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Abstract 

Silk-elastin-like proteins (SELPs) are protein based polymers composed of 

repetitive amino acid sequence motifs, or variants thereof, found in silk fibroin 

(GAGAGS) and mammalian elastin (VPGVG). These polymers have a high 

potential for use in the pharmaceutical, regenerative medicine and materials 

fields. The successful employment of these polymers in these different areas 

requires that they can be simply prepared in large quantities on an industrial 

scale. The present study attempted to increase the production levels of a novel 

recently described SELP (SELP-59-A) in E. coli. 

Prior to the present study, the highest reported production level for SELPs was 

500 mg/L in E. coli BL21(DE3) with an optimised batch fermentation in shake 

flasks approach1. It was shown that SELP production was limited with this 

approach by the accumulation of acetic acid to toxic levels as well as by plasmid 

loss on induction. In an attempt to overcome these limitations, the use of a fed-

batch production approach and of various plasmid stabilisation systems were 

investigated in the present study. A fed-batch approach was developed and 

optimised for the successful high cell density production of SELP-59-A. Pre- 

(0.4 h-1) and post-induction (0.1 h-1) growth rates, dissolved oxygen concentration 

(15 %), dry cell weight (DCW) on induction (75 g/L) and IPTG concentration for 

induction (1 mM IPTG) were optimised and allowed for an almost 9-fold increase 

in SELP-59-A production. This allowed for a reduced cost process with a fed-

batch phase of approximately 8 hours. Limiting factors identified were plasmid 

loss on induction, limitations in the oxygen transfer efficiency of the fermentation 

instrumentation used and an increased metabolic stress on the host cells 

following induction. Investigation of ampicillin resistance, kanamycin resistance 

and a Type II toxin/antitoxin post segregational suicide system (ccdB/ccdA) for 

reduced plasmid loss indicated the latter to allow for improved plasmid stability 

and a 50 % increase in SELP-59-A production under the conditions used. 

Removal or inactivation of the ampicillin resistance marker from the expression 

vector did not affect production but allows for the production of SELPs for use in 

biomedical applications. The SELP production levels reported here are the 

highest to date and represent a 10-fold increase on that previously reported.  
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Resumo 

As proteínas do tipo seda-elastina (SELPs) são uma nova classe de polímeros 

recombinantes de origem proteica, cuja composição consiste na combinação das 

sequências repetitivas de aminoácidos comummente encontradas nas proteínas 

naturais, fibroína (GAGAGS) e elastina (VPGVG). Estes polímeros têm um 

elevado potencial de aplicação nas áreas de medicina regenerativa, 

farmacêutica e materiais. Todavia, para que a sua aplicação seja bem sucedida, 

surge a necessidade de serem facilmente produzidos em larga escala. Como 

objetivo principal deste estudo, pretendeu-se aumentar os níveis de produção de 

uma SELP em E. coli. Até à data, o nível de produtividade volumétrica mais 

elevado descrito para SELPs foi de 500 mg/L, obtido em E. coli, e em condições 

otimizadas de fermentação em matrazes. Foi demonstrado que a produção de 

SELP era limitada não só devido à acumulação de ácido acético, conduzindo a 

níveis tóxicos para a célula, mas também devido à perda de plasmídeo pela 

indução. No âmbito desta tese e numa tentativa de ultrapassar estas limitações, 

recorreu-se a uma abordagem de produção em fed-batch, assim como a vários 

sistemas de estabilização de plasmídeo. Assim, foi desenvolvido e otimizado um 

processo de fed-batch, o qual demonstrou resultar na produção de SELP-59-A 

em culturas de elevada densidade celular. Com parâmetros otimizados tais como 

taxas de crescimento de pré- (0.4 h-1) e pós- indução (0.1h-1), concentração de 

oxigénio dissolvido (15%) e, indução com IPTG (1 mM IPTG, a um peso seco 

celular de 75 g/L), permitiu um aumento de quase 9 vezes em relação à produção 

volumétrica previamente descrita. Isto permitiu obter um processo de custo 

reduzido com uma fase de fed-batch de cerca de 8 horas. Como fatores 

limitantes, foram identificados: a perda de plasmídeo na indução, limitações na 

eficiência da transferência de oxigénio pelo equipamento utilizado e um aumento 

do stress metabólico nas células hospedeiras após indução. Os estudos de 

resistência à ampicilina, canamicina e um sistema toxina/antitoxina do tipo II 

(ccdB/ccdA), foram utilizados para reduzir a perda de plasmídeo, resultando num 

aumento da estabilidade do plasmídeo e por conseguinte num aumento de 50 % 

na produção de SELP-59-A. Os níveis de produção SELP relatados neste estudo 

são os mais altos descritos até hoje, representando um aumento de cerca de 10 

vezes maior do que descrito na literatura.  
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1.1. Polymers 

 

Polymers (poly – many, meros – parts) are naturally occurring or synthetic 

compounds made up of a large number of linked repeating structural subunits. 

The relatively simple basic subunits, known as monomers, are joined together 

(typically by covalent bonds) to form oligomers of varying sizes (dimers, trimers 

etc.) and eventually, through a large number of repeats, give rise to polymers. 

Polymers typically have molecular weights greater than 5000 g/mole, thereby 

allowing for chain entanglement, and can consist of up to millions of repeated 

units per polymer chain2.3. 

 

1.1.1. Protein-Based Polymers  
 

Protein-based polymers (PBPs), composed of repeating units of amino acids, 

have recently emerged as a promising new class of bioinspired materials. The 

repetitive amino acid motifs of these biopolymers are typically based on naturally 

occurring proteins and in particular on repetitive motifs found in naturally 

occurring fibrous or elastomeric proteins such as silk, elastin and resilin. These 

natural proteins serve functional, protective and structural purposes in nature and 

are typically characterized by remarkable physical, mechanical and biological 

properties with, in particular, a high strength and stability being often noted3.4.5. 

PBPs, designed to display similar or improved properties to these, are of much 

interest from both a fundamental and applied point of view, and find potential 

application in biomedicine, pharmaceuticals, nanotechnology and as materials. 

They can be processed into fibres, films, nanoparticles and/or hydrogels and offer 

many advantages over conventional petroleum-based polymers, including being 

more environmentally friendly, renewable and biocompatible. Furthermore, they 

can be prepared by use of recombinant DNA technology which, in contrast to 

conventional synthetic polymers that tend to be produced as a polydispersed 

population, allows for the production of monodispersed PBPs in which the 

sequence, composition and length is strictly controlled. Here, the gene encoding 
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the protein based polymer of interest is introduced into a suitable host whereupon 

the protein producing machinery (i.e. transcription, translation and folding 

machinery) of this host is utilised to produce the polymer6.7.8. 

 

Figure 1. An overview of the process for protein based polymer synthesis via protein 
engineering5. 

 

The basic principle of PBP synthesis via recombinant DNA technology is 

illustrated in Figure 1. Amino acid sequences are designed to create specific 

folding patterns and desired new material properties, with the design being 

generally based on naturally occurring fibrous proteins found in nature but with 

novel designs being also possible. Indeed, use of protein engineering techniques 

to modify natural amino acid sequences might allow for novel materials with novel 

improved properties. The primary amino acid sequence is then reverse-translated 

into its corresponding nucleotide sequence and the desired DNA fragment 

synthesized by molecular biology approaches. Indeed, as many fibrous proteins 

are characterized by repetitive amino acid sequences, it is often possible to 

multimerise a smaller synthesized oligonucleotide sequence to prepare an 

artificial gene that codes for proteins of high molecular weight8. The gene is then 

incorporated into circular plasmid DNA which can be transformed to an 

appropriate host, or directly integrated into host genome. Many hosts are 

currently available, including bacteria, yeast, fungi, plants and animals3.4.5 with 
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the bacterial host E. coli being the most commonly used as it displays a high 

growth rate, is relatively cheap and easy to cultivate and has been extensively 

studied.  

 

1.2. Fibrous Proteins 

 

Fibrous proteins such as elastin, silk, resilin, abductin or wheat gluten are self-

assembling proteins that display properties of extensibility, elastic recoil and/or 

high strength and stability. They are present in a variety of tissues, have precise 

biological functions and are critical for survival. Examples of their exploitation in 

nature include: insect wings that depend on resilin for flight by releasing stored 

energy to power the return stroke in response to each wing beat; human arteries 

that contain elastin in the walls to allow for contraction and the pumping of blood 

throughout the body; and spider silk that can be tougher than steel and allows for 

the entrapment of prey 9.10. Although evolutionarily unrelated, they all share a 

common sequence design involving short highly repetitive sequences that impart 

elasticity, and often also strength, interspersed with elements capable of forming 

cross-links that help stabilise the polymer structures 11 (Table 1). The presence 

of regularly repeated sequences implies the formation of a regular structure and 

although the direct determination of the structures of elastic proteins has proved 

problematic, the limited information that is available indicates that the repetitive 

sequences do form regular structures and that these may be important in the 

elastic mechanisms9.12. 
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Table 1. Repeat motifs and crosslinking mechanisms for elastomeric proteins 9. 

 

All of the elastomeric proteins have incredible elasticity, allowing for high 

deformation without rupture when submitted to stress and a recovery of their 

original form when relaxed. This property is known as resilience and is dependent 

on both the lengths and properties of the elastic domains and the degree of cross-

linking. It appears to result from a predominantly entropic mechanism, with a 

decrease in conformational entropy occurring on stretching due to the restricted 

number of low energy conformations that the extended polypeptide chains can 

adopt. On removal of the stretching force, there is an increase in the number of 

conformations the polypeptide chains can adopt, thus providing the free energy 

for elastic recoil. Furthermore, many of these proteins are characterized by 

extremes of strength and toughness with, for example, spider dragline silk 

displaying a toughness higher than Kevlar and even steel (Table 2). This is 

attributed to the close packing of chains allowed by the small side-chained amino 

acids in the repetitive domains as well as to extensive cross linking. 
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Table 2. Mechanical properties of natural and synthetic fibres13.14. 

 

 

Although fibrous proteins are found in many animals, only a few are known in 

detail, with the most studied including: abductin from arthropods, byssus from 

mussel, resilin from insects, silks from spiders and elastin from vertebrates3.9.13.14.  

In this thesis PBPs based on elastin and silk will be investigated and both of these 

fibrous proteins will now be discussed. 

 

1.2.1. Elastin 
 

The resilience of some tissues, such as blood vessels, lungs, tendons and skin 

of higher vertebrates, is due to elastin, a connective tissue protein that provides 

a combination of strength and flexibility to the extracellular matrix. Elastins are 

composed of simple repeating sequences such as the pentapeptide, VPGVG, the 

hexapeptide, APGVGV, the nonapeptide, VPGFGVGAG and the tetrapeptide 

VPGG (V = valine, P = proline, G = glycine, A = alanine)12.15. Of these, the most 

thoroughly investigated is the pentapeptide sequence VPGVG3.8.9. This 
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sequence is the most abundant in animal elastin and adapts a β-helix structure 

in the protein. 

 

Figure 2. Illustration of stretch and relax state of elastin15. 

 

Elastin displays its mechanical properties only in the condensed, partially 

hydrated phase that is formed above the critical aggregation temperature. It is 

generally believed that the elasticity of elastin is an entropy-based property 

resulting from the hydrophobic nature of the protein16. 

 

1.2.2. Elastin-like Polymers 
 

Elastin-like polymers (ELPs) are a new type of protein-based polymer derived 

from the repetitive amino acid sequence motifs of natural elastin. Here the 

repetitive elastin motifs are modified and/or combined in varying proportions to 

give rise to this new set of polymers with potentially novel mechanical and 

biological properties. 

All functional ELPs show the so-called “inverse temperature transition” (ITT). This 

is a phase transitional behaviour in which, below a certain critical temperature 

(Tt), and in the presence of water, the polymer chains remain disordered. On the 
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contrary, above Tt, the polymer chain hydrophobically folds and assembles to 

form a phase separated state in which the chains adopt a dynamic, regular, non-

random structure. In this folded and associated state, the chain loses essentially 

all of the ordered water structures of hydrophobic hydration17.18.  

All ELPs behave as thermo-responsible smart polymers. However, adequate 

substitution of the monomer amino acids by other, can be used to modify the 

properties and expand the responsive nature of this family of polymers. Indeed 

many different polymers have been designed which show the capacity to perform 

more than 15 pairwise free energy transductions involving the intensive variables 

of mechanical force, temperature, pressure, chemical potential, electrochemical 

potential and electromagnetic radiation17.18.19.20.21. 

