
Contributions for
building a Corpora-Flow system

André Fernandes dos Santos
(andrefs@cpan.org)

Dissertation submitted in partial fulfillment of the requirements for the degree of
Master in Informatics Engineering at the University of Minho, under the

supervision of
José João Dias de Almeida

Anália Maria Garcia Lourenço

Departamento de Informática
Escola de Engenharia
Universidade do Minho

Braga, October 2011

Abstract Resumo

Text corpora are important resources
on natural language processing and
related areas such as biomedical text
mining, corpus linguistics, machine
learning and information extraction.

Os corpora textuais são um recurso
importante no processamento de lin-
guagem natural e em áreas rela-
cionadas tais como a mineração de
textos biomédicos, a lingúıstica de
corpus, aprendizagem máquina e re-
cuperação de informação.

Preparing documents to be included
in a corpus involves several different
steps and a complex network of de-
pendencies and conditions, which re-
sults in a workflow difficult to man-
age manually.

A preparação de documentos para
inclusão num corpus envolve vários
passos distintos e uma rede complexa
de dependências e condições, que re-
sulta num fluxo dif́ıcil de gerir man-
ualmente.

This dissertation focuses on different
challenges which can be found when
building corpora, and proposed meth-
ods to overcome such questions.

Esta dissertação foca-se nos diver-
sos desafios encontrados no pro-
cesso de construção de corpora, e
propõe métodos para ultrapassar es-
sas questões.

The first problem tackled was the
cleaning of text documents – remov-
ing structural residues, normalizing
encodings and notations and finding
section delimiters – to make the docu-
ments suitable for further processing.

O primeiro problema abordado foi a
limpeza de documentos de texto –
remoção de reśıduos estruturais, nor-
malização de formatos e notações e
detecção de delimitadores de secção
– tornando os documentos pasśıveis
de serem processados.

Another question addressed was the
detection of duplicated documents
and candidate document pairs for
alignment. A method for measuring
the similarity between documents was
introduced and implemented.

Outra questão abordada foi a de-
tecção de documentos duplicados e
de pares de documentos candidatos
a alinhamento, tendo sido intro-
duzido e implementado um método
para medição da similaridade entre
documentos.

Then, the concept of document syn-
chronization was introduced, followed
by the description of an implementa-
tion based on section delimiters.

Posteriormente, introduziu-se o con-
ceito de sincronização de documen-
tos, seguido da descrição de uma
implementação baseada nos delimita-
dores de secção.

Two real-world scenarios were used
to guide the implementation of the
tools developed: multi-language docu-
ment alignment for inclusion in par-
allel aligned corpora and building cor-
pora of biomedical texts for text min-
ing.

Dois casos de estudo reais foram uti-
lizados para guiar a implementação
das ferramentas desenvolvidas: alin-
hamento multi-ĺıngua de documentos
para inclusão em corpora paralelos al-
inhados e a construção de corpora de
textos biomédicos para mineração de
texto.

A prototype of a corpora building
management system was developed –
a corpora-flow system. This sys-
tem includes mechanisms which facil-
itate the implementation of the work-
flow needed to build a corpus.

Um protótipo de um sistema de
gestão da construção de corpora
foi desenvolvido – um sistema de
corpora-flow. Este sistema incor-
pora mecanismos que facilitam a im-
plementação do fluxo necessário para
a construção de um corpus.

A comparative evaluation of the set
of tools developed was performed by
aligning documents with and without
using the tools developed. A small set
of auxiliary tools was created to eval-
uate the results of alignments.

Uma avaliação comparativa do con-
junto de ferramentas desenvolvido foi
realizada através do alinhamento de
documentos com e sem a intervenção
das ferramentas desenvolvidas. Um
pequeno conjunto de ferramentas foi
desenvolvido para avaliar os resulta-
dos de alinhamentos.

Acknowledgments

• Many thanks to my teachers and supervisors, José João Almeida and
Anália Lourenço, for all the time spent, the guidance and the ideas.

• Thanks again to Anália for the proof-reading, and for acting as my guide
in the brave new world of bioinformatics and biomedical text mining.

• Thanks to Sara, Nuno and Alberto for all the help, the good advices
and the discussions.

• Thanks again to Alberto, Nuno and José João for the borrowed tem-
plates and the tools and modules they made available.

• Thanks to all the friends from CeSIUM, for the friendship, the good
moments and for letting me part of something great.

• Thanks to everyone at GroupBuddies, for sharing with me this adven-
ture which is starting a brand new company.

• Thanks to Roberto, for all the crazy projects we’ve been through to-
gether – keep them coming!

• Thanks to everyone from Project Per-Fide, which helped me in my
incursions in areas which I knew little about.

• Thanks to Fundação para a Ciência e Tecnologia, for granting me with
a scholarship which made most of this work possible

• Thanks to my parents and my brother, for always having supported me
and for being in great deal responsible for who I am today.

• And a special thanks to Dominique. Thank you for your infinite pa-
tience, for all the friendship, care, and for making me feel taller for the
last 8 years! :)

Preface

This document is a master thesis in Informatics Engineering (area of Natural
Language Processing) submitted to Universidade do Minho, Braga, Portugal.

Throughout the document the academic plural appears often in the text
to describe the work developed. This form was intentionally used for two
reasons: first, some of the work here presented was done in cooperation; and
second, the plural can help the reader to feel more closely connected with the
work done.

Document structure

Chapter 1 introduces the subject, defining the basic concepts and ideas de-
veloped throughout the document.

Chapter 2 presents some background on the concepts on which this dis-
sertation is based, along with a brief overview of the state-of-the-art
concerning these subjects.

Chapter 3 describes common types of noise found in text, the problem of
cleaning plain text documents and the solution developed.

Chapter 4 analyzes the problem of measuring similarity between two doc-
uments, and how it can be used to detect duplicated documents and
candidate pairs for alignment.

Chapter 5 presents the problem of unmatched sections in the alignment of
documents, introduces the concept of book synchronization, and de-
scribes how it can be used to minimize the problem.

Chapter 6 introduces the concept of corpora-flow system, describes an im-
plementation of a prototype for such a system based on Makefiles, and
provides as an example the integration of the other developed tools.

vii

Chapter 7 provides a global evaluation of the tools developed in the context
of this project, based on tests performed with real documents.

Chapter 8 presents some conclusions and points out possible directions for
future work.

Some complementary information is presented on the appendixes:

Appendix A includes the documentation for some tools developed through
this thesis (also available as man pages).

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Project overview . 2

1.2.1 Design Goals . 3
1.2.2 Developed tools . 4

1.3 Case Studies . 5
1.3.1 Multi-language document alignment 5
1.3.2 Biomedical text mining 6

1.4 Document Summary . 6

2 Background 9
2.1 Introduction to corpora . 9

2.1.1 What is a corpus? . 9
2.1.2 Types of corpora . 10

2.2 Building corpora . 11
2.2.1 Common tasks . 11
2.2.2 Parallel corpora . 13

2.3 Text alignment . 15
2.3.1 Brief history . 15
2.3.2 Alignment and evaluation projects 17
2.3.3 The alignment process 19
2.3.4 Current projects and tools 24

3 Cleaning documents 27
3.1 Introduction . 27

3.1.1 Motivation . 27
3.1.2 Common problems . 28
3.1.3 Design Goals . 29

3.2 Cleaning books . 29
3.2.1 Pages . 30

ix

x Contents

3.2.2 Sections . 32
3.2.3 Paragraphs . 34
3.2.4 Footnotes . 34
3.2.5 Words and characters 37
3.2.6 Commit . 38

3.3 Diagnostic report . 39
3.4 Declarative objects . 39

3.4.1 Sections Ontology . 40
3.5 Evaluation . 41
3.6 Cleaning scientific articles . 42

3.6.1 Sections . 43
3.6.2 Pages . 43
3.6.3 Normalizing mathematical notation 43

3.7 Summary . 44

4 Measuring similarity 45
4.1 Introduction . 45
4.2 Measuring similarity . 46
4.3 Implementation . 47

4.3.1 Extraction of bag-of-words 47
4.3.2 Classification according to similarity 49
4.3.3 Identifying exact duplicates 49
4.3.4 Identifying near duplicates and candidate pairs 49

4.4 Processing a pool of files . 50
4.4.1 Command line utility 50
4.4.2 Optimization . 52
4.4.3 Choosing a version . 53

4.5 Evaluation . 54
4.6 Summary . 56

5 Synchronizing books 59
5.1 Introduction . 59
5.2 Implementation . 60

5.2.1 Alignment method . 60
5.2.2 Ghost sections and chunks 62

5.3 Output objects . 63
5.3.1 Synchronization matrix 63
5.3.2 Annotated files . 65

5.4 Summary . 65

Contents xi

6 Prototype of a corpora flow 67
6.1 Introduction . 67

6.1.1 Workflow . 68
6.1.2 Makefiles . 69

6.2 Building a workflow with Makefiles 71

7 Global evaluation 73
7.1 Alignment evaluation tools . 73
7.2 Evaluation process . 75
7.3 Results . 76
7.4 Discussion . 77

8 Conclusions and future work 81
8.1 Conclusions . 81
8.2 Future Work . 83

8.2.1 Document cleaners . 83
8.2.2 Document pair finding 83
8.2.3 Document synchronization 84
8.2.4 Corpora-flow . 84

A Software Documentation 93
A.1 Software Installation . 93

A.1.1 Requirements . 93
A.2 bookcleaner . 93
A.3 pairbooks . 95
A.4 syncbooks . 97
A.5 Lingua::TMX::Utils . 98

xii Contents

List of Figures

3.1 Pipeline of Text::Perfide::BookCleaner. 30

5.1 Matrix produced as a result of synchronizing the previous ex-
amples. 64

7.1 Example of the output of tmx_inspect. 75
7.2 Diagram of the global evaluation. 76

xiii

xiv List of Figures

List of Tables

2.1 Extract of sentence-level alignment performed using Portuguese
and Russian subtitles from the movie Tron. 22

3.1 Number of translation units obtained for each type of corre-
spondence, with and without using Text::Perfide::BookCleaner. 42

4.1 Number of books in Set AC1, grouped by language. 54
4.2 Results of pairbooks and manual revision. 55

7.1 Number of pairs aligned and results (sets HP1 and HP2). . . 77
7.2 Number of pairs aligned and results (sets UE1 and UE2). . . 77
7.3 Translation units obtained for each type of correspondence

