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The role of phospholipids and of the actin-binding protein cofilin in Saccharomyces cerevisiae acetic acid-
induced apoptosis  

ABSTRACT 
Several compounds and physiological conditions have been described to induce a programmed cell death 

(PCD) process in Saccharomyces cerevisiae that shares many of the morphological and biochemical 
hallmarks of mammalian apoptosis. This evidence makes this yeast a suitable model organism to solve some 

unanswered questions of apoptosis and of its regulation, namely in what regards the mitochondrial 

involvement.  

 In animal cells, cardiolipin (CL) and phosphatidylserine (PS) have been shown to bear a fundamental role 
in apoptosis signaling. Since there was no information reported on the role of these lipids in yeast cell death, 

the aim of the present study was to elucidate their involvement in apoptosis induced by acetic acid. Our 

results show, through inhibition of CL synthesis (crd1∆), that the presence of CL is not required for apoptosis 

to occur. Oppositely, the deletion of TAZ1, involved in CL maturation, results in higher survival. However, this 
mutant displays an early loss of the plasma membrane integrity and metabolic activity, suggesting that it is 

dying later but by a necrotic process. An identical profile was observed in cho1∆ mutant, lacking PS 
synthesis, suggesting that either the presence of mature CL or PS are fundamental to trigger apoptosis in 
yeast cells. Curiously, the absence of Ups1p, involved in the translocation of phosphatidic acid (PA) to the 

inner mitochondria membrane, lead to a higher resistance associated with higher preservation of the plasma 
membrane integrity, suggesting that PA or the phospholipids synthetized from PA are essential for yeast 
apoptosis. Similarly, the deletion of MDM10 or MDM12, encoding two proteins belonging to the ERMES (ER-

Mitochondria Encounter Structure) complex which regulates the phospholipid trafficking between endoplasmic 
reticulum and mitochondria, results also in higher resistance. Although a decrease in levels of CL has been 

reported for all mutants, except cho1∆, the differences observed suggest that these proteins can be involved 

in the synthesis or regulation of other phospholipids, whose levels inside the cell are able to mediate the cell 
death process. 

Cofilin, an actin-binding protein, appears be able to regulate a mitochondrial-mediated mammalian 
apoptosis. Although in yeast cells there is no information about its apoptotic role, preliminary data revealed 

that a stress-specific interaction between cofilin and Por1p could exist. Our results appear to indicate that, 

after acetic acid treatment, cofilin is translocated to mitochondria where, by interaction with Por1p, prevents 

the mitochondrial outer membrane permeabilization, functioning like Por1p as a negative regulator of 

apoptosis. Curiously, depending on the mutated cofilin residues, it has an opposite impact on acetic acid 
induced-apoptosis. 

In summary, our results show that the phospholipid composition of mitochondrial membranes and the 

cofilin translocation to this organelle seem to have an important role in the mediation of the apoptotic process 

induced by acetic acid. Identification of phospholipids or proteins involved in apoptosis regulation will provide 
novel strategies for the treatment of different pathologies associated with apoptosis dysfunctions such as 

cancer and neurodegenerative diseases.  
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O papel dos fosfolípidos e da cofilina, uma proteína de ligação à actina, na apoptose induzida por ácido 
acético em Saccharomyces cerevisiae 

RESUMO 
A levedura Saccharomyces cerevisiae na presença de diferentes compostos tóxicos ou em condições 

fisiológicas específicas desencadeia uma morte celular programada (PCD) que partilha muitas das 
características morfológicas e bioquímicas da apoptose em mamíferos tornando esta levedura um modelo 

adequado para desvendar alguns dos mecanismos ainda por esclarecer da apoptose e da sua regulação, 

nomeadamente no que se refere ao envolvimento mitocondrial. 

Nas células animais, a cardiolipin (CL) e a fosfatidilserina (PS) mostraram ter um papel fundamental na 
sinalização da apoptose. Na levedura, no entanto, não existe informação relativa ao papel destes lípidos na 

morte celular, pelo que foi objectivo do presente trabalho estudar o envolvimento destas moléculas na 

apoptose induzida por ácido acético. Os nossos resultados mostram, através da inibição da síntese de CL 

(crd1∆), que a presença de CL não é essencial para que apoptose ocorra. Contrariamente, a deficiência no 
gene TAZ1, envolvido na maturação da CL, resulta numa maior resistência. Contudo, este mutante perde a 

integridade da membrana plasmática e a actividade metabólica precocemente sugerindo a ocorrência de 
uma morte necrótica. Um perfil idêntico foi observado no mutante cho1∆, onde não há síntese de PS, 

sugerindo que quer a presença de CL madura ou PS são fundamentais para desencadear apoptose na 
levedura. Curiosamente, a ausência da proteína Ups1p, envolvida na translocação de ácido fosfatídico (AP) 

para a membrana interna da mitocôndria, resulta numa maior resistência associada à preservação da 
integridade da membrana plasmática, sugerindo que o AP ou os fosfolípidos sintetizados a partir do AP são 
essenciais para este processo. Da mesma forma, a deficiência nos genes MDM10 e MDM12, que codificam 

duas proteínas do complexo ERMES (ER-Mitochondria Encounter Structure), que regula o tráfico de 

fosfolípidos entre o retículo endoplasmático e a mitocôndria, resulta também numa maior resistência. 
Embora em todos os mutantes, à excepção do cho1∆, tenha sido descrita uma redução nos níveis de CL, as 

diferenças observadas sugerem que estas proteínas podem estar envolvidas na síntese ou regulação de 

outros fosfolípidos cujos níveis dentro da célula são capazes de mediar o processo de morte celular. 
A cofilina, uma proteína de ligação à actina, parece ser capaz de regular a apoptose mediada pela 

mitocôndria em mamíferos. Embora na levedura não exista qualquer informação acerca do seu papel na 

apoptose, dados preliminares mostraram que sob stresse podia existir uma interacção cofilina-Por1p. Os 

nossos resultados parecem indicar que, após tratamento com ácido acético, a cofilina é translocada para a 
mitocôndria onde, por interacção com o Por1p, inibe a permeabilização da membrana externa da 

mitocôndria, funcionando, tal como o Por1p, como um regulador negativo da apoptose. Curiosamente, 
dependendo dos resíduos da cofilina mutados, esta pode ter diferentes funções durante a apoptose induzida 

por ácido acético.  

Em resumo, os nossos resultados mostram que a composição em fosfolípidos das membranas 
mitocondriais e a translocação de cofilin para este organelo parecem ter um papel importante na mediação 

do processo de apoptose induzida por ácido acético. A identificação de fosfolipídios ou proteínas envolvidas 

na regulação da apoptose fornecerá novas estratégias para o tratamento de diferentes patologias associadas 
a disfunções na apoptose, tais como o cancro e doenças neurodegenerativas. 
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1.1  Apoptosis 

 

In 1972 Kerr and colleagues applied for the first time the term apoptosis to explain a morphologically 

distinct form of cell death that could occur in many different cells and organisms. It was described as an 

active form of cell death in which the cell uses its own machinery, in a manner highly specialized, to 

commit suicide (Kerr et al., 1972). Apoptosis is the most common form of programmed cell death (PCD) 

in eukaryotes and undoubtedly the best characterized mechanism of cell death due to its direct 

involvement in many fundamental biological events, such as development, differentiation, embryogenesis, 

and regulation of the immune system. Normally, the purpose of apoptosis is to remove damaged cells or 

cells representing a threat to the integrity of the organism, like in response to infectious agents, replacing 

them by new cells.  

Today it is known that apoptosis involves a high number of proteins strictly regulated at multiple points 

that directly or indirectly are responsible for the cell death process. Thus, when the cell death regulatory 

mechanisms fail, the development of many human malignancies, such as neurodegenerative diseases, 

autoimmune disorders and cancer, among others, will be favored (Elmore, 2007). 

 Apoptosis can follow two important routes termed as the extrinsic (or death receptor) and the intrinsic 

(or mitochondrial) pathways (Figure 1).  

The extrinsic pathway is mediated by a subgroup of the tumor necrosis factor receptors (TNFR) 

superfamily. After ligand-receptor (e.g. FasL/FasR) interaction, the death domain of the activated receptor 

on the cytosolic side of the plasma membrane binds to the corresponding domain in the adapter 

molecule FADD (Fas-Associated Death Domain), which in turn recruits the death protease procaspase-8, 

resulting in its auto-catalytic activation (Muzio et al., 1998).  

The intrinsic pathway can be initiated in response to extracellular cues and/or internal injuries. The 

signals produced by these stimuli can act through loss of apoptotic suppression or by direct apoptosis 

activation. Absence of certain growth factors, hormones and cytokines can lead to failure of apoptosis 

suppression. On the other hand, some stimuli, such as radiation, toxins, hypoxia, hyperthermia, viral 

infections, and free radicals trigger directly the apoptosis activation (Elmore, 2007). Often, these stimuli 

converge at the mitochondria via pro-apoptotic Bcl-2 family proteins, such as Bax and Bak (Dewson et al., 

2008; Wolter et al., 1997). Apoptosis is highly regulated by a series of pro- and anti-apoptotic proteins 

belonging to the Bcl-2 family, possessing one or more Bcl-2 homology (BH) domain. In healthy 

conditions, the anti-apoptotic members of this family, namely Bcl-2 and Bcl-XL, prevent cell death through 
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inhibition of the release of lethal factors from the mitochondrial intermembrane space (IMS). However, 

under apoptotic conditions, Bax and/or Bak activation, directly or indirectly, lead to the cytochrome c (cyt 

c) release from the mitochondrial compartment. Once in the cytoplasm and in the presence of dATP or 

ATP, cyt c binds to the adaptor protein Apaf-1 to form the apoptosome, resulting in activation of 

procaspase-9 and other downstream caspases (Li et al., 1997). Like cyt c, other released mitochondrial 

proteins have an important role in apoptosis, namely the apoptosis inducing factor (AIF), endonuclease G 

(Endo G), high temperature requirement A2 (HtrA2/Omi) and second mitochondria derived activator of 

caspase/direct IAP binding protein with low pI (Smac/Diablo) (Bajt et al., 2006 ; Du et al., 2000; Suzuki 

et al., 2001). These proteins promote cell death mainly by two mechanisms: direct promoting chromatin 

condensation and DNA degradation, as in the case of AIF, Endo G and HtrA2/Omi, or by interaction with 

anti-apoptotic proteins nullifying their action, as in the case of Smac/Diablo (Saelens et al., 2004).    

The extrinsic and intrinsic pathways converge at the level of caspase-3 activation, through caspase-8 

or apoptosome action, respectively. However, procaspase-3 cleavage is antagonized by IAP (Inhibitor of 

Apoptosis), which itself can be inhibited by Smac/Diablo or HtrA2/Omi. Cross-talk and integration 

between the two pathways is provided by Bid which in its truncated form (tBid), produced by caspase-8, 

can result in Bax/Bak activation (Desagher et al., 1999; Li et al., 1998). After procaspase-3 cleavage, a 

set of events culminate in the ordered dismantling and removal of the cell. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – The extrinsic and intrinsic apoptotic pathways and the cross-talk between them through the pro-apoptotic Bcl-2 
family member Bid (scheme from Lamkanfi and Dixit, 2010). 
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As consequence of the activity of the internal machinery above described, cells exhibit some unique 

morphological and ultrastructural changes that allow distinguishing apoptosis from other processes of cell 

death, such as cell shrinkage, plasma membrane blebbing, exposure of phosphatidylserine (PS) on the 

outer leaflet of the plasma membrane, chromatin condensation, nuclear fragmentation and finally, the 

formation of apoptotic bodies as result of cell fragmentation into compact membrane-enclosed structures 

(Saraste and Pulkki, 2000). Some of these changes underwent by the apoptotic cells, namely the PS 

externalization and apoptotic bodies formation allow the recognition and removal by phagocytic cells 

which are able to engulf and quickly remove them before the contents of the cell spill out onto 

surrounding cells and cause damage, preventing in this way an inflammatory response (Fadok et al., 

1998).  

 

1.2 Mitochondrial involvement in apoptosis 

 

Mitochondria is a fundamental organelle in cellular homeostasis due to its implication in energy 

production, osmotic regulation, calcium homeostasis, modulation of redox status, inter-organelle 

communication, cell proliferation, senescence or even in apoptosis (reviewed in Rasola and Bernardi, 

2007).  

The mitochondrial mediated apoptotic pathway can involve the mitochondrial outer and/or inner 

membrane permeabilization due to the formation of pores, followed by rupture of the outer mitochondrial 

membrane (OMM) with release of pro-apoptotic factors localized in the IMS. 

The mechanisms underlying the mitochondrial outer membrane permeabilization (MOMP) are still 

under debate and several models have been proposed, namely the formation of: i) a mitochondrial 

apoptosis-inducing channel (MAC) in the OMM, ii) a large conductance pore-forming complex, named 

permeability transition pore (PTP) in the inner mitochondrial membrane (IMM), iii) a lipid channel formed 

by ceramide or iv) oligomers of the voltage-dependent anion channel (VDAC). 

The first model involves the pro-apoptotic proteins of the Bcl-2 family that can include the multidomain 

proteins Bax and Bak as well as the BH3-only proteins, like Bid and Bim (Kelekar and Thompson, 1998). 

Oppositely to Bak, that in healthy cells is present in the OMM, Bax and several BH3-only proteins are 

cytosolic and translocated to mitochondria only after an apoptotic stimulus. Under physiological 

conditions, Bax and Bak activation is inhibited by anti-apoptotic members of Bcl-2 family, such as Bcl-2 

and Bcl-XL. To become in their active form, either Bax or Bak, undergo conformational changes that can 
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be induced by tBid. When activated, they can form homo- or heterodimers in the OMM resulting in 

formation of a pore also called MAC that allows the release of IMS proteins (Dewson et al., 2012; Lovell 

et al., 2008; Suzuki et al., 2000).  

However, the size of some crucial pro-apoptotic proteins largely exceeds the pore diameter 

(approximately 4 nm) of MAC, and therefore the formation of an IMM channel, named PTP, was also 

proposed (Pavlov et al., 2001). According to this model, the irreversibly opening of PTP leads to an 

increase of the mitochondrial matrix volume, rupture of the OMM and ultimately to the release of IMS pro-

apoptotic components. 

Usually the IMM possesses low permeability to ions and solutes maintaining the electrochemical 

potential difference (∆ψm) across the membrane. Thus, the primary consequence of PTP prolonged 

opening is a mitochondrial depolarization due to equilibrium of the proton concentration at the two sides 

of the IMM. Consequently, this leads to an inability of complex V (ATP synthase) to synthesize ATP and 

could result, as consequence of electron transport chain (ETC) loss of activity, in reactive oxygen species 

(ROS) generation due to direct transfer of electrons to molecular oxygen. The increase of IMM 

permeability to solutes with molecular masses below 1.5 KDa induces the massive release of the calcium 

(Ca2+) stored in the matrix and its swelling due to osmotic pressure caused by the high concentration of 

proteins. Consequently, the unrestricted mitochondrial cristae unfolding leads to the OMM rupture and 

release of the IMS proteins, including pro-apoptotic factors, to the cytosol. The PTP prolonged opening is 

highly regulated and it only occurs when a set of important requirements are fulfilled, including low 

mitochondrial membrane potential (∆ψm), high mitochondrial Ca2+ concentration and low phosphate (Pi) 

concentration, among others. Oppositely, its opening is inhibited by high ∆ψm, cyclosporin A (CsA), 

magnesium (Mg2+) and through action of some recognized inhibitors, such as anti-apoptotic proteins of 

the Bcl-2 family (Bernardi, 1999). Interestingly, the transient PTP opening has a physiological role 

unrelated to death stimuli that can involve matrix volume and pH regulation, redox equilibrium, cristae 

remodeling, protein import and a fast Ca2+ release mechanism (Rasola and Bernardi, 2007).  

The PTP molecular structure is only partially understood. The present consensus model proposes a 

supramolecular complex, where a subset of proteins has been proposed to be the core components of 

the channel. These proteins include the matrix chaperone cyclophilin D (CyP-D), the Adenine Nucleotide 

Translocator (ANT), VDAC, the mitochondrial Pi carrier (PiC) and the ATP synthase (Figure 2). 

ANT, an ADP/ATP translocator, is a relative small protein (about 300 AA residues) that is inserted in 

the IMM. Although with much lower efficiency, ANT can also transport other solutes, such as 
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phosphoenolpyruvate, pyrophosphate and creatine phosphate (Shug and Shrago, 1973; Soboll et al., 

1997). In addition, ANT has an important role in regulation of ∆ψm and ROS production (Korshunov et 

al., 1997). It can adopt two conformations shapes: c and m, that were associated to the PTP opening and 

closure, respectively (Schultheiss and Klingenberg, 1984). Although it is believed that ANT is one of the 

most important structural components of the PTP, some controversy has been raised about its role. It 

was shown that mouse liver cells lacking their two ANT isoforms remained competent to respond to 

various initiators of cell death, resulting in release of cyt c. Thus, it was proposed that ANT deficiency can 

be compensated in the IMM of these cells by other ANT-like channel of the same carrier family and that 

the ANT contribution in PTP formation may depends on specific conditions (Kokoszka et al., 2004). 

Although these results suggest that ANT is a non-essential component of PTP, due to the presence of 

another ANT isoform (ANT3) in human cells, the ANT role cannot be excluded. 

CyP-D, a small mitochondrial water-soluble protein, was reported as an ANT modulator binding to its 

matrix side (Halestrap and Davidson, 1990). Experiments employing a CyP-D affinity column 

demonstrated a direct interaction between CyP-D and ANT. In addition, when the column was treated 

with CsA no binding between them was observed, proving that in fact CsA is an inhibitor of the PTP 

having CyP-D as target (Woodfield et al., 1998). Despite CyP-D regulatory role, PTP can be formed and 

opened in its absence (Basso et al., 2005). 

VDAC is present in the OMM where it forms relatively large internal channels with a pore diameter of 

2.5-3.0 nm that possess electrophysiological properties extremely similar to those of the PTP and which 

are affected by the same factors (Rasola and Bernardi, 2007; Szabo et al., 1993; Szabo and Zoratti, 

1993). VDAC mediates the complex interaction between mitochondria and cytoplasm by transporting 

anions, cations, ATP, Ca2+ and metabolites, among others. During apoptosis, when PTP is in its open 

state, VDAC preferentially conducts anions. In mammalian cells, VDAC has three isoforms (VDAC1, 

VDAC2 and VDAC3) and it was described that the absence of one of these can be compensated, in some 

cases, by the presence of the other isoforms (Lemasters and Holmuhamedov, 2006). Curiously, the 

silencing of VDAC1 affected cell growth and mitochondrial ATP synthesis, without changing the basic 

properties of the PTP. Thus, the participation of VDAC in PTP composition remains an open question 

(Abu-Hamad et al., 2006). 

Hexokinase (Hk) was described as the main VDAC regulator through its binding at the OMM. Hk 

catalyzes the first step of glycolysis providing a functional link between mitochondria and the cytosol by 

governing the preferential utilization of mitochondrial ATP for glucose phosphorylation, coupling glycolysis 
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to oxidative phosphorylation (Robey and Hay, 2006). The Hk-VDAC association, mediated by the action of 

the serine/threonine kinase Akt, is directly related to the PTP state, in which the interaction of the two 

proteins implies the PTP closure and the Hk dissociation the PTP opening proving the metabolic link of 

the apoptotic process (Majewski et al., 2004).  

 

Figure 2 – Representation of the main molecules involved in the MOMP through PTP opening in the IMM during cell death. 
(A) Healthy cells with PTP closed and all pro-apoptotic machinery inactivated. (B) Pro-apoptotic molecules activation and the 
most important intracellular changes after an apoptotic stimulus (scheme from Rasola and Bernardi, 2007). 
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One mitochondrial phosphate carrier, PiC, was also demonstrated to have an important role in PTP 

conformation. It was shown that PiC induces cyt c release and caspase-9-dependent cell death. However, 

in its absence cyt c release as well as other apoptotic events were delayed but not totally extinguished. 

Thus, it suggested that PiC can be involved in the PTP opening although it is not fundamental for this 

process (Alcala et al., 2008). It was reported that PiC can bind to ANT1 and VDAC1 or CyP-D in the 

channel, making unclear its real function (Alcala et al., 2008; Leung et al., 2008). Therefore, it is needed 

to clarify whether the PiC is a component or regulator of the PTP. Interestingly, Pi is a PTP inhibitor and 

the regulation of PiC by this substrate could affect the pore opening. 

Differently to the mentioned above new evidences indicated that PTP is formed by dimers of the ATP 

synthase, which curiously is regulated by the PTP modulators (such as Ca2+, Mg2+, adenine nucleotides 

and Pi). Interestingly, this new complex is independent of the presence of OMM components suggesting 

a dual function for complex V in the ATP synthesis and PTP formation (Bonora et al., 2013; Giorgio et al., 

2013). 