 

1.2.3. Silk 
 

Silk is the most thoroughly studied of the fibrous proteins. There are many forms 

of silk, of which that from Bombyx mori (Chinese silkworm silk) and dragline 

spider silk from Nephila clavipes (the golden orb weaver) have drawn most 

attention22. Spiders produce a large variety of silk types, each meant for a specific 

purpose, such as for the trapping of prey or for suspension. Indeed these different 

types of spider silk are examples of nature’s high performance fibres with 

remarkable combinations of strength and toughness.  
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Figure 3. Illustration of Silk structure. 

 

 

1.2.4. Silk-Elastin-like Proteins 
 

Silk-elastin-like proteins (SELPs) are a family of biopolymers based on the highly 

repetitive amino acid sequence blocks of the naturally occurring fibrous proteins 

silk and elastin. They are diblock copolymers which combine the physicochemical 

and biological properties of the high tensile strength silk with highly resilient 

elastin, allowing for the fabrication of diverse materials with a high potential for 

use in the pharmaceutical, regenerative medicine and materials fields. Indeed, by 

varying the content and/or ratio of silk and elastin, SELPs can be fine tuned to 

give various polymers of diverse mechanical and biological properties. In fact, by 

Silks from both silkworms and spiders contain repetitive sequences of crystalline 

(e.g. GAGAGS) and amorphous domains (e.g. GPGGx, GPGQQ, GPGGY) 

(Table 1 and Figure 3). The crystalline domains are β−sheet regular structures 

which are believed to be responsible for the strength of the material, whereas the 

amorphous protein matrix introduces flexibility and increases the energy to break 

while also allowing the crystalline domains to orient under strain and thereby 

allow for increased strength.  
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this means one can vary the strength, flexibility, solubility, biodegradability and/or 

biocompatibility of the material produced1. For example, a high content of silk β-

sheet crystals gives rise to a polymer of high thermal and chemical stability but 

with  reduced aqueous solubility. On the other hand, the periodic inclusion of the 

elastomeric sequence would reduce the overall crystallinity and increases its 

flexibility, aqueous solubility and biocompatibility. Hence one can fine tune the 

SELP with the desired properties to accomplish a particular function23.24.25. 

Some examples of potential applications for SELPs include: controlled release 

systems for intracellular, intratumoral and gastrointestinal drug and gene delivery, 

in tissues regeneration as a support for the creation and repair of new tissues, in 

contact lens and synthetic corneas, and also in the automobile industry as 

environmentally friendly and biodegradable plastics25.26.27. While SELPs and 

indeed PBPs in general have a high potential for application and offer many 

advantages over currently used petroleum based polymers, they are currently 

characterised by a high production cost which constitutes a major obstacle to the 

commercial viability of these. Indeed, the principal problem with the production of 

SELPs is their low production levels. They are produced by heterologous 

production with, up to now, E. coli being the most commonly used production host 

and with only mg/L productivities being reported1.24. 

Hence a current major area of interest in the study of PBPs is in the improvement 

of the production levels and reduction of the production costs of these. This 

present project is focused on an attempt to optimise the production levels of a 

novel recently developed SELP28.29. 
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1.3. Background 

 

A number of novel SELPs consisting of multiple blocks of the silkworm silk 

consensus sequence GAGAGS in various combinations with a variant (VPAVG) 

of the natural mammalian elastin repetitive sequence block VPGVG have recently 

been synthesised and produced by the team where this work was developed24. 

The single amino acid change (G to A) in the elastin motif has been found to have 

an effect on its mechanical properties, including a change in its mechanical 

response from elastic to plastic deformation, a two orders of magnitude increase 

in its young modulus value and the revelation of a hysteresis behaviour 

accompanying its reversible transition on heating. Hence, these novel SELPs 

incorporating this unique elastin-like repetitive motif (VPAVG) with that of silk 

(GAGAGS) should give rise to a new set of polymers with expanded and 

potentially enhanced properties and applicability1.24. 

 

Figure 4. Schematic representation of silk-elastin-like protein (SELP-59-A) used in this 
study24. 

In the present study we will investigate one of these novel SELPs, namely SELP-

59-A which contains five blocks of the silk motif, GAGAGS and nine blocks of the 

elastin-like sequence, VPAVG. The aim of the project will be to optimise the 

production levels of this novel SELP.  

SELP-59-A has already been subcloned into pCM13 (a modified pET-25b(+) 

expression vector) and produced in E. coli BL21 (DE3)24. This is an IPTG (β-D-

1-thiogalactopyranoside)/lactose inducible system in which a highly active T7 

RNA polymerase is used and in which the target gene expression is under the 

control of a T7 RNA polymerase promoter (Figure 5). The T7 promoter is only 
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recognised by T7 RNA polymerase which is able to transcribe genes five times 

faster than the E. coli RNA polymerase30.31. The gene encoding the T7 RNA 

polymerase, under the control of a lacUV5 promoter-operator, has been inserted 

in the chromosome of the host bacterium E. coli BL21(DE3). Furthermore, a lacI 

gene encoding a lac repressor has been inserted in both the bacterial 

chromosome and the plasmid, thereby ensuring high amounts of repressor 

molecules. Therefore, under non-inducing conditions, expression of the T7 RNA 

polymerase and hence also the target protein is repressed by the binding of the 

lac repressor to the lacO operator sequences upstream of both the T7 RNA 

polymerase and target genes. On the other hand, adding isopropyl-β-D-

thiogalactoside (IPTG) or lactose to the medium will allow for the transcription of 

the T7 RNA polymerase and target protein by inhibiting lac repressor binding to 

the lacO sequences (Figure 5) and thereby lead to high level production of the 

protein of interest32.33. 

 

Figure 5. Representation of E. coli BL21(DE3)/pET expression system33. 

 

Previous studies with SELPs reported volumetric productivities of up to only 

20 mg/L when using rich media for batch production in E. coli with the lacI 

regulated T7 system33. More recently, a systematic empirical optimisation of all 
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process parameters for the batch production in shake flasks of SELP-59-A with 

the pCM13-E. coli BL21(DE3) system allowed for the production of approximately 

500 mg/L after purification1. Here, rich, buffered Terrific Broth (TB) at 37 ºC and 

pH 6.8, and with high agitation and oxygenation as well as induction early in the 

stationary phase allowed for maximum production1. However, analysis of the 

optimised process indicated that the selection agent (ampicillin) was rapidly 

degraded during the first hour of cultivation at a dry cell weight (DCW) of about 

0.1 g/L and that consequently plasmid stability decreased dramatically on 

induction, thereby reducing polymer production levels. Furthermore, acetate was 

found to accumulate during the bioprocess to levels which were shown to be 

inhibitory to the host cells and hence reduced the maximum attainable cell density 

and hence also further reducing polymer levels.  

Acetate accumulation during E. coli growth occurs when the carbon flux into the 

cells exceeds the capacity of the central metabolic pathway and in aerobic 

fermentations is typically a result of an uncontrolled cell growth in the presence 

of excess carbon source. Use of the fed-batch approach for the controlled growth 

of E. coli allows for the control and reduction of acetate accumulation and initial 

studies have already been carried out to investigate this approach for the 

production of SELP-59-A. With the fed-batch approach, controlled addition of a 

limiting essential ingredient (e.g. the carbon source, glucose) enables control of 

the growth rate and consequently also the rate of acetic acid production. The fed-

batch production approach is typically composed of three phases: a batch phase, 

a pre-induction fed-batch phase and a post-induction fed-batch phase. In the 

batch phase, E. coli is allowed to grow in the presence of excess nutrients until 

all carbon sources (i.e. glucose and all organic acids produced during the 

process) are exhausted and allows for the attainment of an stable initial culture 

density before the fed-batch phase. During the fed-batch phase the limiting 

carbon source is fed at a desired rate so as to maintain cell growth at a desired 

rate as defined by the mass balance equation for cell growth34.35. Finally, when 

the cells have reached a desired cell density, protein production is induced by 

addition of IPTG or lactose and feeding is continued post induction until the 

fermentation is stopped. Initial investigations of the fed-batch approach with the 

SELP-59-A/pCM13/E. coli BL21(DE3) system using growth rates of 0.2, 0.4 or 
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0.6 h-1 both pre and post-induction allowed for the successful reduction of acetate 

accumulation levels and hence enabled high cell density fermentations (approx. 

50 g/L DCW, approximately 10 times higher than with the batch production 

approach) and an accompanying improved polymer production. Induction at a 

DCW of 50 g/L allowed for the obtention of approximately 3 g/L of SELP-59-A 

after purification. However, this optimisation is incomplete. No attempts were 

made to optimise or identify the optimal pre and post induction growths rates 

which would allow for improved production levels or reduced process times, 

furthermore, the maximum cell density and optimal inducer concentration for 

maximising production were not investigated. Therefore, in the present study, we 

attempted to address this. 

As already mentioned, a second problem noted for the batch production process 

was plasmid instability on induction, with total loss of plasmid being observed 2 

hours after induction. The initial studies with the fed-batch approach also 

highlighted this problem with again rapid plasmid loss being noted on induction. 

Plasmid containing host cell resistance to ampicillin is achieved by the production 

of plasmid encoded β-lactamase which degrades the antibiotic and hence allows 

for the host cell survival. However, during cell growth the extracellular levels of 

this can accumulate to levels which can result in total degradation of all ampicillin 

present, thereby eliminating the selection pressure and thereby also facilitating 

the rapid plasmid loss observed as a result of the increased metabolic burden 

placed on the cells during induction. In the present study we will attempt to 

overcome the limitation of plasmid instability by investigating the use of 

kanamycin as the selection agent and by investigating the use of a toxin/antitoxin 

post segregational suicide system.  

Kanamycin acts by interacting with the 30S subunit of prokaryotic ribosomes and 

inhibit translation. A commonly used system for resistance to this antibiotic is by 

the intracellular production of a phosphotransferase (Neomycin 

phosphotransferase II) which inactivates the antibiotic by converting them to the 

inactive 3’-phosphate form. Here it is hypothesised that the intracellular location 

and action of this enzyme may lead to an improved persistence of kanamycin in 

the medium. Furthermore, in the vector used in the present study, the kanamycin 

resistance gene is in the opposite orientation to the T7 promoter, so induction of 
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the T7 promoter should not result in an increase in kanamycin gene product. This 

property can reduce the metabolic burden and may lead to a positive effect on 

protein production33. 

Toxin/antitoxin post segregational suicide systems are composed of two or more 

genes encoding a toxin and another gene encoding a respective antidote. Cells 

producing the toxin cannot survive unless the antitoxin is introduced and therefore 

plasmids containing the gene for the antitoxin will be preferentially maintained. 

Only those cells with a plasmid allowing for antitoxin production and their 

daughter cells that inherit the plasmid will survive i.e. the plasmid confers an 

evolutionary advantage to cells. Toxin/antitoxin post segregational suicide 

systems are divided into three Types. Type I is based on antitoxin inactivation by 

the base pairing of an RNA antitoxin with toxin mRNA. With Type II, used in this 

study, an antitoxin protein strongly binds a toxin protein, thereby inhibiting it. Type 

III has not been well studied but is believed to inactivate the toxin protein directly 

with antitoxin RNA. Here we will look at a Type II toxin/antitoxin system, namely 

the ccdB/ccdA poison/antidote system, for improved plasmid stability during 

SELP-59-A production. The StabyExpress 1.2 kit will be used, here a toxin gene 

(ccdB) has been introduced in the chromosome of an expression  host (E. coli 

SE1) and the antidote gene (ccdA) under the control of a constitutive promoter 

has been introduced in the expression vector (pStaby 1.2) (Figure 6)36. 
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Figure 6. Representation of pStaby Express toxin/antitoxin system36. 