(sets HP1’ and HP2’). 78
7.4 Translation units obtained for each type of correspondence

(sets UE1’ and UE2’). 78

xv

xvi List of Tables

List of Examples

3.1 Detail of page structure residues before cleaning. 31
3.2 Detail of page structure residues, after cleaning. 32
3.3 Detail of section delimiters before annotation. 33
3.4 Detail of section delimiters after annotation. 33
3.5 Detail of footnotes before cleaning. 36
3.6 Detail of footnotes after cleaning. 36
3.7 Example of diagnostic report. 39
3.8 Extract from the sections ontology: chapter (left) and scene

(right). 40
3.9 Extract from the sections ontology: END (left) and the nu-

meral 3 (right). 40
4.1 pairbooks: default output. 51
4.2 pairbooks: list of pairs of files, including less probable pairs. 52
4.3 pairbooks: list of duplicate files. 52
4.4 Example of the proper names with higher occurrences in The

Name of the Rose . 56
4.5 Similar words on the top 30 higher occurrences of proper names

in The Name of the Rose. 56
5.1 Section structure generated by Text::Perfide::BookCleaner. 61
5.2 Diff file for section alignment. 61
5.3 Chunk structure. 63
6.1 Basic structure of a Makefile. 70
6.2 Example of a Makefile. 70
6.3 Example of a DSL for a Makefile-based workflow formal defi-

nition. 72
7.1 tmx_compare: example of output. 75

xvii

xviii List of Examples

Acronyms

API application programming interface

ASCII American Standard Code for Information Interchange

BTM biomedical text mining

BoW bag-of-word

CQP Corpus Query Processor

DSL domain-specific language

HMM hidden Markov model

HTML HyperText Markup Language

JSC Jaccard similarity coefficient

LIE language independent element

MWU multi-word unit

NLP natural language processing

OCR optical character recognition

PDF Portable Document Format

PTD probabilistic translation dictionary

SL source language

TL target language

TM translation memory

TMX Translation Memory eXchange

xix

xx List of Examples

TU translation unit

UCS Universal Character Set

UTF-8 UCS Transformation Format — 8-bit

Chapter 1

Introduction

The White Rabbit put on his spectacles. ’Where shall I
begin, please your Majesty?’ he asked.
’Begin at the beginning,’ the King said gravely, ’and go
on till you come to the end: then stop.’

Lewis Carroll, Alice’s Adventures in Wonderland

1.1 Context and Motivation

Corpora are an invaluable resource for tasks in areas such as knowledge re-
trieval, machine learning, natural language processing and linguistics [Véronis,
2000]. Some corpora have a very well defined scope (e.g. legislation [Koehn,
2005], journalistic texts [Santos and Rocha, 2001, Santos and Sarmento, 2003]
and biomedical [Kim et al., 2003, Stearns et al., 2001, Vincze et al., 2008]),
while others have a wider focus. Either way, when building a corpus, usually
it is desirable to obtain as many different documents from as many different
sources as possible. The quantity of documents is important because most of
the tools which work with corpora are based on statistics, and thus, corpora
must be large enough to reduce the statistical bias. This means that the re-
sources used to build them need to be available in reasonable amounts. The
diversity of the documents is also important because the more different types
and sources of documents there are, the richer the corpus will get, which tends
to increase the precision and recall of the tools which work based on it. The
downside of having many different sources of documents is an increase on the
range of problems that they might present, the number of different notations
used, and the probability of getting documents in bad conditions.

1

2 1. Introduction

A parallel aligned corpus is composed by texts and their translation to
another language (known as bitexts). When obtaining already aligned cor-
pora is not possible, they can be built through the alignment of texts. This
alignment is generally performed at paragraph, sentence or word level. Text
alignment, as many other text processing tasks, may be performed manually;
however, these tend to be tedious and time consuming tasks, which makes
them unsuitable to be performed on large amounts of documents. Thus,
whenever possible, the alternative is to use automatic tools.

Automatic tools have their disadvantages too, the largest one being that
they are more affected by misformatted or noisy texts, or, generally, texts not
in the very best conditions. This susceptibility to noisy text often means that
tasks performed automatically need to be manually prepared, supervised and
corrected. Without these steps, after the alignment, one might end up reject-
ing too many cases and obtain a corpus smaller than desirable, or accepting
bad cases and obtain a low-quality corpora.

Document types are often a common source of problems when automat-
ically processing text. Most tools can only operate over plain text, meaning
that the documents must be converted before being processed. The conver-
sion to plain text format often introduces noise and leaves residues, and even
documents which were originally created in plain text format use different no-
tations for things like mathematical formulas, section division, page breaks,
sentences, etc. Text alignment suffers from additional problems, such as par-
tial or truncated documents – aligning two versions of a given document is
most of the times unsuccessful when one of them is missing even a small part,
let alone entire sections or chapters.

The next section presents the work developed in the context of this disser-
tation, stating some design goals which guided the project development and
briefly presenting the tools created. Section 1.3 introduces the case studies
which served as motivation to this work and Section 1.4 presents the structure
of the document, including a summary of each chapter.

1.2 Project overview

The context presented before justifies the need for tools which can help on
the process of building corpora. This document will present work developed
mainly in the context of Project Per-Fide (ref. PTDC/CLE-LLI/108948/2008),
a project which aims to build a large parallel corpora (see Section 1.3.1,
page 5), which is part of the reason why this work is mainly focused on

1.2. Project overview 3

handling books.

1.2.1 Design Goals

A set of design goals was defined to guide implementation efforts. Some of
these are practical requirements for the tools, while others can be viewed
more as philosophical guidelines.

• Despite having the preparation of books for alignment as central con-
cern, tools should be developed as generic as possible, because many of
the problems they tackle are common to other fields.

• Develop tools which are independent from each other, but which can
work together and with previously existing applications, and that can
be assembled into a pipeline.

• Make the tools publicly available. This includes implementing them fol-
lowing the real-world standards and community practices, and making
them installable and usable by third-party people and projects. This re-
quires an extra effort given the difference between developing academic
tools and real-world, usable applications.

• Whenever possible, identify and solve the problems automatically, gen-
erating a report of what was found and done. If a given problem is
not solvable automatically, correctly identifying it and asking for con-
firmation is usually a viable alternative. When even this is not possible,
presenting a report helps the user to decide what to do.

• Follow the Unix philosophy [Raymond, 2003]:

Write programs that do one thing and do it well. Write pro-
grams to work together. Write programs to handle text streams,
because that is a universal interface.

Doug McIlroy

This will allow the development of tools which can help with the most
common problems, and designed in such a way which makes them easy
to integrate with smaller tools focused on more specific problems.

• Whenever possible, reuse existing well-proven tools. This includes Unix
utilities such as diff and grep [Hunt et al., 1976, Hume, 1988].

4 1. Introduction

1.2.2 Developed tools

This section presents and briefly describes the tools developed in the context
of this master thesis, which include:

• a cleaner for plain text books and scientific articles.

• a tool to find book pairs and duplicated books in a collection.

• a tool to synchronize pairs of books.

• a prototype for a management tool for the corpora building workflow.

• small tools to evaluate and compare the results of alignments.

The tools were developed according to what was most needed at the time.
As such, in this document they will not be presented necessarily in the chrono-
logical order in which they were created, but instead in a way that helps
getting a global view of how they can fit together.

Plain text book cleaner

A Perl module and a command line utility which implement cleaning tasks
in books – including removing page breaks, delimiting sections, normalizing
sentence notation and other similar tasks and, in addition, a prototype for a
similar tool but targeted at cleaning tasks specific for scientific articles, such
as the normalization of mathematical formulas.

Duplicated documents and candidate pairs detector

A command line utility to detect duplicate and near duplicate files and can-
didate pairs for alignment, supported by a Perl module which implements
algorithms for measuring similarity between files.

Book synchronizer

An utility to perform book synchronization – structural alignment based on
the books’ sections, capable of generating visual representations of the syn-
chronization results and creating files with anchor points for alignment.

1.3. Case Studies 5

Corpora building workflow control system

Prototype for a workflow control system which can be used to create Makefile-
controlled workflows.

Alignment results evaluation tools

Tools which help in the process of assessing the quality of the Translation
Memory eXchange (TMX) files resulting from document alignment and com-
paring several TMX files.

1.3 Case Studies

Given the applied nature of this work, real-world use case scenarios can be
used to support the design-implement-test-evaluate cycle of the development,
as follows:

Design: the case studies allow to better decide which tools were needed, and
which features should be implemented in those tools;

Implementation: many implementation decisions and optimizations could
be triggered by the evaluation of the tool’s outputs for the use cases;

Tests: the validation tests should be based on elements extracted from the
case studies, eliminating the need of constructing artificial (often in-
complete or biased) tests from scratch;

Evaluation: the evaluation of the tools should be performed against the case
studies, asking simple questions: are these tools being useful in these
real-world situations? What problems are not solved? What could be
done to overcome/minimize them?

1.3.1 Multi-language document alignment

Project Per-Fide (ref. PTDC/CLE-LLI/108948/2008) is a project which aims
to build and make publicly available a large annotated parallel corpora, con-
taining texts in Portuguese in parallel with Spanish, Russian, French, Italian,
German and English (Pt, Es, Ru, Fr, It, De, En – Per-Fide) [Araújo et al.,
2010]1. The project aims to have original texts in one of the seven languages

1http://per-fide.di.uminho.pt

http://per-fide.di.uminho.pt

6 1. Introduction

and their translations, having Portuguese as either the source or target lan-
guage.

The corpus is divided in two main genres: contemporary fiction (including,
but not limited to, novels and short stories), and non-fiction: religious texts,
journalistic articles, judicial texts, technical texts, and others.

Given the dimension of the tasks which it comprises, Project Per-Fide was
not only the source of requirements for the tools but also has provided source
documents to test and validate the tools developed.

1.3.2 Biomedical text mining

Areas of study within Life Sciences are particularly prolific in publishing sci-
entific papers. In fact, the advances made in the last decades have originated
not only a larger number of experiments, but also more complex experiments
envisioning deeper levels of analysis.