Another mechanism, associated with ceramide channels formation in the OMM, has also been 

implicated in the release of apoptogenic factors from mitochondria. Ceramide is a sphingosine-based 

signaling lipid that can regulate several cellular processes being involved in differentiation, proliferation, 

and apoptosis. One of the first evidences of ceramide pro-apoptotic function was the blockage of its 

generation lead to the apoptosis inhibition (Alphonse et al., 2002). Though ceramide is produced in 

different cell compartments it was shown that ceramide induces cell death specifically when generated in 

mitochondria in response to a number of apoptosis-inducing factors (Mullen and Obeid, 2012). 

Oppositely to other membrane lipids, the intermolecular structure of ceramide, namely the hydrogen 

bonds, allows the production of columns of ceramide residues that result in formation of channels able to 

transport apoptogenic factors to the cytoplasm. Moreover, its increased synthesis is associated with ROS 

generation, ATP depletion, loss of the mitochondrial ∆ψm, among other alterations that facilitate cell 

death (Siskind, 2005). So, the inhibition of ceramide channels formation could be integrated in some 

strategies of apoptosis prevention, namely in neurodegenerative diseases.  

Finally, another mechanism involving VDAC oligomerization has also been described to explain the 

mitochondrial release of pro-apoptotic factors during apoptosis. As referred to above, VDAC is more 

commonly associated to PTP formation although its function has been found dispensable. Additionally, 

some studies have suggested that VDAC can mediate the activity of the pro-apoptotic proteins Bak and 

Bax (Roy et al., 2009; Yamagata et al., 2009). Nevertheless, VDAC oligomerization appears itself to be a 
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mechanism of apoptosis induction in many cell types and in response to a high number of apoptotic 

inducers. The clear correlation between the levels of VDAC oligomerization and apoptosis was, in part, 

demonstrated when an apoptosis inhibitor prevented VDAC oligomerization. However, the presence of a 

caspase inhibitor did not change VDAC oligomerization and cyt c release. Curiously, the pore size formed 

by VDAC oligomerization is not large enough to allow the transport of some apoptogenic factors, including 

cyt c. Therefore, the formation of VDAC homo- and hetero-oligomers containing VDAC1 and the pro-

apoptotic proteins Bax and Bak was suggested (Keinan et al., 2010; Shoshan-Barmatz et al., 2008; 

Shoshan-Barmatz et al., 2010).  

Independently of the mechanism whereby the release of apoptogenic factors happens, mitochondria 

undergo significant ultrastructural changes that can contribute to cell death. In this context, Drp1/Mfn2, 

involved in fission/fusion, frequently show an altered expression through Bax/Bak action. Most often, 

mitochondrial morphology changes from a tubular network to a punctate structure in the course of 

apoptosis suggesting a relation between this form of regulated cell death and mitochondrial 

fission/fragmentation. In this way, Bax/Bak indirectly facilitates MOMP and cell death by destabilizing the 

OMM (Breckenridge et al., 2003; Reis et al., 2012). Oppositely, it was recently demonstrated that Bax 

regulates the sensitivity of cells to undergo primary necrosis through a Bax-driven mitochondria fusion 

mechanism that lowers the threshold for PTP opening (Whelan et al., 2012). This is distinct from the role 

of Bax in apoptosis and is in accordance with some studies, which provided hints that Bcl-2 proteins may 

regulate cell death in situations where necrosis was thought to be involved (Hochhauser et al., 2003).  

Additionally, the remodeling of mitochondrial cristae might also contribute to the release of 

apoptogenic factors. The intra-cristae regions, that contain approximately 85% of the total cyt c pool, can 

form a barrier to the free diffusion of this or other proteins (Detmer and Chan, 2007). Therefore, 

remodeling of mitochondrial cristae, at least partially controlled by PARL and Opa1 protein interaction, to 

bring the apoptogenic factors into the IMS, mitochondrial fission to help the membrane destabilization 

and either formation of channels into the OMM or its rupture by PTP opening are crucial events for 

triggering the apoptotic cascade (Cipolat et al., 2006).  

More recently, it was uncovered a lysosome-mitochondria crosstalk during apoptosis in which 

lysosomes have an important regulatory role. Depending on the apoptotic stimulus not only the OMM, but 

also the lysosomal membrane can suffer permeabilization and release proteins that directly or indirectly 

interact with others in the cytosol amplifying the death signal. However, only the moderate lysosomal 

membrane permeabilization (LMP), with release of some cathepsins, is responsible to trigger this type of 
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cell death, while extensive lysosomal permeabilization can lead to necrosis (Kirkegaard and Jaattela, 

2009). Cathepsin D (CatD) has been considered as a central player in this response although its 

presence could have contrasting effects depending on the cell line and cellular context. In most cases, 

CatD regulates the intrinsic pathway through stimulation of cyt c release from mitochondria. For this 

reason, CatD has been explored as an anti-tumor chemotherapeutic target (Benes et al., 2008). 

In conclusion, although much information is still necessary for a more complete understanding of 

many of the mechanisms underlying the intrinsic apoptotic pathway, it seems that it is mainly regulated 

by Bcl-2 family members through its association to other proteins, or by the formation of channels on the 

OMM. In addition, the reported lysosome involvement in apoptosis proves that this cell death mode can 

be mediated by an intrinsic network of organelles and proteins, which act together to fully trigger the 

death process. 

 

1.3 Programmed cell death in yeast 

 

Over the last years, yeast has become the favorite research tool in several areas of cell biology. This 

can be explained based on its easy handling and technical tractability together with the functional 

advantage of this organism being a eukaryote. Furthermore, it has a high level of phylogenetic 

conservation of biochemical pathways and regulators when compared with mammals. 

Although nowadays yeast has become a biological model to study PCD, the first studies reporting an 

apoptotic program in yeast generated considerable controversy (Skulachev, 2002). It was questioned why 

a unicellular organism should have developed and conserved a suicide program during evolution once the 

demise of a single cell would imply the organism death. However, in the last years this classical point of 

view has been discarded because many works proved that yeast populations should be understood as a 

multicellular community of interacting individuals, and not only as a group of independent unicellular 

organisms. In this context, the death of a particular cell might therefore be beneficial for the clone, 

promoting its survival. So, this altruistic yeast behavior can occur to eliminate infertile or damaged cells 

after failed mating, genetic recombinants non-adapted to the environment or old cells (Büttner et al., 

2006; Gourlay et al., 2006). 

The definition of PCD and its nomenclature applied to the yeast exacerbated the controversies. 

Although it was shown that yeast PCD plays a role in responding to virus, it has not been proven that this 
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PCD process in yeast cells is indeed true apoptosis and therefore many researches prefer the term 

apoptotic-like cell death or, more generally, PCD (Breinig et al., 2006; Ivanovska and Hardwick, 2005).   

The apoptotic markers observed in a mutant strain caring a mutation in the AAA-ATPase gene CDC48 

were the first evidence of this type of PCD in yeast (Madeo et al., 1997). Nowadays, the occurrence of an 

apoptotic process is also supported by the fact that yeast encodes several orthologues of mammalian cell 

death regulators, although they also lack many others. 

It was reported that the disruption of the metacaspase Mca1p/Yca1p, orthologue of mammalian 

caspases, reduced the occurrence of cell death in aged cultures showing that, similar to caspases, the 

yeast metacaspase plays an important role in the execution of cell death (Madeo et al., 2002). Despite of 

functional conservation, they have different cleavage specificity raising doubts about a common source of 

both proteins. Caspases cleave their substrates after aspartate (acid residue) whereas metacaspases 

cleave after arginine or lysine (basic residues). However, TSN (Tudor Staphylococcal Nuclease) and 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) are common biological substrates for 

metacaspases and caspases during cell death (Silva et al., 2011; Sundstrom et al., 2009). Thereby, it 

was possible to conclude that, although caspases and metacaspases have phylogenetic distance and 

differences in their proteolytic mechanisms, they have some common target molecules in cell death 

indicating that they constitute functional orthologues. 

Curiously, the uncovering that yeast apoptosis can occur independently of Yca1p activity suggested 

the intervention of other proteins with caspase-like activity or, like in mammals, an alternative pathway 

independent of metacaspases (Madeo et al., 2009).  

In yeast, orthologues of cyt c, AIF, Endo G and Htr2/Omi were equally uncovered and the first three 

proteins have the same subcellular localization as their mammalian conterparts (Büttner et al., 2007; 

Fahrenkrog et al., 2004; Wissing et al., 2004). Oppositely, Nma111p (Nuclear mediator of apoptosis), 

yeast orthologue of the mammalian mitochondrial Htr2/Omi, is found in the nucleus, where it remains 

upon apoptotic induction, killing cells via its serine protease activity (Fahrenkrog et al., 2004). 

Although cyt c release from mitochondria has been observed and suggested to be associated to the 

yeast apoptotic-like PCD, it remains unclear if there is an apoptosome-like structure activated by this 

protein, and what is the causal role of cyt c release. Curiously, the involvement of cyt c in metacaspase 

activation was suggested after exposition to hyperosmotic stress (Silva et al., 2005). 

AIF and AIF-homologous mitochondrion-associated inducer of death (AMID) are both mitochondrial 

flavoproteins that trigger caspase-independent apoptosis. In yeast it was demonstrated that 
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overexpression of the internal NADH dehydrogenase Ndi1p, the yeast AMID homologue, can be 

responsible for triggering a PCD process. So, this protein, which catalyzes the oxidation of 

intramitochondrial NADH and is localized in the IMM, appears to be another mitochondrion-associated 

protein implicated in yeast cell death. Curiously, this effect was repressed by increased respiration on 

glucose-limited media suggesting that there is an interaction between the regulatory network of energy 

metabolism and the Ndi1p-induced yeast cell apoptosis (Li et al., 2006). 

 Yeast encodes a protein containing an N-terminal domain analogous to the IAP protein in mammals, 

termed Bir1p, which is antagonized by Nma111p. Similarly to the homologue IAP in mammals, Bir1p has 

been reported to protect cells against apoptosis because yeast cells lacking BIR1 are more sensitive to 

apoptosis induced by oxidative stress. In addition, the BIR1 overexpression resulted in apoptosis inhibition 

(Walter et al., 2006). 

For many years it was believed that yeast constituted a cellular environment devoid of orthologues of 

members of the Bcl-2 protein family, namely Bax or Bak and thus it was used for the expression of these 

human proteins simplifying the interpretation of functional analyses. However, recently it was reported the 

unexpected finding that yeast genome encodes a protein containing a functional BH3 domain, which was 

termed yeast BH3-only protein (Ybh3p). It displays a high degree of similarity with BH3 domains from 

higher eukaryotes and it was shown to mediate the intrinsic apoptotic pathway in acetic acid- and 

hydrogen peroxide (H2O2)-induced cell death. Ybh3p after activation undergoes a Bcl-XL-inhibitable 

translocation from the cytosol to mitochondria where it leads to breakdown of mitochondrial membrane 

potential (Büttner et al., 2011). On the other hand, parallel studies by Cebulski and colleagues provided 

evidences that the S. cerevisiae protein encoded by the same open reading frame as Ybh3p, and 

renamed Bxi1p, is a bona fide homolog for the mammalian Bax-inhibitor (BI1). These authors showed 

that Bxi1p is an ER-localized protein that links the unfolded protein response and PCD (Cebulski et al., 

2011). 

As stated earlier in human cells, mitochondrial fragmentation, regulated by Drp1, has an important 

role in apoptosis favouring MOMP and the release of apoptogenic factors. In yeast cells undergoing 

apoptosis the same mitochondrial morphology transition was observed (Fannjiang et al., 2004). 

Additionally, in pheromone or amiodarone-induced cell death two other mitochondrial proteins were 

identified that also affect the fragmentation of the mitochondrial compartment in the course of apoptosis, 

named yeast suicide protein 1 (Ysp1p), and yeast suicide protein 2 (Ysp2p) (Pozniakovsky et al., 2005; 
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Sokolov et al., 2006). Nevertheless, more studies about the PCD in yeast are needed to clarify some 

important steps of this process. 

PCD in yeast exhibits many of the morphological and biochemical hallmarks of mammalian apoptosis. 

These similarities include PS externalization to the outer layer of cytoplasmic membrane, chromatin 

condensation, nuclear fragmentation and ROS production (Madeo et al., 1997). Moreover, many of the 

basic components of the mammalian apoptotic machinery are conserved in yeast. This makes yeast a 

suitable model organism to solve some unanswered questions of apoptosis and its regulation.  

Though apoptosis induction has been described in several yeast species, this process has been more 

explored in Saccharomyces cerevisiae. In this budding yeast species, PCD can be triggered in response 

to cell aging or under several stress conditions as UV exposure or oxidative (H2O2), saline and 

hyperosmotic stress, treatment with broad-spectrum compounds, such as acids (e.g. acetic acid), or by 

addition of specific compounds, including anti-fungal agents (Sharon et al., 2009). 

 

1.3.1  Acetic acid 

 

1.3.1.1 Production and degradation 

 

Acetic acid is frequently an end product of the alcoholic fermentation carried out by S. cerevisiae. In 

this process, the production of this acid is usually proportional to the sugar concentration in the medium, 

and occurs to counterbalance the hyperosmotic stress of the medium through the generation of reducing 

equivalents (NADH and NADPH). This also allows the yeast cell to maintain the redox balance (Remize et 

al., 2000).  

In the yeast S. cerevisiae, acetic acid transport and metabolism is repressed by glucose, which is the 

preferential carbon and energy source. So, when acetic acid is added to a medium with glucose, a diauxic 

growth will occur with the consumption of acetic acid taking place only after glucose depletion. As 

consequence of acetic acid accumulation in the medium, the yeast fermentative performance is 

negatively affected. The mechanism of acetic acid transport depends on the extracellular pH and growth 

conditions, as well as on the carbon source used for growth. When cells are growing in a medium with 

glucose and acetic acid at low pH, e.g. pH 3.5, this acid is essentially undissociated (pKa=4.75) and 

crosses the plasma membrane by simple diffusion (Casal et al., 1996). In this process the acetic acid 

passive influx can be enhanced by ethanol presence. Thus, under these conditions, the acid accumulates 

quickly inside the cell negatively affecting its metabolic activity and viability. Yeast cells are also able to 
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grow on acetic acid medium as the sole carbon and energy source. At pH 5.5 to 6.5 the dissociated form 

predominates and it is transported by acetate-proton symports. In this process, the presence of ethanol 

or buthanol inhibits the acetate transport in a noncompetitive way (Casal et al., 1998). Some proteins has 

been associated to acetate transport, such as Ady2p, Jen1p, a yeast transporter required for lactate 

uptake and Fps1p, a plasma membrane aquaglyceroporin channel (Casal et al., 1999; Paiva et al., 

2004; Mollapour and Piper, 2007). When acetic acid is the sole carbon and energy source, it is 

metabolized to acetyl Co-A by the acetyl-CoA synthase 1 (Acs1p). Then, it is oxidized in the tricarboxylic 

acid cycle inside the mitochondria or can be channeled to the anaplerotic glyoxylate cycle and 

gluconeogenic pathway, both of which are repressed by the presence of glucose (Santos et al., 2003). 

 

1.3.1.2. A stimulus of cell death 

 

When acetic acid is not degraded its accumulation results in intracellular acidification, anion 

accumulation and inhibition of some cellular metabolic activities, including fermentation (Pampulha and 

Loureiro, 1989). Thus, the exposure of exponential-phase cells, growing in a glucose medium at pH 3.0, 

to acetic acid can compromise their survival. However, the cell death process induced by acetic acid 

depends on its concentration. Exposition to low acid concentrations (20-80 mM) results in a process 

similar to mammalian apoptosis. Oppositely, high acetic acid concentrations (120-200 mM) lead to 

alterations typical of necrosis with extensive cell disorganization and most of the intracellular structures 

destroyed (Ludovico et al., 2001). However, the acetic acid effect is also dependent on cell growth phase 

and stationary-phase cells exposed to high acetic acid concentrations (>120 mM) can also trigger an 

apoptotic like-PCD process (Ludovico et al., 2002). The morphological and biochemical analyses of these 

cells, namely the results of pulsed field gel electrophoresis of chromosomal DNA showed that DNA is 

cleaved into fragments of several hundred kilobases, and highlighted the similarities between this process 

and mammalian apoptosis (Ribeiro et al., 2006).  

 

1.3.2  Mitochondrial-mediated apoptotic pathway induced by acetic acid 
 

The crucial role of mitochondria in mammalian apoptosis has been extensively described (Eisenberg 

et al., 2007). More recently, the involvement of mitochondria in PCD triggered by different stimuli in yeast 

cells was also shown (Pereira et al., 2008). 
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The use of acetic acid as an inducer of apoptosis started in our Lab about twelve years ago and 

nowadays it has been extensively exploited in the yeast apoptosis field. In S. cerevisiae, it was 

demonstrated that apoptotic-like PCD induced by acetic acid (140 mM), that implies cyt c release from 

mitochondria to cytosol, is not affected by the loss of oxidative phosphorylation (oligomycin treatment). 

Curiously, in ATP10 (coding for an ATPase assembly factor) mutant cells no release of cyt c was 

detected. Thus, it was thought that the PCD process could be related to the inhibition of ATP synthesis, 

but when associated with the absence of oligomycin effect, it was suggested that ATPase complex itself is 

essential for S. cerevisiae to undergo a PCD through its involvement in the mechanism of cyt c release. At 

the same time, acetic acid-induced cell death was not triggered in the respiratory deficient (rho0∆) cells 

and this process was, at least partially, inhibited in cells that are unable to synthesize mature cyt c. The 

yeast apoptotic-like PCD induced by acetic acid is associated with reduced oxygen consumption, 

mitochondrial membrane potential and cytochrome c oxidase (COX) activity, as well as with accumulation 

of mitochondrial ROS and cyt c release (Ludovico et al., 2002). It was shown that besides cyt c other 

mitochondrial proteins are release. Indeed Aif1p (yeast AIF) and Nuc1p (yeast EndoG) undergo a 

mitochondrial-nuclear shuttling and that both are potent cell-death inducers (Wissing et al., 2004; Büttner 

et al., 2007). Oppositely to mammalian cells, the YCA1 disruption attenuates the effect of AIF1 

overexpression in apoptosis stimulation (Wissing et al., 2004). On the other hand, the Nuc1p-mediated 

death is independent of Yca1p or Aif1p (Büttner et al., 2007). More recently, it was shown that Ndi1p is 

also involved in the acetic acid-induced PCD, in a process in which its apoptotic activity is dependent of 

the N-terminal cleavage (Cui et al., 2012). 

In the early studies on yeast apoptosis the formation of a yeast PTP-like channel was hypothesized as 

the mechanism underlying the release of apoptogenic factors. This possibility, supported by the presence 

of orthologous of the mammalian PTP putative components, offered the possibility to use yeast to clarify 

the molecular nature of the PTP as well as to understand its regulatory and functional mechanisms. Yeast 

genetic approaches revealed that deletion of POR1 (yeast VDAC) enhances the apoptotic-like PCD 

triggered by acetic acid, suggesting that Por1p may promote cell survival. On the other hand, yeast cells 

devoid of ADP/ATP carrier (AAC) protein (yeast ANT) were more resistant to this treatment which was 

associated with a delay in the emergence of important features of apoptosis, such as, chromatin 

condensation, DNA strand breaks and cyt c release. It was shown that this effect was not related to strain 

defects in oxidative phosphorylation or ATP synthesis, including ADP/ATP translocation activity. 

Furthermore, a normal pattern of caspase activity was observed in this strain suggesting that, under 
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these conditions, caspase activation is not associated with cyt c release. Although this process was 

delayed in AAC deficient strain it was not fully prevented which led the authors to propose that an 

alternative death pathway, which does not involve MOMP and cyt c release can occur. In addition, it was 

verified that the absence of Cpr3p (yeast orthologue of CyP-D) has no effect on acetic acid-induced cell 

death (Pereira et al., 2007). Curiously, Yca1p, whose caspase-like activity was shown under these 

conditions, demonstrated to be dispensable for acetic acid induced cell death (80 mM; 200 min). The 

occurrence of PCD in yca1∆ mutant suggested that, in the wild-type, it can happen through a non-

caspase route (Guaragnella et al., 2006). 

To better understand the mechanism underlying cyt c release, this process was investigated over the 

time course of acetic acid-induced cell death. The western blot analysis showed that its release happens 

early through coupled mitochondria still without MOMP suggesting that an alternative pathway not 

involving rupture of the OMM could explain cyt c release in yeast cells (Giannattasio et al., 2008).  