 

The pStaby 1.2 expression vector used in this study for the investigation of 

toxin/antitoxin post segregational suicide systems for plasmid stabilisation is also 

characterised by the constitutive production of a β-lactamase. While this allows 

for a simplified selection and screening of cells containing this vector, it also 

places an increased metabolic burden on the cells. Here we will examine the 

effect of removing the promoter for this gene, thereby preventing β-lactamase 

production, as well as the effect of removing both the promoter and gene, thereby 

preventing β-lactamase production and also reducing vector size37. 
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1.4. Objectives 

 

The principal objective of this study is to maximise production levels and reduce 

the production process time for SELP-59-A. To achieve this, the work was divided 

into two main sections: 

 Optimisation of the fed-batch process 

 

o Optimise pre-induction growth rate  

o Optimise post-induction growth rate  

o Determine the maximum achievable cell density with the 

fermentation system used 

o Optimise IPTG concentration for maximum SELP-59-A production 

 

 Overcoming plasmid instability 

o Examine and compare the use of various plasmid stabilisation 

systems: ampicillin resistance (ampR), kanamycin resistance (kanR) 

and the ccdB/ccdA toxin/antitoxin post segregational suicide 

system  

o Reduce the metabolic burden on the cell by elimination of ampicillin 

production from the production plasmid 

 Examine the effect of removal of the AmpR promoter (SELP-

59-A/pStaby Δblap) 

 Examine the effect of removal of the whole AmpR gene and 

promoter (SELP-59-A/pStaby Δbla) 

 

 

  



 

 

 

2. Materials and Methods 
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The present project is divided into two main sections: 

2.1) Optimisation of the fed-batch process 

2.2) Overcoming plasmid instability 

 

2.1.  Optimisation of the fed-batch process 

 

For optimisation of the high cell density fed-batch production of SELP-59-A the 

SELP-59-A/pCM13/E. coli BL21(DE3) expression host as provided for the study 

was used. The variables investigated were: pre-induction growth rate (0.2 – 0.8 h-

1), post-induction growth rate (0.1 – 0.6 h-1), dissolved oxygen (dO2) concentration 

(15 – 55 %), cell density (50 – 100 g/L DCW) and inducer concentration (1 – 6 mM 

IPTG). Comparative fed-batch studies, with a complete on-line (pH, temperature, 

dO2, agitation), off-line (SELP-59-A production levels, glucose, organic acids, 

phosphate and nitrogen levels, total number of viable cells, plasmid stability) and 

at-line (biomass concentration) analysis of all process parameters, were carried 

out and compared for all variables investigated. 

 

2.1.1. Fed-Batch Production of SELP-59-A 
 

Fermentation was carried out in a BioFlo 110 Modular Benchtop 3 litre Fermentor 

(New Brunswick Scientific-NBS) with centralised monitoring, control and data 

collection via a BioCommand General Purpose Multi-Loop controller (NBS) and 

the BioCommand Plus 3.3 software (NBS).  

Two precultures were used in the preparation of the inoculum for the fermentation 

culture; a first preculture in 50 mL lysogeny broth with ampicillin (LB) and a 

second preculture in 100 mL of a modified M9 minimal medium with ampicillin 

(MMLBM). This latter medium, MMLBM, was based on the minimal media 

described in38.39. A mid log phase pre-culture was used to inoculate 900 mL of 

the MMLBM fermentation culture to an initial dry cell weight (DCW) of 0.05 g L-1. 
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Temperature was maintained at 37 ºC, pH at 6.8 with 25 % NH4OH and 3 M 

H3PO4, and dissolved oxygen (dO2) at 25 % for the batch phase and 15 - 55 % 

for the fed-batch phase by cascading to agitation (200 - 1100 rpm) and O2 (only 

at fed-batch phase). The air flow rate was maintained at 5 L min.-1 and foaming 

was controlled with antifoam Y-30 emulsion (Sigma). 

The fed-batch phase was started when all the carbon sources present had been 

exhausted after an overnight batch phase and as indicated by a sustained 

increase in the dO2 levels above 50 %. During the fed-batch phase, the growth 

rate was controlled at a desired rate by the glucose feeding rate as determined 

by the mass balance equation39: 

M𝑆(t) = F𝐹(t)SF(t) = (
µ(𝑡)

𝑌𝑥 𝑠⁄
+𝑚)𝑉(𝑡)𝑋(𝑡)    (1) 

where MS(t) is the mass feeding rate of the glucose substrate (g h-1) at time t, FF 

is the volumetric feeding rate of the feed solution (L h-1), SF the glucose 

concentration of the feed solution (g h-1), µ the desired specific growth rate (h-1), 

YX/S the yield coefficient (0.4 g g-1), m the specific maintenance coefficient (0.025 

g g-1 h-1), V the cultivation volume (L) and X the biomass concentration (g L-1). 

The actual biomass concentration was measured every hour and the culture 

volume calculated from a determination of the volumes sampled, the acid or base 

added and the feeding rate, and used to calculate the required rate of glucose 

feeding using equation (1). Furthermore, every 15 minutes, the feeding rate was 

calculated from equation (1) and from estimates of the biomass concentration 

and culture volume as follows 

𝑋(𝑡)𝑉(𝑡) = 𝑋𝑡𝐹𝑉𝑡𝐹𝑒
µ(𝑡−𝑡𝐹)       (2) 

where tF is the time when the biomass concentration and culture volume were 

last measured, X(t) is the biomass concentration at time t, V(t) the culture volume 

at time t, XtF is the biomass concentration at tF and VtF is the culture volume at time 

tF. 

In addition to a glucose feed, a second feeding solution of 600 mM phosphate 

and 1200 mM nitrogen was also applied so as to maintain phosphate at 
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concentrations between 50 and 300 mM and nitrogen between 50 and 100 mM 

throughout the fermentation. 

Induction of SELP-59-A production was carried out with filter sterilised isopropyl 

β-D-1-thiogalactopyranoside (IPTG) with an induction period of 4 hours. 

Fed-batch Protocol: See Annexe I 

 

2.1.1.1. Analytical Methods for Monitoring of Fed-batch 

process 
 

At-line (biomass concentration) and off-line (SELP-59-A production levels, 

glucose, organic acids, phosphate and nitrogen levels, total number of viable 

cells, plasmid stability) analyses of process parameters were carried out and 

compared for each fed-batch production. Cultures were aseptically sampled 

every hour and used directly for analysis of dry cell weight (DCW), optical density 

measurements (OD600nm), enumeration of total viable cell numbers and plasmid 

stability. Extracellular samples were taken every hour and maintained at -20 ºC 

until analysis of sugar and organic acid content (by HPLC) as well as phosphate 

concentration and nitrogen concentration. Cell pellets from 0.5 mL culture 

samples were collected before induction and every hour thereafter and stored at 

-20 ºC until SDS-PAGE analysis. 

The optical density at 600nm was measured on a Genesys 20 spectrophotometer 

(ThermoSpectronics).  

Biomass dry cell weights (DCW, g/L) were determined from the weights of 

washed pellets of 2 mL culture samples dried overnight at 70 °C.  

Organic acids (citric, tartaric, malic, succinic, lactic, acetic and formic), 

carbohydrate (glucose) and ethanol levels in culture supernatants collected every 

hour were monitored using a Rezex™ 8 μm ROA-organic acid H+(8%) high 

performance liquid chromatography column (Phenomenex). 2.5 mM H2SO4 was 

used for the mobile phase, the column was maintained at 60°C and detection was 
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by refractive index measurement with an Elite LaChrom L-2490 RI detector (VWR 

Hitachi) at 40°C. An Elite LaChrom (VWR Hitachi) chromatography system was 

used with the EZChrom Elite 3.3.2 SP2 software for data collection and analysis. 

Culture supernatant samples were treated with 10 % TCA to remove protein 

contaminants, centrifuged for 5 minutes at maximum speed and the supernatant 

filtered through a 0.22 µm filter before HPLC analysis. The HPLC protocol used 

is detailed in Annexe II. 

To ensure that adequate phosphate was present throughout the fermentations, 

the phosphate concentration in the culture supernatants of samples taken every 

hour was monitored. The phosphate assay described in40 was used, see Annexe 

III for details.  

Ammonia-nitrogen concentration in the culture supernatants was determined by 

the Berthelot colour reaction as previously described41, see Annexe IV for details.  

Viable cell numbers were determined by serially diluting culture samples in sterile 

phosphate buffered saline (8 g/L NaCl, 0.2 g/L KCl, 1.44 g/L Na2HPO4, 0.24 g/L 

KH2PO4, pH 7.4) and spread plating 25 µL of the 10-5 – 10-7 dilutions in duplicate 

on LB agar plates (10 g/L bacto tryptone; 5 g/L yeast extract, 5 g/L NaCl, 20 g/L 

agar). After incubation overnight at 37 ºC, cell numbers were enumerated. 

Plasmid stability in viable cells was monitored by repicking 100 isolated colonies 

from the LB plates to LB + ampicillin plates (10 g/L bacto tryptone; 5 g/L yeast 

extract, 5 g/L NaCl, 20 g/L agar, 100 μg/mL ampicillin) and incubating overnight 

at 37 ºC. Plasmid stability is expressed as the percentage of the cells growing on 

LB which are able to grow on the antibiotic containing media. 

Intracellular (from cell pellets of 0.5 mL cultures) and extracellular SELP-59-A 

production levels were monitored by means of SDS-PAGE with a 10 % SDS-

PAGE gel and staining with 3M CuCl2. See Annexe V for details of the protocol 

used. 

Purified SELP-59-A production levels for the various fed-batch productions was 

determined from the weight of purified polymer. The purification protocol24 is 

described in detail in Annexe VI. Briefly, the contaminating E. coli proteins were 
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removed by acid pH treatment (pH 3.5) and SELP-59-A then precipitated from 

the supernatant by treatment with 22 % ammonium sulphate. Following extensive 

dialysis in water the purified SELP-59-A was then lyophilised and weighed. 

 

2.1.2. Effect of growth rate on fed-batch process 
 

Initial attempts in developing the fed-batch process involved the investigation of 

constant pre- and post-induction growth rates (µ) of 0.2, 0.4 and 0.6 h-1. The 

process was carried out as described in 2.1.1 above and analysed as described 

in 2.1.1.1. The dissolved oxygen concentration was maintained at 35 % during 

the fed-batch phase and induction was with 3 mM IPTG at a DCW of 50 g/L. 

Table 3. Conditions used for optimisation of the growth rate. 

Pre-

Induction 

Growth Rate 

Post-

Induction 

Growth Rate 

dO2 (%) 
Induction 

DCW 
[IPTG] (mM) 

0.2 0.2 35 50 3 

0.4 0.4 35 50 3 

0.6 0.6 35 50 3 

 

2.1.3. Optimisation of post-induction growth rate  
 

Fed-batch productions were carried out as described in 2.1.1 above with pre-

induction growth rates of 0.2 and 0.6 h-1 and post-induction growth rates (µ) of 

0.1, 0.2, 0.4 or 0.6 h-1. All process parameters were monitored as described in 

2.1.1.1 above and each fermentation was repeated at least two times. The 

dissolved oxygen concentration was maintained at 35 % during the fed-batch 
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phase and induction was carried out at a dry cell weigh of 50 g/L with 3 mM IPTG 

in all cases. 

Table 4. Conditions used for optimisation of the post-induction growth rate 

Pre-Induction 

Growth Rate 

(h-1) 

Post-Induction 

Growth Rate 

(h-1) 

dO2 (%) 

Induction 

Dry Cell 

Weight (g/L) 

[IPTG] (mM) 

0.2/0.6 0.1 35 50 3 

0.2/0.6 0.2 35 50 3 

0.2/0.6 0.4 35 50 3 

0.2/0.6 0.6 35 50 3 

 

2.1.4. Optimisation of pre-induction growth rate 
 

The effect of the pre-induction growth rate on the fed-batch process was 

investigated by carrying out the fed-batch process as described in 2.1.1 above 

with the desired specific growth rate (µ) set at 0.2, 0.4, 0.6 or 0.8 h-1 during the 

fed-batch phase prior to induction. Following induction at a DCW of 50 g/L with 

3 mM IPTG the desired specific growth rate was reduced to 0.1 h-1. The dissolved 

oxygen concentration was maintained at 35 % during the fed-batch phase, all 

process parameters were monitored as described in 2.1.1.1 above and each 

fermentation was repeated at least two times. 
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Table 5. Conditions used for optimisation of the pre-induction growth rate 

Pre-

Induction 

Growth Rate 

Post-

Induction 

Growth Rate 

dO2 (%) 
Induction 

DCW 
[IPTG] (mM) 

0.2 0.1 35 50 3 

0.4 0.1 35 50 3 

0.6 0.1 35 50 3 

0.8 0.1 35 50 3 

 

2.1.5. Optimisation of dissolved oxygen concentration 
 

The effect of the dissolved oxygen concentration on the fed-batch process was 

investigated by carrying out the fed-batch process as indicated in 2.1.1 with 

dissolved oxygen concentration during the fed-batch phase being maintained at 

15, 35 or 55 % and monitoring and comparing all process variables as indicated 

in 2.1.1.1 above. A pre-induction growth rate of 0.4 h-1 and post-induction growth 

rate of 0.1 h-1 was used and induction was carried out at a dry cell weigh of 50 

g/L with 3 mM IPTG. 
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Table 6. Conditions used for optimisation of the dissolved oxygen concentration 

Pre-

Induction 

Growth Rate 

(h-1) 

Post-Induction 

Growth Rate 

(h-1) 

dO2 (%) 

Induction 

Dry Cell 

Weight (g/L) 

[IPTG] (mM) 

0.4 0.1 15 50 3 

0.4 0.1 35 50 3 

0.4 0.1 55 50 3 

 

2.1.6. Optimisation of the dry cell weight at induction 
 

The fed-batch process was carried out as described in 2.1.1 with a pre-induction 

growth rate of 0.4 h-1 - 0.1 h-1, a post-induction growth rate of 0.1 h-1, dO2 set at 

35 % during the fed-batch phase and with induction with 3 mM IPTG at dry cell 

weighs of 50, 75 and 100 g/L. The lower pre-induction growth rates were used at 

the higher dry cell weights in an attempt to maintain dO2 levels above 0 %. All 

process variables were monitored as indicated in 2.1.1.1 above. 