The biomedical text mining community, comprised by specialists in ar-
eas such as natural language processing, machine learning and statistics, has
endorsed multiple efforts trying to develop tools suited to process this kind
of literature, and thus trying to fulfill the needs of the biologists [Rassinoux
et al., 2010].

Despite featuring many specific tasks, at the basis of biomedical text min-
ing the construction of corpora. As such, biomedical text mining appeared as
a second natural case study, giving us the possibility to develop tools with a
wider range of application, allowing us to apply the techniques and algorithms
developed in different contexts, and preventing us from over-specializing our
tools.

1.4 Document Summary

Background

The next chapter presents some background information and the state of the
art in the area of corpora construction, text alignment (given that this is one
of the ways of producing parallel corpora) and text handling.

Cleaning documents

This chapter discusses the problem of processing noisy text, and describes
the most common types of noise. Several methods to perform cleaning tasks

1.4. Document Summary 7

are proposed, including removing structural residues, normalizing encodings
and notations, and finding sections delimiters.

Measuring similarity

This chapter introduces the problem of finding duplicated documents and
finding candidate pairs of documents for alignment. A solution to this prob-
lem is discussed, based on a method for measuring the similarity between
documents by extracting bags-of-words (BoWs) from the text.

Synchronizing books

In this chapter the problem of aligning documents with missing sections is
presented. A method to solve it is proposed, based on the identification
of the missing sections by synchronizing the documents (aligning them at
section level). The section delimiting is performed by the method described
in Cleaning documents.

Prototype of a corpora flow

This chapter describes a prototype for a system to generate corpora building
workflow managers, through the extension of the concept of Makefiles.

Global evaluation

This chapter describes a global evaluation of the tools developed in the context
of this dissertation. A small set of tools was created to evaluate alignment
results, and a comparative analysis of alignments with and without the tools
was performed.

Conclusions and future work

This chapter presents a review over the work performed, the problems tack-
led and the tools implemented. Several possible future work directions are
described.

8 1. Introduction

Chapter 2

Background

He wrote it in simple declarative sentences with all of
the problems ahead to be lived through and made to come
alive. The very beginning was written and all he had to
do was go on.

Ernest Hemingway, Garden of Eden

2.1 Introduction to corpora

This section introduces the concept of corpus, explaining what it is and what
types of corpora exist.

2.1.1 What is a corpus?

In the broader sense of the word, a corpus is any finite collection of multiple
documents. Depending on the context, the notion of what a corpus is may
change a little, and it has even been shifting over time (specially with the
widespread generalization of the Internet), which means that does not exist
a unique definition of what a corpus is.1 Sinclair [2005] defines corpus as
follows:

1Some authors use the Oxford Dictionary definition of corpus:
Corpus: a collection of written texts, especially the entire works of a particular author or a
body of writing on a particular subject; collection of written or spoken material in machine-
readable form, assembled for the purpose of linguistic research. [Dictionaries, April 2010]

9

10 2. Background

Definition 1 A corpus is a collection of pieces of language text in electronic
form, selected according to external criteria to represent, as far as possible, a
language or language variety as a source of data for linguistic research. 3

Areas such as biomedical text mining (BTM) have their own notion of
corpus, which is generally a large collection of documents, usually annotated
and used to train, test or validate an automatic tool.

2.1.2 Types of corpora

Corpora are usually divided into text corpora (i.e. written material), spoken
corpora and multimodal corpora. Below are presented some common types
of specialized text corpora. A comprehensive list of corpora was compiled
by Xiao [2008].

Treebanks: linguistically annotated corpus that includes some grammatical
analysis beyond the part-of-speech level;

Historical corpus: one which is intentionally created to represent and in-
vestigate past stages of a language and/or to study language change;

Learner corpus: A corpus where all the data comes from language learners.

Parallel and comparable corpus: multilingual corpus which is a) com-
posed by texts and their translation (parallel corpora); or b) composed
by texts in different languages which are not translations but are some-
how similar to each other – according to previously defined parameters.

Corpora can be further classified according to internal characteristics.
They may be general corpus or specific corpus, in which case they may vary
in the genre of texts included, the topics covered, the size and the annotations
and the languages covered.

Texts genre: Corpora may be focused on a particular genre of text. For ex-
ample, the Europarl Parallel Corpus contains European legislation and
CETEMPublico and CETEM-Folha were put together using journalistic
texts [Santos and Rocha, 2001, Santos and Sarmento, 2003].

Topics covered: Some corpora are specialized in a given topic or area of
knowledge. For example, the GENIA corpus comprised abstracts from
biomedical articles on human transcriptional regulation [Kim et al.,
2003].

2.2. Building corpora 11

Corpus size: The (minimum) size of a corpus should depend on two main
criteria: the kind of query that is anticipated from users, and the
methodology they use to study the data [Sinclair, 2005]. The size is
usually measured in total number of words and total number of differ-
ent words.

Annotations: Many kinds of annotations can be added to a corpus: part-of-
speech, lemmatisation, parsing, semantics, discoursal and text linguistic
annotations, etc. A comprehensive and detailed description of common
types of annotations can be found in McEnery and Wilson [2001].

Languages covered: Corpus may be monolingual, in which case all the
texts are written in the same language, or multilingual (see above the
description of parallel and comparable corpora).

2.2 Building corpora

The steps required to build a corpus may depend partially on the size of the
corpus, its purpose, and its scope – whether it is a specific corpus (one which
only includes a given genre of text or that only covers a specific topic) or a
general corpus. Nevertheless, it is possible to define a list of tasks commonly
associated to the process of building a corpus.

2.2.1 Common tasks

The following list has been compiled from the existing literature on building
corpora [Wynne et al., 2005, Burnard, 1999, Atkins et al., 1992], and includes
the most common and important tasks required to constitute a corpus.

Planning

Like any other project, building a corpus typically starts with the planning
phase, where several decisions need to be made which will affect the remaining
stages. Some of these decisions, however, will most likely have to be revised
and adapted during the building process when faced with practical aspects of
the project. Many of these details will also be highly dependent on constraints
such as the time and funds available.

The type and amount of texts that will be included in the corpus must be
defined. Concerns such as the corpus being balanced and providing a good
coverage (for example, in terms of textual genres and topics included) should

12 2. Background

be taken into account. Selecting the documents that should be included
will also depend on the intended use for the corpus and their availability.
The procedures needed for inclusion of documents should also be established:
where and how to obtain documents, and how to get the rights clearance and
permissions to include the documents in the corpus.

Defining the intermediary file formats and conventions to be used in the
text processing pipeline allows everybody involved in the project to create
documents which can be easily understood by the tools developed, avoiding
the need of reformatting or converting files. These details should also be
defined at the planning phase.

Then there are the aspects related to the use of corpora: what annotations
should be added to the corpus and how should the corpus be made available
– in which formats should it be available and how are the analysis tools are
supposed to interact with it.

Getting permissions

The documents which are in the public domain usually do not require any
special permission, as they are free for anyone to use. Copyrighted documents,
on the other hand, can only be used in corpora if their copyright owners
explicitly allow it.

Clearing the rights to use documents is a time-consuming task, which
involves identifying corporations or other entities which are more likely to
detain a relevant set of documents and contact them, asking for the permis-
sions to use their documents in the project and waiting for their reply. Often,
getting a reply requires several contact attempts and climbing up the insti-
tutions’ hierarchy. When the permission is granted, it is also common for the
copyright owner to impose some specific constraints – e.g. only allowing to
sample a given percentage of non-consecutive sentences – or to demand some
counterparts – e.g. requiring some specific type of annotation or access to the
final version of the corpus.

Gathering documents

Copyright issues to the side, documents must be retrieved. Nowadays, there
are three main ways of putting together a text corpus: obtaining already
digitized texts, scanning printed documents, or typing in existing material.

Documents in electronic format are usually the ones that require less ef-
forts to make suitable for the corpus, but a fair amount of parsing and refor-

2.2. Building corpora 13

matting is often still required.
It is not always possible to rely solely on documents available in electronic

formats. This may happen due to the nature of the corpus – documents in less
popular languages, genres or topics may be harder to find in large quantities,
and historical documents are less likely to be digitized. In these cases, the
best alternative is usually to scan them and perform the optical character
recognition (OCR). Even so, the resulting files have to be manually checked
for errors, which makes this a time and effort consuming task.

Sometimes, not even the OCR is possible. This is the case with documents
which are too complex or degraded, handwritten documents and whenever
the transcription of audio recordings is required. In these cases, manually
typing in the text is the only alternative. However, this is impractical (even
impossible) to do in large quantities. This means that relying too much on
manually typed documents limits the size of the corpus and delays the project,
reducing its importance.

2.2.2 Parallel corpora

Building parallel corpora presents some specificities because it requires the
fetching of parallel documents – documents containing the same texts in dif-
ferent languages. Before being included in the corpus, the bitexts must be
aligned, which requires the documents to be fetched already aligned or the
alignment to be performed after getting the documents.

The process of alignment is described in detail in Section 2.3.3. Below is
compiled a list of common sources for parallel documents.

Document sources

As mentioned in section 2.3.1, the lack of available corpora was one of the
reasons appointed to why the earlier efforts made to align texts did not work
out. Fortunately, with the massification of computers and globalization of
the internet, several sources of alignable corpora have appeared:

Literary Texts
Books published in electronic format are becoming increasingly com-
mon. Despite the vast majority being subject to copyright restrictions,
some of them are not.

Project Gutenberg, for example, is a volunteer effort to digitize and
archive cultural works. Currently it comprises more than 33.000 books,

14 2. Background

most of them in public domain [Hart and Newby, 1997]. National li-
braries are beginning to maintain a repository of eBooks as well [Varga
et al., 2005].

Sometimes it is also possible to find publishers who are willing to co-
operate by providing their books as long as it is for research purposes
only.

Religious Texts
The Bible has been translated into over 400 languages, and other reli-
gious books are widespread as well. Additionally, the Catholic Church
translates papal edicts to other languages from the original Latin, and
the Taizé Community website2 also provides a great deal of its content
in several languages.

International Law
Important legal documents, such as the Universal Declaration of Human
Rights3 or the Kyoto Protocol4 are freely available in many different
languages. One of the first corpora used in parallel text alignment were
the Hansards – proceedings of the Canadian Parliament [Brown et al.,
1991, Gale and Church, 1993, Kay, 1991, Chen, 1993].