Some results demonstrated that, during acetic acid induced-PCD, caspase activation is not dependent 

of the release of cyt c, but curiously in yca1∆ mutant cells no cyt c release was found (Pereira et al., 

2007; Guaragnella et al., 2010a). Under these conditions, the absence of cyt c or metacaspase did not 

prevent the cell death, suggesting that an alternative pathway, that appears to imply H2O2 generation, can 

be activated (Giannattasio et al., 2005; Guaragnella et al., 2010a). Indeed, the presence of an antioxidant 

(NAC - N-acetyl-L-cysteine) prevented the induction of PCD by acetic acid in a wild-type strain. However, 

cells lacking Yca1p and/or cyt c were not protected by the presence of NAC suggesting that cell death 

when independent of cyt c release and Yca1p activation occurs in a ROS-independent manner 

(Guaragnella et al., 2010b).   

The yeast BH3-only protein (Ybh3p) appears also to have an important role in acetic acid-induced 

apoptotic-like PCD. Upon treatment, Ybh3p enhanced PS externalization and DNA fragmentation whereas 

its BH3 domain deletion or complete deficiency resulted in reduced cell death occurrence (Büttner et al., 

2011). 

During apoptosis, mitochondria suffer a set of important structural and functional changes, which 

culminate in its degradation. Under acetic acid treatment, this process occurs through an autophagy-

independent pathway involving the vacuolar protease Pep4p, the orthologue of the human CatD, located 

in the vacuole. This protease is translocated from vacuole to cytosol and it works together with AAC 

proteins that were proposed to relay a signal of mitochondrial dysfunction targeting its destruction. 

Interestingly, the deletion and overexpressing of PEP4 promote sensitivity and resistance to the acetic 
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acid, respectively (Pereira et al., 2010). Thus, these results demonstrated that the apoptotic-like PCD 

induced by acetic acid in yeast does not only imply the involvement of mitochondria but can also be 

mediated by the vacuole, suggesting a complex regulation and interaction between these organelles.   

S. cerevisiae such as previously mentioned is surely the most common yeast model for the study of 

PCD. Its completely sequenced genome and the corresponding databases available enhance the interest 

in this yeast species for the development of genomic technology. Therefore, a screening using the 

Euroscarf haploid mutant collection was recently performed in order to uncover genes involved in 

resistant and sensitive phenotypes under acetic acid-inducing apoptotic conditions. The genes identified 

with this study were clustered according to their biological function and known physical and genetic 

interactions providing this way a huge amount of information for future studies (Sousa et al., 2013). 
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The role of phospholipids in Saccharomyces cerevisiae 
acetic acid-induced apoptosis  
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2.1  Introduction 

 

Yeast cells have been extensively used as a model to study some issues of interest in mammalians. 

Specific phospholipids, namely cardiolipin (CL) and phosphatidylserine (PS), have a well-characterized 

role in animal apoptosis. The great similarity between their cellular function in both yeast and mammalian 

cells reinforces the yeast application in the study of the role of these phospholipids in apoptosis 

regulation.  

Cardiolipin (CL) (1,3-diphosphatidyl-sn-glycerol) is structural and functionally a unique phospholipid 

that is predominantly present in the IMM. Oppositely to the other phospholipids, it has four acyl chains 

linked to a backbone of three glycerol moieties conferring it acidic and hydrophobic features, respectively 

(Figure 1A) (Lecocq and Ballou, 1964). Although CL is mostly present in the heart, where it was first 

identified, it can be found in all mammalian tissues (Pangborn, 1942). 

Phosphatidylserine (PS) is also a glycerophospholipid that has a glycerol backbone with two fatty acyl 

chains linked on the sn-1 and sn-2 carbons and one phosphate group on sn-3. Additionally, the 

attachment of a serine to the phosphate gives it a negative net charge that is the distinguishing feature of 

this phospholipid (Figure 1B). Although not exclusively, it is predominantly localized in the inner leaflet of 

the plasma membrane (Leventis and Grinstein, 2010). Importantly, PS is the primary precursor 

phospholipid and its transport from the endoplasmic reticulum, where it is synthesized, to mitochondria 

allows regulating the levels of other fundamental phospholipids inside the cell.   

 

 

 

 

Figure 1 – Molecular structure of two phospholipids, cardiolipin (A) and phosphatidylserine (B). Cardiolipin, an anionic 
phospholipid exclusively present in mitochondria, is formed by four acyl chains (R1-R4) linked to a backbone of three glycerol 
moieties linked by two phosphates. Phosphatidylserine, like most of other phospholipids has two acyl chains (R1-R2) linked 
to a glycerol backbone that exclusively has a serine molecule linked to the phosphate group (Adapted from The Medical 
Biochemistry Page).   
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2.1.1  Cardiolipin biosynthetic pathway 

 

In contrast to most other phospholipids, CL is not synthetized in the endoplasmic reticulum (ER) and 

great part of its biosynthetic process happens in the mitochondria. Commonly to the other phospholipids, 

the first step of CL synthesis is the acylation of glycerol-3-phosphate (G-3-P) through a G-3-P 

acyltransferase yielding acylglycerol-3-phosphate (Voelker, 2004). This last phospholipid suffers another 

acylation resulting in phosphatidic acid (PA) synthesis. PA is converted to cytidinediphosphate-

diacylglycerol (CDP-DAG) through CDP synthase action. The phosphatidylglycerol phosphate (PGP) 

synthase catalyzes, in a committed and rate-limiting step in the CL biosynthetic pathway, the synthesis of 

PGP from CDP-DAG and G-3-P with release of CMP (Chang et al., 1998b). After this, PGP is 

dephosphorylated by PGP phosphatase yielding phosphatidylglycerol (PG) (Kelly and Greenberg, 1990). 

Figure 2 – The cardiolipin (CL) biosynthetic pathway in eukaryotic cells. The final step of CL generation involves the 
condensation of one molecule of phosphatidylglycerol (PG) and one molecule of CDP-diacylglycerol (CDP-DAG) catalysed by 
the enzyme CL synthase (Cls, yeast Crd1p) (Scheme from Houtkooper and Vaz, 2008). 
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The cardiolipin synthase (yeast Crd1p) catalyses an irreversible condensation between two molecules, PG 

and CDP-DAG, leading to CL synthesis with release of CMP (Figure 2) (Chang et al., 1998a). The 

evaluation of PG amount in the mitochondrial membrane is assumed as a reference of CL synthesis 

effectiveness. The CL biosynthetic process is common among fungi (including S. cerevisiae), plant and 

mammalian cells suggesting a common eukaryotic mechanism of CL formation. Oppositely, in 

prokaryotic cells the CL synthesis happens through condensation of two molecules of PG (Schlame et al., 

1993).  

 

2.1.2  Cardiolipin remodeling and the Barth Syndrome 

 

When compared with other phospholipids, CL is enriched in unsaturated acyl chains, which differ 

between organisms and even among tissues and cell types within one organism. These findings proved 

that after CL synthesis, process common for all eukaryotic organisms, an additional mechanism involves 

the acyl chain remodeling which is required to obtain the CL final composition (Houtkooper et al., 2006). 

Interestingly, among various organisms and tissues only one or two types of fatty acids are present in CL 

that leads to a high degree of structural uniformity and molecular symmetry among cardiolipins (Schlame 

et al., 2005). 

The biosynthesis and remodeling of CL have been extensively studied in the yeast S. cerevisiae. After 

CL synthesis, it suffers deacylation, forming monolysocardiolipin (MLCL), followed by reacylation 

achieving its unsaturated composition, in a process that involves the yeast homologue of tafazzin 

encoded by the TAZ1 gene (Gu et al., 2004). Taz1p is a CoA-independent transacylase that transfers 

unsaturated acyl chains preferentially from phosphatidylcholine (PC) to CL, yielding at the final mature CL 

and lyso-PC (LPC) (Figure 3) (Schlame and Ren, 2006). 

 

 

 

 

It was established that CL can only fully perform its cellular functions after remodeling. In fact, the loss 

of tafazzin activity in Barth Syndrome (BTHS) patients and the complications of this disease underscored 

Figure 3 – The Taz1p involvement in the CL remodeling. After CL deacylation (loss of one fatty acid (FA)) and MLCL 
generation (1), Taz1p catalyzes the PC-CL transacylation, yielding CL mature and lyso-PC (LPC) (2), which is reacylated to 
produce PC (3) (Scheme from Schlame and Ren, 2006). 
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the importance of CL remodeling.  At the same time, the decrease of CL in its mature form and the 

accumulation of MLCL in yeast and human tafazzin-deficient cells proved the existence of the two-step 

remodeling pathway described before (Gu et al., 2004; Valianpour et al., 2005). 

In the last decade, some interest has been dedicated to BTHS, a rare X-linked recessive disorder, 

clinically characterized by cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. The 

biochemical mechanisms that are responsible for these alterations are not yet fully understood but it is 

known that this happens generically due to abnormal mitochondria and defective oxidative 

phosphorylation (Barth et al., 1999).  

 

2.1.3  Ups1p and the role of ERMES complex in the CL biosynthetic pathway: facts and 

hypotheses 

  
Ups1p, a yeast member of a conserved family of intermembrane space (IMS) proteins, was initially 

associated to the Mgm1p processing, a conserved dynamin-like GTPase that has a central role in the 

yeast mitochondrial fusion machinery. In this way, it was reported that Ups1p regulates the mitochondrial 

shape and number in a carbon source-dependent manner being as well involved in the regulation of cell 

growth (Sesaki et al., 2006).  

The import of Ups proteins is mediated by Mdm35p, another IMS protein, in an unusual mechanism 

in which both proteins are stably associated leading either to the formation of functional protein 

complexes that drives mitochondrial protein import or Ups1p accumulation at the IMS (Tamura et al., 

2010). Beyond this, it was demonstrated that Ups1p-Mdm35p association prevents Ups1p degradation 

by the mitochondrial peptidases Yme1p and Atp23p (Potting et al., 2010).  

Curiously, the UPS1 deletion resulted in CL decreased levels suggesting a role of this protein in CL 

metabolism or accumulation (Osman et al., 2009; Potting et al., 2010; Tamura et al., 2009). These 

changed levels of CL led to some defects in the mitochondrial protein import as consequence of a 

conformational change of Tim23p, a dynamic complex in the IMM. On the other hand, the protein import 

driven by Tim22p, such as of AAC and PiC, both putative components of the PTP complex, was not 

affected. However, similarly to the crd1∆ and taz1∆ mutants, in ups1∆ cells the AAC protein assembly 

was impaired evidencing once again that Ups1p can be involved in the CL metabolism (Tamura et al., 

2009). 

While most phospholipids are synthesized in the ER and then transported to mitochondria, CL and 

phosphatidylethanolamine (PE) are produced within the mitochondria. In both situations, the physical 
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connection between the ER and the mitochondria, established by the ERMES (ER-mitochondria encounter 

structure) complex in the yeast S. cerevisiae, is crucial (Kornmann et al., 2009). The PE synthesis 

involves the PS translocation from the ER to the OMM and then to the IMM (Simbeni et al., 1993). After 

PS decarboxylation and PE synthesis, it returns to the OMM and then to the ER, where it is methylated 

and converted in PC (Figure 4) (Kodaki and Yamashita, 1987). In the CL synthesis process the PA 

translocation from the ER to the OMM was also described (Connerth et al., 2012).  

The ERMES complex is part of a well differentiated sub-compartment of the ER, identified in all 

eukaryotic cell systems from yeast to human and called the mitochondria-associated membrane (MAM) 

(Achleitner et al., 1999). MAMs are enriched in enzymes involved in phospholipid biosynthesis, and 

calcium handling proteins (Raturi and Simmen, 2013). At MAM, the proximity between the membrane of 

the ER and OMM (10–25 nm) allows direct contact of proteins and lipids (Csordas et al., 2006). Although 

in mammals a great number of proteins had been identified as part of MAMs, in yeast cells, the ERMES 

complex is the only machinery reported so far to form ER-OMM contact sites (Raturi and Simmen, 2013; 

Tamura et al., 2012). The ERMES complex is composed at least by the proteins Mmm1p, Mdm10p, 

Mdm12p, Mdm34p (Mmm2p) and Gem1p. In this complex, Mmm1p is an integral ER protein 

glycosylated on its N-terminal side, which interacts with Mdm10p, an OMM β-barrel protein. In turn, 

Mdm34p at the OMM and the cytosolic Mdm12p promote this interaction probably by direct association 

(Figure 4) (Kornmann et al., 2009). Mdm10p is simultaneouly a component of ERMES and of the Sorting 

and Assembly Machinery (SAM) complex which is responsible for the assembly of membrane β-barrel 

proteins in the OMM. It was reported that Mdm10p-SAM interaction specially assists Tom40p, the central 

translocase of TOM complex, assembly (Meisinger et al., 2007; Meisinger et al., 2004). The Ca2+-binding 

Miro (mitochondrial rho-like) GTPase Gem1p is a regulatory component of the ERMES complex showing 

that it is not a passive conduit for interorganellar lipid exhange (Kornmann et al., 2011). The existence of 

this complex was discovered a short time ago, although individualized information for some of the ERMES 

proteins has been described. Considering all this information, it seems plausible to associate this 

particular complex to other mitochondrial functions, including morphology manintenance, calcium 

exchange, coordinated protein import and mitochondrial DNA replication (Kornmann and Walter, 2010). 

Curiously, the loss of ERMES complex and Ups1p result in similar defects in mitochondrial 

phospholipid metabolism, namely with a decrease in the CL synthesis rate simultaneously to an increase 

in PS levels. Therefore, as ERMES complex was demonstrated to be important for organelles 

communication and phospholipids exchange, the Ups1p localization at the IMS suggests a function in 
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phospholipid trafficking between the two mitochondrial membranes (Tamura et al., 2012). Altogether this 

information appears to suggest that Ups1p and ERMES proteins act at similar steps in phospholipid 

metabolism. 

Considering the information above, it was recently demonstrated that Ups1p is essential for the PA 

translocation from the OMM to the IMM thereby justifying its role in the CL biosynthetic pathway. During 

this process, the presence of negatively charged phospholipids facilitates the interaction of the Ups1p-

Mdm35p complex with the IMM, which happens simultaneously to the Ups1p dissociation of Mdm35p 

and release of PA. When the physiological levels of CL are present at the IMM (10-20%), a regulatory 

feedback mechanism is triggered. In this process an irreversible association of Ups1p to the IMM results 

in its proteolysis by Yme1p action preventing the PA translocation and consequently, the CL synthesis 

(Connerth et al., 2012). 

Although the loss of ERMES complex lead to reduced levels of CL inside the cell, until now it was not 

clarified the mechanism by which this complex is able to regulate the levels of this phospholipid. 

However, considering the last finding about Ups1p role in CL synthesis, through PA translocation to the 

IMM, it appears plausible that ERMES complex can be fundamental for PA or other CL precursors 

translocation from the ER, where they are generated, to mitochondria justifying the similar profile 

between ERMES and Ups1p mutants.   

 

 

 

 

  

 

 

Figure 4 - As consequence of MAMs enrichment in enzymes and precursors involved in phospholipid biosynthesis, the 
mitochondria and ER connection is fundamental. In yeast, it is promoted by the ERMES complex, which is composed by an 
integral ER glycoprotein (Mmm1p) and three mitochondria-associated proteins (Mdm34p, Mdm10p and Mdm12p). On the 
other hand, Ups1p at the IMS is crucial for the PA translocation from the OMM to the IMM promoting the CL synthesis 
(Scheme from Osman et al., 2011). 
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2.1.4  Cardiolipin distribution within the mitochondria 
 

The CL chemical composition, with four acyl chains linked to a diphosphatidylglycerol group, confers it 

a dimeric nature that results in a specific conical structure when in the IMM (Cullis et al., 1986).  

The CL localization has been essentially associated to the IMM, where it has a fundamental role in the 

integrity and activity of some complexes of the respiratory chain, however it is not exclusively present 

there. Although less significantly, it was proposed that the conical shape acquired by CL favours a 

hexagonal phase of the membrane that allows the connection of the inner and the outer mitochondrial 

membrane at the contact sites (Figure 5) (Ardail et al., 1990; de Kroon et al., 1997). Thus, the CL 

localization at the OMM can elucidate its role in the mitochondrial membrane curvature and morphology.   

 

 

 

 

 

 

 

 

 

2.1.5  The cardiolipin requirement in the respiratory chain and other functions 
 

At the IMM, where it is predominantly present, CL due to its nature interacts with a large number of 

mitochondrial proteins (reviewed in Schlame et al., 2000). CL is fundamental for the stability and activity 

of the respiratory chain once it is required for the optimal functioning of the complex I (NADH:ubiquinone 

oxido-reductase), complex III (ubiquinone:cytochrome c oxido-reductase), complex IV (cytochrome c 

oxidase) and complex V (ATP synthase) (Acehan et al., 2011; Fry and Green, 1981; Pfeiffer et al., 2003). 

Furthermore, the CL structure, specifically its headgroup with negative charge, has been suggested to 

function as a trap of protons in the IMS promoting the effectiveness of complex V activity and, at the 

same time, minimizing the changes in pH in this cellular location (Haines and Dencher, 2002). Despite 

the referred above, under normal conditions, yeast cells lacking CL retained the capacity to perform 

Figure 5 – The non-bilayer hexagonal structure adopted by CL at the mitochondrial contact sites (scheme from Gonzalvez 
and Gottlieb, 2007). 
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oxidative phosphorylation, albeit at a reduced rate (Jiang et al., 2000). In the IMM, CL interacts strongly 

with cyt c, a mobile electron carrier that mediate transport between complex III and IV (Ott et al., 2002).  

This interaction has been studied in more depth since cyt c detachment has serious implications in 

apoptosis. Other studies reported that CL is required for the activity of some substrate carriers, including 

ANT and PiC (Bisaccia and Palmieri, 1984; Hoffmann et al., 1994). Furthermore, due to exclusive CL 

localization in the mitochondria, it has an important role in mitochondrial structure, governing the 

relationship between mitochondria volume and function (Koshkin and Greenberg, 2002).  

Curiously, it was demonstrated that the effect of CL absence depends on growth conditions, which 

justifies some controversial results on the role of CL in the bioenergetics. When grown in non-fermentable 

carbon sources, the yeast crd1∆ mutant accumulates the precursor lipid PG that can, at least in part, 

compensate the CL loss in some cellular processes. Oppositely, under fermentable conditions (medium 

containing high glucose concentrations), it was demonstrated that the specific activity of the enzyme PGP 

synthase is decreased and the PG levels are not detectable when compared with aerobic conditions 

(Jiang et al., 2000).  

Additionally, CL appears also to be required for protein and phospholipid import, cell wall biogenesis, 

translational regulation of electron transport chain (ETC), aging and apoptosis (Joshi et al., 2009). 

 

2.1.6  The role of cardiolipin in apoptosis  
 

Nowadays it is well established that mitochondria plays a determinant role in apoptosis. The study of 

CL, whose location is exclusive to this organelle, has also demonstrated that it is directly or indirectly 

important for the conduction of the PCD process.  

 

2.1.6.1 Cardiolipin peroxidation  

 

It was reported that in the early stages of apoptosis there is a decrease in the mature CL levels 

simultaneously with an increase of both MLCL and CL that suffer peroxidation (Matsko et al., 2001; 

Sorice et al., 2004).  Until now, there is no information about an increase of MLCL levels in yeast cells 

during apoptosis, however it was shown that CL peroxidation enhances the death process, favouring cyt c 

release (Korytowski et al., 2011). It is known that both CL forms are important in the execution of 

apoptosis but oppositely to the well understood CL hydrolysis event during apoptosis, the process by 

which CL suffer peroxidation has generated some controversy.  
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Under physiological conditions, the process of CL maturation protects, at least in part, the cells 

against oxidative stress due to the deacylation-reacylation cycles. It is known that the leaked electrons 

present at the IMS can easily react with oxygen molecules leading to ROS production, and that the 

respiratory chain complexes stability requires the presence of mature CL at the IMM. So, an important 

consequence of the decrease in CL levels is obviously an accumulation of electrons, due to the inactivity 

of the complexes, which yields an increase in ROS production. Consequently, the location of CL near the 

ROS generation site conjugated with its composition in unsaturated acyl groups make this phospholipid 

more susceptible to the oxidative stress resulting, simultaneously, in CL peroxidation and a decrease in 

oxidative phosphorylation (Paradies et al., 2000; Petrosillo et al., 2001). On the other hand, it was shown 

that CL peroxidation and unbinding from the IMM leads to loss of respiratory chain complexes activity that 

results in an increase of ROS production that can further increase CL peroxidation. So, it is not clear if 

ROS are responsible for CL peroxidation and its decreased levels in the IMM or whether CL peroxidation 

results in an increased ROS production due to loss of respiratory complexes activity and presence of free 

electrons in the IMS (Gonzalvez and Gottlieb, 2007). More recently, it was reported that cyt c may itself 

be responsible for the CL peroxidation. During apoptosis, the partial loss of the interaction between cyt c 

and CL induces the cyt c unfolding leading to exposure of its catalytic domain that results in CL 

peroxidation. Importantly, the peroxidase activity of the CL-cyt c complex depends on unsaturated acyl 

chains of CL once its activity appears to be activated by the presence of H2O2 (Belikova et al., 2006; 

Kagan et al., 2005). The cyt c peroxidase activity has not been addressed in yeast yet. In mammalians, 

CL peroxidation has a relevant role in the apoptotic process since it was shown that CL distribution 

toward the OMM, caused by its peroxidation, could be important for the anchoring of fundamental pro-

apoptotic proteins.  