Table 7. Conditions used for optimisation of the dry cell weight at induction 

Pre-

Induction 

Growth Rate 

(h-1) 

Post-

Induction 

Growth Rate 

(h-1) 

dO2 (%) 

Induction 

Dry Cell 

Weight (g/L) 

[IPTG] (mM) 

0.4 0.1 35 50 3 

0.4 0.1 35 75 3 

0.4 0.1 35 100 3 
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2.1.7. Optimisation of IPTG concentration  
 

Induction at a DCW of 75 g/L with 1, 3 or 6 mM IPTG was investigated with the 

fed-batch process described in 2.1.1 above, with a pre-induction growth rate of 

0.4 h-1 and post-induction growth rate of 0.1 h-1. The oxygen concentration was 

maintained at 35 % during the fed-batch phase and all process variables were 

monitored as indicated in 2.1.1.1. 

 

Table 8. Conditions used for optimisation of the IPTG concentration for induction 

Pre-

Induction 

Growth Rate 

(h-1) 

Post-

Induction 

Growth Rate 

(h-1) 

dO2 (%) 

Induction 

Dry Cell 

Weight (g/L) 

[IPTG] (mM) 

0.4 0.1 35 75 1 

0.4 0.1 35 75 3 

0.4 0.1 35 75 6 
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2.2. Overcoming plasmid instability 

 

For overcoming problems with plasmid instability observed during part 2.1 of this 

study we investigated various means of plasmid stabilisation and their effect in 

the fed-batch process for SELP-59-A production. Various vector constructs were 

prepared by molecular biology approaches (restriction digestion, fragment 

purification and ligation), transformed to their appropriate expression hosts and 

their use in the fed-batch production of SELP-59-A investigated and compared 

using the standard fed-batch approach described in 2.1.1 above. A complete on-

line (pH, temperature, dO2, agitation), off-line (SELP-59-A production levels, 

sugar, organic acid, phosphate and nitrogen levels, total number of viable cells, 

plasmid stability) and at-line (cell density) analysis of all process variables as 

described in 2.1.1.1 was carried out and compared in all cases.  

 

Four different means of plasmid stabilisation were investigated:  

 ampicillin resistance (control, pCM13/E. coli BL21(DE3) as used in 2.1 

above),  

 kanamycin resistance (pET29a(+)/E. coli BL21(DE3))  

 ccdB/ccdA toxin/antitoxin post segregational suicide system (pStaby/E. 

coli SE1) 

 reduction of the metabolic burden on the cell by elimination of ampicillin 

production from the production plasmid (pStaby Δblap/E. coli DE1 and 

pStaby Δbla/E. coli SE1).  

 

See Tables 9 and 10 for details of plasmids and hosts used. 
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Table 9. Details of plasmids used in this study 

Plasmid Selection Marker  

pCM13/SELP-59-A Ampicillin 

Modified pET-25b(+) 

(Novagen) vector containg the 

gene for SELP-59-A. Provided 

for this study24. 

pET29a(+) Kanamycin 
pET Expression System 

(Novagen)) 

pStaby 1.2 
Ampicillin and 

ccdB/ccdA 

Modified pET-21b(+) vector 

containing gene for antitoxin 

ccdA (Delphi Genetics). 

pStaby 1.2 Δblap ccdB/ccdA 

pStaby 1.2 with promoter for 

ampicillin resistance gene 

removed. Prepared in this study 

pStaby 1.2 Δbla ccdB/ccdA 

pStaby 1.2 with ampicillin 

resistance gene and promoter 

removed. Prepared in this study 
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Table 10. Details of E. coli strains used in this study 

Strains Information  

XL1Blue 

recA1 endA1 gyrA96 thi-1 

hsdR17 supE44 relA1 lac[F’ 

proAB+ lac LqZΔM15 Tn 

10(Tetr)] 

Used as cloning host for 

pET vector constructs 

BL21(DE3) 

F- ompT gal dcm lon hsdSb(rb- 

mb-) λ(DE3 [lacl lacUV5-T7 

gene 1 ind1 Sam7 nin5]) 

Used as expression 

host for pET vector 

constructs 

BL21(DE3)/pCM13

/SELP-59-A 

BL21(DE3) transformed with 

expression vector pCM13 with 

SELP-59-A gene inserted24 

Provided for this study24 

CYS21 

F-, CmR,  mcrA, endA1, Δ(mrr-

hsdRMS-mcrBC) (restriction-, 

modification-), Φ80lacZΔM15, 

ΔlacX74, recA1, Δ(ara, 

leu)7697, araD139, galU, 

galK, nupG, rpsl, ccdB+ 

Cloning host for pStaby 

vector constructs. 

Contains chromosomal 

copy of gene for ccdB 

toxin. 

SE1 

F-, CmR, ompT, lon, 

hsdSB(restriction-

,modification-), gal, dcm,DE3 

(lacI, T7 polymerase under the 

control of the PlacUV5 

promoter), ccdB+ 

Variant of E. coli 

BL21(DE3) containing 

chromosomal copy of 

gene for ccdB toxin. 

Expression host for 

pStaby vector 

constructs. 
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2.2.1. Plasmid Isolation 
 

SELP-59-A/pCM13 plasmid was isolated and purified from SELP-59-A/pCM13/E. 

coli BL21(DE3) by use of the GenElute™ Plasmid Miniprep Kit (Sigma-Aldrich) 

as recommended by the manufacturer (see Annexe VII). Purified plasmids 

pET29a(+) (Novagen) and pStaby 1.2 (Delphi Genetics) were obtained from the 

manufacturers. 

 

2.2.2. Plasmid Quantification 
 

Plasmid concentration was determined by absorbance measurements at 260 nm 

using a NanoDrop ND 1000 spectrophotometer (Thermo Scientific) as 

recommended by the manufacturer (see Annexe VIII for protocol details). The 

nucleic acid quantification is made using the Beer-Lambert equation, modified to 

use an extinction coefficient with units of ng-cm/µL (50 ng-cm/µL for double-

stranded DNA). 

The 260 nm/280 nm and 260 nm/230 nm absorbance values ratios were used to 

determine sample purity and the absence of protein or other organic compound 

contamination, respectively. 

 

2.2.3. Restriction Digestion 
 

Restriction digestion was used in the construction of SELP-59-A/pET29a(+), and 

SELP-59-A/pStaby 1.2 (see Figure 7 for an illustration of the approach used) and 

in the removal of the AmpR promoter as well as the whole AmpR gene and 

promoter from SELP-59-A/pStaby 1.2 (see Figure 8 for an illustration of the 

approaches used).  

Restriction digestion with NdeI (Thermo Scientific) and BlpI (Thermo Scientific) 

was used to remove the SELP-59-A gene from SELP-59-A/pCM13 before 
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insertion into similarly digested pET29a(+) and pStaby 1.2. The double digestion 

was carried out at 37 ºC in Tango buffer via a two step protocol as described in 

Annexe IX. 

 

 

Figure 7. Schematic illustration of the approach used for preparation of 

SELP 59 A/pStaby. 

 

For removal of the AmpR promoter from SELP-59-A/pStaby 1.2 (i.e. preparation 

of SELP-59-A/pStaby Δblap) double digestion with SspI (Thermo Scientific) was 

carried out as recommended by the manufacturer. See Annexe IX for details of 

the protocol used. 

For removal of both the AmpR gene and promoter from SELP-59-A/pStaby 1.2 

(i.e. preparation of SELP-59-A/pStaby Δbla) double digestion with SspI (Thermo 

Scientific) and Eam1105I (Thermo Scientific) was used. See Annexe IX for details 

of the protocol used. 
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Figure 8. Schematic illustration of the approach used for preparation of 

SELP 59 A/pStaby Δblap and SELP-59-A/pStaby Δbla. 

 

2.2.4. Fragment Purification 
 

Following restriction digestion of the SELP-59-A/pCM13, pET29a(+), pStaby 1.2 

and SELP-59-A/pStaby 1.2 vectors, the samples were then run on a 1.5 % 

agarose gel so as to allow for separation and purification of the digest fragments 

and further analysis (see Annexe X).  The gel fragments containing the DNA 

bands of interest were removed and purified by use of the Ezway™ Gel Extraction 

Kit (Komabiotech) as recommended by the manufacturer (Annexe XI).  
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2.2.5. Preparing blunt-ended fragments 
 

During preparation of SELP-59-A/pStaby Δbla, filling-in of the SspI - Eam1105I 

digest fragment was required so as to ensure blunt ends and allow for 

recircularisation. Here the accuzyme DNA polymerase mix (Bioline Ltd) was used 

as described by the manufacturers (see Annexe XII). 

 

2.2.6. Fragment Ligation 
 

The purified SELP-59-A fragment was inserted into pET29a(+) and pStaby 1.2, 

and the SELP-59-A/pStaby Δblap and  SELP-59-A/pStaby Δbla fragments were 

re-circularised by ligation with T4 DNA ligase (Thermo Scientific) as recommended 

by the manufacturer (Annexe XIII). 

 

2.2.7. Transformation 
 

SELP-59-A/pET29a(+) was transformed to E. coli strains XL1Blue (cloning strain) 

and BL21(DE3) (expression strain) using standard protocols (Annexe XIV). 

Vectors containing the ccdA antidote gene (i.e. SELP-59-A/pStaby, SELP-59-

A/pStaby Δbla, SELP-59-A/pStaby Δblap) were transformed to E. coli strains 

CYS21 (cloning strain) and SE1 (expression strain) using the protocols provided 

with the Staby Expression Kit (Annexe XIV). 
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2.2.8. Confirmation of Constructs 
 

Confirmation of correct preparation of constructs was performed by plasmid 

isolation (2.2.1 above) followed by restriction digestion (2.2.3) and agarose gel 

analysis (2.2.4) of fragments. 

 

2.2.9. Fed-Batch Production 
 

Comparative fed-batch productions with complete process analyses were carried 

out for all five constructs using the protocols described in 2.1.1 and 2.1.1.1 above. 

A pre-induction growth rate of 0.5 h-1 and post-induction growth rate of 0.1 h-1 

was used, dO2 was maintained at 35 % during the fed-batch phase and induction 

with 3 mM IPTG was carried out at a DCW of 25 g/L. The post induction period 

was extended to 8 hours. 
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3. Results and 
Discussion 
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3.1. Optimisation of Fed-batch Process 

 

The objective of this first section of the project was to develop and optimise a fed-

batch process for the high cell density production of SELP-59-A in the BioFlo 110 

benchtop 3L fermentor with the SELP-59-A/pCM13/E. coli BL21(DE3) expression 

system. To achieve this objective we established a fed-batch process and 

optimised process variables such as pre- and post-induction growth rates, 

dissolved oxygen (dO2) concentration, cell density and inducer concentration. 

Each of these parameters was investigated and optimised in the fed-batch 

process with, in all cases, a full analysis of process parameters. 

 

3.1.1. Effect of growth rate on fed-batch process 
 

A fed-batch process was developed for the high cell density production of SELP-

59-A and applied and monitored as described in the Materials and Methods 

section. Initially the effect of pre and post induction growth rates (µ) of 0.2, 0.4, 

0.6 and 0.8 h-1 with dO2 at 35 % were investigated for the attainment of cell 

densities of 50 g/L before induction with IPTG. With growth rates up to 0.6 h-1 a 

DCW of 50 g/L was successfully achieved whereas with 0.8 h-1 the maximum cell 

density achievable was only 40 - 45 g/L. Indeed, with this latter growth rate, 

continued feeding leads to a decrease in DCW, indicative of cell disruption. A 

DCW of 50 g/L is already 10 times higher than that achieved with the optimised 

batch production approach previously reported with the same expression system1 

and points to the fed-batch process developed here being suitable for overcoming 

some of the limitations to cell growth inherent to batch production approaches.  

