-642-01802-2_28
http://android-developers.blogspot.pt/2009/06/introducing-android-15-ndk-release-1.html
http://android-developers.blogspot.pt/2009/06/introducing-android-15-ndk-release-1.html
http://www.contextis.com/research/blog/webgl-new-dimension-browser-exploitation
http://www.contextis.com/research/blog/webgl-new-dimension-browser-exploitation

60 BIBLIOGRAPHY

[12] ��. (2011, (Accessed in March 19 2013)) Webgl � more webgl security �aws. http://www.

contextis.com/research/blog/webgl-more-webgl-security-�aws.

[13] cartographic images.net. (Accessed in November 18 2012) Behaim globe. http://

cartographic-images.net/Cartographic_Images/258_Behaim_Globe.html.

[14] M. Pesce, VRML: Browsing and Building Cyberspace, 1995.

[15] A. Gore, �The digital earth,� Australian surveyor, no. February, pp. 41�44, 1998.

[16] M. N. Center. (1997 (Accessed in February 5 2013)) Now a virtual globe, not just

a world atlas. https://www.microsoft.com/en-us/news/press/1997/nov97/vglobepr.aspx?

navIndex=1.

[17] M. Gould and M. Craglia, �Next-generation digital earth: A position paper from the

vespucci initiative for the advancement of geographic information science,� International

Journal of Spatial Data Infrastructures Research, vol. 3, pp. 146�167, 2008.

[18] D. Bell, F. Kuehnel, and C. Maxwell, �NASA World Wind: Opensource GIS for mission

operations,� Aerospace Conference, 2007 IEEE, 2007.

[19] T. G. Web. (2007 (Accessed in February 5 2013)) Media coverage of geospatial platforms.

http://www.geospatialweb.com/�gure-4.

[20] NASA. (2007, (Accessed in October 2 2012), Jul.) World wind java sdk. http://worldwind.

arc.nasa.gov/java/.

[21] P. Mapping. (Accessed in October 5 2012) osgearth. http://osgearth.org/.

[22] R. Wang and X. Qian, OpenSceneGraph 3 Cookbook. Packt Publishing Ltd., 2012.

[23] J. L. Beaujardiere, �OpenGIS Web Map Server Implementation Speci�cation,� 2006.

[24] A. Schilling and T. H. Kolbe, �Draft for Candidate OpenGIS R© Web 3D Service Interface

Standard,� 2010.

[25] G. Misund and M. Granlund, �Global models and the w3ds speci�cation - challenges and

solutions,� in Accepted to First International Workshop on Next Generation 3D City Models,

2005.

http://www.contextis.com/research/blog/webgl-more-webgl-security-flaws
http://www.contextis.com/research/blog/webgl-more-webgl-security-flaws
http://cartographic-images.net/Cartographic_Images/258_Behaim_Globe.html
http://cartographic-images.net/Cartographic_Images/258_Behaim_Globe.html
https://www.microsoft.com/en-us/news/press/1997/nov97/vglobepr.aspx?navIndex=1
https://www.microsoft.com/en-us/news/press/1997/nov97/vglobepr.aspx?navIndex=1
http://www.geospatialweb.com/figure-4
http://worldwind.arc.nasa.gov/java/
http://worldwind.arc.nasa.gov/java/
http://osgearth.org/

Appendix A

Build Manual

In this appendix we present a manual portraying all the steps necessary in order

to obtain and build the solution developed in this project, in order to replicate the

obtained results or to further expand them.

61

Virtual Globe compilation for Android
May 2013

Contents
Introduction..1

Requirements...1
Obtaining the source code..1
Compilation of OpenSceneGraph...2
Compilation of osgEarth...2

Compilation of all dependences to Android..2
Compilation of osgEarth to Android..2

Generation of osgViewer..2
Generation of the library libosgNativeLib.so..2
Generation of osgViewer.apk...3

Introduction
The virtual globe developed in this project is implemented as an Android application (.apk). This
application is written mostly in C++. From this C++ code a library, libosgNativeLib.so, is built and
than utilized in the generation of the final .apk.

Requirements

Besides the Android SDK, the setup of this project needs the Android NDK framework. In this
project the version r8b of this framework was used. To install the Android NDK its necessary to
execute the following steps:
cd Android
wget https://dl.google.com/android/ndk/android-ndk-r8b-linux-x86.tar.bz2

After this installation, its necessary to define two environmental variables:
export ANDROID_NDK=/home/jgr/Android/android-ndk-r8b
export ANDROID_SDK=/home/jgr/Android/android-sdk-linux

The Android folder used is then where both the SDK and the NDK frameworks are installed.

The compilation of this project is supported by the cmake tool, used to generate the necessary
Makefiles. To compile this project the version 2.6.4, or higher, of cmake is necessary.