 

2.1.6.2 Cardiolipin and cytochrome c 

 

Although the physiological levels of CL are essential for the stability of some respiratory chain 

complexes, the loss of CL-cyt c association, due to cyt c role in the execution of apoptosis through 

activation of the caspase cascade, has earned greater visibility. It was demonstrated that either in isolated 

membranes or synthetic vesicles, cyt c binds strongly to CL-rich domains. Firstly, this association 

happens through electrostatic interactions since, at physiological pH, cyt c has the net charge of +8 and 

can bind, through its A-site, to the negative headgroups of CL in the outer leaflet of the IMM. Additionally, 
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cyt c has also a hydrophobic cavity, named the C-site, which allows the interaction with the acyl chains of 

CL. Whereas the A-site is loosely bound to CL, the C-site is tightly bound (Tuominen et al., 2002).  

As described above, it has been proposed that MOMP and the subsequent release of cyt c and other 

apoptogenic factors can be catalyzed by cyt c. In this process, the C-site of cyt c catalyzes CL 

peroxidation and thus cyt c can dissociate from the IMM since it has lower affinity for peroxidized than 

normal CL (Gonzalvez and Gottlieb, 2007). Therefore, catalyzed by cyt c or not, the simultaneous 

increase of CL peroxidation and ROS production, associated to decreased mature CL levels, appear to be 

the promoters of an efficient release of apoptotic proteins. Reinforcing this idea, in cyt c-deficient HeLa 

cells the release of the pro-apoptotic protein Smac/Diablo was inhibited during apoptosis and this 

phenotype was altered when CL peroxidation was induced (Kagan et al., 2005).   

Despite the importance of CL-cyt c association, it is interesting to notice that only around 15% of cyt c 

is linked to the IMM and that less than 5% is associated with CL (Schug and Gottlieb, 2009). 

Over the years, it has been suggested that cyt c release occurs in two steps. The first step involves its 

detachment from CL in the IMM followed by its relocalization in the IMS, and release to the cytosol 

through permeabilization of the OMM (Figure 6) (Ott et al., 2002). In this point of view, the CL-cyt c 

association is of great importance and could possibly function as an important therapeutic target. 

 

2.1.6.3 Cardiolipin as an activating platform for the mitochondrial tBid recruitment 
 

As mentioned above, the CL chemical structure ensures it a hexagonal form that favours its location at 

the contact sites between the IMM and the OMM. After Bid cleavage, its truncated form is translocated 

and interacts with mitochondria specifically at the contact sites, which are rich in CL (Lutter et al., 2001). 

Using yeast isolated mitochondria the CL connection with the cytosol was suggested to mediate the 

recruitment of tBid to mitochondria, and consequently Bax and/or Bak oligomerization and activation that 

results in OMM permeabilization with release of apoptotic factors (Figure 6) (Gonzalvez et al., 2005b; Kim 

et al., 2004). Therefore, tBid functions as a bifunctional molecule: firstly its helix αH6 allows the 

connection with CL destabilizing the mitochondrial structure and function, and then the activation and 

oligomerization of Bax/Bak is achieved by exposure of its BH3 domain (Gonzalvez et al., 2010). It was 

shown that after tBid translocation, independently of Bax or Bak activation, the oxidative phosphorylation 

is inhibited in both mice and yeast isolated mitochondria. In CL-deficient yeast cells, tBid is not able to 

establish connection with the mitochondria, and under these conditions the mitochondrial bioenergetics 

or their complexes activities are not disturbed. This proved that the lack of tBid binding is not caused by 
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the effect of CL deficiency in the respiratory chain and, at the same time, highlighted that tBid binds 

exclusively to mitochondrial membranes that have at least the physiological levels of CL (Gonzalvez et al., 

2005a; Gonzalvez et al., 2005b).  

Unlike mammalian model, in yeast cells tBid does not promote Bax to acquire an active form but 

surprisingly the tBid interaction with mitochondria was increased when it was co-expressed with Bax. At 

the same time, in the presence of Bax-c-myc the expression of tBid enhanced cyt c release mediated by 

this active form of Bax suggesting that tBid in yeast cells, like in mammalians, can be fundamental but 

not absolutely required for Bax-mediated apoptosis in a process in which tBid is not responsible for the 

increased amounts of Bax bound to the mitochondria (Priault et al., 2003).  

 

 

 

 

 

 

 

 

 

In yeast cells, some doubts were raised about the requirement of CL for Bax activation. It was shown 

by heterologous expression of Bax in wild-type and crd1∆ yeast strains that CL is not only unnecessary as 

also its absence favours Bax-mediated cyt c release (Iverson et al., 2004). More recently, it was reported 

that Bax insertion was inhibited in CL-deficient yeast mitochondria growing under fermentable conditions 

(Lucken-Ardjomande et al., 2008). Although these two studies have been done under different growth 

conditions, it was hypothesized that in Iverson and colleagues work, the treatment of recombinant Bax 

with a detergent that promotes artificial Bax oligomerization probably prevented the evaluation of the 

dependence of Bax activation on CL (Lucken-Ardjomande et al., 2008). 

In animal cells, it was shown that tBid has the same affinity for MLCL as for mature CL, supporting 

the hypothesis of CL degradation in apoptotic cells and MLCL localization at the contact sites (Esposti et 

Figure 6 – After apoptosis induction, the increased production of ROS can lead to CL peroxidation and translocation to the 
contact sites, where it acts like an activating platform for the tBid recruitment. The detachment of cyt c from CL 
simultaneously to Bax recruitment to the OMM induced by tBid anchorage lead to MOMP with release of apoptotic factors, 
such as cyt c and Smac/Diablo (Scheme from Orrenius and Zhivotovsky, 2005). 
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al., 2003; Liu et al., 2005; Sorice et al., 2004). Additionally, it was reported that tBid binding, Bax 

recruitment and cyt c release are increased by the presence of hydroperoxide CL species at the OMM 

either in yeast or mice cells (Gonzalvez et al., 2010; Korytowski et al., 2011). In this last model, CL 

peroxidation and tBid association contributes to mitochondrial morphology changes favouring the process 

of PCD, namely through cyt c repositioning in the IMS (Epand et al., 2002; Kim et al., 2004). In the same 

way, in animal cells, tBid appears to regulate this process through its involvement in the formation of 

protein complexes that favour both the mitochondrial cristae remodeling and the formation of 

mitochondrial fission sites (Garofalo et al., 2005). Therefore, some authors proposed that the tBid-CL 

association leads primarily to cristae remodeling as well as inhibition of oxidative phosphorylation, 

followed by activation of the Bcl-2 pro-apoptotic proteins and MOMP (Gonzalvez and Gottlieb, 2007).  

 

2.1.6.4 Cardiolipin as a new model to explain caspase-8 activation  

 

During apoptosis, CL clustering acts like an apoptotic signaling platform in the OMM not only for tBid 

but also for caspase-8. It was reported that in the mitochondrial mediated apoptosis, CL at the contact 

sites has a role in caspase-8 recruitment, oligomerization and processing resulting in its activation and 

amplification of the apoptotic signal. It was shown that caspase-8 accumulation at the mitochondria is 

critical for the release of the apoptotic factors from the IMS (Gonzalvez et al., 2008; Scorrano, 2008). 

However, it is not clear if procaspase-8 auto-processing happens before activated caspase-8 insertion into 

the OMM or if procaspase-8 is activated by proximity after OMM insertion to generate its active form 

(Zhang and Saghatelian, 2013). Additionally, the mechanism whereby caspase-8 interacts with CL in 

mitochondria remains unclear. It was demonstrated that there is colocalization between tBid and 

caspase-8 in the CL-rich domains at the contact sites. Gonzalvez and colleagues in 2008 hypothesized 

that this protease translocation happens together with its substrate Bid, and that the interaction between 

caspase-8 and CL can be stabilized through its insertion in the unsaturated acyl chains of CL, resulting in 

an incomplete insertion on the OMM. However, after Fas apoptotic induction in Bid knockdown cells, 

caspase-8 translocation was not affected (Gonzalvez et al., 2008). Other authors have previously shown 

that the interaction of caspase-8 with mitochondria is mediated by other proteins (Stegh et al., 2002). 

Therefore, it was proposed that additionally to a protein-protein interaction role in caspase-8 translocation, 

like for tBid, the protein accumulation is CL-dependent (Gonzalvez et al., 2008). 
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The order in which the events mentioned above occur is not yet well understood and many doubts 

remain to be clarified. Recently, the integration of the different evidences from the literature described 

above led to the proposal that in the mitochondrial-mediated apoptotic pathway, procaspase-8 is 

translocated and accumulated in the mitochondrial CL-rich contact sites, with consequent autoprocessing 

to active caspase-8. Then, caspase-8 interacts and cleaves Bid in its truncated form. At the same time, 

tBid is responsible for Bax/Bak recruitment and activation, and the increased levels of produced ROS 

leads to CL peroxidation. Consequently, CL is translocated to the OMM simultaneously promoting the 

detachment of cyt c that is then released through the pore formed by the Bcl-2 pro-apoptotic proteins in 

the OMM (Figure 7) (Zhang and Saghatelian, 2013). 

 

 

 

 

 

 

 

 

 

 

 

2.1.6.5 Requirement of cardiolipin for the functionality of PTP components  

 

The high sequence and functional similarity between the human ANT and the yeast AAC proteins 

provided the use of the yeast as a cell model to study the CL-ADP/ATP carrier association. In yeast cells, 

it was demonstrated that CL is important for AAC assembly, structure, function and interaction with other 

proteins (Claypool, 2009; Claypool et al., 2008b; Jiang et al., 2000). Nevertheless, yeast cells lacking CL 

are able to grow in respiratory conditions oppositely to aac2∆ mutants indicating that this translocator 

 

 
 

 

 

 

 
 

 

 

 

Figure 7 – The CL requirement for the sequential order of events in the mitochondrial-mediated apoptotic pathway. During 
apoptosis, CL localization in the contact sites is fundamental for caspase-8 accumulation and activation, as for tBid 
generation. The simultaneous ROS production, CL peroxidation and cyt c repositioning in the IMS favour the release of 
apoptotic factors through Bax/Bak pores at the OMM, whose formation was enhanced by tBid and translocation of peroxided 
CL (Scheme adapted from Zhang and Saghatelian, 2013). 
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does not absolutely depends on the presence of CL or that PG increased levels can substitute the role of 

CL in AAC function (Claypool, 2009). 

During mammalian apoptosis, it was reported that tBid inhibits the ADP-stimulated respiration by 

indirect inhibition of the ANT activity, mediated by CL reorganization into the mitochondria (Gonzalvez et 

al., 2005b). The CL-AAC interaction appears also to be involved in the PTP opening. It was proposed that 

the Ca2+ taken up into the matrix has high affinity to the headgroups of CL tightly bound to the AAC. 

Therefore, during apoptosis the increase of Ca2+ concentration in the mitochondrial matrix was suggested 

to displace CL from AAC exposing the ion positive charges at the matrix side of the AAC. So, the removal 

of CL can destabilize the AAC rearrangement due to electrostatic repulsion leading to the PTP opening 

(Figure 8) (Klingenberg, 2009).  

 

 

 

 

 

 

Although not so well described, CL has also been attributed a role in the regulation of the PiC activity 

through a direct interaction. Curiously, AAC and PiC are absolutely indispensable for oxidative 

phosphorylation where they provide the substrates for the ATP synthase whose oligomerization is not 

affected in yeast mitochondria lacking CL (Claypool, 2009; Klingenberg, 2009). 

The relationship between CL and VDAC has been less emphasized since this channel is not on the 

IMM. However, it was shown that VDAC is localized predominantly at the contact sites where it 

colocalizes with CL (Crompton, 1999). 

A study done with liposomes proved that PG, phosphatidylinositol (PI), PS and CL interact with VDAC, 

a protein with a positive charge at neutral pH. Whereas the other phospholipids induce VDAC 

oligomerization, CL disrupts this process. This happens probably due to different hydrophobic structures 

of these phospholipids since CL has four rather than two acyl chains. Interestingly, when cells are 

growing in respiratory conditions, the decrease in CL levels and the increase in PG during apoptosis 

favour VDAC oligomerization at the contact sites. On the other hand, in normal conditions (non-apoptotic), 

Figure 8 – Schematic representation of calcium role in the PTP opening through its interaction with cardiolipin and 
subsequent destabilization of CL-AAC interaction and irreversible AAC opening (Scheme from Klingenberg, 2009). 
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CL interacts with VDAC in a competitive way with PG not allowing VDAC oligomerization whose increase is 

closely associated to apoptosis (Betaneli et al., 2012). So, the asymmetry of VDAC gating, an intrinsic 

property of this channel, as well as its oligomeric status can be either catalyzed or suppressed by the 

membrane lipid composition. 

Altogether these results show that CL is a central intermediate in the mitochondrial apoptotic program, 

controlling this process at different levels. Therefore, CL is a potentially interesting target for therapeutical 

intervention in diseases in which cell death is deregulated, either in cancer or degenerative diseases. The 

considerable amount of work done using yeast as a model system reinforces its application to elucidate 

and better characterize the molecular mechanisms of action of CL during apoptosis for subsequent 

analysis and validation in higher eukaryotes. 

 

2.1.7  Phosphatidylserine – biosynthesis, intracellular localization and role in apoptosis 

 

 Phosphatidylserine is a negatively charged phospholipid that contains two acyl chains linked to a 

glycerol moiety. Like in CL, the PS acyl chains composition can present some differences between cell 

types and organelles. However, in almost all cases, saturated fatty acids of 16 or more carbons are linked 

to the sn-1 position, whereas unsaturated fatty acids are found at the sn-2 position of the glycerol (Pike et 

al., 2002). Undoubtedly the feature that allows distinguishing PS from other phospholipids is the linkage 

of serine at the phosphate on position sn-3. 

In yeast, the PS biosynthetic pathway involves the association of serine to CDP-DAG, where the 

preceding process of synthesis is common to the one described for CL (Steiner and Lester, 1972).  This 

process appears to be catalyzed by Cho1p, yeast PS synthase, since CHO1 deletion significantly reduces 

the cell levels of PS (Atkinson et al., 1980). On the other hand, in mammalian cells PS synthesis can 

imply two different pathways. In both cases the CDP-DAG molecule is not involved and PS is produced by 

exchanging the headgroup of PC or PE by serine (Figure 9) (Vance, 2008). At the beginning, the PS 

synthase localization within the animal cell was not clear, but today it is known that it resides in the 

MAMs, where other phospholipid catalytic enzymes are also present (Saito et al., 1996). In yeast cells, 

although not completely proved, it is expected that PS synthase has a similar localization (Zinser et al., 

1991). To reinforce this hypothesis, after PS synthesis in the ER, it is decarboxylated in mitochondria 

leading to PE formation, providing a convenient marker of the transfer of PS from ER to mitochondria. PS 
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is surely a key phospholipid within the cell since after its conversion into PE, this last suffers methylation 

to generate PC.  

PS has an asymmetric transbilayer distribution as it predominates at the inner leaflet of the plasma 

membrane. Nevertheless, it can also be present at different ratios in the ER, Golgi complex, endosomes 

and mitochondria (Leventis and Grinstein, 2010). Although PS has low abundance in biological 

membranes, its unique physical and biochemical properties gives it a physiological importance.  

In animal cells, the PS externalization with translocation to the outer leaflet of the plasma membrane 

after an apoptotic stimulus, mediated by some already identified proteins, allows the recognition of the 

apoptotic cells for subsequent engulfment by phagocytic cells (Balasubramanian et al., 2007). In yeast, 

oppositely to the mammalian cells, PS is greatly enriched in the plasma membrane comprising 34% of 

the total phospholipids (Vance and Steenbergen, 2005). The biological significance of this 

representativeness as well as the role of PS externalization during apoptosis in yeast are not yet known 

although in both yeast and animal cells, this phenomenon has been a hallmark of this type of cell death 

(Madeo et al., 1997).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 – The crosstalk between PS, PE and PC metabolism in yeast and mammalian cells (Scheme from Leventis and 
Grinstein, 2010). 
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2.2 Main aims and study overview 

 

As aforementioned, a genome-wide screening in yeast identified nonessential genes whose deletion is 

associated with resistance or sensitivity to acetic acid-induced cell death (Sousa et al., 2013). The 

information provided by this study revealed a considerable number of genes coding for proteins with 

mitochondrial function, and confirmed the indubitable role of mitochondria in the apoptotic process 

induced by acetic acid in yeast. Among the Euroscarf collection of knockout mutants used, the mutant 

strains crd1∆, taz1∆, ups1∆, mdm10∆ and mdm12∆, that exhibit decreased levels of CL due to the 

lack of enzymes involved in different steps of CL synthesis or of its intermediates, or to the absence of 

components of the ERMES, and the mutant strain cho1∆, lacking phosphatidylserine synthase, displayed 

a phenotype. This is in accordance with exclusive localization of CL in mitochondria and the recognized 

role of this phospholipid and of PS in apoptosis and its regulation, as reviewed above. In yeast cells, apart 

from studies on the heterologous expression of mammalian proteins of the Bcl-2 family, there is no 

information about the CL role in the mitochondrial-mediated apoptotic pathway. Though PS 

externalization is clearly a hallmark of apoptosis in both animal and yeast cells, the relevance of this 

event was not yet clarified in yeast. Therefore, we aimed to further understand the role of CL as well of 

the effect of inhibition of PS externalization in the apoptotic-like PCD induced by acetic acid. To this end 

we used different mutant strains that exhibit decreased levels of CL (crd1∆, taz1∆, ups1∆, mdm10∆, 

mdm12∆) or of PS (cho1∆). In particular the ups1∆ mutant, which displays reduced levels of the CL 

biosynthetic intermediate PA and is thus affected in CL levels, and the mdm10∆ and mdm12∆ mutants, 

affected in the ERMES complex engaged in the connection of the ER with mitochondria will provide 

additional insights on the role of CL in apoptosis.  

This work was accomplished through an integrated approach involving tools and methodologies 

already established in the lab, focusing on the characterization of cell death markers for selected 

mutants.  
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2.3 Material and Methods 
 

2.3.1  Yeast strains and plasmids  

 

The wild-type strain of Saccharomyces cerevisiae used in this study was BY4741 (MATa his3Δ1 

leu2Δ0 met15Δ0 ura3Δ0). This strain and all mutants studied belong to the EUROSCARF knockout 

mutant collection (EUROSCARF, Frankfurt, Germany) and were constructed by replacing the non-essential 

open reading frame of the respective gene by the KanMX4 cassette in the wild-type. 

To monitor the effect of acetic acid in the mitochondrial morphology and degradation, a new plasmid 

containing a sequence encoding a matrix-targeted GFP protein (mtGFP) was constructed. Briefly, both the 

plasmids YX232-mtGFP (TRP1; Westermann and Neupert, 2000) and YX242 (LEU2; Rosenblum et al., 

1998) were digested with the restriction enzymes EcoRI and XhoI  at 37 ˚C overnight. After extraction of 

DNA fragments of interest from the agarose gel (GenElute Extraction Kit, Sigma-Aldrich), the ligation 

between the mtGFP sequence and the YX242 plasmid was performed during two hours at the room 

temperature. Thereafter, Escherichia coli XL1 Blue competent cells were transformed with the ligation 

product and grown, in LB medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl and 2% 

(w/v) agar) supplemented with 100 μg/mL of Ampicillin (Formedium), at 37 ˚C overnight. The 

effectiveness of this transformation was assessed by colony PCR using the primers pYX forward 

(ATCTATAACTACAAAAAACACATACAGGAATTCGGGCCCATGACA) and the GFP reverse 

(AGCGTCGACGTTACCTTATTTGTACAATTCATCCATATCCATGGG). The same colonies were simultaneously 

grown in LB plates and when positives, they were grown overnight in LB liquid medium (with the before 

mentioned Ampicillin concentration) and the plasmid pYX242-mtGFP was purified using a Miniprep kit 

(GenElute Plasmid Miniprep kit, Sigma-Aldrich) according to the manufacturer’s instructions. Finally, the 

correct construction of the plasmid was confirmed by digestion, with the same restriction enzymes, in an 

agarose gel using both pYX242 (empty vector) and pYX232-mtGFP as control. 