Figure 9 shows the results for the monitoring of the control parameters for the 

fed-batch process with pre- and post-induction growth rates of 0.2 h-1 and it can 

be seen that these were successfully maintained at the desired levels throughout 

the process i.e. 37 ± 1 ºC, pH 6.8 ± 0.1,  dO2 = 25 ± 10% during the batch phase 

and ~35 ± 10% during the fed-batch phase (with ‘spikes’ at the time points of 
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changes in feeding rate), phosphate concentration between 50 and 300 mM and 

nitrogen concentration between 50 and 100 mM. This points to appropriate 

feeding and control regimes having been developed and successfully applied 

here and indeed similar profiles were observed for all studies reported in this 

thesis, hence only the results for the 0.2 – 0.2 h-1 study will be discussed here. 

 

Figure 9. Variations in control parameters during the fed-batch process with pre- and 

post-induction growth rates of 0.2 h-1, 35 % dO2 and induction with 3 mM IPTG at 50 g/L 

dry cell weight. A) shows the results for the on-line monitoring throughout both the batch 

(0 - 18 h) and fed-batch (18 - 29 h) phases and B) the variations in the phosphate (PO4) 

and nitrogen (N) concentrations during the fed-batch phase only. The vertical dotted line 

indicates the time point of IPTG induction. 
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From Figure 9A it can be seen that the dO2 level varies throughout the 

fermentation as a result of cell requirements and of the response of the control 

system (i.e. response of agitation rate and O2 addition) to dO2 levels below the 

permitted values (i.e. ≥ 25 – 35 % dO2). Initially the dO2 level decreases as the 

cells grow until the lower set dO2 limit of 25 % is reached (batch-phase) 

whereupon the agitation rate increases to the maximum allowed so as to ensure 

maintenance of a sufficient level of dO2. Following further incubation, an increase 

in dO2 concentration leads to a rapid decrease in the agitation rate and is believed 

to be due to reduced cell growth as a result of an exhaustion of all the glucose 

present. The cells then grow on organic acids produced during the batch phase, 

the complete utilisation of which is indicated by a further rise in dO2 levels. 

Hereupon, the fed-batch phase of controlled glucose feeding and cell growth is 

initiated with the expected response of a decrease in dO2 levels and a rapid 

compensatory increase in agitation rate and O2 addition being noted. Finally, on 

induction with IPTG at a DCW of 50 g/L the O2 consumption increases slightly 

before slowly decreasing until the fermentation is stopped four hours after 

induction.  

From Figure 9B it can be seen that phosphate and nitrogen levels were 

maintained throughout the process at levels known to be non-limiting and non-

toxic to the cells7 and hence indicating that the feeding protocol developed for our 

second feed solution (phosphate/nitrogen feed) was successful during the 

process. Interestingly, throughout this project, while it was found that phosphate 

consumption was maintained throughout the fed-batch process, nitrogen 

consumption decreased following induction. Indeed this has been previously 

reported for E. coli cells following induction and is suggested to be indicative of 

an impaired cell metabolism following induction7.  

Figure 10 shows the results for the analysis of the process parameters for all 

three growth rates investigated. It can be clearly seen that 50 g/L DCW was 

successfully achieved before induction, upon which an arrestation of cell growth 

is observed. In fact, at the higher growth rates investigated a decrease in the 

DCW is observed following induction. Indeed this has been previously reported 

for recombinant protein production in E. coli and is believed to be due to an 
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increased metabolic stress on the cells following induction and a diversion of cell 

resources to protein expression1.42.  

 

Figure 10. Monitoring of process parameters during the fed-batch phase of production. 

Results for pre- and post-induction growth rates of 0.2 h-1 (A, B), 0.4 h-1 (C, D) and 0.6 h-

1 (E, F) with 35 % dO2 and induction at 50 g/L dry cell weight with 3 mM IPTG are shown. 

A, C and E show the results for the variation of the plasmid stability, dry cell weight 
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(DCW) and glucose concentration with time. B, D and F show the variation in organic 

acid levels as monitored by HPLC. The vertical dotted line indicates the time point of 

IPTG induction. 

From Figure 10 it can also be seen that the rates of extracellular glucose and 

organic acid accumulation vary with the growth rate used. Glucose accumulates 

to higher levels in the extracellular environment at higher growth rates and this 

accumulation increases further following induction. Glucose levels at induction 

were approximately 0.3, 0.6 and 20 g/L for growth rates of 0.2, 0.4 and 0.6 h-1, 

respectively whereas following induction, respective maximum values of 

approximately 4, 50 and 80 g/L were observed. Similar trends are observed for 

formic acid where up to approximately 2.5 g/L was detected at the highest growth 

rate examined. Interestingly lactic acid is found to be maintained at low level 

before induction but concentrations drastically increase following induction, with 

up to 3 g/L being detected. Malic acid was found to accumulate up to 1.2 g/L over 

the course of the process at the lowest growth rate investigated but the high levels 

of glucose accumulation at the higher growth rates investigated impeded analysis 

by HPLC (peak overlap) for these growth rates. Finally, acetic acid, succinic acid 

and ethanol accumulation remain at low levels throughout the processes and 

indeed the latter two compounds appear to level off or even decrease in 

concentration following induction. The acetic acid concentration reached is below 

levels shown to have a strong negative effect on cell growth1 and is also lower 

than the level previously reported with the same expression system for batch 

production in shake flasks, where up to 5 g/L was accumulated. This highlights 

the benefits of using the fed-batch approach for the controlled growth of cells with 

a reduced acetic acid accumulation and hence allowing for the attainment of high 

cell densities as observed here. Finally, with a growth rate of 0.8 h-1 glucose had 

accumulated to 50 g/L when cell growth was arrested (45 g/L DCW) whereas the 

concentrations of extracellular organic acids were similar to those observed at 

0.6 h-1. Further studies are required to better understand the reasons for the 

reduced DCW attainable at this growth rate. 

Figure 11 shows the results for the SDS-PAGE analysis of the intracellular protein 

production when a growth rate of 0.2 h-1 was used. This result is representative 

of all conditions investigated here where production of SELP-59-A only becomes 
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visible 1 hour after induction and continues to increase in concentration up to 4 

hours after induction. 

 

Figure 11. SDS-Page analysis of intracellular production at 0, 1, 2, 3 and 4 hours of IPTG 

induction of fed-batch production with pre- and post-growth rates of 0.2 h-1, 35 % dO2 

and with 3 mM IPTG induction at a dry cell weight of 50 g/L. A Broad Range Molecular 

Weight Standards (Bio-Rad) can be seen in first and last lanes. 

SELP-59-A productions as high as approximately 3 g/L following purification were 

observed with growth rates of 0.2 and 0.4 h-1 (Figure 12). This is approximately 

6-fold greater than the highest production level reported for SELPs to date1 and 

points to the appropriateness of the approach used for the high level production 

of this polymer. The production level was reduced to approximately 2 g/L when a 

growth rate of 0.6 h-1 was used with, interestingly, a concomitant increase in 

plasmid stability being also observed. Indeed, while it is possible that the 

accumulated organic acids, and in particular the 1.5 g/L of formic acid observed 

before induction, may have a negative effect on SELP-59-A production. It is also 

possible that the high glucose concentrations observed also negatively affect 

SELP-59-A production. Glucose concentrations above 10 g/L with low cell density 
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cultures are known to have an inhibitory effect on production with the lacUV5 

promoter-operator based system used in this study43. Thus the high glucose 

concentrations observed could reduce production from this promoter, hence 

leading to the observed reduced production levels but also as a consequence 

resulting in a reduced metabolic stress on the cells and hence the reduced loss 

of plasmid observed.  

 

Figure 12. Principal results obtained for fed-batch productions with pre- and post-

induction growth rates of 0.2, 0.4 and 0.6 h-1. Induction was carried out at a dry cell 

weight of 50 g/L with 3 mM IPTG for 4 hours and the dissolved oxygen concentration 

was maintained at 35 % throughout the fed-batch phase. The SELP-59-A and plasmid 

stability values shown are those measured at the end of the fermentation while the 

glucose and acetic acid concentrations are the maximum values recorded. 

 

3.1.2. Optimisation of post-induction growth rate 
 

In an attempt to further improve production levels and to better understand the 

fed-batch process we investigated the effect of the post induction growth rate. 

Various post-induction growth rates were investigated with pre-induction growth 

rates of 0.2 and 0.6 h-1 and, with the exception of the 0.6 – 0.1 h-1 study, the 

trends in glucose and organic acid accumulation were found to be similar to those 

described for the constant growth rate study in Figure 10 above. Glucose and 
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formic acid again accumulated throughout the process, with an increased 

accumulation following induction and at higher feeding rates. In contrast, both 

were found to be reduced following induction during the 0.6 – 0.1 h-1 study.  Lactic 

acid again accumulated at a high rate following induction whereas succinic acid 

and ethanol remained at low levels with a slight decrease being observed after 

induction. Finally, acetic acid accumulation was found to be accelerated following 

induction in all cases, except for the 0.6 – 0.1 h-1 study, and this increase 

accelerated at the higher pre-induction rates studied, probably as a result of the 

higher glucose concentrations observed. In contrast, during the 0.6 – 0.1 h-1 study 

a rapid decrease in acetic acid concentrations was observed following induction, 

possibly as a result of the reduced glucose feeding rate used here.  

Figure 13 shows the principal results for the comparison of post-induction growth 

rates at the two pre-induction rates investigated. It can be seen that a maximum 

of 3 g/L of purified SELP-59-A was obtained and that this was negatively affected 

by increasing growth rates. Furthermore, as would be expected, no production 

was observed when glucose feeding was stopped following induction, probably 

as a result of a lack of glucose and hence plasmid stability was high in this case. 

Glucose accumulated more at the higher growth rates investigated and, as 

discussed above, may have had a negative effect on SELP production. 

Interestingly, plasmid stability of cultivable cells remained low (0 % after 4 hours) 

for the study with a pre-induction growth rate of 0.2 h-1, even at a post-induction 

growth rate of 0.6 h-1 where a maximum glucose concentration of approximately 

70 g/L was measured. This value is similar to the maximum glucose 

concentrations observed with the 0.6 – 0.4 h-1 (60 g/L) and 0.6 – 0.6 h-1 (80 g/L) 

studies where high plasmid stability was observed. These differences may be 

due to the fact that the data presented is for the maximum glucose concentration 

whereas at induction the concentration of this was much lower with a pre-

induction growth rate of 0.2 h-1 (0.3 g/L) than with 0.6 h-1 (20 g/L) and hence could 

lead to the difference in the observed plasmid stability of cultivable cells. Finally, 

it can be seen that organic acid accumulation remains low, with only formic and 

lactic acid accumulating to relatively high levels and may also negatively influence 

SELP-59-A production levels44. Hence, it can be concluded that a post-induction 
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growth rate of 0.1 h-1 should be optimal for the high cell density production of 

SELP-59-A and this was used in all further studies. 

 

Figure 13. Principal results obtained for fed-batch productions with a pre-induction 

growth rate of 0.2 h-1 (A and B) and 0.6 h-1 (C and D) and post-induction growth rates 0.0 

to 0.6 h-1. Induction was carried out at a dry cell weight of 50 g/L with 3 mM IPTG for 4 

hours and the dissolved oxygen concentration was maintained at 35 % throughout the 

fed-batch phase. The SELP-59-A and plasmid stability values shown are those 

measured at the end of the fermentation while the glucose and acetic acid concentrations 

are the maximum values recorded. 
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3.1.3. Optimisation of pre-induction growth rate 
 

Here pre-induction growth rates of between 0.2 and 0.8 h-1 were investigated with 

a post-induction feeding rate equivalent to 0.1 h-1. From Figure 14 it can be seen 

that SELP-59-A production remained at the maximum level when pre-induction 

growth rates between 0.2 and 0.6 h-1 were used. As previously mentioned, a 

maximum DCW of only 45 g/L was attained with a growth rate of 0.8 h-1 and 

induction at this DCW resulted in a greater than 4-fold reduction in SELP-59-A 

production. Glucose concentrations as high as 50 g/L were observed before 

induction and while this did not alter following induction it may be responsible for 

the high plasmid stability observed. An acetic concentration of 0.9 g/L was 

observed at induction when the 0.8 h-1 growth rate was used and this increased 

rapidly following induction to levels previously shown to have a bacteriostatic on 

the expression host used, hence potentially further reducing production levels. In 

conclusion, a pre-induction growth rate of 0.6 h-1 can be applied for SELP-59-A 

production (with a post-induction feeding rate equivalent to 0.1 h-1) and thereby 

should allow for a reduced process time as compared to lower pre-induction 

growth rates. Indeed the process time can be reduced almost 6 hours as 

compared to when using a pre-induction growth rate of 0.2 h-1. 
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Figure 14. Principal results obtained for fed-batch productions with pre-induction growth 

rates of 0.2, 0.4, 0.6 and 0.8 h-1 and a post-induction growth rate of 0.1 h-1. Induction was 

carried out at a dry cell weight of 50 g/L with 3 mM IPTG for 4 hours and the dissolved 

oxygen concentration was maintained at 35 % throughout the fed-batch phase. The 

SELP-59-A and plasmid stability values shown are those measured at the end of the 

fermentation while the glucose and organic acids concentrations are the maximum 

values recorded. 