Movie subtitles
There are several on-line databases of movie subtitles. Depending on the
movie, it is possible to find dozens of subtitles files, in several different
languages (frequently even more than one version for each language).
Subtitles are shared on the internet as plain text files (sometimes tagged
with extra information such as language, genre, release year, etc) [Tiede-
mann, 2007].

Software internationalization
There is an increasing amount of multilingual documentation belong-
ing to software available in several countries. Open source software is
particularly useful for not being subject to copyright [Tiedemann et al.,
2004].

Bilingual Magazines
Magazines like National Geographic, Rolling Stone or frequent flyer
magazines are often published in other languages besides English, and in

2http://www.taize.fr
3http://www.un.org/en/documents/udhr/index.shtml
4http://unfccc.int/kyoto_protocol/items/2830.php

http://www.taize.fr
http://www.un.org/en/documents/udhr/index.shtml
http://unfccc.int/kyoto_protocol/items/2830.php

2.3. Text alignment 15

several countries there are magazines with complete mirror translations
into English.

Websites
Websites often allow the user to choose the language in which they
are presented. This means that a web crawler may be pointed to this
websites to retrieve all reachable pages – a process called “mining the
Web” [Resnik and Smith, 2003, Tsvetkov and Wintner, 2010].

Corporate webpages are one example of websites available in several
languages. Additionally, some international companies have their sub-
sidiaries publishing their reports in both their native language and in
their common language (usually English).

2.3 Text alignment

This section describes the evolution of text alignment since its beginnings
and relevant alignment and evaluation projects. Then, a detailed step-by-
step description of the alignment process is made, and the section ends with
a list of current projects and tools.

2.3.1 Brief history

Parallel text use in automatic language processing was first tried in the late
fifties, but probably due to limitations in the computers of this time (both
in storage space and computing power) and the reduced availability of large
amount of textual data in a digital format, there was a restricted use of
corpora at time and the results were not encouraging [Véronis, 2000].

In the eighties, with computers being several orders of magnitude faster,
a similar increase in storage capacity and a growing amount of large cor-
pora available, a new interest in text alignment emerged, resulting in several
publications years later.

The first documented approaches to sentence alignment were based on
measuring the length of the sentences in each text. The system developed by
Kay [1991] was the first to devise an automatic parallel alignment method.
This method was based on the idea that when a sentence corresponds to an-
other, the words in them must also correspond. All the necessary information,
including lexical mapping, was derived from the texts themselves.

The algorithm initially sets up a matrix of correspondence, based on sen-
tences which are reasonable candidates: the initial and final sentences have

16 2. Background

a good probability to correspond to each other, and the remaining sentences
should be distributed close to the matrix main diagonal. Then the word
distributions are calculated, and words with similar distribution values are
matched, and considered anchor points, narrowing the “alignment corridor”
of the candidate sentences. The algorithm then iterates until it converges on
a minimal solution.

However, this system was not efficient enough to apply to large cor-
pora [Moore, 2002]. Two other similar methods were proposed, the main
difference between them being on how the sentence length was measured:
Brown et al. [1991] counted words, while Gale and Church [1993] counted
characters. The authors assumed that the length of a sentence is highly cor-
related with the length of its translation. Additionally, they concluded that
there is a relatively fixed ratio between the sentence length in any two lan-
guages. The optimal alignment minimizes the total dissimilarity of all the
aligned sentences. Gale and Church [1993] achieve the optimal alignment
with a dynamic programming algorithm, while Brown et al. [1991] applied
hidden Markov models (HMMs).

In 1993, Chen [1993] proposed an alignment method which relied on ad-
ditional lexical information. In spite of not being the first of its kind, this
algorithm was the first lexical-based alignment which was efficient enough for
large corpora. It required minimum human intervention – at least 100 sen-
tences had to be aligned for each language pair to bootstrap the translation
model – and it was capable of handling large deletions in text.

Another family of algorithms was proposed soon after, based on the con-
cept of cognates. The concept of cognate may vary a little, but generally
cognates are defined as occurrences of tokens that are graphically or other-
wise identical in some way. These tokens may be dates, proper nouns, some
punctuation marks or even closely-spelled words – Simard and Plamondon
[1998] considered cognates any two words which shared the first four charac-
ters. When recognizable elements like dates, technical terms or markup are
present in considerable amounts, this method works well even with unrelated
languages, despite some loss of performance being noticeable.

Most methods developed ever since rely on one or more of these main ideas
– length based, lexical or dictionary based, or partial similarity (cognate)
based.

2.3. Text alignment 17

2.3.2 Alignment and evaluation projects

ARCADE

In the mid-nineties, the amount of studies describing alignment techniques
was already impressive. Comparing their performance, however, was difficult
due to the aligners sensitivity to factors as the type of text used or different
interpretations of what is a “correct alignment”. Details on the protocols or
the evaluation performed on the systems developed were also frequently not
disclosed. A precise evaluation of the techniques would be most valuable; yet,
there was no established framework for evaluation of parallel text alignment.

The ARCADE I was a project to evaluate parallel text alignment systems
which took place between 1995 and 1999, consisting in a competition among
systems at the international level [Langlais et al., 1998, Véronis and Langlais,
2000]. It was divided in two phases: the first two years were spent on corpus
collection and preparation, and methodology definition, and a small compe-
tition on sentence alignment was held; in the remaining time, the sentence
alignment competition was opened to a larger number of teams, and a second
track was created to evaluate word-level alignment.

For the sentence alignment track, several types of texts were selected:
institutional texts, technical manuals, scientific articles and literature. To
build the reference alignment, an automatic aligner was used, followed by
hand-verification by two different persons.

F-score values were based on the number of correct alignments, proposed
alignments and reference alignments, and calculated for different types of
granularity. The best systems achieved an F-score of over 0.985 on institu-
tional and scientific texts. On the other hand, all systems performed poorly
on the literature texts.

For the word track, the systems had to perform translation spotting, a
sub-problem of full alignment: for a given word or expression, the objective
is to find its translation in the target text. A set of sixty French words (20
adjectives, 20 nouns and 20 verbs) were selected based on frequency criteria
and polysemy features. The results were better for adjectives (0.94 precision
and recall for the best system) than for verbs (0.72 and 0.62 respectively).
The overall results were 0.77 and 0.73 respectively for the best system.

The ARCADE project had a few limitations: the systems were tested
by limited tasks which did not reflect their full capacity, and only one lan-
guage pair (French-English) was tested. Nonetheless, it allowed to conclude,
at the time, that the techniques were satisfactory for texts with a similar
structure. The same techniques were not as good when it came to align

18 2. Background

texts whose structure did not match perfectly. Methodological advances on
sentence alignment and, in a limited form, word alignment were also made
possible, resulting in methods and tools for the generation of reference data,
and a set of measures for system performance assessment. Additionally, a
large standardized bilingual corpus was constructed and made available as a
gold standard for future evaluations.

ARCADE-II

The second campaign of ARCADE was held between 2003 and 2005, and
differed from the first one in its multilingual context and on the type of
alignment addressed. French was used as the pivot language for the study of
10 other language pairs: English, German, Italian and Spanish for western-
European languages; Arabic, Chinese, Greek, Japanese, Persian and Russian
for more distant languages using non-Latin scripts.

Two tasks were proposed: sentence alignment and word alignment. Each
task involved the alignment of Western-European languages and distant lan-
guages as well. For the sentence alignment, a pre-segmented corpus and a
raw corpus were provided.

The results showed that sentence alignment is more difficult on raw cor-
pora (and also, curiously, that German is harder than the other languages).
The systems achieved an F-score between 0.94 and 0.97 on raw corpora, and
between 0.98 and 0.99 on the segmented one. As for distant languages align-
ment, two systems (P1 and P2) were evaluated. The results allowed to con-
clude that sentence segmentation is very hard on non-Latin scripts, as P1 was
incapable of performing it and the results for raw corpora alignment of P2
scored 0.421.

Evaluating word alignment presents some additional difficulties, given the
differences in word order, part-of-speech and syntactic structure, discontinu-
ity of multi-token expressions, etc which are possible to find between texts
and its translations. Sometimes it is not even clear how some words should
be aligned when they do not have a direct correspondence in the other lan-
guage. Nevertheless, a small competition was held, in which the systems were
supposed to identify named entities phrases translation in the parallel text.

The scope of this task was limited; yet, it allowed to define a test protocol
and metrics.

2.3. Text alignment 19

Blinker project

In 1998, a “bilingual linker”, Blinker, was created in order to help bilingual
annotators (people who go through bitexts and annotate the correspondences
between sentences or words) in the process of linking word tokens that are
mutual translations in parallel texts. This tool was developed in the context
of a project whose goal was to manually produce a gold standard which could
be used to future research and development [Melamed, 1998b]. Along with
these tools, several annotation guidelines were defined [Melamed, 1998a], in
order to increase consistency between the annotations produced by all the
teams.

The parallel texts chosen to align were a modern French version and a
modern English version of the Bible. This choice was motivated by the
canonical division of the Bible in verses, which is common across most of
the translations. This was used as a “ready-made, indisputable and fairly
detailed bitext map”.

Several methods were used to improve reliability. First, as many annota-
tors as possible were recruited. This allowed to identify deviations from the
norm, and to evaluate the gold standard produced in terms of inter-annotator
agreement rates (how much the annotators agreed with each other).

Second, Blinker was developed with some unique features, such as forcing
the annotator to annotate all the words in a given sentence before proceed-
ing (either by linking them with the corresponding target text word, or by
declaring as “not translated”. These features aimed to ensure that a good
first approximation was produced, and to discourage the annotators natural
tendency to classify words whose translation was less obvious as “not trans-
lated”.

Third, the annotation guidelines were created to reduce experimenter bias,
and a monetary bonus was offered to the annotators who stayed closest to
the guidelines.

The inter-annotator agreement rates on the gold standard were approxi-
mately 82% (92% if function words were ignored), which indicated that the
gold standard is reasonably reliable and that the task is reasonably easy to
replicate.

2.3.3 The alignment process

Despite the existence of several methods and tools to align corpora, the pro-
cess itself shares some common steps. In this section the alignment process
is detailed step-by-step.

20 2. Background

Input

The format of the documents to be aligned usually depends on where they
come from: while literary texts are often obtained either as PDF or plain text
files; legal documents usually come as PDF files; corporate websites come in
HTML; and movie subtitles are either in SubRip or microDVD format.