The yeast strains transformation with the constructed pYX242-mtGFP was carried out essentially as 

previously described in the Lithium acetate/Single Stranded carrier DNA/Polyethylene Glycol (PEG) 

method (Gietz and Woods, 2006), with some differences in the events order. A thermal shock was done 

to increase the process efficiency, with the sequential events: 30 minutes at 30 ˚C, 200 rpm; 30 

minutes in a bath at 42 ˚C and one hour in the ice. After cell growth in a selective medium lacking 

leucine, the effectiveness of transformation was evaluated through visualization and counting of GFP-

positive cells in the fluorescence microscope and flow cytometer, respectively.   
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2.3.2  Growth conditions and cell death assays 

 

Yeast cells were maintained and grown in rich medium (YEPD; 0.5% (w/v) yeast extract, 1% (w/v) 

peptone, 2% (w/v) glucose). Exceptionally, strains transformed with the plasmid were selected and grown 

in synthetic complete media (SC; 0.17% (w/v) yeast nitrogen base without amino acids and ammonium 

sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose, 0.2% (w/v) Drop-out mix, plus 0.01% (w/v) 

uracil, adenine, histidine, lysine and tryptophan) lacking leucine.  

For cell death assays induced by acetic acid, cells were grown overnight aerobically in YEPD medium 

or SC medium, for the transformants, until exponential phase (OD640nm=0.5-0.7) in an orbital shaker at 

200 rpm, 30 ˚C. Then, cells were harvest by centrifugation, suspended in YEPD at pH 3.0 (set with HCl) 

to a final concentration of 2x107cell/mL and treated with 120 mM of acetic acid (Panreac) for up to 200 

minutes at 30 °C.  Samples were rigorously collected at specific time points (0, 60, 120, 180 and 200 

minutes). For the cell survival assays, in these times four 1:10 serial dilutions in deionized sterile water 

were done and seven drops (30 μL each) of the last dilution were spotted on YEPD plates. The colony 

forming units (CFU) were counted after 48 hours of incubation at 30 ˚C. Cell viability was calculated over 

the time as percentage of CFU in relation to the time zero (considered 100%). 

 

2.3.3  Analysis of apoptotic markers 

 

2.3.3.1 Assessment of the plasma membrane integrity / PI staining 

 

The plasma membrane integrity was assessed in untreated and acetic acid-treated cells by staining 

with the impermeable dye propidium iodide (PI, Sigma-Aldrich). Therefore, wild-type and mutant cells 

before and along the treatment, at the same time points used in the survival assay, were harvest, washed 

and suspended in phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and 

1.8 mM KH2PO4, pH adjusted to 7.4) at the final concentration of 106 cell/mL. The yeast cells were 

incubated at room temperature in the dark during 10 minutes with 1 μg/mL of PI.  

Cells stained were analyzed by flow cytometry where the monoparametric detection of PI fluorescence 

was performed using FL-4 channel (488/675 nm). PI is an intercalating agent that binds to the nuclei 

acids in cells whose plasma membrane integrity was lost. Thus, cells with red fluorescence were 

considered to exhibit plasma membrane disruption and to be non-viable. 
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2.3.3.2 Mitochondrial membrane potential 

 

To monitor the acetic acid effect on the mitochondrial membrane potential, cells were stained with the 

green fluorescent dye 3,3'dihexyloxacarbocyanine iodide (DiOC6(3), Molecular Probes). At the initial time 

and throughout the treatment, cells were collected, washed and suspended in the DiOC6(3) buffer (10 

mM MES (2-(N-morpholino) ethanesulfonic acid), 0.1 mM MgCl2, 2% (w/v) glucose, pH adjusted to 6.0 

with Ca(OH)2) at the final concentration of 106 cell/mL. Then, cells were incubated in the dark with 1 nM 

DiOC6(3) for 30 minutes at 30 ˚C. Additionally, 10 minutes before cytometer analysis, PI was also added 

at the concentration of 1 μg/mL. 

DiOC6(3) is a cationic, lipophilic and permeable molecule that at the concentration and incubation 

time used binds to the mitochondrial membrane, where it accumulates according with the electrical 

potential. 

 In the flow cytometer, the detection of DiOC6(3) and PI was performed using the FL-1 (488/525 nm) 

and FL-4 (488/675 nm) channels, respectively. A monoparametric histogram [ratio (FL-1 area (log)/FS 

(log))] was performed in order to eliminate variations in fluorescence due to cell size. Furthermore, for the 

analysis of DiOC6(3) stained cells only PI negative cells were considered (through the used of a gate 

limited to these cells), analyzing in this way, the acetic acid effect in the mitochondrial membrane 

potential only in cells that maintain plasma membrane integrity. 

 

2.3.3.3 ROS production 

 

To assess the ROS production the probe dihydroethidium (DHE, Sigma-Aldrich) was applied. For flow 

cytometer analysis, untreated and acetic acid-treated cells were harvest, washed and suspended in PBS 

at the final concentration of 106 cell/mL. Subsequently, cells were incubated at room temperature in the 

dark for 40 minutes with 2 μg/mL DHE.  

The red fluorescence in cells stained with DHE is an indicator of superoxide anion production. DHE, 

that is a chemically reduced form of ethidium bromide, displays a blue fluorescence in cell cytoplasm. In 

the presence of superoxide anion, DHE suffers oxidation and its ethidium form intercalates the cell’s DNA 

staining the nucleus with a bright red fluorescence. Therefore, monoparametric detection of DHE was 

performed using the FL-4 channel (488/675 nm) and cells with red fluorescence were considered to 

have accumulated superoxide anions. 
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2.3.3.4 Mitochondrial degradation 

 

To monitor the mitochondrial degradation, wild-type and mutant strains were transformed with the 

plasmid YX242 encoding a matrix-targeted GFP protein (pYX242-mtGFP). Such as in the assessment of 

the apoptotic markers exposed before, cells exactly at the same time points were collected and 

suspended in PBS at the final concentration of 106 cell/mL. Detection of GFP was assessed using the 

channel FL-1 (488/525 nm) and a biparametric histogram [ratio (FL-1 area (log)/FS (log)) x GFP 

fluorescence (FL-1 Peak)] was performed in order to eliminate variations in fluorescence due to cell size 

and to discriminate between the cells with intense spots of mitochondrial-GFP and cytosolic-GFP resultant 

from mitochondrial degradation.  

The mitochondria degradation was calculated through the decrease of the percentage of GFP-positive 

cells over the time in relation to the percentage exhibited, individually for each strain, at time zero 

(considered 100%). 

 

2.3.4  Flow cytometry 

 

Flow cytometry analysis was performed in an Epics® XL-MCL™ (Beckman COULTER®) flow cytometer, 

equipped with an argon-ion laser emitting a 488-nm beam at 15 mW. The population of cells displayed a 

high homogeneity and frequency was gated in a histogram of Side Scatter (SS) x Forward Scatter (FS). 

Twenty thousand cells were analyzed per sample and experiments were independently reproduced at 

least three times. Data were analyzed in Flowing Software 2.   

 

2.3.5  Fluorescence Microscopy 

 

To assess to the mitochondrial morphology, cells transformed with the plasmid YX242-mtGFP (500 

μL) were harvest by centrifugation before and after 10 minutes of acetic acid treatment and suspended in 

PBS at a final concentration of 107 cell/mL. Cells were visualized and images acquired in a Leica 

Microsystems DM-5000B epifluorescence microscope coupled to a Leica DCF350FX digital camera.   
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2.4 Results 
 

Nowadays, the role of mitochondria in apoptosis is unquestionable although there are still some 

mechanisms to clarify. Therefore, it was aimed to study the role of CL, a phospholipid exclusively present 

in mitochondria, in the acetic acid-induced apoptotic PCD. For this purpose, we used yeast strains 

deleted in genes with a well-established role in the CL biosynthetic pathway, such as CRD1 (CL synthase), 

TAZ1 (CL remodeling), UPS1 (responsible for PA translocation to the IMM) and others that we speculated 

that could also be important for CL synthesis, such as MDM10 and MDM12, and whose deletion could 

also lead to decreased CL levels. At the same time, we intended to study the effect of acetic acid in the 

cho1∆ mutant, lacking the enzyme responsible for PS synthesis, in order to better characterize the 

involvement of PS in acetic acid-induced PCD. 

 The effect of acetic acid on all the mutants was initially evaluated on yeast survival by treatment of 

the cells with 120 mM of this acid for 200 minutes (Figure 10). The results showed that all deleted 

strains are resistant to acetic acid when compared to the wild-type (BY4741), although for crd1∆ this was 

only observed for the 60 minutes time point. A similar situation was observed for ups1∆ mutant that for 

the last two time points did not differed from the wild-type strain. taz1∆ and mdm10∆ mutants strains 

revealed the most resistant of the tested strains maintaining a cell survival of 54.83±5.9% and 

64.97±4.5%, respectively, after 200 minutes. The deletion of the genes CHO1 and MDM12 led to similar 

survival percentages throughout the treatment, presenting approximately 20% of survival at 200 minutes.  

 

 

Figure 10 - Relative cell survival, determined by CFU counts on YEPDA plates, of exponential phase yeast cells treated with 
120 mM of acetic acid during 200 minutes. The number of colonies obtained, individually for each strain, was normalized to 
the time zero, which was considered 100%. Reported values are the mean of at least three independent experiments with 
standard deviation. A two-way ANOVA test was employed to compare the survival between wild-type (BY4741) and deleted 
strains, for each time of treatment. Statistical analysis: *p<0,05, **p<0,01, ***p<0,001 and ****p<0,0001.   
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To better characterize these phenotypes, the plasma membrane integrity was assessed by flow 

cytometer analysis of PI stained cells (Figure 11). In general, the mutant strains presented lower 

percentages of PI-positive cell along treatment, consistent with their higher resistance. However, there 

was not a strict correlation between the loss of CFU and increase of PI-positive cells. For example, in the 

case of cho1∆ mutant, although this mutant revealed as one of the most resistant strains evaluated by 

CFU counts, after 120 minutes of treatment with acetic acid, the percentage of PI-positive cells was 

higher in this strain than in wild-type, and it still increased considerably for the two last time, being the 

highest after the wild-type strain. A similar situation was observed for taz1∆ mutant. On the other hand, 

crd1∆ and ups1∆ mutants, although being only slightly more resistant than the wild-type when evaluated 

by CFU, were able to retain the membrane integrity much more efficiently, reaching the end of the assay 

only with 8.03±4.04% and 4.19±2.5% of PI-positive cells, respectively.  

 

 

 

 

Figure 11 - Percentage of cells treated with 120 mM of acetic acid during 200 minutes displaying loss of plasma membrane 
integrity. Yeast cells at exponential phase were, for each time point, harvest and stained with PI and the percentage of cells 
incorporating this dye was evaluated by flow cytometry. Reported values are the mean of at least three independent 
experiments with standard deviation. A two-way ANOVA test was employed to compare the percentage of PI-positive cells 
between wild-type (BY4741) and deleted strains, for each time of treatment. Statistical analysis: *p<0,05, **p<0,01, 
***p<0,001 and ****p<0,0001.    
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To monitor the effect of acetic acid on the mitochondrial membrane potential, cells were collected at 

the same time points, stained with DioC6(3)  and analyzed by flow cytometry (Figure 12). Differently from 

the other probes analyzed, in this assay it was not evaluated the percentage of stained cells but instead 

the mean of the fluorescence intensity, corrected for the relative size of the cells. The results showed that 

the wild-type strain suffers a hyperpolarization at 60 minutes followed by a loss of the mitochondrial 

membrane potential that is gradual until the end of the treatment, as previously described (Ludovico et 

al., 2002). Generically all mutant strains exhibited a constant mitochondrial membrane potential over 

treatment time, although some of these have a slight increase that may indicate some perturbation 

caused by the treatment. During the acetic acid treatment, ups1∆ mutant displayed the lowest 

membrane potential when compared with the wild-type. In taz1∆, cho1∆ and mdm12∆ the 

mitochondrial membrane potential appears to increase initially remaining thereafter almost unchanged. 

On the other hand, crd1∆ and mdm10∆ strains have a slight increase to 180 minutes followed by a 

significant decrease.  

 
 

 

 

Figure 12 – Changes of the mitochondrial membrane potential (relative fluorescence values) in yeast strains treated with 120 
mM of acetic acid during 200 minutes. Cells, at each time point, were harvest, stained with DioC6(3) and after incubation 
analyzed by flow cytometry.  The values obtained were, for each strain, normalized to the time zero. Reported values are the 
mean of at least three independent experiments. 
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To address the intracellular levels of ROS, cells under the same conditions were labeled with DHE. At 

the initial time point, the superoxide levels inside the cells did not vary significantly among strains (Figure 

13). Subsequently, it was observed that BY4741, taz1∆ and mdm12∆ present an early increase in the 

superoxide anion accumulation, which was evident for almost 100% of the cells in the two last time 

points. Although with a delay at the initial time points, the same was verified for crd1∆ mutant. cho1∆, 

ups1∆ and mdm10∆ mutants have lower ROS levels than BY4741, even at the final of the treatment.   

 

To examine the effect of acetic acid in the mitochondrial morphology and degradation, cells were 

transformed with a plasmid containing a sequence that encodes a matrix target protein coupled to GFP 

(mtGFP). To achieve this, we constructed a new plasmid with the appropriate selective marker for these 

S. cerevisiae strains that allowed maintaining the growth and treatment conditions. So, the purpose of 

this construction was to change the insert coding for mtGFP protein from YX232 plasmid to YX242 

plasmid that had the selective marker of interest (Figure 14A).  Both the plasmids YX232-mtGFP (TRP1) 

and YX242 (LEU2) were digested with the restriction enzymes EcoRI and XhoI. Thereafter the fragments 

of interest were extracted from the agarose gel at the expected molecular weights (Figure 14B) and the 

ligation was promoted. E. coli competent cells were transformed with the resulting product and the 

effectiveness of this process was assessed by colony PCR using two primers that flanks the mtGFP 

Figure 13 - Percentage of yeast cells displaying superoxide anion accumulation. During the treatment with 120 mM of acetic 
acid, exponential yeast cells were harvest and stained with DHE with subsequent analyzes by flow cytometry. Reported 
values are the mean of at least three independent experiments with standard deviation. A two-way ANOVA test was employed 
to compare the percentage of DHE-positive cells between wild-type (BY4741) and deleted strains, for each time point. 
Statistical analysis: *p<0,05, **p<0,01, ***p<0,001 and ****p<0,0001.   
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sequence (Figure 14C). After plasmid purification from the positive E. coli colony, the construction was 

confirmed by digestion (Figure 14D). Once validated, the yeast strains were transformed with the new 

plasmid. After construction of all the strains carrying the plasmid expressing mtGFP, flow cytometry 

analysis allowed to evaluate the transformation efficiency (not shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 It has been previously shown that acetic acid can lead to a mitochondrial morphology change from a 

tubular network to a punctate morphology that subsequently can be degraded by vacuolar proteases, like 

Pep4p (Pereira et al., 2010). Therefore, we evaluated the changes in the mitochondrial morphology by 

fluorescence microscopy and its degradation by the decrease of GFP-positive cells in the flow cytometer.  

In this study, it was observed that after acetic acid treatment, the taz1∆ mutant strain exhibited a 

substantial loss of the number of GFP-positive cells when compared with the wild-type strain. However, 

both strains displayed less than 2% of GFP-positive cells after 200 minutes of treatment. Although at 120 

minutes cho1∆ exhibited a significant higher percentage of cells without mitochondrial degradation, for 

higher treatment times it did not differ from the crd1∆, mdm10∆ and mdm12∆ mutants. Curiously, 

Figure 14 – Schematic representation of the most important steps for pYX242-mtGFP construction. (A) The purpose was to 
insert the mtGFP sequence of the YX232 plasmid in pYX242 that has leucine as selective marker. (B) Both plasmids were 
digested and the insert (1) and pYX242 (2) were extracted from an agarose gel. (C) After ligation, E. coli cells were 
transformed with the product and the positive colonies assessed by colony PCR, using at the same time a positive (pYX232-
mtGFP) and negative (pYX242) control. (D) After plasmid purification of the positive colony (number 10), the right 
construction was confirmed by digestion comparing with the pYX232-mtGFP (1) and pYX242 (2), having the new 
construction, as expected, (3) an insert with same molecular weight of 1, and plasmid like 2.  
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ups1∆ deleted strain, that displayed the lowest production of superoxide anions, exhibited the highest 

number of GFP-positive cells in all time points of the treatment (Figure 15).    

 

Analysis of the transformed strains by fluorescence microscopy showed that acetic acid had a fast 

effect on the mitochondria morphology (after 10 minutes). In the wild-type, the clearly defined 

mitochondrial network in cells without treatment is changed to a punctate form after acetic acid 

treatment. The same happened for crd1∆ and taz1∆ mutants, although at the beginning they presented 

a not so well-defined network, when compared with the wild-type, which is associated with clustered 

forms. Surprisingly, cho1∆ presented the greatest number of mitochondrial networks that is equally 

fragmented in many punctate forms after treatment. Oppositely, ups1∆ displays a punctate form before 

the treatment, with few and big rounded forms that, after acetic acid, are converted into a high number of 

small units that appears clustered. On the other hand, mdm10∆ and mdm12∆ mutant strains present 

among them, before and after the death stimulus, similar profiles characterized by elongated structures 

that turned into few and large rounded structures along treatment (Figure 16). 

 

Figure 15 – Exponential yeast cells transformed with the plasmid YX242-mtGFP were treated with 120 mM of acetic acid 
during 200 minutes. At each time point, cells were harvest and the percentage of GFP-positive cells monitored by flow 
cytometry, in which the fluorescence at the initial time, for each strain, was considered 100%. In this assay, the decrease of 
the percentage of GFP-positive cells was assumed as mitochondrial degradation. Reported values are the mean of at least 
three independent experiments with standard deviation. A two-way ANOVA test was employed to compare the percentage of 
GFP-positive cells between wild-type (BY4741) and deleted strains, for each time of treatment. Statistical analysis: *p<0,05, 
**p<0,01, ***p<0,001 and ****p<0,0001.   
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Figure 16 - Analysis of mitochondrial morphology in exponential yeast cells transformed with the plasmid YX242-mtGFP. Cells 
were visualized through a fluorescence microscopy at time zero and after 10 minutes of acetic acid treatment (120 mM). 
Pictures collected are representative of the results obtained in at least three independent experiments. Bar, 7.5μm 
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2.5 Discussion 

 

Once the occurrence of PCD in the yeast S. cerevisiae was established, this cellular model has been 

extensively used to investigate the mechanisms of PCD in animal cells that have not yet been addressed 

or completely understood. In both models, the mitochondrial mediated-apoptotic pathway has been 

demonstrated. Convinced that yeast may further contribute to highlight the mitochondria involvement in 

this process, the main goal of this thesis was to study the role of selected genes, which code for 

mitochondrial proteins directly or indirectly involved in the biosynthesis of the phospholipids CL and PS, 

in acetic acid-induced apoptotic cell death. Indeed the reduced information about the function of 

phospholipids in the yeast apoptotic-like PCD, prompt us to characterize this process of cell death in 

mutants with altered phospholipid profiles, in particular with reduced levels of CL and PS. 

In animal cells, it was demonstrated that CL is surely fundamental to trigger apoptosis. Besides its 

interaction with cyt c in the IMM, the peroxidation and/or degradation that occur during apoptosis favour 

the mitochondrial recruitment and activation of apoptotic molecules, such as tBid, caspase-8 and 

Bax/Bak, which finally lead to MOMP and release of mitochondrial proteins with apoptotic functions. 

The relevance of the present study is stressed by the absence of information on the role of CL in the 

yeast apoptotic-like PCD. We found that inhibition of CL synthesis, through CRD1 deletion, lead to a 

survival percentage similar to that of wild-type strain. This suggests that, oppositely to the well-established 

role of CL in animal apoptosis, this phospholipid is not fundamental to trigger apoptosis in acetic acid-

yeast treated cells. As aforementioned, it was reported that the yeast crd1∆ mutant, when grown in non-

fermentable carbon sources, accumulates the precursor lipid PG that can, at least in part, compensate 

the effect of CL loss in some cellular processes, namely apoptosis. Oppositely, under fermentable 

conditions the specific activity of the enzyme PGP synthase is decreased, and the PG levels are not 

detectable when compared with aerobic conditions (Jiang et al., 2000). In our study conditions, cells 

were grown under a high glucose concentration (fermentative metabolism), and it is therefore expectable 

that the decreased levels of CL in the crd1∆ mutant were not compensated. However, it was never 

reported, in yeast or animal cells, the effect of acetic acid in the relative levels of phospholipids inside the 

cell. So, under our study conditions, the hypothesis that another phospholipid can compensate the 

decreased CL levels inside the cells, and consequently its role in apoptosis, cannot be ruled out. 