 

3.1.4. Optimisation of dissolved oxygen concentration 
 

Dissolved oxygen (dO2) concentrations between 15 and 55 % during the fed-

batch phase were investigated and showed that process parameters and     

SELP-59-A production varied little under these conditions. Hence maintenance 

of dO2 at approximately 15 % should be applied so as to allow for reduced 

process costs. 

 

3.1.5. Optimisation of dry cell weight at induction 
 

An increase in DCW before induction would be expected to allow for higher 

SELP-59-A production and indeed this was observed here where increasing this 
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from 50 to 75 g/L resulted in a corresponding increase in         SELP-59-A 

production from 3 to approximately 4 g/L (Figure 15). When attempting to 

increase the DCW to 100 g/L complications were encountered in maintaining 

aerobic conditions. Even with addition of 100 % O2 the dO2 level decreased to 

near 0 % and a corresponding increase in extracellular organic acids and ethanol 

to high levels. It is believed that these high levels have a negative effect on the 

host cell leading to the reduced SELP-59-A production and increased plasmid 

stability. Hence it can be seen that SELP-59-A production is limited here by the 

oxygen transfer rate of the fermenter used. In fact, dry cell weights up to 200 g/L 

have been previously reported with use of specialised fermenters with high 

oxygen transfer rates and hence could theoretically allow for an almost 3-fold 

further increase in SELP-59-A production to approximately 12 g/L45. 

 

Figure 15. Principal results obtained for fed-batch productions with induction at dry cell 

weights of 50, 100 and 200 g/L. A pre-induction growth rate of approximately 0.4 h-1 and 

post-induction growth rate of 0.1 h-1 were used. Induction was carried out with 3 mM 

IPTG for 4 hours and the dissolved oxygen concentration was set at 35 % during the fed-

batch phase. The SELP-59-A and plasmid stability values shown are those measured at 

the end of the fermentation while the glucose and organic acids concentrations are the 

maximum values recorded. 
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3.1.6. Optimisation of IPTG concentration 
 

As a final step in our optimisation process we investigated the optimal IPTG 

concentration for induction at a DCW of 75 g/L. As can be seen from Figure 16, 

no significant differences in SELP-59-A production levels were observed with 

IPTG concentrations between and 1 and 6 mM. In contrast, a decrease in plasmid 

stability and increase in lactic acid concentrations is observed. Here it is believed 

that the higher IPTG concentrations investigated lead to a higher induction of 

production and hence also an increased metabolic burden with a consequent 

higher plasmid loss and possibly also leading to the observed increased lactic 

acid production.  

 

Figure 16. Principal results obtained for fed-batch productions with 1, 3 and 6 mM IPTG 

for induction. A pre-induction growth rate of 0.4 h-1 and post induction growth rate of 

0.1 h-1 were used. Induction was carried out at a dry cell weight of 75 g/L for 4 hours and 

the dissolved oxygen concentration was set at 35 % during the fed-batch phase. The 

SELP-59-A and plasmid stability values shown are those measured at the end of the 

fermentation while the glucose and organic acids concentrations are the maximum 

values recorded. 

Hence, to conclude this first section of our study, it can be seen that we have 

successfully developed and optimised a fed-batch process allowing for an almost 

9-fold increase in SELP-59-A production as compared to a previously optimised 

batch production approach1. The optimised conditions are: pre-induction growth 
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rate = 0.6 h-1, post-induction growth rate = 0.1 h-1, induction at a DCW of 75 g/L 

with 1 mM IPTG with dO2 maintained at 15 % during the fed-batch phase. This 

process allows for a reduced cost process with a fed-batch phase of 

approximately 7 hours. Furthermore, it is believed that the factors limiting further 

increased production levels include: plasmid loss on induction, the reduced 

oxygen transfer rate of the fermentation system used and an increased stress on 

cells following induction and leading to an increased metabolic burden. 

 

3.2. Overcoming Plasmid Instability 

 

Previous studies with a batch production approach indicated plasmid instability 

on induction as a major limiting factor in SELP-59-A production1 and this was 

again observed in our fed-batch optimisation study described above. In the 

second section of our study we attempted to address this problem by 

investigating various plasmid stabilisation systems as well as by attempting to 

reduce the metabolic burden placed on the cells by the expression vectors used. 

Five different plasmid constructs were successfully constructed and investigated 

for SELP-59-A production with the previously optimised fed-batch approach 

developed earlier. Here induction was carried at a lower DCW for practicality 

reasons and the post-induction phase was extended to 8 hours so as to obtain a 

better measure of plasmid stability over time. 

Our initial SDS-PAGE studies indicated that SELP-59-A production appeared to 

initiate earlier with the SELP-59-A/pStaby/E. coli SE1 system (and its variants) 

as a SELP band was already visible at 30 minutes. In contrast, the SELP-59-A 

SDS-PAGE band only became visible at 2 hours with the SELP-59-

A/pCM13/E.coli BL21(DE3) control under the conditions used. 

An overview of the results for the analysis of process parameters is shown in 

Figure 17. From 17A and 17B it can be seen that use of the ccdB/ccdA plasmid 

stabilisation system (pStaby vector) allows for maximum plasmid stability in 

cultivable cells after 8 hours induction as measured by the approach described in 
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the materials and methods. Indeed this increased stability was accompanied by 

a 50 % increase in SELP-59-A production as well as an increase in lactic acid 

production. Use of kanamycin resistance allowed for a slight increase in plasmid 

stability as measured by the approach used but was not translated into a 

significant increase in SELP production or to differences in any of the other 

variables measured. Furthermore, removal of the bla gene or prevention of its 

transcription from the pStaby vector did not allow for increases in SELP 

production but were characterised by reduced lactic acid accumulation (Figures 

17 C and 17D). Indeed, as previously discussed, lactic acid accumulates rapidly 

following induction and may be a response to the metabolic stress placed on the 

cells during recombinant protein production. Hence, the increased levels 

observed with the pStaby vector (ccdB/ccdA) may be resultant of the increased 

SELP production as a result of improved plasmid stability while the reduced levels 

following removal of the bla gene or its promoter may indicate a reduced 

metabolic stress with these constructs. This would also indicate that other factors, 

probably as a result of the metabolic stress placed on the cells, are limiting further 

improved production levels. Nevertheless, use of the ccdB/ccdA plasmid 

stabilisation system allows for approximately 5 g/L of SELP-59-A to be obtained 

after induction at a DCW of 25 g/L for 8 hours. As previously discussed, a DCW 

before induction of 75 g/L can be successfully reached with the fermentation 

equipment used in this study and thereby suggests a potential SELP-59-A 

production of up to 15 g/L. Furthermore, the absence of antibiotics during 

production would have obvious advantages for use of the SELP in biomedical 

applications where antibiotics should be avoided. 
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Figure 17. Principal results obtained for fed-batch productions with the various vector 

constructs investigated. A) and B) compare different plasmid stabilisation systems while 

C) and D) investigate the removal of the bla gene and/or bla promoter from pStaby. Due 

to the removal of ampicillin resistance in these constructs plasmid stability could not be 

measured by the approach used in this study. A pre-induction growth rate of 0.5 h-1 and 

post induction growth rate of 0.1 h-1 were used. Induction was carried out at a dry cell 

weight of 25 g/L for 8 hours and the dissolved oxygen concentration was set at 35 % 

during the fed-batch phase. The SELP-59-A and plasmid stability values shown are 

those measured at the end of the fermentation while the glucose and organic acids 

concentrations are the maximum values recorded. 

  



 

 

 

4. Final Remarks and 
Future Perspectives 
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The main long term objective of the project to which the present work forms part 

is to maximise SELP-59-A production and reduce production costs. Prior to 

commencement of the project the highest reported SELP production levels were 

in the order of 20 – 50 mg/L28.29.46. Initial studies by the group where the present 

work was carried out involved the optimisation of a batch production in shake 

flask approach and allowed for a 10 fold increase in SELP production to 

approximately 500 mg/L1. During the study both accumulation of acetic acid to 

toxic levels and rapid plasmid loss on induction were identified as factors 

preventing the attainment of a higher cell density and higher SELP production. In 

the present study we investigated the use of the fed-batch approach and of 

alternative plasmid stabilisation systems in an attempt to overcome the limiting 

factors to SELP production previously identified. 

From the first section of our study it can be seen that we have successfully 

developed and optimised a fed-batch process allowing for an almost 9-fold 

increase in SELP-59-A production as compared to the previously optimised batch 

production approach1. The optimised conditions are: pre-induction growth rate = 

0.4 h-1, post-induction growth rate = 0.1 h-1, induction at a DCW of 75 g/L with 

1 mM IPTG and with dO2 maintained at 15 % during the fed-batch phase. This 

process allows for a reduced cost process with a fed-batch phase of 

approximately 8 hours. A pre-induction growth rate of 0.6 h-1 was shown to allow 

for the successful high level production of SELP-59-A following induction at a 

DCW of 50 g/L. Unfortunately, due to time limitations, this growth rate was not 

investigated for induction at 75 g/L, the successful application of which would 

further reduce the process time and hence also production costs. Furthermore, a 

previous study7 indicated the advantages of using a variable pre-induction growth 

rate for the rapid high cell density production of recombinant proteins in E. coli. 

Here, the pre-induction growth rate is maintained at the maximum possible and 

slowly reduced over time so as to maintain organic acid concentrations at low 

levels. The use of this approach was shown to not only reduce the process time 

but also allowed for improved recombinant protein production7. It is suggested 

that such a variable pre-induction growth rate approach be investigated in future 

studies. 
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A further interesting future study in relation to the first section of the present 

project is to better understand the arrestation of growth at 45 g/L DCW when 

using a growth rate of 0.8 g/L. Extracellular organic acid concentrations were not 

found to be much higher than those observed with a growth rate of 0.6 h-1 

whereas glucose was found to accumulate to approximately 50 g/L as compared 

to 20 g/L with a growth rate of 0.6 h-1. Perhaps intracellular organic acid 

concentrations were already high when cell arrestation was observed and it is 

therefore suggested that a study with a pre- and post- induction growth rate of 

0.8 h-1 with induction at 45 g/L be carried out to investigate this.  

Following the studies described in the first section of this work it was concluded 

that the factors limiting further increased production levels include: plasmid loss 

on induction, limitations in the oxygen transfer rate of the fermentation system 

used and an increased stress on cells following induction. We decided to address 

the problem of plasmid instability on induction by investigating and comparing 

three plasmid stabilisation systems, namely: ampicillin resistance, kanamycin 

resistance and a Type II toxin/antitoxin post segregational suicide system 

(ccdB/ccdA). Furthermore, we investigated the effect of inhibition of β-lactamase 

production from the ccdB/ccdA stabilisation system expression vector. Here it 

was hypothesised that this would reduce the stress on the host cells, giving rise 

to ‘fitter’ cells and potentially increasing SELP production. Our study indicated a 

50 % increase in SELP production with the ccdB/ccdA system but with no further 

increase following removal of the ampicillin resistance marker from the 

expression vector. Use of the ccdB/ccdA plasmid stabilisation system was shown, 

with the protocol used, to allow for all cultivable cells to retain the plasmid up to 

8 hours following induction. Nevertheless, it must be noted that the protocol used 

here for measuring plasmid stability has many limitations as it only measures the 

ability of cells to grow in the presence and absence of the antibiotic selection 

marker. Obviously, with the ccdB/ccdA system only those cells with plasmid will 

be able to grow and hence should always indicate 100 % plasmid stability with 

the approach used. Furthermore, it is possible that cells producing SELP are 

unable to grow under the conditions used and hence would not be detected with 

the approach used. Therefore, to get a truer measure of plasmid stability or, more 

specifically, of the actual concentration of plasmid it is suggested that a 
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quantitative PCR (qPCR) approach be developed in the future. We originally 

attempted to quantify plasmid by means of plasmid isolation from culture samples 

but variations in yields prevented the use of this approach, hence the need for 

the development of a qPCR approach. 