Globally accepted as the standard format to share text documents, PDF
files are usually converted to some kind of plain text format: either unfor-
matted plain text, HTML or XML. In spite of being available several tools to
perform this conversion, given that the final layout of PDF files is dictated by
graphical directives, without the notion of text structure, frequently the final
result of the conversion is far from perfect: remains of page structure, loss of
text formatting and noise introduction are common problems. A comparative
study of the tools available to convert PDF to text can be found in Robinson
[2001].

HTML or XML files are less problematic. Besides being more easily pro-
cessed, some of the markup elements may be used to guide the alignment
process: for example, the header tags in HTML may be used to delimit the
different sections of the document, and the text formatting tags as <i> or
might be preserved and used as well. Depending on the schema used, XML
annotations can be an useful source of information too.

Document alignment

Frequently, a large number of documents is retrieved from a given source
with no information provided of which documents match each other. This is
typically the case when documents are gathered from websites with a crawler.

Fortunately, when there are multiple versions available, in different lan-
guages, of the same page, it is common to include in the name a substring
identifying the language: for instance, Portuguese, por or pt [Almeida and
Simões, 2010]. These substrings usually follow either the ISO-639-25 or the
ISO 31666 standards. This way, it is possible to write a script with a set of
rules which help to find corresponding documents.

Other ways to match documents are to analyze their meta-information,
or the path where they were stored.

5http://www.loc.gov/standards/iso639-2/php/code_list.php
6http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists.htm

2.3. Text alignment 21

Paragraph/sentence boundary detection

The higher levels of alignment are section, paragraph or, most commonly, sen-
tence alignment. In order to perform sentence-level alignment, texts must be
segmented into sentences. Some word-level aligners work based on sentence-
segmented corpora as well, which allows them to achieve better results.

Splitting a text into sentences is not a trivial task because the formal
definition of what is a sentence is a problem that has eluded linguistic re-
search for quite a while (see Simard [1998] for further details on this subject).
Véronis and Langlais [2000] give an example of several valid yet divergent
segmentations of sentences.

A simple heuristic for a sentence segmenter is to consider symbols like
.!? as sentence terminators. This method may be improved by taking into
account other terminator characters or abbreviations patterns; however, this
patterns are typically language-dependent, which makes it impossible to have
an exhaustive list for all languages7 [Koehn, 2005].

This process usually outputs the given documents with the sentences
clearly delimited.

Sentence Alignment

There are several documented algorithms and tools available to perform sentence-
level alignment. Generally speaking, they can be divided into three categories:
length-based, dictionary or lexicon based or partial similarity- based (see Sec-
tion 2.3.1 on page 15 for more information).

Generally, sentence aligners take as input the texts to align, and, in some
cases, additional information, such as dictionaries, to help establish the cor-
respondences.

A typical sentence alignment algorithm starts by calculating alignment
scores, trying to find the most reliable initial points of alignment – denomi-
nated “anchor points”. This score may be calculated based on the similarity
in terms of length, words, lexicon or even syntax- tree [Tiedemann, 2010].
After finding the anchor points, the process is repeated, trying to align the
middle points. Typically, this ends when no new correspondences are found.

The alignment is performed without allowing cross-matching, meaning
that the sentences in the source text must be matched in the same order in
the target text.

7An example of a sentence segmenter can be downloaded at
http://www.eng.ritsumei.ac.jp/asao/resources/sentseg/.

http://www.eng.ritsumei.ac.jp/asao/resources/sentseg/

22 2. Background

Several outcomes are possible for each correspondence found: the most
common case is when a source text sentence corresponds exactly to a target
text sentence (1:1). Less frequently, there are omissions (1:0), additions (0:1)
or something more complex (m:n), usually with 1 ≤ m,n ≤ 2. An example
of a sentence-level alignment is presented in Table 2.1.

Table 2.1: Extract of sentence-level alignment performed using Portuguese and Rus-
sian subtitles from the movie Tron.

Portuguese Russian
A actividade do laser começará em
30 segundos.

Лазер будет включен через 30
секунд.

Ponham os óculos de proteção.
Abandonem a área.

Наденьте защитные очки и
покиньте главный зал

Deixe-me ver se nós temos a luz
verde.

Интересно, будет ли на этот раз
зелёное свечение...

Área do alvo protegida? - Облучаемая область свободна?
Verificaram a segurança. - Да , её уже проверили.
20 segundos 20 секунд.
- Parece bom. - Вроде всё нормально.
- Deixe-o iniciar. - Можно запускать.
Isto é o que nós temos esperado. Включаю.

Tokenizer

Splitting sentences into words allows to subsequently perform word-level align-
ment. As with sentence segmenting, it is possible to implement a very simple
heuristic to accomplish this task by defining sets of characters which are to
be considered either word characters or non-word characters. For example, in
Portuguese, it is possible to define A-Z, a-z, - and ’ (and all the characters
with diacritics) as belonging inside words, and all others as being non-word
characters.

However, here too there are languages in which other methods must be
used: in Chinese, for example, word boundaries are not as easy to determine
as with Western-European languages. This imposes interesting challenges on
how to align texts in some languages at word-level.

Word alignment

The word-alignment process presents some similarities with higher level align-
ments. However, this is a more complex process, given the more frequent

2.3. Text alignment 23

order inversions, differences in part-of-speech and syntactic structure, and
multi-word units (MWUs). As a result, research in this area is less advanced
than in sentence alignment [Véronis and Langlais, 2000, Chiao et al., 2006].

MWUs are idiomatic expressions composed by more than one word. MWUs
must be taken into account because frequently they cannot be translated
word-by-word; the corresponding expression must be found, whether it is also
an MWU or a single word [Tiedemann, 1999, 2004]. This happens often when
aligning English and German, for instance, because of the German composed
words such as Geschwindigkeitsbegrenzung (in English, speed limit).

Output

The output formats vary greatly. Generally, every format must include some
kind of sentence identification (either by the offsets of its first and last char-
acters or by a given identification code) and the pairs of correspondences;
optionally, additional information may also be included, like a confidence
value, or the stemmed form of the word.

The BAF corpus, for example, is available in the following formats [Simard,
1998]:

COAL format: An alignment in this format is composed by three files:
two plain text files containing the actual sentences and words origi-
nally provided, and an alignment file which contains a sequence of pairs
[(s1, t1), (s2, t2), ..., (sn, tn)]. Each sthi segment in the source text has its
beginning position given by si, and the end position given by Si+1 − 1.
The corresponding segment in the target text is delimited by ti and
ti+1− 1.

CES format: This format is also composed by three files: two text files in
CESANA format, enriched with SGML mark-up that uniquely identifies
each sentence, and an alignment file in CESALIGN format, containing
a list of pairs of sentence identifiers. The results of ARCADE II were
also stored under this format.

HTML format: Not intended for further processing purposes. This is a
visualization format, displayable in a common browser.

Other possible formats are translation memory (TM) formats [Désilets et al.,
2008]. TMs are databases (in the broader sense of the word) that store pairs of
“segments” (either paragraphs, sentences or words). TMs store the source text
and its translation in language pairs denominated translation units. There
are multiple TMs formats available.

24 2. Background

2.3.4 Current projects and tools

This section lists some of the most relevant projects and tools being developed
or used at the moment.

NATools

NATools is a set of tools for processing, analyze and extract translation re-
sources from parallel corpora, developed at University of Minho. It includes
sentence and word aligners, a probabilistic translation dictionary (PTD) ex-
tractor, a corpus server, a set of corpora and dictionary query tools and tools
for extracting bilingual resources [Simões and Almeida, 2007, 2006, 2003].

Giza++

Giza++ is an extension of an older program, Giza. This tool performs statis-
tical alignment, implementing several HMMs and advanced techniques which
allow to improve alignment results [Och and Ney, 2000].

hunalign

hunalign is a sentence-level aligner built on top of the algorithm proposed
by Gale and Church [1993], written in C++. When provided with a dictionary,
hunalign uses its information to help in the alignment process, despite being
able to work without one [Varga et al., 2005].

Per-Fide

Per-Fide is an undergoing project from University of Minho which aims to
compile parallel corpora between Portuguese and six other languages (see
Section 1.3.1 on page 5).

cwb-align

Also known as easy-align, this tool is integrated in the IMS CWB Open Cor-
pus Workbench, a collection of open source tools for managing and query
large text corpora with linguistic annotations, based of an efficient query pro-
cessor, the Corpus Query Processor (CQP) [Evert, 2001]. It is considered as
a standard de facto, given its quality and implemented features, such as tools
for encoding, indexing, compression, decoding, and frequency distributions, a

2.3. Text alignment 25

query processor and a CWB/Perl API for post-processing, scripting and web
interfaces.

WinAlign

WinAlign is a commercial solution from the Trados package, developed for
professional translators. It accepts previous translations as translations mem-
ories and uses it to guide further alignments. This is also useful when clients
provide reference material from previous jobs.

26 2. Background

Chapter 3

Cleaning documents

What was the state of that scrap of paper when you found
it? Was it clean or dirty?

Agatha Christie, Sad Cypress

This chapter addresses the problems caused by several types of noise found
in texts which affect most of further processing, and describes the implemen-
tation of several methods to clean books and getting them ready for align-
ment. Additionally a similar tool is presented, devoted to the cleaning and
preparation of scientific papers, making them suitable for text mining.

3.1 Introduction

3.1.1 Motivation

Many tasks within the natural language processing (NLP) field have text as
their starting point, and the quality of results that can be obtained is tightly
connected to the text quality itself.

Several types of noise may be present in texts, resulting in a wrong in-
terpretation of individual characters (e.g. Greek letters, sub/superscripts,
dashes and apostrophes); words, phrases and sentences; paragraph frontiers;
tables; pages, headers, footers and footnotes; titles and section frontiers.

Although some of these problems are more likely to be found in some
genres of text than others, their occurrence is usually more dependent on the
type of the document, its origin and intended use.