Curiously, during acetic acid treatment, in the crd1∆ mutant, the loss of the plasma membrane integrity 

and ROS accumulation were delayed when compared with the wild-type. Furthermore, as described in 
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other studies performed in yeast cells (Jiang et al., 2000), crd1∆ strain presented a mitochondrial 

membrane potential lower than the wild-type during acetic acid treatment. In addition, in accordance with 

animal cells with RNA interference (RNAi) silenced CL synthase (Choi et al., 2007), we found that CL is 

required for the maintenance of the mitochondrial structure, even in cells without treatment. Altogether 

these results suggest that, even in the presence of altered levels of some phospholipids (e.g. PG) that 

may assure an identical cell survival of crd1∆ and wild-type, the physiological consequences of CL loss 

cannot be completely restored. Oppositely to our study, it was reported that there is no mitochondrial 

morphology changes in a crd1∆ yeast mutant with increased levels of PG (Chang et al., 1998a). 

Therefore, our results appear to indicate that CL deceased levels are not compensated by altered levels of 

other phospholipids and that instead, under acetic acid treatment, CL is not fundamental to trigger 

apoptosis. 

As previously mentioned, it has been described that CL after being synthesized by Crd1p undergoes a 

process of maturation triggered by Taz1p whose relevance was underlined after the discovery of its 

involvement in the BTHS. When this transacylase is deleted there is no synthesis of mature CL and at the 

same time, the MLCL levels increase inside the cell. In this study, it was evaluated the response of taz1∆ 

mutant to acetic acid inducing apoptotic conditions in order to understand the role of CL remodeling and 

the consequence of increased MLCL levels in this process of cell death. During the treatment, taz1∆ 

mutant revealed to be significantly resistant presenting about 50% of viable cells at 200 minutes, 

compared with 1.0% of the wild-type cells. Curiously, taz1∆ mutant at 200 minutes treatment displayed a 

percentage of PI-positive cells (50%) identical to the percentage of nonviable cells, which appears to 

demonstrate that in the absence of mature CL, cells are dying later but by a necrotic process. An 

identical profile was observed in cho1∆ mutant, which was resistant to acetic acid, maintaining a 

relatively high percentage of viable cells at the end of the treatment, associated with a similar increase in 

the percentage of PI-positive cells. This is in contrast to the observed with the mutants ups1∆, mdm10∆ 

and mdm12∆, in which the increase of cell survival was associated with a low percentage of PI-positive 

cells. Taking into account that both Taz1p and Cho1p are involved in the synthesis of mature CL and PS, 

respectively, it is conceivable that the increased percentage of PI-positive cells may reflect a higher PI 

permeability of the plasma membrane caused by the loss of these phospholipids, rather than the real 

percentage of non-viable cells with compromised plasma membrane. Considering this hypothesis, cells 

were stained with 10 μg/mL of 7-aminoactinomycin (7-AAD, Molecular Probes) that like PI, only 

permeates cells with compromised plasma membrane integrity, but whose molecular weight is 1270.45, 
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almost the double of PI. However, the number of the 7-AAD positive cells was very similar to the PI 

staining (data not shown). To further characterize the cell death process in these mutants the metabolic 

activity was evaluated by FUN-1 (2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene)-1-

phenylquinolinium iodide, Molecular Probes) and FDA (fluorescein diacetate, Sigma-Aldrich) staining. The 

processing of FUN-1 by viable cells results in the formation of cylindrical intra-vacuolar structures (CIVS) 

which display a very regular form. However, when cells lose their metabolic capacity, the non-processing 

of FUN-1 leads to its accumulation in cytosol that is perceptible due to an increase in red fluorescence. 

The monitoring of FUN-1 staining in the mutant strains taz1∆ and cho1∆ through fluorescence 

microscopy showed that, oppositely to well-defined CIVS in the vacuole at time zero, cells presented a 

diffuse red staining throughout the cell for the final periods of treatment (data not shown). Accordingly, in 

these mutant strains after 200 minutes of treatment, an increase in the mean of the red fluorescence 

intensity of about two-fold, when compared with the time zero, was assessed by flow cytometry (data not 

shown). Staining with FDA is an alternative to monitor metabolic activity as assessed by esterase activity 

but only in cells which preserved their plasma membrane integrity. Cells with active esterases cleave FDA 

to fluorescein and acetate, and exhibited green fluorescence if fluorescein is retained in the cytosol. 

Under our study conditions, the FDA staining demonstrated clearly that in taz1∆ mutant 50% of the cells 

lost their metabolic activity after 200 minutes (data not shown). In taz1∆ and cho1∆ strains, the identical 

percentage of non-viable cells and of cells with loss of plasma membrane integrity and metabolic activity 

suggest that, after 200 minutes of acetic acid treatment, these mutants are dying by necrosis. Since 

some authors proposed that the yeast Taz1p, like CL, interacts with multiple proteins, including the ATP 

synthase (Claypool et al., 2008a), it is likely that in the absence of this protein the ATP synthesis and the 

metabolic activity are decreased. This interpretation may explain the results obtained with FUN-1 and FDA 

staining. 

In animal cells, PS translocation to the outer leaflet of the plasma membrane during apoptosis is 

fundamental to allow the recognition and clearance of apoptotic cells by phagocytes, preventing an 

inflammatory response (Balasubramanian et al., 2007). Although, in yeast cells, the PS externalization 

had also been reported during apoptotic-like PCD (Madeo et al., 1997), the consequences of the 

impairment of this phenomenon, namely through PS synthase inhibition, was never described. Curiously, 

in our study the appearance of some features typical of necrosis, such as loss of plasma membrane 

integrity and metabolic activity, in cho1∆ mutant appears to indicate that the presence of PS is, like in 

mammalian cells, fundamental to trigger an apoptotic death. However our results may not be directly 
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associated with the loss of PS externalization and instead with the decreased intracellular levels of PS. 

Thus, more studies are needed to clarify this process.  

In our study, the observed resistance of taz1∆ mutant to acetic acid treatment appears to be in 

agreement with the decreased tafazzin expression levels in B cell lymphoma, suggesting that tafazzin loss 

may contribute to tumor progression (Kobayashi et al., 2003). On the other hand, also in accordance 

with our results, lymphoblast cells of BTHS patients (deficient in Taz1p activity) demonstrated equally 

high levels of cells whose plasma membrane integrity was lost when treated with stimuli that induce the 

mitochondrial-mediated apoptotic pathway, such as etoposide and cisplatin (Gonzalvez et al., 2008). In 

our treatment conditions, the high and early ROS production associated with an increase in mitochondrial 

degradation demonstrated an altered mitochondrial function in taz1∆ mutant strain. Accordingly with 

these results, in animal cells it was reported that TAZ1 deficient cells have serious mitochondrial 

abnormalities associated also with energy metabolism impairment, including the adhesion of opposing 

membranes that results in intracrista space deformation (Acehan et al., 2007; Xu et al., 2005). 

Therefore, it is possible that in our study after three hours of acetic acid treatment, taz1∆ mutant cells 

trigger a necrotic pathway once the plasma membrane integrity and the metabolic activity were impaired, 

although it cannot be ruled out that up to two hours of treatment cells are dying by an initial apoptotic 

process. In sum, our results appear to suggest that in yeast cells, like for mammalians, the Taz1p and 

consequently the presence of mature CL are fundamental to trigger an apoptotic pathway.  

Analysis of the results with crd1∆ and taz1∆ mutants, shows that CL is fundamental to maintain the 

mitochondrial membrane potential, morphology and integrity independently of its degree of maturation, 

as previously described (Brandner et al., 2005; Chen et al., 2008). The increase of ROS production has 

been reported to happen in very different apoptotic scenarios, however the similar ROS levels in taz1∆ 

and crd1∆, whose response to acetic acid is very different, indicate that the increase of oxidative stress 

cannot be always correlated with loss of cell viability, like described in other studies (Pereira et al., 2007). 

In the absence of Ups1p, PA is not translocated to the IMM and therefore, the process of CL 

synthesis, as well as of its intermediates, is blocked. The results show that UPS1 deletion confers 

resistance to acetic acid-induced PCD. Interestingly, among the mutants studied ups1∆ presented the 

lower mitochondrial membrane potential associated with the lowest percentage of ROS production and 

mitochondrial degradation. It has already been reported, in accordance with the present study, that when 

grown in fermentable carbon sources, the mitochondrial potential is reduced in ups1∆ mutant that 

additionally exhibits an altered mitochondrial morphology characterized by short tubules, small fragments 
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and aggregates (Sesaki et al., 2006; Tamura et al., 2009). Our results now suggest that the PA presence 

in the IMM, probably due synthesis of CL and of its precursors, is fundamental for the apoptotic process. 

Curiously, the ups1∆ phenotype appears not to result simply from a decrease in CL levels once ups1∆ 

and crd1∆ mutant strains exhibit significant differences in response to acetic acid inducing apoptotic 

conditions. 

In this study we also addressed for the first time the role of ERMES complex components in the yeast 

apoptotic-like PCD. Although the deletion of both genes confer resistance to the acetic acid, mdm10∆ 

presented after 200 minutes higher percentage of survival and lower number of PI- and DHE- positive 

cells, than the mdm12∆ mutant. On the other hand, the acetic acid treatment led to an identical profile 

of mitochondrial degradation in both mutant strains, associated with also similar morphological changes. 

It was reported that mitochondria from ERMES complex mutants can exhibit large, spherical or oblong 

shapes, which is in accordance with our observations (Jensen, 2005). Indeed, the ERMES complex has 

been extensively associated to the mitochondrial morphology and it is possible that the continuous 

trafficking of phospholipids may be critical for maintaining the morphology and function of this 

compartment (Tamura et al., 2012). 

Like before hypothesized, ERMES complex, especially Mdm10p at OMM, due to the reported CL 

decreased levels could be important for PA translocation from ER to mitochondria. If this is the 

explanation for the observed results, the consequence of MDM10 or UPS1 deletion should be identical. 

Although both mutants present similar percentage of PI and DHE-positive cells, the survival was 

enhanced in the mdm10∆ mutant demonstrating that Mdm10p can be involved in additional 

mechanisms fundamental for the apoptotic process. It was previously hypothesized that ERMES complex 

can have a fundamental role in the calcium cross-talk between ER and mitochondria. It is known that, 

during apoptosis, the high levels of this ion within the mitochondria lead to its swelling and 

permeabilization. So, the mitochondria calcium overload inhibition can, at least in part, justify this 

phenotype. Moreover, the involvement of Mdm10p and Mdm12p in the β-barrel protein assembly 

machinery at OMM, that can themself be important for MOMP, may also justify the resistance observed 

in the mdm10∆ mutant or even Mdm10p can itself be involved in the mechanism of release of 

mitochondrial apoptotic proteins, such as cyt c.  

In our study it was aimed to characterize the role of CL in the apoptotic-like PCD induced by acetic 

acid, using for this end different mutant strains that exhibit altered levels of CL. Curiously, our results 
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demonstrated that, for example, the CL synthesis abrogation (crd1∆ mutant) and the absence of mature 

CL (taz1∆ mutant) result in significantly different responses to acetic acid treatment.  

In animal cells, mature CL can suffer hydrolysis during apoptosis increasing the levels of MLCL inside 

the cell (Liu et al., 2005). It was reported that the deletion of TAZ1 gene in yeast cells lead also to 

increased levels of MLCL (Gu et al., 2004), mimicking animal cells during apoptosis. However, under our 

conditions the yeast taz1∆ appears to dye by a necrotic process suggesting that the increased levels of 

MLCL may in yeast and animal cells trigger different processes of cell death. On the other hand, the 

crd1∆ mutant results appear to suggest that CL is not fundamental to trigger apoptosis. However, as 

discussed above, the presence of altered levels of other(s) phospholipid(s), which may to explain the 

similar phenotype of crd1∆ mutant and the wild-type, should not be discarded. So, some questions arise 

including if the complete absence of CL (crd1∆ mutant) or the loss of mature CL (taz1∆ mutant), with 

subsequent increase of MLCL levels, establishes the response and/or the type of cell death triggered.  

Beyond that, it is important to clarify if in these mutants additionally to the reported phospholipid 

changes, there are others that could explain the results. Curiously, in all these mutants the phospholipid 

profile has already been identified, however, there is some contradictory information between different 

experiments, which suggest that the phospholipid ratio inside the mitochondria can differ with the strain, 

growth conditions and carbon source. It was reported that crd1∆ and taz1∆ mutants growing in YEPD 

presented decreased levels of PA (Gu et al., 2004; Zhong et al., 2004). Like it was explained before, PA is 

only associated to the membranes which contain negatively charged phospholipids, therefore the 

absence of CL can, at least in part, justify this result. It is possible that the decreased rate of PA 

translocation to the IMM can, through a feedback mechanism, results in its import inhibition. On the 

other hand, the increased levels of PE, PS and PC in the taz1∆ mutant strain appear to suggest that 

increased levels of MLCL results in a shift of CL biosynthetic pathway to the synthesis of other 

phospholipids thus justifying the high levels within the mitochondria and perhaps the decreased PA levels 

(Gu et al., 2004). Interestingly, the decreased levels of PE in ERMES complex mutants, suggest that this 

complex can be in fact fundamental for phospholipids trafficking between ER and mitochondria (Tamura 

et al., 2012).  

Although in all mutants here studied had been reported decreased levels of CL, the different 

responses obtained in our study underlie that these proteins must be involved in the synthesis or 

regulation of other phospholipids or even proteins with fundamental function in the apoptotic process. 

Also the resistance verified in cho1∆ mutant cannot exclusively be associated to PS decreased levels 
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once this phospholipid was demonstrated to be increased in the ups1∆, mdm10∆ and mdm12∆ 

mutants that also display a resistant phenotype. Therefore, it is possible that the different responses to 

the acetic acid treatment are caused by alterations in the levels of multiple phospholipids or their relative 

proportions within the cell membranes.  

Although this work requires a phospholipid characterization that may allow establishing a model for 

the involvement of the different phospholipids species, the role of the proteins encoded by the genes 

studied are certainly fundamental for maintaining the mitochondrial integrity, emphasizing the importance 

of these proteins in the cell death mediated by this organelle. 
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CHAPTER 3 

The role of the actin-binding protein cofilin in Saccharomyces 
cerevisiae acetic acid-induced apoptosis  
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3.1  Introduction 

 

The actin cytoskeleton plays a fundamental role in many cellular functions, including endocytosis, 

motility, organelle and vesicle trafficking, cytokinesis and signal–response coupling (Franklin-Tong and 

Gourlay, 2008). The dynamic changes in the actin cytoskeleton, such as severing and polymerization of 

actin filaments, can predominantly explain the diversity and the specificity of some of these functions. 

The actin-binding proteins (ABPs) are associated with actin and promote the cycles of 

assembly/disassembly. Among the ABPs, cofilin, which belongs to the cofilin/actin depolymerizing factor 

(ADF) family, is a small protein that affects both actin polymerization and depolymerization, functioning 

as a key regulator in the dynamic reorganization of the actin cytoskeleton. In this process, the pH-

dependent actin-severing activity of cofilin increases the number of free barbed ends, which consequently 

promote the elongation/polymerization of the newly generated actin filaments (Bailly and Jones, 2003; 

Ichetovkin et al., 2002; Moriyama and Yahara, 2002). Cofilin can be inactivated upon phosphorylation 

through LIM or TES kinases or upon binding to phosphoinositides (of which phosphatidylinositol 4,5-

bisphosphate (PIP2) is the most frequent). On the other hand, the cofilin activity can be reestablished by 

some phosphatases (including Slinghot) or through PIP2 hydrolysis (Figure 1) (Bernard, 2007; Bailly and 

Jones, 2003; Zhao et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – The role of cofilin in actin dynamics. Cofilin binds to the ADP-actin and its actin-severing activity is promoted by 
transient pH variation. After ADP-actin monomers dissociation, cofilin can be inactivated by addition of one phosphate group 
(promoted by kinases activity) or through PIP2 binding. At the same time, the actin monomers released undergo nucleotide 
exchange and reinsertion at the barbed (+) end of actin filaments promoting their elongation. The cofilin actin-binding activity 
can be restored by phosphatases or PIP2 hydrolysis (Scheme from Bailly and Jones, 2003). 
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The control of the redox environment inside the cell is of the great importance since high levels of 

oxidants have the capacity to induce cell death. Although dependent on the chemical nature of the 

oxidant, these compounds can generally damage proteins, lipids and DNA with many functional 

consequences. 

Some research has been done to identify proteins that in addition to undergo oxidation in these 

conditions have a role in apoptosis induction. Proteomic approaches allowed the identification of some 

target proteins, including the actin-binding protein cofilin. The cofilin translocation from the cytosol to the 

mitochondria in HL60 cells treated with staurosporine (STS), that stimulates the production of 

intracellular ROS, was the first evidence that this protein could be fundamental for the occurrence of 

MOMP and consequently apoptosis (Chua et al., 2003). 

It was demonstrated that during STS, etoposide and taurine chloramine (TnCl)-induced apoptosis, the 

oxidation of cofilin in its four cysteine residues and dephosphorylation at serine residue 3 are early steps 

in apoptosis induction and are indispensable to trigger this type of cell death (Chua et al., 2003; Klamt et 

al., 2009). After cofilin activation, that includes oxidation and dephosphorylation, it dissociates from actin 

filaments and is translocated to the mitochondria where it induces the loss of mitochondrial membrane 

potential, non-physiological swelling and release of apoptotic factors (Figure 2) (Klamt et al., 2009; 

Wabnitz et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – The cofilin role in apoptosis. Under physiological conditions cofilin severing activity is regulated by 
phosphorylation/dephosphorylation. In the presence of some oxidants, the dephosphorylated cofilin is oxidized, losing the 
affinity to depolymerize the actin filaments. Once activated, cofilin is translocated to the OMM, where it induces MOMP 
through PTP opening that results in cell death (Scheme from Zdanov et al., 2010). 
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As aforementioned, the cofilin dephosphorylation happens, under physiological conditions, in 

response to many stimuli that imply a change in the actin organization. However, it is only translocated 

to mitochondria when simultaneously oxidized in the cysteine residues resulting in a conformational 

change that renders it incapable to depolymerize the actin filaments (Bamburg, 1999; Chua et al., 2003; 

Endo et al., 2003). It was proposed that these structural modifications in cofilin could lead to a stiff actin 

cytoskeleton further affecting the oxidative stress response (Klemke et al., 2008). 

It was demonstrated by the use of PTP blocking agents (CsA and bongkrekic acid) that the oxidized 

cofilin causes mitochondria swelling through PTP opening. Curiously, under these conditions, the cofilin 

translocation was not inhibited whereby the association with the OMM, unlike its pro-apoptotic function, 

appears to be independent of the PTP function. On the other hand, when the cofilin cysteine residues 

were exchanged by alanines its oxidation and translocation were inhibited and apoptosis was not 

triggered, showing its requirement for the MOMP (Klamt et al., 2009). 

Curiously, the cofilin oxidized-induced cell death was not repressed by the broad-range caspase 

inhibitor zVAD-fmk or by Bcl-xL. Additionally, it was shown that the PTP opening induced by cofilin 

translocation was independent of Bax/Bak activation in TnCl treated cells (Klamt et al., 2009). However, 

the involvement of these pro-apoptotic Bcl-2 family proteins appears to be cell or stimulus-dependent, 

since Methyl Antcinate A is able to induce apoptosis in human liver cancer cells through oxidative stress 

in a process mediated simultaneously by cofilin and Bax translocation to the mitochondria (Hsieh et al., 

2010). Furthermore, it was recently demonstrated that during excitotoxic neuronal death, Bax 

translocation to mitochondria is triggered by cofilin dephosphorylation, where this actin-binding protein 

might physically interact and transport Bax. Therefore, in this cell line and treatment conditions, was 

proposed that the knock down of cofilin had a protective effect due to inhibition of MOMP mediated by 

Bax (Posadas et al., 2012). 