An interesting observation from this study was the high production of lactic acid 

directly following induction and the variation in the extracellular concentration of 

this. It was found to increase at higher growth rates, higher IPTG concentrations 

and interestingly also it was found to increase with the ccdA/ccdB stabilisation 

system where higher SELP production was obtained. This production of lactic 

acid is probably a response to the stress placed on the host cells during SELP 

production and further investigation of this is warranted to better understand 

those conditions that lead to such an accumulation and how this can be 

overcome. Furthermore, it was found that this accumulation of lactic acid 

decreased when β-lactamase production from the expression vector was 

removed. This suggests a reduced induced stress in these cells but nonetheless 

was found to be insufficient for further improved SELP production.  

In conclusion, it can be seen that our study has allowed for an increase in      

SELP-59-A production to approximately 5 g/L which is 10-fold higher than the 

highest production previously reported1. This high production was achieved with 

induction at 25 g/L and as shown in this study a DCW before induction of 75 g/L 

is attainable with the system used in the study. This suggests a further 3-fold 

increase in SELP-59-A production with this system. Future studies should be 

focused on investigating this. 
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Annexe I 
 

Fed-Batch Production 

 

Fed-batch production is carried out with a BioFlo 110 3 litre fermentor (NBS) controlled 

via a Primary Control Unit (NBS) and with a BioCommand General Purpose Multi-Loop 

controller (NBS) and the BioCommand Plus 3.3 software (NBS) for automated data 

collection and supervision. 

Protocol: 

 Inoculate 50 mL of LB (+ antibiotic if required) in a 500 mL Erlenmeyer (first preculture) 

with a cfu of the production host and incubate at 37 °C/200 rpm until a dry cell weight 

(DCW) of 0.5 g/L is reached (approx. 4 hours). 

 Inoculate 100 mL of MMLBM (+ antibiotic if required) in a 500 mL Erlenmeyer (second 

preculture) with the first preculture to an initial dry cell weight of 0.05 g/L and incubate 

at 37 °C/200 rpm until a dry cell weight (DCW) of 0.5 g/L is reached (approx. 3 hours). 

 Inoculate 960 mL of MMLBM (+ antibiotic if required) in the fermenter (production 

culture) with the second preculture to an initial dry cell weight of 0.005 g/L. 

 Set fermenter batch phase parameters: temperature at 37 °C, pH 6.8 with 3 M H3PO4 

and 25 % NH4OH, air flow rate at 5 L/min., dO2 controlled at 25 % with cascade to 

agitation (200-1100 rpm), dO2 PID 0.05-0.25, foaming controlled with a conduction 

probe (NBS) and antifoam Y-30 emulsion (Sigma). 

 Determine initial acid, base and antifoam weights. 

 Leave batch phase to run overnight (approx 15 hours) until all carbon has been 

completely exhausted and as indicated by a sustained increase in the dO2 level above 

50 %. 

 Start fed-batch phase: start glucose feed feeding rate as deifned by the desired 

growth rate (µ) and the mass balance equation (equation 1), start phosphate/nitrogen 

feeding, change dO2 setting to desired value (i.e. 15 – 55 %) and cascade to both 

agitation (200-1100 rpm) and O2, connect O2 at 1.0 bar, change dO2 PID to 0.1-0.25. 

M𝑆(t) = F𝐹(t)SF(t) = (
µ(𝑡)

𝑌𝑥 𝑠⁄
+𝑚)𝑉(𝑡)𝑋(𝑡)    (1) 

 Measure weights of acid, base and antifoam and calculate volumes added and hence 

also total culture volume. 



 Calculate the cell density from equation 2 

𝑋(𝑡)𝑉(𝑡) = 𝑋𝑡𝐹𝑉𝑡𝐹𝑒
µ(𝑡−𝑡𝐹)      (2) 

 Every 15 minutes, use calculated cell density (equation 2) and calculated total culture 

volume to determine the required feeding rate according to equation 1. 

 Every hour measure the actual OD600nm and calculate DCW (OD600nm x 0.51), calculate 

culture volume and use to determine the required feeding rate according to equation 

1. 

 Every hour aseptically sample culture (note volume sampled) for OD600nm readings, 

centrifuge 4 mL for 5 minutes at maximum speed, retain supernatant at – 20 ºC for 

later analysis (HPLC, phosphate, nitrogen etc.). 

 When desired DCW is reached induce with IPTG (typically 15 mL of concentrated 

solution), may need to remove culture volume before induction, note volume removed. 

Alter desired growth rate (µ) as required. 

 At 0 hours induction and at every hour thereafter asceptically remove approx. 8 mL 

samples: use directly for OD600nm readings and for viable cell counts; for SDS-PAGE 

analysis centrifuge 0.5 mL samples (x 4) for 5 minutes at maximum speed and retain 

pellets at -20 ºC until analysis; for HPLC, phosphate and nitrogen analyses retain 4 

mL supernatant samples at –20 ºC until analysis. 

 Stop fermentation after desired induction period, measure the final volume and 

centrifuge at 9000 rpm for 30 minutes. Retain cell pellets at -20 °C and supernatantat 

at 4 °C until later SELP purification and analysis. 

 

 

 

 

 

 

  



Annexe II 
 

HPLC analysis 

 

HPLC was carried out with a Rezex™ 8 μm ROA-organic acid H+(8%) high performance 

liquid chromatography column (Phenomenex) on an Elite LaChrom (VWR Hitachi) 

chromatography system. This separates sugars and organic acids on the basis of a 

differential partitioning between the stationary phase (H+) and the mobile phase (H2SO4). 

Here it was used to detect the presence of and to quantify carbohydrates (glucose, 

lactose, fructose, glycerol), organic acids (citric, tartaric, malic, succinic, lactic, acetic and 

formic) and ethanol. Detection was by refractive index measurement with an Elite 

LaChrom L-2490 RI detector (VWR Hitachi) at 40°C. An Elite LaChrom (VWR Hitachi) 

chromatography system was used with the EZChrom Elite 3.3.2 SP2 software for data 

collection and analysis. 

Protocol: 

 Prepare 50 mL 100 % TCA. 

 Let culture supernatant samples (~1.5 mL) reach room temperature. 

 Add TCA to final concentration of 10 % (~160 µL). 

 Leave at room temperature overnight. 

 Centrifuge at max speed 15 min. 

 Discard pellet and filter supernatant through 0.22 µm filter to HPLC vials. 

 Preheat HPLC column to 60 ºC. 

 Load 20 µL to the preequilibrated (in 2.5 mM H2SO4) column. 

 Use 2.5mM H2SO4 as the mobile phase with isocratic elution as follows: 

0 - 14 mins.: 0.15 mL/min 

14 - 35 mins.: 0.15 - 0.2 mL/min 

35 - 90 mins.: 0.2 mL/min 

Retention times and peak areas are compared to standard curves (peak area versus 

concentration) for each of the various carbohydrates and acids analysed for calculation 

of supernatant composition and component concentration. 



Annexe III 
 

Determination of Phosphate Concentration 

 
The phosphate concentration of culture supernatants was determined by a method first 

described in40. Here molybdenum complexes with any phosphate present to form a 

phospho-molybdate which is then reduced by ascorbic acid to give a blue colour. 

Protocol: 

Reagents Stocks (store for one month): 

 10 % ascorbic acid: 10 g ascorbic acid in 100mL H2O, store at 4 °C 

 2.5 % ammonium molybdate: 2.5 g ammonium molybdate in 100mL H2O, store at 

room temperature 

 6 N sulphuric acid: 18 mL concentrated acid in 108 mL H2O and store at room 

temperature 

Reagent C, prepare fresh each day, keep at 4°C until use: 

 2 volumes H2O 

 1 volume 6 N sulphuric acid 

 1 volume 2.5 % ammonium molybdate 

 1 volume 10 % ascorbic acid 

Assay: 

 Dilute culture supernatant samples 1 in 2000 in H2O. 

 Add 500 µL reagent C and 500 µL diluted samples to a cuvette. Cover with parafilm 

and invert several times to mix. 

 For blank, mix 500 µL reagent C with 500 µL H2O. 

 Also include control samples with known molarities of phosphate ranging from 1 µM 

to 200 µM. These standards will be used to create a standard curve that plots 

absorbance vs. molarity for calculation of the phosphate concentrations of samples. 

 Incubate samples for 2 hours at room temperature in the dark. 

 Measure absorbance at 820 nm. 

 Determine the phosphate concentration from the standard curve. 



Annexe IV 
 

Ammonia-nitrogen Concentration Determination 

 

Ammonia-nitrogen concentration of culture supernatant was determined by the Berthelot 

colour reaction47. This method is based on the reaction of NH3 in alkaline solution with 

phenate to produce a blue colour (indole blue) in the presence of a strong oxidizing agent 

such as hypochlorite. 

Protocol: 

All steps should be executed in the extraction hood, including the absorbance reading if 

possible. Wear gloves and dispose of all samples and cuvettes appropriately. 

Solution A:  Reagent   Final Concentration 

 Phenol    10 mg/mL 

 Sodium Nitroprusside  50 µL/mL 

Solution B:  Reagent   Final Concentration 

 NaOH    10 mg/mL 

 Sodium Hypochlorite  0.84 % (v/v) 

 

 Prepare NH4 standards of 1 mM, 2.5 mM, 5 mM  and 10 mM with (NH4)2SO4. 

 Dilute samples 10 fold. 

 Add 600 µL of Solution A to 30 µL of diluted sample (or standard) in disposable 

cuvettes. Use 30 µL of deionised water for blank. 

 Add 600 µL of Solution B. 

 Incubate for 2 hours at room temperature. 

 Measure absorbance at 625 nm, starting with the blank, standards and then the 

samples. 

 Determine the Ammonia-nitrogen concentration from the standard curve. 

 

Phenol is highly toxic. Carry out all work in the extraction hood and immediately 

have residuals removed from the laboratory (arrange with appropriate person prior 

to commencing work). All residues and material in contact with phenol should be 

placed in a sealed container placed inside 1 to 2 bags. Gloves should be worn at 

all times and immediately removed, discarded (inside 2 sealed bags) and changed 

on contact with liquid.  Leave extraction hood and laboratory fans on following 

work. 



Annexe V 
 

SDS-PAGE 

 

10 % SDS-PAGE was used for monitoring of SELP-59-A production. This technique 

separates proteins based on their size as they migrate across an acrylamide/bis-

acrylamide matrix gel. Proteins are denatured and linearised by SDS and β-

mercaptoethanol treatment and imparted with a net negative charge by the SDS before 

being separated on the gel by use of an applied electric field. Separated protein bands 

are then visualised by negative staining with copper chloride. 

Protocol: 

Gel preparation (2 gels): 

10% Page Running Stacking 

Acrilamide 40% 2.7 mL 432 µL 

Bis-acrilamide 2% 1.5 mL 234 µL 

0,25 M Tris-HCl, 

pH 6,8 + SDS 0,2% 
0 2.2 mL 

0,75 M Tris-HCl, 

pH 8,8 + SDS 0,2% 
5.6 mL 0 

H20 1.3 mL 1.5 mL 

APS 10% 60 µL 25 µL 

TEMED 10 µL 8 µL 

 

 

 



Sample Preparation: 

Intracellular proteins, cell pellet from 500µL culture sample: 

 Add 50 mM Tris + 1 mM EDTA, pH 8.0 to a final volume of 1 ml and resuspend. 

 Add 25 μL SDS-PAGE loading solution (10 % SDS, 10 mM β-mercaptoethanol, 20 % 

glycerol, 0.2 M Tris at pH 6.8 and 0.05% bromophenol blue) and vortex well. 

 Centrifuge at max speed for 25 min. 

 Run 10 μL of supernatant on a 10 % SDS-PAGE gel at a constant current flow of 

25 amps per gel. 

 

Extracellular Proteins, Culture Supernatants: 

 Add 5 μL of SDS-PAGE loading solution (10 % SDS, 10 mM β-mercaptoethanol, 20 % 

glycerol, 0.2 M Tris at pH 6.8 and 0.05% bromophenol blue) to 20 µL of supernatant 

 Run 5 μL of supernatant on a 10 % SDS-PAGE gel at a constant current flow of 25 

amps per gel. 

 

Gel Staining 

 Stain gels with 3 M solution of freshly prepared CuCl2, 50 mL per gel. 

 Immediately mix at room temperature for approx. 5 - 10 minutes. 

 Capture image with ChemiDocR XRS+ system (BioRad). 

 Analyse band intensities with ImageJR. 