27

28 3. Cleaning documents

3.1.2 Common problems

The main characteristics of documents which may negatively affect their pro-
cessing (and consequently, their alignment [Véronis, 2000]) are:

File format: Documents available in PDF or Microsoft Word formats (or,
generally, any structured or unstructured format other than plain text)
need to be converted to plain text before being processed, using tools
such as pdftotext [Noonburg, 2001] or Apache Tika [Gupta and Ahmed,
2007, Mattmann and Zitting, 2011]. This conversion often leads to loss
of information (text structure, text formatting, images, etc) and the
introduction of noise (bad conversion of mathematical expressions, dia-
critics, tables and other) [Robinson, 2001];

Text encoding format: There are available several text encoding formats.
For example, Western-European languages can be encoded as ISO-8859-
1 (also known as Latin1), Windows CP 1252, UTF-8 or others. Discov-
ering the encoding format used in a given document is frequently not a
straightforward task, and dealing with a text while assuming the wrong
encoding may have a negative impact on the results;

Structural residues: Some texts, despite being in plain text format, still
contain structural elements from their previous format (for example, it
is common to find page numbers, headers and footers in the middle of
the text of documents which have been converted from PDF to plain
text);

Sectioning notation: There are endless ways to represent and numerate
the several divisions and subdivisions of a document (parts, chapters,
sections, etc). Several of these notations are language- dependent (e.g.
Part One or Première Part). Being able to detect the section divisions
allows to differentiate and process them differently.

Additionally, in the particular case of text alignment, identifying the
section titles can be used to guide the alignment process by pairing
the sections first (more information on this subject can be found on
Chapter 5).

Unpaired sections: Sections present an additional problem in the case of
text alignment: sometimes one of the documents to be aligned contains
one or more sections which are not present in the other document. For
example, forewords to a given edition, preambles, etc.

3.2. Cleaning books 29

These problems are an obstacle in text processing, and are often enough to
derail the alignment process, producing unacceptable results. As such, these
questions are found frequently enough to justify the development of a tool to
pre-process books, clean them and prepare them for further processing.

There are other tools available which also address the issue of prepar-
ing corpora for alignment, such as the one described by Okita [2009]; or
text cleaning, such as TextSoap, a program for cleaning text in several for-
mats [UnmarkedSoftware, 2011].

In order to solve the problems previously described, the first approach was
to implement a Perl script which, with the help of UNIX utilities like grep
and some regular expressions, attempted to find the undesired elements and
normalize, replace or delete them. As we started to have a better grasp on
the task, it became clear that such a naive approach was not enough.

A more sophisticated approach was then envisioned, resulting in the cre-
ation of Text::Perfide::BookCleaner (T::P::BC), a Perl module divided
in separate functions, each one dealing with a specific problem.

3.1.3 Design Goals

Text::Perfide::BookCleaner was developed with several design goals in
mind. Each component of the module meets the following three requirements:

Optional: depending on the conditions of the books to be cleaned and what
they are going to be used for, some steps of the process may not be
desired or necessary. Thus, each step may be performed independently
from the others, or not be performed at all.

Chainable: the functions can be used in sequence, with the output of one
function passing as input to the next, with no intermediary steps re-
quired.

Reversible: no information is lost (i.e. everything removed from the original
document is kept in separate files). This means that, at any time, it is
possible to revert the book to a previous (or even the original) state.

3.2 Cleaning books

We decided to tackle the problem in five different steps: pages, sections,
paragraphs, footnotes, and words and characters. Each of these steps deals
with a specific type of problems commonly found in plain text books. A

30 3. Cleaning documents

commit option is also available as a final step which irreversibly removes
all the markup added along the cleaning process. The different steps are
implemented as functions in Text::Perfide::BookCleaner. A Perl script,
bookcleaner, implements the whole workflow.

Figure 3.1 presents the pipeline of the Text::Perfide::BookCleaner
module. bookcleaner accepts as input documents in plain text format, hav-
ing as default UTF-8 text encoding. The final output consists of a summary
report and the cleaned version of the original document, which may then be
used in several processes, such as alignment [Varga et al., 2005, Evert, 2001],
ebook generation [Lee et al., 2002], or others.

Figure 3.1: Pipeline of Text::Perfide::BookCleaner.

3.2.1 Pages

Page breaks, headers and footers are structural elements of pages that must be
dealt with care when automatically processing texts, because they represent
misleading breaks and elements inserted in the middle of the text. In the
particular case of bitext alignment, the presence of these elements is often
enough to confuse the aligner and decrease its performance.

3.2. Cleaning books 31

The headers and footers usually contain information about the book au-
thor, book name and section title. Despite the fact that the information
provided by these elements might be relevant for some tasks, they should be
identified, marked and possibly removed before further processing.

Example 3.1 presents an extract of a plain text version of La Maison à
Vapeur, from Jules Verne [Verne, 1880], containing, from line 3 to 6, a page
break – in this case, a footer, a page break character and a header, surrounded
by blank lines.

1 rencontrer le nabab, et assez audacieux pour
2 s’emparer de sa personne.
3

4 Page 3
5 ^L La maison à vapeur Jules Verne
6

7 Le faquir, - évidemment le seul entre tous
8 que ne surexcitât pas l’espoir de gagner la

Example 3.1: Detail of page structure residues before cleaning.

The 0xC character (also known as Control+L, ^L or \f) indicates in plain
text a page break. When present in the text, this character provides a reliable
way to delimit pages. Page numbers, headers and footers should also be found
near these breaks. There are books, however, which do not have their pages
separated with this character.

Our algorithm starts by looking for page break characters and replacing
them with a custom page break mark. If none is found, it tries to find
occurrences of page numbers. These are typically lines with only three or less
digits (four digits would occasionally get year references confused with page
numbers), and a preceding and a following blank lines. Then, the algorithm
attempts to identify headers and footers: it considers the lines which are near
each page break as candidates to headers or footers (depending on whether
they are after or before the break, respectively). The number of occurrences
of each candidate (normalized so that changes in numbers are ignored) is
calculated, and those which occur more than a given threshold are considered
headers or footers.

At the end, the headers and footers are moved to a standoff file (only the
page break mark is left in the original text).

A cleaned up version of the previous example is presented in Example 3.2.

32 3. Cleaning documents

1 est vrai qu’il fallait être assez chanceux pour
2 rencontrer le nabab, et assez audacieux pour
3 s’emparer de sa personne. _pb2_
4 Le faquir, - évidemment le seul entre tous
5 que ne surexcitât pas l’espoir de gagner la
6 prime, - filait au milieu des groupes, s’arrêtant

Example 3.2: Detail of page structure residues, after cleaning.

3.2.2 Sections

There are several reasons that justify the importance of delimiting sections
in a document:

• automatically generate tables of contents;

• identify sections from one version of a book that are missing on another
version (for example, it is common for some editions of a book to have
an exclusive preamble or afterword which cannot be found in the other
editions);

• matching and comparing the sections of two books before aligning them.
This allows to assess the books alignability (compatibility for align-
ment), predict the results of the alignment and even to simply discard
the worst sections (see Chapter 5);

• mining specific sections of scientific manuscripts from the biomedical
domain (examples on Section 3.6).

Being an unstructured format, plain text by itself does not have the nec-
essary means to formally represent the hierarchy of divisions of a document,
particularly the ones that can be typically found in a book (chapters, sec-
tions, etc). As such, the notation used to write the titles of the several
divisions is dictated by the personal choices of whoever transcribed the book
to electronic format, or by their previous format and the tool used to perform
the conversion to plain text. Additionally, the nomenclature used is often
language-dependent (e.g. Part One and Première Part or Chapter II and
Caṕıtulo 2).

Example 3.3 presents the beginning of the first section of a Portuguese
version of Les Miserables, from Vitor Hugo:

In order to help in the sectioning process, an ontology was built (see
section 3.4.1), which includes several section types and their relation, names

3.2. Cleaning books 33

1 PRIMEIRA PARTE

2 FANTINE

3 ^L LIVRO PRIMEIRO

4 UM JUSTO

5 O abade Myriel

6 Em 1815, era bispo de Digne, o reverendo Carlos
7 Francisco Bemvindo Myriel, o qual contava setenta

Example 3.3: Detail of section delimiters before annotation.

of common sections and ordinal and cardinal numbers.
The sectioning algorithm tries to find lines containing section names, pages

or lines containing only numbers, or lines with Roman numerals. Then, a
custom section mark is added containing a normalized version of the original
title (e.g. Roman numerals are converted to Arabic numbers).

The processed version of the example shown previously can be found in
Example 3.4.

1 _sec+N:part=1_ PRIMEIRA PARTE

2 FANTINE

3 _sec+N:book=1_ LIVRO PRIMEIRO

4 UM JUSTO

5 O abade Myriel

6 Em 1815, era bispo de Digne, o reverendo Carlos
7 Francisco Bemvindo Myriel, o qual contava setenta

Example 3.4: Detail of section delimiters after annotation.

34 3. Cleaning documents

3.2.3 Paragraphs

It is often assumed that a new line, specially if indented, represents a new
paragraph, and that sentences within the same paragraph are separated only
by the punctuation mark and a space. However, when dealing with plain
text books, several other representations are possible. For example, some
books break sentences with a new line and paragraphs with a blank line (two
consecutive new line characters), while others use indentation to represent
paragraphs; and there are even books where new line characters are used to
wrap text. There are also books where direct speech (from a character of the
story) is represented with a trailing dash; others use quotation marks to the
same end.

The detection of paragraph and sentence boundaries is of the utmost im-
portance in the alignment process (a wrong delimitation is often responsible
for a bad alignment) and in information extraction, as it allows the definition
of proper contexts or the extraction of text evidences in support of relation-
ships between named entities.

In order to be able to detect how paragraphs and sentences are repre-
sented, our algorithm (1) starts by measuring several parameters, such as the
number of words, the number of lines, the number of empty lines and the
number of indented lines. Then several metrics are calculated based on these
parameters, which are used to understand how paragraphs are represented,
and the text is fixed accordingly.

3.2.4 Footnotes

Footnotes are formed by a call mark inserted in the middle of the text (often
appended to the end of a word or phrase), and the footnote expansion (i.e.
the text of the footnote). The placement of the footnote expansion shifts
from document to document, but often it appears either at the end of the
same page where its call mark is, or at a dedicated section at the end of the
document.