Cofilin is not obviously the only activated protein during apoptosis able to induce MOMP, but it is 

assuredly important for this process once the knockdown of endogenous cofilin reduced significantly the 

cell death (Chua et al., 2003; Klamt et al., 2009). However, the type of cell death triggered by cofilin 

oxidation appears to be also dependent of the cell line and stimulus that lead to the oxidative stress. In T 

cells, the long-term oxidative stress induced by H2O2 led to cofilin oxidation and translocation to the 

mitochondria in a process that is independent of caspases activation and not considered an apoptotic but 

instead a necrotic-like PCD (Wabnitz et al., 2010). Although at the beginning PTP had been essentially 

associated to an apoptotic cell death, nowadays the induction of MOMP through PTP opening has been 
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increasingly associated to a necrotic PCD pathway (Vaseva et al., 2012). Wabnitz and colleagues findings 

together with the reported role of cofilin independent of the Bcl-2 pro-apoptotic proteins, suggest that this 

protein can lead to the cyt c release through PTP opening. To reinforce this hypothesis, it was observed 

that after cofilin translocation it interacts with the OMM, where it was conjectured to induce 

permeabilization through VDAC association (Chua et al., 2003; Franklin-Tong and Gourlay, 2008; Zdanov 

et al., 2010). Controversially, it was proposed that HSC70 is responsible for mitochondrial import of 

oxidized cofilin suggesting that it does not stay at the OMM (Wabnitz et al., 2010). 

Oppositely to the heretofore mentioned, it was very recently shown in mouse embryonic fibroblast 

cells that the translocation of dephosphorylated cofilin to mitochondria, which under these conditions 

occurs together with actin, can itself not imply a role in the cell death induced by STS or H2O2 suggesting 

again that cell type-specific functions for cofilin in the cell death signaling must exist (Rehklau et al., 

2012). Furthermore, depending on concentration, exposure time and microenvironment, the effects of 

oxidants can be very distinct. 

Anyway, the pro-death function of cofilin under some oxidative stress conditions seems to make it a 

good therapeutic target for cancer. Indeed, the stimulation of cofilin oxidation when associated with 

known antitumor drugs decreased the resistance of some cancer cells to the treatment (Hsieh et al., 

2010; Li et al., 2013; Zhu et al., 2012). However, essentially in the most resistant and invasive cancer 

cells COF1 gene that encodes cofilin is overexpressed, which suggest that in non-physiological conditions 

such as cancer environment, this increase can be explained based in the cofilin role in actin dynamics 

and cell motility. So, the high levels of this protein can, through increased actin filaments generation, 

promote the metastasis and cells migration making the severity of the cancer cells further increased 

(Jiang et al., 2011; Peng et al., 2011; Polachini et al., 2012; Steller et al., 2011; Wei et al., 2012). 

Therefore, in these situations, the most prominent treatment must imply the cofilin phosphorylation 

inhibiting the actin dynamics. In sum, cofilin can have a dual function in either control the progression of 

certain forms of cancer or confer resistance of some tumors to chemotherapy.  

Abnormal regulation of cofilin levels has also been associated to neurodegenerative pathologies, such 

as Alzheimer or Huntington’s disease. Dephosphorylated and activated cofilin was found in inclusions of 

human Alzheimer’s brain where it forms rod-shaped actin bundles (named rods). These structures result 

in loss of synaptic connections between neurons and cognitive decline (Maloney and Bamburg, 2007; 

Minamide et al., 2000).  
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Considering the above, the use of cofilin as a new therapeutic target to treat some diseases must 

have into account the physiological levels of this protein, as the expression levels variation along time and 

its subcellular distribution determining which diseases result from the oxidative stress-induced pro-death 

function of cofilin, and which mirror its role in the regulation of actin dynamics and cell motility. 

The cofilin sequence, structure and function are highly conserved among eukaryotic cells. The 

budding yeast S. cerevisiae, that has a single and essential cofilin encoded by the COF1 gene, is 

nowadays used as a model system to explore new functions of this actin-binding protein. Oppositely to 

the reported mammalian cells, the COF1 gene is indispensable for the yeast survival and it is not 

possible to make a complete disruption of this gene (Moon et al., 1993). At the same way, yeast cells 

overexpressing COF1 are unable to grow showing that this protein is essential under physiological 

expression levels (Iida and Yahara, 1999). Thus, systematic mutagenesis was used to generate a library 

of isogenic yeast strains that express mutant forms of cofilin, in which the charged residues on the 

surface of cofilin were changed by alanine (Figure 3) (Lappalainen et al., 1997). Yeast cofilin, differently 

from mammalians, has only a single cysteine residue. It was demonstrated that the mutation of this 

residue interferes with the mitochondrial function but it remains unclear if it is responsible for 

mitochondrial translocation under oxidative stress conditions (Kotiadis et al., 2012).  

 

 

 

 

 

 

 

 

 

 

The yeast mutant strains in which the charged residues on the cofilin surface were replaced by 

alanine were grouped accordingly with the analysis of their performance in YEPD solid medium 

Figure 3 - Alignment of cofilin sequence from yeast (Saccharomyces cerevisiae), slime mold (Dictyostelium discoideum), fruit 
fly (Drosophila melanogaster), human (Homo sapiens) and mouse (Mus musculus). The red coloured residues are essential 
for actin binding and viability in yeast cells. The residues that also affect the actin dynamics but are non-essential for yeast 
cells are labeled in yellow and those not involved in yeast growth are coloured in green (Scheme from Kotiadis et al., 2012). 
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supplemented with H2O2 or glycerol, respiratory activity, ROS production and mitochondrial morphology. 

Mutants were clustered in Class I (cof1-4, cof1-6, cof1-7, cof1-11, cof1-12, cof1-15, cof1-18, cof1-19 and 

cof1-21), Class II (cof1-10 and cof1-13) and Class III (cof1-5 and cof1-22). The cofilin mutants of Class I 

displayed higher respiratory rate than the wild-type. In Class II, the cofilin mutants were the most 

sensitive to oxidative stress and they displayed no functional mitochondria, which appear fragmented and 

aggregated during the diauxic shift caused by cell growth during 24 hours in YEPD medium. Finally, the 

cofilin mutants grouped in the Class III shown some sensitivity to oxidative stress and also partially 

fragmented mitochondria during exponential phase of growth (Kotiadis et al., 2012).  

It was demonstrated that the exchanged residues in cof1-5 mutant (Class III), associated with the 

actin binding, lead to tolerated effects in the actin cytoskeleton (Lappalainen et al., 1997). Oppositely, 

the cellular function of residues not associated with the actin or PIP2 binding, such as in cof1-6 and cof1-

7 mutants (Class I), remains to be elucidated (Kotiadis et al., 2012). 

Although until the moment there is no information about the cofilin role in yeast cell death, 

considering the high similarity of this protein between yeast and mammalian cells, an identical 

mechanism of cofilin action may be expected.  
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3.2  Main aims and study overview 

 

Like previously exposed, in mammalians there are some evidences of oxidized cofilin interaction with 

the OMM but the mechanism by which cofilin interacts and leads to PTP opening in this system model 

remains to be clarified. Until the moment, in yeast cells, it was not demonstrated that under oxidative 

stress cofilin undergoes oxidation and translocation to the mitochondria. However, recent preliminary 

data suggest that a stress-specific interaction between cofilin and Por1p (yeast VDAC) can exist in yeast 

cells (Kotiadis et al., 2012). Since it has been previously described that Por1p is involved in acetic acid 

induced apoptotic cell death in yeast (Pereira et al., 2007) we raised the hypothesis that an interaction 

between Por1p and cofilin could have a role in this cell death process, namely through modulation of 

MOMP. To address this hypothesis we aimed to characterize the process of cell death induced by acetic 

acid in yeast strains expressing the cof1-5, cof1-6 or cof1-7 mutant forms of cofilin. It has previously 

been demonstrated that these strains display similar respiratory activity and identical percentage of ROS-

positive cells when compared with the wild-type having no expectable interference on mitochondrial 

function under physiological conditions (Kotiadis et al., 2012). Our initial results through evaluation of the 

cell survival, plasma membrane integrity, ROS production and mitochondrial membrane potential in 

response to acetic acid induced cell death allowed to identify differences in the response of the different 

cofilin mutants when compared with the wild-type strain.  

Considering the reported information, in the present work it was intended to evaluate, throughout 

acetic acid treatment, the cofilin subcellular distribution and the Por1p interference in this process. 

Furthermore, it was aimed to determine the relationship between the cofilin pro-death function and the 

Por1p activity.  
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3.3  Material and Methods 

 

3.3.1  Yeast strains  

 

The parental strain S. cerevisiae CGY384 (Matα ura3‐52 his3Δ200 leu2‐3,112 lys2‐801 ade2‐101 

COF1::LEU2) was used in this study as the wild-type. The wild-type and the cofilin mutant strains (Matα 

ura3‐52 his3Δ200 leu2‐3,112 lys2‐801 ade2‐101 cof1-x::LEU2, in which x means 5,6 or 7 ) were 

kindly provided by Professor Campbell Gourlay (Kotiadis et al., 2012) and they were constructed by 

replacing some surface charged residues by alanine (Lappalainen et al., 1997).  In this study, the POR1 

gene was deleted from all strains with the PCR product amplified from the por1∆::KanMX4 cassette. All 

oligonucleotides used for amplification of the KanMX4 cassette (iPor1, iPor2) or confirmation of the 

disruption are listed in the Table I. Yeast strains were transformed using the Lithium acetate/Single 

Stranded carrier DNA/PEG method previously described (Gietz and Woods, 2006) with some differences 

in the events order. Briefly, a thermal shock proceeded by a recovery time was done to increase the 

process efficiency, with the sequential events: 30 minutes at 30 ˚C, 200 rpm, followed by 30 minutes in 

a bath at 42 ˚C, one hour in the ice and growth during four hours (two generations) in YEPD medium. 

The recombinant clones were selected for the Geneticin antibiotic. After 48 hours, the colonies grown 

were sub-cultured simultaneous, but independently, in YEPD medium containing Geneticin and in SC 

Glucose medium lacking leucine, in order to select the double mutants. After this, the effectiveness of 

transformation was confirmed by colony PCR, using the primers Por1A and Por1D that bind upstream 

and downstream of insertion, respectively, alone or in conjugation with the primers Kan327 forward and 

Kan326 reverse that anneal within of the kanamycin gene.  

 

 Table I – List of nucleotides used for amplification and confirmation of por1∆::KanMX4 disruption 

Name Oligonucleotide sequence (5’ – 3’) 

iPor1 TTATAGCCAGCAGAGCACGA 

iPor2 ATGATTATGAGAACCAGCCG 

Por1A TTCCAACAAGTTTAATGGTCAGAAT  

Por1D AATGTTCGAAACCAATCTGAAAATA  

Kan327 CTCGGGCAATCAGGTGCGACA 

Kan326 CCGAGGCAGTTCCATAGGATGGC 
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To monitor the cofilin subcellular localization before and during the acetic acid treatment, the wild-

type and por1∆ strains were transformed with the plasmid pRS416 (URA3) expressing a wild-type Cof1-

RFP (Red Fluorescent Protein) fusion protein kindly provided by Professor Campbell Gourlay. Firstly, this 

plasmid was amplified by transforming E. coli XL1 Blue competent cells with subsequent selection in LB 

medium (1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl and 2% (w/v) agar) supplemented 

with Ampicillin (Formedium). One of the positive colonies were grown in the same medium overnight and 

the plasmid was purified using a Miniprep kit (GenElute Plasmid Miniprep kit, Sigma-Aldrich) according to 

the manufacturer’s instructions. Like for POR1 deletion, the yeast strains transformation with the plasmid 

pRS416 was carried out essentially as previously described in the Lithium acetate/Single Stranded 

carrier DNA/PEG method (Gietz and Woods, 2006), with the same differences in the events order 

described before. Thereafter, cells were grown in a selective medium lacking uracil and the positive yeast 

colonies were further grown in medium lacking uracil and leucine to select the double mutants and thus 

the correct construction. At the end, the effectiveness of transformation was evaluated through 

visualization with the fluorescence microscope.   

 

3.3.2  Growth conditions and cell death assays  

 

Yeast cells were maintained in rich medium (YEPD; 0.5% (w/v) yeast extract, 1% (w/v) peptone, 2% 

(w/v) glucose). To select the strains with correct insertion of the por1∆::KanMX4 cassette, isolated 

colonies were grown in YEPD medium containing 200 μg/mL Geneticin (Sigma-Aldrich) and, at the same 

time, in SC medium lacking leucine (0.17% (w/v) yeast nitrogen base without amino acids and 

ammonium sulfate, 0.5% (w/v) ammonium sulfate, 2% (w/v) glucose, 0.2% (w/v) Drop-Out mix, plus 

0.01% (w/v) uracil, adenine, histidine, lysine and tryptophan).  

The yeast strains transformed with the plasmid pRS416 were selected and grown in SC medium 

lacking uracil (0.17% (w/v) yeast nitrogen base without amino acids and ammonium sulfate, 0.5% (w/v) 

ammonium sulfate,  2% (w/v) glucose/galactose, 0.2% (w/v) Drop-Out mix, plus 0.01% (w/v) leucine, 

adenine, histidine, lysine and tryptophan). 

For acetic acid treatment, cells were firstly grown in SC medium with 2% (w/v) of glucose (without 

uracil for the transformants with the plasmid) at pH 5.5 (set with NaOH) in an orbital shaker at 200 rpm, 

30 ⁰C. One day after, cells were transferred to SC medium with 2% (w/v) of galactose (without uracil for 

the plasmid transformants) at pH 3.0 (set with HCl) and grown under the same conditions until the 
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exponential phase (OD600nm=0.8-1.1). Thereafter, cells were harvest by centrifugation, suspended to the 

same cellular density (OD600nm=0.6) in all strains with the last medium and treated with 150 mM acetic 

acid (Panreac), pH 3.0, for up to 180 minutes at 30 °C.  Samples were rigorously collected at specific 

time points (0, 30, 60, 120 and 180 minutes), where the OD was measured and the number of cells 

adjusted to the initial cellular density in order to avoid overestimation of the percentage of cell survival. 

For the cell survival assay, in each time point four 1:10 seriated dilutions in deionized sterile water were 

done and seven drops of the last dilution were spotted on YEPD plates. The counting of the CFU was 

performed after 48 hours of incubation at 30 °C. Cell viability over the time was calculated as percentage 

of CFU in relation to the time zero (100%). 

 

3.3.3  Preparation of mitochondria 

 

 For mitochondria preparation, cells were firstly grown twenty-four hours in 25 mL of SC Glucose 

medium pH 5.5 and posteriorly inoculated in 600 mL of SC Galactose medium pH 3.0, maintaining the 

volume ratio flask/growth medium equal to 5:1. Cells were grown until the exponential phase 

(OD600=1.5) and directly harvested (time zero) or treated with acetic acid (150 mM) during 90 minutes. 

The mitochondria fraction was isolated by differential centrifugation essentially as previously described 

(Arokium et al., 2004). After cells harvesting and washing with deionized water, they were suspended, 

proportionally to the cellular mass, with the suspension buffer containing 1.2 M sorbitol, 60 mM sodium 

phosphate pH 7.5 and 1 mM ethylenediaminetetraacetic acid (EDTA). The cell wall was digested through 

simultaneous addition of zymolyase (10 mg for non-treated and 50 mg for the acetic acid-treated cells) 

and 1% (v/v) of β-mercaptoethanol followed by incubation in a bath at 32 °C during 30 and 45 minutes 

for untreated and acetic acid treated cells, respectively. Spheroplasts were suspended in a lyse buffer 

containing 0.5 M sorbitol, 20 mM Tris pH 7.5 and 1 mM EDTA and they were disrupted simultaneously 

by an osmotic shock caused by the decreased sorbitol concentration and a hand-potter homogenization 

aiming to preserve the outer mitochondrial membrane integrity. Finally, the mitochondrial fraction was 

collected after some differential centrifugations.  

 

3.3.4  Western blot analysis 

 

To evaluate the amount of cytochrome c in the mitochondrial fraction, the protein concentration was 

estimated with the Bradford method using bovine serum albumin (BSA) as standard (Bradford, 1976). 
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An equal amount of protein (50 μg) was collected in all strains untreated or treated with acetic acid, 

precipitated with trichloroacetic acid (TCA) 50% and heated at 95 °C for 5 minutes. The samples were 

separated electrophoretically on a 12.5% SDS-polyacrylamide gel at 25 mA and transferred to a Hybond-

P Polyvinylidene difluoride membrane (PVDF; GE Healthcare) at 54 mA for one hour. The membranes 

were cut into strips, blocked with 5% (w/v) non-fat dry milk to prevent unspecific bindings and incubated 

overnight at 4 °C with the primary antibodies: rabbit polyclonal anti-yeast cytochrome c (CYC1) antibody 

(1:3000, custom-made by Millegen), mouse monoclonal anti-yeast porin (POR1) antibody (1:10000, 

Molecular Probes) and mouse monoclonal anti-yeast phosphoglycerate kinase (PGK1) antibody (1:5000, 

Molecular Probes). Posteriorly, they were incubated with secondary antibodies against mouse (1:5000; 

Sigma-Aldrich) or rabbit IgG-peroxidase (1:3000; Sigma-Aldrich). The detection of the proteins Por1p and 

Pgk1p was applied as controls for mitochondrial and cytosolic fractions, respectively. The 

immunodetection of the bands was revealed by chemiluminescence (Immobilon, Millipore) and the 

intensity individually measured through the Image J Software (NIH Website). The amount of cyt c in the 

mitochondrial fraction was normalized, in each sample loaded, to the correspondent amount of Por1p 

(cyt c/Por1p). 

 

3.3.5  Fluorescence microscopy  

 

The effect of acetic acid in cofilin intracellular distribution, namely in its translocation to the 

mitochondria, was evaluated in the wild-type and por1∆ strains transformed with the pRS416 plasmid 

and stained with the green fluorescent dye DiOC6(3) to visualize the mitochondrial networks. At each time 

point, cells (200 μL) were harvest by centrifugation, suspended in DiOC6(3) buffer and stained with 1 μM 

DiOC6(3) with subsequent incubation in the dark for 30 minutes at 30 °C.  At least 300 cells were 

individually analyzed at each time point to evaluate and categorize the cofilin subcellular distribution. 

Cells were visualized on a Leica Microsystems DM-5000B epifluorescence microscope with appropriate 

filter settings using a 100x oil-immersion objective. Images were acquired with a Leica DCF350FX digital 

camera and processed with LAS AF Leica Microsystems software. 
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3.4  Results 

 

The study of the cofilin involvement in the cell death started to be investigated only in the last decade. 

In mammalian cells it was shown that under oxidative stress, the increased ROS generation lead to 

oxidation of dephosphorylated cofilin that results in its dissociation of actin filaments, translocation to 

mitochondria leading to the release of some apoptotic proteins to the cytosol. However, until the 

moment, it remains unclear the mechanism whereby cofilin interacts and leads to permeabilization of 

mitochondria. 

Cofilin is a protein highly conserved among eukaryotic organisms with high functional similarity 

among yeast and mammalian cells. So we aimed to study, in the budding yeast S. cerevisiae, the role of 

this actin binding protein (ABP) in the apoptotic-like PCD induced by acetic acid. Because cofilin is 

essential for the yeast cell viability, strains with charged residues (exchanged to alanine) mutations were 

employed to uncover its function (Lappalainen et al., 1997).  

Preliminary studies obtained in our research group revealed the acetic acid (180 mM) effect in cell 

survival (CFU counting), as well as in the plasma membrane integrity, mitochondrial membrane potential 

and ROS production (flow cytometry analysis). The results demonstrated that the cofilin mutant strains, 

cof1-5, cof1-6 and cof1-7 are resistant to the acetic acid treatment when compared with the wild-type 

strain (CGY384) (Figure 4A). The reduced percentage of PI-positive cells demonstrated that in all strains 

the plasma membrane integrity was not disrupted even after three hours of treatment (Figure 4B). The 

cof1-6 and cof1-7 mutants displayed higher percentage of ROS generation (DHE-positive cells) whereas 

cof1-5 mutant, equally resistant to this treatment, exhibited lower production of ROS than the wild-type 

(Figure 4C). Curiously, there were no statistically significant differences in the mitochondrial 

depolarization among the strains (Figure 4D).  