 

 

 

 

 

 

 



Annexe VI 
 

SELP-59-A Purification 

 

The protocol for SELP-59-A purification was described by24 and is based on the high 

stability of SELP-59-A at acidic pHs as compared to E. coli proteins as well as its 

precipitation at relatively low ammonium sulphate concentrations. 

Protocol: 

 Add 2 volumes of 50 mM Tris + 1 mM EDTA, pH 8.0 to 1 volume (frozen wet weight) 

of frozen cell pellets. Resuspend by agitation overnight. 

 Reduce suspension pH to 3.5 with 37 % HCL. 

 Incubate at 4 ºC overnight with constant mixing. 

 Centrifuge at 9000 rpm/30 min./4 ºC 

 Measure supernatant volume, retain at 4 ºC. 

 Add ammonium sulphate slowly to a final concentration of 22 % saturation (calculate 

using: http://www.encorbio.com/protocols/AM-SO4.htm) with constant mixing at 4 ºC. 

Leave overnight at 4 ºC with constant mixing. 

 Remove large insoluble protein particles from solution. 

 Centrifuge solution at 9000 rpm/30 min./4ºC. 

 Resuspend pellets and insoluble particles in H2O to ~ 5% saturation at 4 ºC 

 Incubate overnight at 4 ºC with agitation 

 Dialyse suspension in water with 12000-14000 kDa MWCO dialysis tubing for 5 days 

at 4 ºC with constant mixing and with daily changes of water. 

 Centrifuge dialysed suspension to separate soluble and insoluble fractions. 

 Lyophilise soluble and insoluble fractions in a Christ Alpha 2-4 LD Plus (Bioblock 

Scientific) lyophiliser for 5 days at 0.012 mbar pressure and -85 ºC. 

 

 

 

 

http://www.encorbio.com/protocols/AM-SO4.htm


Annexe VII 

 
Plasmid Isolation 

 

Plasmid isolation from Escherichia coli was carried out with the GenEluteTM Plasmid 

miniprep kit (Sigma). This kit provides a simple method based on DNA affinity to silica 

and the convenience of a spin column format for isolating plasmid DNA. Following cell 

lysis by alkaline-SDS treatment, DNA is selectively bound to the silica column in the 

presence of high salt concentrations and then, following column washing, the purified 

DNA is eluted with a solution of low salt concentration.  

Protocol: 

  



Annexe VIII 
 

DNA Quantification 

 

The aromatic heterocyclic ring structures of DNA nucleobases absorb with a maximum 

near 260 nm (extinction coefficient used for double-stranded DNA = 50 ng-cm/µL), hence 

allowing for their quantification. Furthermore, proteins, phenol and other contaminants 

absorb strongly at 280 nm while phenol and carbohydrates absorb at 230 nm, hence 

measurements of the 260 nm/280 nm and 260 nm/230 nm absorbance ratios allows for 

analyses of sample purity. A 260 nm/280 nm ratio of about 1.8 is generally accepted as 

pure DNA. If the ratio is less than 1.8 it is indicative of the presence of contaminating 

proteins or other compounds that absorb near 280 nm. 260 nm/230 nm absorbance ratio 

values between 2.0 - 2.2 can be considered as pure. Ratios considerably below these 

values indicate the presence of contaminants which absorb near 230 nm. 

Here DNA was quantified by absorbance measurements with a NanoDrop™ 1000 

Spectrophotometer (Thermo Scientific). 

Protocol: 

 Connect the NanoDrop and select the option ‘nucleic acids’. 

 Clean the sample loader with 2 µL of ultrapure water. 

 Set blank with 1 µL of ultrapure water. 

 Measure absorbances of 1 µL sample. 

 Analyse absorbance ratios to determine presence of contaminants. 

 

 

 

 

 

 

 

  



Annexe IX 
 

Restriction Digestion 

 

Restriction digestion is based on the use of specific enzymes which recognise and cut 

at specific DNA sequences thereby allowing for the controlled digestion of a DNA 

sequence. All enzymes and buffers were from Thermo Scientific. 

Protocol: 

SELP-59-A/pCM13, pET29a(+) and pStaby 1.2 digestion 

 1 – 1.5 µg of template in minimum volume possible (15 – 50 µL). 

 1.5 µL of BlpI (1 unit/µl). 

 Tango Buffer at final concentration of 1x.  

 Incubate at 37 ºC for 2 hours. 

 1.5 µL of NdeI (1 unit/µl). 

 Tango Buffer at final concentration of 2x.  

 Incubate at 37 ºC for 3 - 4 hours  

 

SELP-59-A/pStaby digestion for SELP-59-A/pStaby Δblap preparation 

 20 µL of SELP-59-A/pStaby (56 ng/µL) 

 1 µL of SspI (1 unit/µL) 

 2 µL of 10x Fast Digest Buffer 

 Incubate at 37 ºC for 2 hours 

 

SELP-59-A/pStaby digestion for SELP-59-A/pStaby Δbla preparation 

 20 µL of pStaby/SELP3 (56 ng/µL) 

 1 µL of SspI (1 unit/µL) 

 1 µL of Eam1105I (1 unit/µL) 

 2.5 µL of 10x Fast Digest Buffer 

 Incubate at 37 ºC for 2 hours 

 



Annexe X  

 

DNA Gel Electrophoresis 

 

DNA gel electrophoresis allows for the separation of DNA fragments according to their 

size as they migrate accross an agarose matrix towards the positive anode of an applied 

electric field. This method is used to separate, visualise and determine the size of various 

DNA fragments. Following electrophoresis, the gel is coloured with Midori Green which 

interacts with the DNA present and allows for their visualisation with UV light. 

Protocol: 

 Prepare 1.5 % agarose gel (1.5 g of agarose in 100 mL of 1x TEA Buffer (4.84 g/L 

Tris Base, 1.142 mL Glacial Acetic Acid and 0.372 g/L EDTA)), heat to dissolve, pour 

into electorophoresis cassette and allow to polymerise. 

 Load 10 - 20 µL of sample with 6x loading buffer (50 % glycerol, 0.2 M EDTA at 

pH 8.3, 0.05 % (w/v) bromophenol blue). 

 Load 3 – 4 µL of 1 kb Plus DNA ladder (Thermo Scientific)  

 Run the gel at 75 V for 45 min. 

 Stain the gel with Midori Green (1 μL/10 mL). 

 View DNA bands under a UV illuminator. 

 

 

 

 

 

 

 

 



Annexe XI 

 

DNA purification by Gel Extraction 

 

Once the appropriate DNA fragments have been separated and identified on the agarose 

gel they can then be purified by use of the Ezway™ Gel Extraction Kit. This kit is based 

on DNA affinity to silica and the convenience of a spin column format for purifying the 

DNA fragments from excised agarose gel bands. 

 

Protocol:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Annexe XII 

 

Preparing of blunt ended fragments 

 

Sticky ended DNA fragments produced by two different restriction digestion enzymes 

cannot be ligated together and the conversion of these to blunt ends is required. Here 

the 5' to 3' polymerase activity and 3´to 5´exonuclease activity in addition to an absence 

of a 5' to 3' exonuclease activity of a thermostable DNA polymerase is used for removal 

of 3' overhangs and filling in of 5' overhangs and thereby leading to a blunt ended DNA 

fragment. 

The commercial mix ACCUZYME™ Mix (Bioline) was used here, this is a 2x reaction 

mix designed for high fidelity and maximum experiment reproducibility. ACCUZYME Mix 

contains Accuzyme DNA Polymerase, MgCl2 and ultra-pure dNTPs manufactured. 

Protocol: 

 30 µL of purified SELP-59-A/pStaby Δbla digest fragment (19.2 ng/mL). 

 30 µL of 2X concentrated Mg2+ (4 mM) Accuzyme DNA polymerase mix (Bioline Ltd.) 

 Heat to 72 ºC for 30 min with a Thermal Cycler(R) (Biometra Uno II) 

 

 

 

 

 

 

 

 

 

  



Annexe XIII 

 

Ligation 

 

Ligation of overlapping sticky and blunt ends was carried out with T4 DNA ligase. This 

catalyses the ligation of 5’ phosphate ends with 3’ hydroxyl group ends. 

 

Protocol: 

Insertion of SELP-59-A in pET29a(+) 

 12 µL of purified insert (SELP-59-A) (11 ng/µL). 

 10 µL of purified pET29a(+) (11.1 ng/µL). 

 2.5 µL of 10x T4 DNA Buffer (Thermo Scientific). 

 1 µL of T4 DNA ligase (Thermo Scientific). 

 Incubate at room temperature for 4 hours. 

 

Insertion of SELP-59-A in pStaby 1.2 

 12 µL of purified insert (SELP-59-A) (11 ng/µL). 

 6 µL of purified pStaby 1.2 (21.3 ng/µL). 

 2.5 µL of 10x T4 Buffer (Thermo Scientific). 

 1 µL of T4 DNA ligase (Thermo Scientific). 

 3.5 µL of UP H2O. 

 Incubate at room temperature for 4 hours. 

 

Recircularisation of SELP-59-A/pStaby Δblap 

 12.5 µL of purified SELP-59-A/pStaby Δblap fragment. 

 1 µL of T4 DNA ligase (Thermo Scientific). 

 1 µL of T4 Buffer (Thermo Scientific). 

 Incubate at room temperature for 4 hours. 

 

Recircularisation of SELP-59-A/pStaby Δbla 

 8 µL of SELP-59-A/pStaby Δbla fragment. 

 1 µL of T4 DNA ligase (Thermo Scientific). 

 1 µL of T4 Buffer (Thermo Scientific). 

 Incubate at room temperature for 4 hours. 



Annexe XIV 
 

Transformation 

 

Transformation of E.coli strains XL1Blue and BL21(DE3): 

 

Transformation was made with an adaptation of a commonly utilized protocol from Inoue 

and co-workers48 Here the competent cells are made susceptible to uptake of DNA by a 

thermal shock treatment48. 

 

Protocol: 

 Defreeze 200 μL of competent cells on ice. 

 Add approximately 100 ng of circular DNA to each tube. 

 Leave tubes on ice for 30 minutes. 

 Heat shock for 45 seconds at 42 ºC with gentle agitation of tubes. 

 Leave tubes on ice for 10 minutes and add 800 μL of preheated LB. 

 Incubate for 1 hour at 37 ºC with 200 rpm agitation. 

 Centrifuge the mixture at 14500 rpm for 1 minute. 

 Reject 800 μL of the supernatant and ressuspend the remaining 200 μL of culture. 

 Plate cells on solid LB medium supplemented with ampicillin (100 μg/mL) and 

incubate over night at 37 ºC. 

 

Transformation of E.coli strains CYS21 (cloning strain) and SE1 (expression strain) 

 

Here the protocol suggested in the StabyExpress™ T7 kit Manual (v1.7) was used. This 

protocol is also based on a heat shock treatment of competent cells for plasmid uptake. 

 

Protocol: Transformation using chemically competent cells: 

 

 Prepare LB plates containing 100 μg/mL Ampicillin. Let the plates dry and then warm 

them up at 37 ºC. 

 Set a water bath or a heating-bloc to 42 ºC 

 Thaw (bring to room temperature) one vial of regeneration medium (provided by 

manufacturer) per cloning reaction. 



 For each cloning reaction, place one vial of the CYS21/SE1 chemically-competent 

cells (self-standing tube with pink cap) on ice. Allow the cells to thaw on ice for 5-10 

minutes. 

 Add 5 μL of the ligation product to one vial of the CYS21/SE1 chemically competent 

cells (self-standing tube with pink cap). Stir gently to mix. Do not mix by pipetting up 

and down. 

 Incubate on ice for 30 minutes. 

 Heat-shock the bacteria by placing the vial at 42 ºC for 30 seconds without shaking. 

 Immediately transfer the tubes to ice. 

 Add 250μl of room-temperature regeneration medium (provided by manufacturer) 

and mix well. 

 Spread immediately 10, 20 and 100 μL of the product (from previous step) on 

different pre-warmed plates. If you wish to have more clones, incubate the product 

(from previous step) at 37 ºC for one hour for regeneration of the bacteria before 

spreading 10, 20 and 100 μL on different pre-warmed plates. 

 Incubate the plates overnight at 37 ºC. 

 Pick about 10 colonies and culture them overnight in 10 mL of LB medium with or 

without ampicillin (100 μg/mL). 

 

Note: The stabilization is now effective; the ccdB gene is activated. Consequently, the 

plasmid is stabilized in the CYS21/SE1 strain and no antibiotic is needed to select 

bacteria containing the plasmid. However, the ampicillin resistance is still available. The 

stabilization system will insure high yield of plasmid DNA. 
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