Depending on the notation used to represent footnote call marks, these
can introduce noise in further document processing. When aligning books,
in the best case scenario, the alignment might work well, but the resulting
corpora will be polluted with the call marks, interfering with its further use.
Footnote expansions are even more likely to disturb any further processing,
as they introduce text which is usually not relevant to the task. They are
specially disturbing in the alignment process, as it is very unlikely that the
matching footnotes are found at the same place in both books (the page

3.2. Cleaning books 35

Algorithm 1: Paragraphs
Input: txt:text of the book
Output: txt:text with improved paragraph

elines ← ...calculate empty lines
lines ← ...calculate number of lines
words ← ...calculate number of words
plines ← ...number of lines with punctuation
indenti ← ...calculate indentation distrib
plr ← plines

lines // punctuated lines ratio

forall the i ∈ dom(indent) do
if i > 10 ∨ indenti < 12 then

remove(indenti) // remove false indent
end

end
wpl ← words

lines // word per line

wpel ← words
1+elines // word per empty line

wpi ← words
indent // word per indent

if wpel > 150 then
if wpi ∈ [10..100] then

Separate parag. by indentation
end
if wpl ∈ [10..100] ∧ plr > 0.6 then

Separate parag. by new lines
end

end
else

Separate parag. by empty lines
end

36 3. Cleaning documents

divisions would have to be exactly the same).
Example 3.5 presents an example of a page containing footnote call marks

and, at the end, footnote expansions, followed by the beginning of another
page.

1 roi Charles V, fils de Jean II, auprès de la rue
2 Saint-Antoine, à la porte des Tournelles[1].

3 [1] La Bastille, qui fut prise par le peuple de
4 Paris, le 14 juillet 1789, puis démolie. B.

5 ^L Quel était en chemin l’étonnement de l’Ingénu!
6 je vous le laisse à penser. Il crut d’abord que

Example 3.5: Detail of footnotes before cleaning.

The removal of footnotes is performed in two steps: first the expansions are
removed, and then the call marks. The algorithm searches for lines starting
with a plausible pattern (e.g. <<1>>, [2] or ^3), and followed by blank lines.
These are considered footnote expansions, and consequently they are replaced
by a custom footnote mark and moved to a standoff file.

Once the footnote expansions have been removed, the remaining marks
(following the same patterns) are likely to be call marks, and as such, they
are removed and replaced by a custom normalized mark1

The results of removing the footnotes from the previous example can be
found in Example 3.6.

1 roi Charles V, fils de Jean II, auprès de la rue
2 Saint-Antoine, à la porte des Tournelles_fnr29_.
3 _fne8_
4 ^L Quel était en chemin l’étonnement de l’Ingénu!
5 je vous le laisse à penser. Il crut d’abord que

Example 3.6: Detail of footnotes after cleaning.

1The ideal would be to be able to establish the correspondence between the footnote
call marks and their respective expansion. However, that feature is not specially relevant
to the focus of this work, as the effort it would require is not compensated by its practical
results.

3.2. Cleaning books 37

3.2.5 Words and characters

At word and character level, there are several problems that can affect doc-
ument processing: Unicode characters, translineations and transpaginations:

Unicode characters: often, Unicode-only versions of previously existing
ASCII characters are used. For example, Unicode has several types
of dashes (e.g. ‘-’, ‘–’ and ‘—’), where ASCII only has one (i.e. ‘-’).
While these do not represent the exact same character, they are close
enough, and their normalization allows to produce more similar results.

Glyphs: some documents use glyphs (Unicode characters) to represent com-
binations of some specific characters, like fi or ff.

Translineation: translineation happens when a given word is split across
two lines in order to keep the line length constant. If the two parts of
translineated words are not rejoined before processing, they might be
seen as two separate words.

Transpagination: transpagination happens when a translineation occurs at
the last line of a page, resulting in a word split across pages. How-
ever, the concept of page is removed by the first function, pages, which
removes headers and footers and concatenates the pages. This means
that transpagination occurrences get reduced to translineations.

Mathematical formulas: Some documents represent mathematical formu-
las using Unicode characters, while others use plain ASCII to the same
end. Either way, these are difficult to identify and process.

Uncommon scripts: Text written in Cyrillic, Greek characters, etc. are
sometimes converted to similar Western characters – α to a, г to r, etc.

Our algorithm for dealing with translineations and transpaginations is
available as an optional feature. This is mainly because different languages
have different standard ways of dealing with translineations, and many doc-
uments use incorrect forms of translineation. As such, the user will have the
option to turn this feature on or off. A formal definition of this method can
be found in Algorithm 2.

Unicode-characters are dealt with by a simple search and replace. Char-
acters which have a corresponding character in ASCII are directly replaced,
while strange characters are replaced with a normalized custom mark (see
Algorithm 3).

38 3. Cleaning documents

Algorithm 2: Translineations
Input: txt: text of the book
Output: txt: text with normalized translineations

pat : word chars + dash + line break + word chars // translineation pattern

forall the pat ∈ txt do
remove hifen
move line break to end of word

end

Algorithm 3: UTF-8 characters
Input: txt: text of the book
Output: txt: text with normalized UTF-8 characters

UTF8chars : list of UTF-8 characters with ASCII alternative

forall the c ∈ txt : cis a UTF8 character do
if c ∈ UTF8chars then replace(c,ASCII alternative)
else replace(c,custom mark)

end

3.2.6 Commit

This last step removes the custom marks introduced by the previous functions
and outputs a cleaned document ready to be processed. The only marks left
are section marks, which can be helpful to guide further processes.

There are situations where elements such as page numbers are also im-
portant (for example, having page numbers in a book is convenient when
making citations). However, removing these marks makes the previous steps
irreversible. As such, this step is optional, and it is meant to be used only
when a clean document is required for further processing.

The details of this step can be found in Algorithm 4.

Algorithm 4: Commit
Input: txt: text of the book
Output: txt: clean text without custom marks

forall the m ∈ txt : mis a custom mark do
if c ∈ section marks then leave it there
else remove(m)

end

3.3. Diagnostic report 39

3.3 Diagnostic report

Additionally, after the cleaning process, a diagnostic report is generated, to
help the user understand the problems detected in the book, and what strate-
gies were used in order to solve them.

Example 3.7 presents an example of the report produced after cleaning a
version of La maison à vapeur from Jules Verne:

1 footers = [’(Page _NUM_) = 240’];
2 headers=$VAR1 =
3 ["(La maison \x{e0} vapeur Jules Verne) = 241"];
4 ctrL=1;
5 pagnum_ctrL=241;
6 sectionsO=2;
7 sectionsN=30;
8 word_per_emptyline=3107.86842105263;
9 emptylines=37;

10 word_per_line=11.5658603466849;
11 lines=10211;
12 To_be_indented=1;
13 words=118099;
14 word_per_indent=52.2793271359008;
15 lines_w_pont=3263;

Example 3.7: Example of diagnostic report.

In Example 3.7 it is stated, among other things, that this document had
headers composed by the book title and author name, footers contained the
word Page followed by a number (presumably the page number) and that the
241 pages were separated with ˆL .

3.4 Declarative objects

The first attempt at writing a program to clean books was a self-contained
Perl script – all the patterns and logical steps were hard-coded into the pro-
gram, with only a few command-line flags allowing the fine tuning of the
process. When this solution was discarded for not being powerful enough to
allow more complex processing, it was decided to use higher level configura-
tion objects whenever possible. This resulted in the creation of an ontology
to describe section types and names.

Declarative objects such as this ontology open the possibility to discuss the
subject with people who have no programming experience, allowing them to

40 3. Cleaning documents

directly contribute with their knowledge to the development of the software.

3.4.1 Sections Ontology

The information about sections relevant to the sectioning process was stored
on an ontology file [Uschold and Gruninger, 1996]. Currently it contains sev-
eral section types and their relation (e.g. a Section is part of a Chapter, an Act
contains one or more Scenes), names of common sections (e.g. Introduction,
Index, Foreword) and ordinal and cardinal numbers.

The recognition of these elements is language-dependent. As such, mech-
anisms to deal with several different languages had to be implemented. Some
of these languages even use a different alphabet (e.g. Russian), which lead to
interesting challenges.

Several extracts of the sections ontology are presented below. Example 3.8
shows several translations and abbreviations for chapter. NT sec indicates
section as a narrower term of chapter, and act is indicated as a broader term
of scene.

1 cap
2 PT capı́tulo, cap, capitulo
3 FR chapitre, chap
4 EN chapter, chap
5 NT sec
6 RU глава

1 cena
2 PT cena
3 FR scène
4 EN scene
5 BT act

Example 3.8: Extract from the sections ontology: chapter (left) and scene (right).

BT _alone allows to indicate that a given term must appear alone in a
line. Numerals have also been included in the ontology, allowing to numerate
other terms (Example 3.9).

1 end
2 PT fim
3 FR fin
4 EN the_end
5 BT _alone

1 PT terceiro, terceira,
2 três, tres
3 EN third, three
4 FR troisième, troisieme
5 BT _numeral

Example 3.9: Extract from the sections ontology: END (left) and the numeral 3
(right).

The typification of sections allows to define different rules and patterns
to recognize each type. For example, a line beginning with Chapter One may
be almost undoubtedly considered a section title, even if more text follows

3.5. Evaluation 41

in the same line (which in many cases is the title of the chapter). On the
other hand, a line beginning with a Roman numeral may also represent a
chapter beginning, but only if nothing follows in the same line (or else century
references, for example, would be frequently mistaken for chapter divisions).

Despite not being fully implemented yet, the relations between sections
described in the ontology will allow to establish hierarchies, and, for example,
search for Scenes after finding an Act, or even to classify a text as play in the
presence of either.

Taking advantage of Perl being a dynamic programming language (i.e.
is able to load new code at runtime), the ontology is being used to directly
create the Perl code containing the complex data structures which are used
in the process of sectioning. The ontology is in the ISO Thesaurus format,
and the Perl module Biblio::Thesaurus [Simões and Almeida, 2002] is being
used to manipulate the ontology.

3.5 Evaluation

The evaluation of a tool such as Text::Perfide::BookCleaner might be
performed by comparing the results of alignments of texts before and after
being cleaned with Text::Perfide::BookCleaner.

In order to test Text::Perfide::BookCleaner, a set of 20 pairs of books
from Shakespeare, both in Portuguese and English, was selected. From the 40
books, half (the Portuguese ones) contained both headers and footers. The
books were aligned using cwb-align, an aligner tool bundled with IMS Open
Corpus Workbench [IMS Corpus Workbench, 1994-2002].