Obtaining the source code

The necessary source code can be obtained from following repository:

https://bitbucket.org/jgrocha/osgearthandroid

To download the code the following steps should be taken:
cd
git clone git@bitbucket.org:jgrocha/osgearthandroid.git
cd osgearthandroid/

In this manner, all the code will be in the folder osgearthandroid.

1

Compilation of OpenSceneGraph

The compilation of OpenSceneGraph depends on several auxiliary libraries. So, before the
compilation process one should download these libraries into the appropriate folder.
cd OpenSceneGraph
wget http://www2.ai2.upv.es/difusion/osgAndroid/3rdpartyAndroid.zip
unzip 3rdpartyAndroid.zip

cmake . -DOSG_BUILD_PLATFORM_ANDROID=ON -DDYNAMIC_OPENTHREADS=OFF -DDYNAMIC_OPENSCENEGRAPH=OFF
-DOSG_GL1_AVAILABLE=OFF -DOSG_GL2_AVAILABLE=OFF -DOSG_GL3_AVAILABLE=OFF -DOSG_GLES1_AVAILABLE=OFF
-DOSG_GLES2_AVAILABLE=ON -DOSG_GL_LIBRARY_STATIC=OFF -DOSG_GL_DISPLAYLISTS_AVAILABLE=OFF
-DOSG_GL_MATRICES_AVAILABLE=OFF -DOSG_GL_VERTEX_FUNCS_AVAILABLE=OFF
-DOSG_GL_VERTEX_ARRAY_FUNCS_AVAILABLE=OFF -DOSG_GL_FIXED_FUNCTION_AVAILABLE=OFF
-DANDROID_ABI="armeabi armeabi-v7a" -DANDROID_PLATFORM=8 -DANDROID_STL="gnustl_static" -DJ=4

make

Compilation of osgEarth
This compilation is executed in two steps.

Compilation of all dependences to Android
Move into osgearthandroid/3rdparty/jni
cd ../3rdparty/jni
~/Android/android-ndk-r8b/ndk-build

Compilation of osgEarth to Android
Move into osgearthandroid
cd ../..
cmake . -DOSG_BUILD_PLATFORM_ANDROID=ON -DJ=4 -DOSG_DIR="./OpenSceneGraph" -DDYNAMIC_OSGEARTH=OFF
-DOPENTHREADS_LIBRARY="./OpenSceneGraph/obj/local/armeabi/libOpenThreads.a"
-DCURL_LIBRARY="./OpenSceneGraph/3rdparty/build/curl/obj/local/armeabi/libcurl.a"
-DGDAL_LIBRARY="./osgearthandroid/OpenSceneGraph/3rdparty/build/gdal/obj/local/armeabi/libgdal.a"
-DGEOS_LIBRARY="./3rdparty/obj/local/armeabi/libgeos.a"
-DSQLITE3_INCLUDE_DIR="./3rdparty/jni/sqlite-autoconf-3071401"
-DSQLITE3_LIBRARY="./3rdparty/obj/local/armeabi/libsqlite3.a"

make

Generation of osgViewer
The generation of the Android application is made in two steps. First we build the library
libosgNativeLib.so and than the osgViewer.apk.

Generation of the library libosgNativeLib.so
cd osgViewer/jni
~/Android/android-ndk-r8b/ndk-build

The makefile includes two debug instructions that present the computed PATH. The output of the
execution of this makefile (via ndk-build) should be similar to the following:
value of LOCAL_PATH is: /home/jgr/GIS/osgearthandroid/osgViewer/jni
value of OSGEARTH_ANDROID_DIR is: /home/jgr/GIS/osgearthandroid/osgViewer/jni/../..
Gdbserver : [arm-linux-androideabi-4.6] libs/armeabi/gdbserver
Gdbsetup : libs/armeabi/gdb.setup
Install : libosgNativeLib.so => libs/armeabi/libosgNativeLib.so

2

Generation of osgViewer.apk

After opening Eclipse IDE, go to File → Import..., choose the option “Existing Android Code Into
Workspace”, as the following image illustrates.

In the following dialog, its necessary to point out the folder with the source code (osgearthandroid)
and select the project osgViewer, as illustrated.

After the project is imported into Eclipse we should be able to execute it. The generated apk is
localized in osgViewer/bin/osgViewer.apk.

3

	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Problem
	Goal
	Thesis structure

	State of the Art
	Mobile Devices and Android
	Android Operating System
	Developing in Android
	Android Native Development

	OpenGL
	OpenGL ES

	Virtual Globes
	Existing open source solutions

	OGC Services
	Web Map Service
	Web 3D Service
	OGC Client Applications

	Architecture
	Requirements
	Main difficulties
	Data volume
	Rendering challenges
	Mobile Environment

	Solution
	Choice and implications
	Integrating the osgEarth framework

	Development
	Porting to Android
	Cross Compiling
	OpenGL ES support

	Extensions to osgEarth
	W3DS plugin
	Caching 3D entities
	Changes to the scene graph

	Results
	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography
	Build Manual