Altogether these results suggested that the exchange of these charged residues could be involved in 

the cofilin apoptotic role during the yeast acetic acid-induced apoptotic-like PCD. Therefore, it was then 

evaluated in this study if cofilin mutations could influence the mitochondrial outer membrane 

permeabilization, through quantification of cytochrome c amount in mitochondria isolated from wild-type 

and cof1-6 strains before and after acetic acid treatment (Figure 5A). Accordingly with the resistance 

demonstrated by CFU counting, the results suggest that the decrease in the amount of mitochondrial cyt 

c after treatment was much more pronounced in the wild-type than in the cof1-6 mutant which amount 

remained unchanged (Figure 5B). 
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Figure 4 – Effect of acetic acid treatment (180 mM) in exponential wild-type (CGY384) and cofilin mutant strains during three 
hours, evaluated through (A) relative cell survival (CFU counts), (B) plasma membrane integrity (PI staining), (C) ROS 
accumulation (DHE staining) and (D) mitochondrial membrane potential (DioC6(3) dye). The reported values are the mean of 
at least three independent experiments with SD. A two-way ANOVA test was employed to compare wild-type versus mutant 
strains, for each time of treatment. Statistical analysis: *p<0,05, **p<0,01, ***p<0,001 and ****p<0,0001. (Rui Silva, 
unpublished results) 
 

Figure 5 – Western blot analysis of cytochrome c relative amount in mitochondria isolated from wild-type (CGY384) and cof1-
6 mutant before (-) and after (+) 90 minutes of acetic acid treatment (150 mM). The mitochondrial porin (Por1p) and 
cytosolic phosphoglycerate kinase (Pgk1p) levels were used as control of mitochondrial and cytosolic fractions, respectively 
(A). Considering that the different levels of Por1p means different amount of protein loaded, the amount of cyt c was 
normalized accordingly with the respective levels of protein control (B). 
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As mentioned before, in mammalian cells some evidences appears to suggest that oxidized cofilin 

interacts with the OMM via VDAC association. The yeast Por1p presents high functional similarity with the 

mammalian VDAC, namely it also seems to be involved in the regulation of MOMP (Pereira et al., 2007). 

Therefore, it was aimed to determine if under acetic acid treatment cofilin is translocated to mitochondria 

and to understand the Por1p involvement in this process, as well as its role in the resistance verified in 

cofilin mutant strains. 

For this purpose, the POR1 gene had to be disrupted in the wild-type and cofilin mutants through 

transformation with the amplified product of the por1∆::KanMX4 cassette. Transformant cells were 

selected in medium containing geneticin and the colonies that grew were posteriorly, at the same time, 

subcultured in the same medium or in SC glucose lacking leucine to allow the selection of double 

mutants. The correct insertion of the cassette inside the genome was confirmed, in the colonies grown in 

both culture media, by colony PCR using the pairs of primers: Por1A – Kan326 (Figure 6A), Kan327-

Por1D (Figure 6B) and Por1A-Por1D (Figure 6C).   

 

To examine whether cofilin subcellular localization is changed under acetic acid treatment and if 

Por1p has some role in this process, the wild-type and por1∆ strains were transformed with the pRS416 

plasmid coding a Cof1-RFP fusion protein. To visualize simultaneously the cofilin localization and the 

mitochondrial networks, transformant cells were stained with the mitochondrial membrane potential dye 

DioC6(3). The acquired images showed that in cells without treatment, cofilin is arranged in round and 

well-defined small structures, that are distributed homogeneously inside the cell, and do not particularly 

Figure 6 – Agarose gel electrophoresis for confirmation of POR1 deletion in wild-type and cofilin mutant strains. The colony 
PCR was performed in the positive colonies (three colonies for the wild-type (A1,A2,A3) and cof1-5 (B1,B2,B3), and one for 
cof1-6 (C1) and cof1-7 (D1)) using the pairs of primers Por1A–Kan326 (1513bp) (A) and Kan327-Por1D (1321bp) (B). To 
confirm the correct insertion of the por1∆::KanMX4 cassette in the genome a PCR was performed with pair of primers 
Por1A-Por1D (2210bp) in the previously demonstrated positive colonies (C). In all situations the por1∆ strain (Euroscarf 
collection) was used as positive control (+) and in the last PCR, the genome of the non-transformed wild-type was applied as 
negative control (-).   
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co-localize with mitochondria. After treatment, cofilin displays a diffuse distribution that, due to the 

similarity with the DioC6(3) staining, appears to suggest that in fact it could be, under these apoptotic 

conditions, translocated to the mitochondria (yellow staining; Figure 7A). 

The same alterations in cofilin rearrangement was visualized in wild-type and por1∆ mutant, in which 

the number of cells that display red fluorescence totally diffuse inside the cell increases throughout the 

acetic acid treatment. However, it was observed a delay in the transition from punctate to diffuse 

distribution in por1∆ mutant. Curiously, after 3 hours of acetic acid treatment por1∆ mutant still display 

some cells with cofilin distribution unchanged, while in the wild-type after 2 hours of treatment the 

number of cells with cofilin under punctate form is almost inexistent (Figure 7B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – The cofilin subcellular localization in the wild-type strain, transformed with the pRS416 plasmid (Cof1-RFP), 
without (control) and after acetic acid treatment (150 mM). The mitochondrial network was visualized by DioC6(3) staining 
and cofilin-mitochondria colocalization was monitored with a fluorescence microscope. Bar, 7.5μm (A). Evaluation of acetic 
acid effect in cofilin morphology change from punctate to diffuse form in both wild-type and por1∆ mutant (B). 
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Following the fluorescence microscopy data, showing the interference of Por1p in cofilin intracellular 

distribution, it was intended to investigate if the cofilin pro-apoptotic role is also mediated by Por1p 

activity. So, cell survival was evaluated in all strains with or without POR1 deletion under acetic acid 

treatment (150 mM). The results confirmed that, as in the preliminary results previously mentioned, 

these mutations in the COF1 gene confer resistance to acetic acid. The percentage of cell survival in 

cof1-7 mutant was surprisingly high even after three hours of treatment. The deletion of POR1 in the wild-

type, cof1-5 and cof1-6 strains resulted in higher sensitivity to the acetic acid treatment than the same 

strains without deletion of this gene. The results also showed that in the absence of Por1p, cof1-5 and 

cof1-6 mutants did not give raise to higher resistance to acetic acid, when compared with the wild-type. 

On the other hand, the deletion of POR1 in cof1-7 mutant strain did not lead to a change in the 

phenotype, with the exception for the two hours of treatment where it was slightly more resistant (Figure 

8).   

  

Figure 8 - Effect of cofilin mutation and/or POR1 deletion on viability (CFU counts) of S. cerevisiae CGY384 exponential cells 
treated with 150 mM of acetic acid during three hours. The number of colonies obtained, individually for each strain, was 
normalized to the time zero, which was considered 100%. Reported values are the mean of at least five independent 
experiments with SD. A two-way ANOVA test was employed to compare both the wild-type versus cofilin mutant strains (single 
mutants) as well as wt and cofilin mutant strains versus these strains with POR1 gene deleted (por1∆ and double mutant 
strains) for each time of treatment. Statistical analysis: *p<0,05, **p<0,01, ***p<0,001 and ****p<0,0001.   
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3.5  Discussion 
 

In animal cells it has been described that cofilin has the ability to mediate a mitochondrial-dependent 

apoptotic process. During this process, some evidences appear to indicate that oxidized cofilin interacts 

with the OMM, however the mechanism by which this interaction occurs and leads to PTP opening 

remains to be clarified. In yeast cells, a similar role of cofilin during apoptotic-like PCD was not been 

reported. However, recent preliminary data suggests that a stress-specific interaction between cofilin and 

Por1p (yeast VDAC) can exist in yeast cells (Kotiadis et al., 2012). Considering the previously described 

Por1p involvement in yeast apoptosis (Pereira et al., 2007), it was intended to determine in yeast cells 

firstly the role of cofilin in the acetic acid-induced cell death and then the involvement of Por1p activity in 

this process. 

The resistance displayed by the cofilin mutants during acetic acid treatment immediately suggested 

that in yeast cells, like in mammalians, cofilin can regulate the cell death process. Although in 

mammalians the cell death process triggered by oxidized cofilin has not been clearly defined, appearing 

to be cell type and context-dependent, after acetic acid treatment the reduced number of PI-positive cells 

displayed by all yeast strains suggest that, under these conditions, they are dying by an apoptotic 

process that seems to be delayed by the mutations under study. Consistent with the observed resistance 

of the cofilin mutant strains evaluated by cell viability assay, after 90 minutes of acetic acid treatment, 

the decrease in the amount of mitochondrial cyt c was more pronounced in the wild-type than in the 

cof1-6 mutant which amount seems to remain unchanged. Therefore, the results obtained suggest that 

cof1-6 can be involved in the regulation of MOMP through its inhibition.   

Underlying the proposed role of yeast cofilin in the regulation of MOMP, the fluorescence microscopy 

data suggest that, after acetic acid treatment, cofilin could be translocated to the mitochondria. In 

addition, our results show that the cofilin redistribution is delayed in the por1∆ mutant, when compared 

with the wild-type, suggesting that Por1p at the OMM can be required for the cofilin intracellular 

redistribution. Furthermore, since it was previously shown that the absence of Por1p sensitized cells to 

death in response to acetic acid (Pereira et al., 2007), our results suggest that the redistribution of cofilin 

may work as a negative regulator of yeast apoptosis. 

In our study, the CFU assay revealed that the POR1 deletion in cof1-5 and cof1-6, but not in cof1-7, 

mutants leads to a similar percentage of survival when compared with the por1∆ single mutant showing 

that the increased resistance of cof1-5 and cof1-6 mutants is dependent on Por1p presence.  As cof1-6 
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mutant displays lower cyt c release under acetic acid treatment, the results suggest that cofilin holds a 

regulatory function in the permeabilization of OMM that depends on Por1p presence.  

Altogether these results seems to indicate that, after acetic acid treatment, cofilin is translocated to 

mitochondria, where by interaction with Por1p at the OMM, prevents MOMP and consequently the cyt c 

release, functioning like Por1p as a negative regulator of apoptosis, such as outlined below (Figure 9).  

In animal cells, it was reported that cofilin mitochondrial translocation is triggered by its oxidation that 

occurs as a consequence of an increased oxidative stress inside the cell (Chua et al., 2003; Klamt et al., 

2009). Curiously, under our study conditions, it was observed that the redistribution of cofilin occurs 

early when compared with the ROS accumulation. Therefore, it is possible that, during acetic acid 

treatment, cofilin redistribution and hypothetically its translocation to the mitochondria is not triggered by 

an increased oxidative stress but instead by other structural change(s) that allow its dissociation of actin 

filaments and consequently translocation to mitochondria. It has been reported that yeast cells treated 

with acetic acid exhibit altered levels of proteins directly or indirectly associated with the pathways: target 

of rapamycin (TOR) and RAS/cAMP/cAMP-dependent protein kinase (PKA), as consequence of severe 

intracellular amino-acid starvation or intracellular acidification, respectively (Almeida et al., 2009; 

Zdralevic et al., 2011). Curiously, these pathways have been associated with actin cytoskeleton 

rearrangement (Jacinto et al., 2004; Gerits et al., 2007). Therefore, it is possible that after acetic acid 

treatment, one or even both pathways lead to a reorganization of actin cytoskeleton that consequently 

makes cofilin unable to associate with the actin filaments, resulting in its translocation to the 

mitochondrial membrane (Figure 9). However, further experiments are still need to test this hypothesis, 

or to unravel other mechanisms that may explain the cofilin translocation in our treatment conditions. 

Like discussed above, in our study conditions, cof1-5 and cof1-6 appears to display an antiapoptotic 

role during the acetic acid-induced PCD. In mammalians, it was demonstrated that the apoptosis-

inducing ability of cofilin, but not its mitochondrial localization, is dependent on the functional actin-

binding domain (Chua et al., 2003). The exchanged residues in the cof1-5 mutant, although non-

essential for the yeast survival, affect the actin dynamics. In turn, it was shown that the exposure of the 

N-terminal sequence (15-30 amino acid residues) of the human cofilin is fundamental for its 

mitochondrial translocation (Chua et al., 2003). The cof1-6 mutant has exchanged residues in this 

sequence and, if a similar process happens in yeast cells, although cofilin may be translocated to the 

mitochondria, the different conformational change acquired, could influence its insertion at the OMM and 

consequently its apoptotic function. Thereby, it is conceivable that the exchanged residues in cof1-5 and 
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cof1-6 can be in fact required for an apoptotic role of cofilin, justifying the high resistance and the 

antiapoptotic role of these mutations when compared with the wild-type. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The yeast S. cerevisiae cofilin has only a single cysteine residue but until the present, its importance 

or the effect of its potential oxidation has not been reported. In the cof1-7 mutant the cofilin cysteine 

residue was exchanged by alanine. Despite the resistance of this mutant suggesting, like for cof1-5 and 

cof1-6 mutants, an antiapoptotic function, preliminary results obtained in our investigation group 

demonstrated an increased amount of cyt c release  into the cytosolic fraction after acetic acid treatment, 

when compared with the wild-type (Rui Silva, unpublished data). Furthermore, the deletion of POR1 in 

cof1-7 mutant did not result in increased sensitivity to acetic acid, suggesting that the higher resistance 

of the mutant is independent of the mechanisms mediated by Por1p. As a whole the results suggest that 

cof1-7 exchanged residues induce resistance to apoptosis by a mechanism independent of its potential 

role in MOMP. In agreement with our results, in human cells the exchange of cofilin cysteine residues by 

alanine inhibits apoptosis (Klamt et al., 2009), however these results are insufficient to propose a role for 

Figure 9 – Scheme of the hypothesized role of cofilin in a yeast mitochondrial-mediated apoptotic pathway. The addition of 
acetic acid to the medium, due to its passive influx, leads quickly to intracellular alterations, namely acidification that can 
result in Ras-cAMP-PKA pathway activation (1). In the same way, acetic acid can lead to intracellular amino-acid starvation 
triggering TOR pathway activation (2). Each of these pathways, individually or together can lead to actin cytoskeleton 
reorganization that can perturb the cofilin-actin association (3) promoting cofilin translocation to mitochondria (4). At the 
OMM, cofilin interacts with Por1p, inhibiting the MOMP (5) and subsequently the release of cyt c and apoptosis (6). 
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cysteine residues in the yeast cofilin because in cof1-7 mutant there is additionally other exchanged 

residue.  

Differently from the POR1 deleted strains, in the cof1-7 mutant the increased release of cyt c did not 

result in a sensitive phenotype when evaluated the cell survival. This supports the notion of, particularly 

in the cof1-7 mutant, the existence of some mechanisms of resistance that are triggered downstream to 

cyt c release. Reinforcing a role for cof1-7 mutant independent from MOMP, preliminary results provided 

by Professor Campbell Gourlay group show that this cofilin mutant strain exhibit increased levels of 

Ste12p, a transcriptional factor that is activated by a MAP kinase signaling cascade. Curiously, in a 

genome-wide screening it was shown that the deletion of DIG2, gene that encodes an inhibitor of Ste12p 

activity, resulted in higher resistance than the wild-type strain to the acetic acid treatment (Sousa et al., 

2013). Although the screen has been done in another wild-type strain, this result appears to evidence the 

Ste12p anti-apoptotic function during the acetic acid-induced cell death.  

Some of the regulatory mechanisms of PTP opening have been described to be mediated by VDAC 

(yeast Por1p) activity. As described in the Chapter 1, Hexokinase (Hk) was reported to regulate the VDAC 

activity through its binding at the OMM (Robey and Hay, 2006). Additionally, it was described that 

Gelsolin, another ABP, also prevents apoptosis by binding to VDAC and promoting a closed conformation 

(Koya et al., 2000; Kusano et al., 2000). Our results suggest that yeast cofilin is also involved in 

apoptosis inhibition by interaction with Por1p and that the residues mutated in cof1-5 and cof1-6 have a 

role in this mechanism. Additional studies are, however, required to confirm this proposed mechanism.  

Curiously, the results here presented suggest that depending of the cofilin residues mutated, it may 

have different functions during the apoptotic-like PCD process induced by acetic acid. Therefore, further 

investigation of the role of cofilin can effectively make this protein a good target for the development of 

new drugs for the treatment of pathologies with the apoptotic machinery deregulated. 
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Apoptosis is the most widely studied process of PCD due to its involvement in many fundamental 

biological events. Saccharomyces cerevisiae undergoes a PCD process in response to different stimuli and 

exhibits many of the morphological and biochemical hallmarks of mammalian apoptosis. Many studies, 

including of our research group, have shown that the yeast S. cerevisiae is able to trigger a mitochondrial-

mediated apoptotic pathway in response to acetic acid treatment. The similarities to the mammalian 

intrinsic pathway led to an increased interest in exploiting this simple model to solve some unanswered 

questions of apoptosis and its regulation. Therefore, this thesis aimed to contribute to a better 

understanding of this process through the study of the role of phospholipids and of the actin-binding protein 

cofilin in acetic acid-induced PCD. 

 

Relocalization of CL at the mitochondrial membranes and PS externalization to the outer leaflet of the 

plasma membrane are surely fundamental to trigger apoptosis in mammalian cells. Despite this reported 

fundamental role of CL and PS in mammalian apoptosis the effect of their decreased levels in yeast 

apoptotic-like PCD was never assessed. We found that: 

 

 CL is not essential to trigger acetic acid-induced apoptosis but is required to maintain the 

mitochondrial function and morphology; 

 

 Mature CL is required for the preservation of mitochondrial function and in determining an 

apoptotic cell death. In its absence death, though delayed, mainly occurs through necrosis; 

 

 PS appears essential for cells to commit into an apoptotic-like PCD since in its absence death is 

delayed and exhibits features of necrosis; 

 

 Phospholipid trafficking between ER and mitochondria mediated by components of the ERMES 

complex, confined to MAMs, and also the translocation of PA from the OMM to the IMM mediated 

by Ups1p, appear to positively regulate the yeast apoptosis. 

 

Although a decrease in CL levels has been reported for all mutants here studied, except cho1∆, the 

observed differences between mutants suggest that these proteins can be involved in the synthesis or 

regulation of other phospholipids, whose levels inside the cell are able to mediate the cell death process. 

Therefore, a characterization of the phospholipid profiles in all mutants, before and after acetic acid 

treatment is needed. For this purpose, the phospholipid composition of mitochondria from these strains 
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might be determined by separating the lipids extracted from mitochondria by thin layer chromatography, 

and then by scraping and quantifying the different spots by UV absorbance, as described (Gonzalvez et 

al., 2005a).  

Considering the purpose of the present study that focuses on a deeper characterization of 

mitochondrial involvement in this process of cell death, it would be also fundamental to evaluate cyt c 

release, through western blot analysis in non-treated and acetic acid treated-cells, and compare the 

relative levels of cyt c in the mitochondrial and cytosolic factions, to understand the role of these proteins 

in MOMP. In addition, considering the reported role of CL in the AAC structure and function, and in VDAC 

oligomerization, it would also be interesting to delete the AAC1/2/3 and POR1 genes in all mutants 

strains to verify if the interaction of CL with these proteins can have an effect in cell death revealing in 

this way a new mechanism of yeast PTP regulation. 

 

During mammalian apoptosis, the actin-binding protein cofilin appears to regulate the mitochondrial-

mediated apoptotic pathway. However, the mechanism by which cofilin interacts with the OMM and leads 

to MOMP is not clarified. Considering the high phylogenetic conservation of this protein in both animal and 

yeast cells, as well as preliminary data suggesting that, under stressful conditions, cofilin is able to interact 

with Por1p (yeast VDAC) at the OMM, we used yeast as a model to evaluate the role of cofilin in yeast 

apoptosis and the involvement of Por1p in cofilin-mediated apoptosis. Since cofilin is indispensable for 

yeast survival we used mutant forms of this protein. Our results appear to suggest that in cells undergoing 

apoptosis in response to acetic acid: 

 

 Cofilin is translocated to mitochondria where, by interaction with Por1p at the OMM, prevents 

MOMP, and consequently the release of cyt c, functioning like Por1p as a negative regulator of 

apoptosis (cof1-5 and cof1-6 evidences); 

 

Despite our results, further research will be required to get a full picture on the role of cofilin in 

yeast apoptosis regulation. To test our hypothesis it will be required to assess the Por1p-cofilin 

interaction at the OMM through an immunoprecipitation assay. Additionally, it would be interesting 

to evaluate the translocation of cofilin to mitochondria through western blot. The simultaneous 

detection of cofilin and cyt c in the mitochondrial and cytosolic fractions of all strains will allow us 

to evaluate not only the relationship between cofilin translocation and MOMP in the wild-type, and 
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the Por1p involvement in this process, as well as the requirement of the exchanged residues in 

the mutants to achieve a similar response. 

 

 In cof1-7 mutant the higher resistance of the mutant is independent of its potential role in MOMP. 

 

Considering the reported increased levels of Ste12p, a transcriptional factor that is activated 

by a MAP kinase signaling cascade, in this cofilin mutant strain, it would be interesting to 

evaluate the effect of STE12 deletion in all mutants. 

 

In conclusion, the results of this thesis sustain that phospholipids play a decisive role on the nature of 

yeast PCD, and on the regulation of the cell death process triggered by acetic acid. Additionally, a role of 

yeast cofilin in the regulation of MOMP induced by acetic acid is also proposed. Since the core apoptotic 

machinery is conserved in yeast, the exploitation of this simple eukaryotic model to the elucidate the role 

of cofilin and of the phospholipids here studied in mitochondrial-mediated apoptosis will offer new insights 

towards the development of novel targeted drugs for therapeutic intervention against pathologies 

associated with apoptosis dysfunctions, including cancer and neurodegenerative diseases. 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 