Pages, headers and footers

From a total of 1093 footers present in the documents, 1077 were found and
removed (98.5%), and 1183 headers were detected and removed in a similar
amount of total occurrences.

Translation units

The alignment of texts resulted in the creation of translation memories, files
in the Translation Memory eXchange (TMX) format [Oscar, 2000]. Another
way to evaluate Text::Perfide::BookCleaner is by comparing the number
of each type of correspondence (i.e. translation units) in each file – either 1:1,
1:0 or 0:1, or 2:2 (the numbers represent how many segments were included

42 3. Cleaning documents

in each variant of the translation unit). Table 3.1 summarizes the results
obtained in the alignment of the 20 pairs of Shakespeare books.

Table 3.1: Number of translation units obtained for each type of correspondence,
with and without using Text::Perfide::BookCleaner.

Alignm. Type Original Cleaned ∆%
0:1 or 1:0 8333 6570 -21.2
1:1 18802 23433 +24.6
2:1 or 1:2 15673 11365 -27.5
2:2 5413 4297 -20.6
Total Seg. PT 54864 53204 -3.0
Total Seg. EN 59744 51515 -13.8

The total number of 1:1 alignments has increased; in fact, in the original
documents, 39.0% of the translation units were of the 1:1 type. On the
other hand, the translation memory created after cleaning the files contained
51.3% of 1:1 translation units. The total number of segments decreased in the
cleaned version; some of the books used a specific theatrical notation which
artificially increased the number of segments. This notation was normalized
during the cleaning process with theatre_norm, a small Perl script created to
normalize these undesired specific features, which lead to the smaller amount
of segments. The number of alignments considered bad by the aligner also
decreased, from a total of 10 “bad alignment” cases in the original documents
to 4 in the cleaned ones.

3.6 Cleaning scientific articles

Despite the previously described methods having been implemented with the
specific motivation of cleaning books for alignment, most of them can also be
useful in other contexts.

Some of the methods have been adapted to the task of preparing sci-
entific articles for text mining. This resulted in the creation of the pro-
totype of a Perl module, Text::Perfide::SciPaperCleaner (T::P::SPC),
which is largely based on Text::Perfide::BookCleaner. The modifications
are mostly related to the sectioning process and the sections ontology, the
detection of headers and footers and the creation of a function to normalize
mathematical formulas within articles.

3.6. Cleaning scientific articles 43

3.6.1 Sections

Identifying the different sections in scientific articles allows to process them
differently in order to achieve different results. For example, information re-
trieval tends to rely on abstracts whereas information extraction often targets
sections such as Materials and Methods and Results. [Agarwal and Yu, 2009];

The basic structure of a scientific paper is often summarized as IMRAD:
introduction, methods, results and discussion [Peh and Ng, 2008]. This struc-
ture was first used in the 1940s, adopted as a majority in the 1970s and is now
the standard for publication [Sollaci and Pereira, 2004]. Often, it transpires
to the section names: papers with sections named Introduction, Methods, Re-
sults and Discussion are a common occurrence. A quick research has revealed
that other common section names a include Background, Context, Motiva-
tion, Evaluation, Conclusion(s) and so forth. Nevertheless, not all article
sections belong to a well-defined set, and many sections or subsections have a
name related to the subject being discussed. In these cases, patterns similar
to the ones used in T::P::BC were applied.

These conventions in section naming, which are stronger than the ones
that exist in the case of books, allowed us to adapt the section ontology
created before. The new ontology is also flat: there is no hierarchy between
section types because that does not usually happen in scientific articles. The
translations of section types into other languages were also removed because
most scientific papers are written in English.

3.6.2 Pages

Page structure is similar in books and scientific articles: it is also composed
by page breaks, page numbers, headers and footers, which means that the
same methods can be applied. However, the methods for identifying headers
and footers in books relied on thresholds which cannot be reached in papers,
given the fact that the number of pages is considerably lower.

To overcome this question, the identification of headers and footers in
articles is performed taking into account the relative frequency of the candi-
dates in the total number of pages. A minimum threshold is still considered,
to avoid false positives in particularly short articles.

3.6.3 Normalizing mathematical notation

Whether retrieved in some text-based format or converted from Portable Doc-
ument Format (PDF) or MS Word formats to plain text, scientific articles

44 3. Cleaning documents

have a wide range of notations used for mathematical formulas. Some docu-
ments have their formulas written using just ASCII characters, while others
make use of Unicode characters [Sargent III, 2006]. For example, the string
3.9+/-1.5x10(9)-1.7+/-0.5x10(10) cell l(-1) can be used to represent
the range 3.9± 1.5× 109 to 1.7± 0.5× 1010cell · l−1 in UTF-8 2.

A method for normalizing such formulas has been implemented, which
applies simple substitution patterns to take care of the most common occur-
rences, allowing these formulas to be more easily recognized later. Early tests
of this prototype have suggested that tasks such as text mining produce bet-
ter results if the papers are cleaned using this module. Section 8.2 presents
some ideas on improvements and extensions foreseen for T::P::SPC.

3.7 Summary

This chapter addressed concerns about the types of noise which typically
affect automatic text processing, and described the implementation of a Perl
module to clean plain text books.

This tool, Text::Perfide::BookCleaner, performs the cleaning tasks by
tackling one kind of problem at a time, in a sequence of steps which results in
a cleaned version of the original document, and generates a diagnostic report
which informs the user of what was done.

An additional module, denominated Text::Perfide::SciPaperCleaner,
was implemented mostly as a demonstration that most of the methods pro-
posed for book cleaning can also be useful to deal with other types of docu-
ments, with minor adaptations.

2Examples extracted respectively from an XML and a PDF versions of the paper by
Limpiyakorn et al. [2006]

Chapter 4

Measuring similarity

The nobleness of life
Is to do thus (embracing), when such a mutual pair
And such a twain can do’t, in which I bind,
On pain of punishment, the world to weet
We stand up peerless.

Shakespeare, A Midsummer Night’s Dream

This chapter discusses the problem of measuring the similarity between
documents, proposing a method based on bag-of-words (BoWs) extracted
from text. The application of this method to the tasks of finding near dupli-
cates and candidate pairs is described, along with details of the implementa-
tion of a tool to perform such tasks in a pool of files.

4.1 Introduction

When building large text corpora, it is common to find identical or almost
identical documents (usually referred to as duplicates and near duplicates,
respectively), specially if the documents are retrieved at large/medium scale
from several distinct sources. If not detected, all the copies will be processed,
representing a waste of resources [Gong et al., 2008], as well as biasing the
corpus, invalidating or at least reducing the accuracy of the subsequent anal-
ysis [Kupietz, 2006].

Building parallel corpora, i.e. the alignment of pairs of documents is the
perfect scenario for developing and evaluating similarity algorithms. Some
methods to find candidate pairs have been proposed [Simões, 2004], but they

45

46 4. Measuring similarity

are usually focused on documents which come from the same source. The
multitude of sources of books in Project Per-Fide meant that a method ca-
pable of identifying candidate pairs based solely on the documents contents
could achieve better results.

Duplicate and near duplicate finding are tasks which have been addressed
before [Seshasai, 2009, Broder, 1997, Kumar and Govindarajulu, 2009]; how-
ever, given the existing need to also be able to detect candidate pairs, we
have developed a module, Text::Perfide::BookPairs, which can be used
for both tasks.

4.2 Measuring similarity

Finding (near) duplicates and candidate pairs within a set of documents are
both tasks which rely on the definition of similarity between two documents.

Books which are translated to another language tend to keep some ele-
ments untouched. These elements which are not translated (or whose transla-
tion is the same as the original) can be used to calculate the Jaccard similarity
coefficient (JSC), a standard measure in information retrieval [Jaccard, 1901,
Tan et al., 2006], used to compare the similarity and diversity between two
sets. Being A and B two sets, the JSC is given by the size of the intersection
divided by the size of the union of the two sets, as follows:

JSC(A,B) =
|A ∩B|
|A ∪B|

(4.1)

Translations of a text usually retain some unaltered elements, which do
not suffer any change because there is no need to translate them or because
they cannot be translated. Examples of these language independent elements
(LIEs) are 1:

Year references: when years are not written in long form, they are the same
in many different languages – e.g. “1755” is the same both in Portuguese,
English and any other language which also uses Arabic numbers.

Proper names: proper names (character names, names of streets or towns,

1In spite of LIEs being, by definition, language independent, languages which use dif-
ferent alphabets have LIEs written differently. Also, some proper names can in fact be
translated – for example, the Portuguese city Oporto is written as Porto in Portuguese,
and Pope Benedict VIII is written Papa Bento XVII. Possible solutions for both problems
are presented in Section 8.2.

4.3. Implementation 47

etc.) are also often left untouched – e.g. “Hamlet” is the same, not
matter the language used, as long as it uses the Latin alphabet.

Therefore, the similarity between two files can be calculated by extracting
the LIEs and creating a BoW for each file2, and measuring the JSC of the
two BoWs.

4.3 Implementation

A small helper module which implements operations over BoWs was cre-
ated. This module, Text::Perfide::WordBags, includes file2bag, a func-
tion which, given a file path and a function reference, passes the text of the
file to the function, resulting in a BoW – a structure containing the number of
occurrences of each word of interest. Additionally, this module contains func-
tions to calculate the cardinality of a BoW and the intersection and reunion
of two BoWs.

4.3.1 Extraction of bag-of-words

The first implementation of an algorithm to measure the similarity between
books was based on year references. For each book, a set was extracted with
all the occurrences of four consecutive digits. Then, the JSC of the two BoWs
was calculated, and the similarity values were used to find candidate pairs.

This method seemed to work reasonably well, but it presented some flaws:

• in books with more that 999 pages, page numbers were being confused
with year references.

• a reasonable percentage of books had year references in either the header
or the footer – usually the year of publication.

The number of occurrences of four consecutive digits in page numbers, headers
and footers would be so high that the true positive occurrences would end up
being only a small percentage. The fact that some books only had a small
amount of year references only aggravated the question.

2A bag-of-words is a simplification of a text, where it is viewed as of elements (words) in
which order in not important [Harris, 1954]. In this case, a bag-of-word (BoW) consisted
of a list with the number of occurrences of each element in the text.

48 4. Measuring similarity

In order to avoid these problems, an extraction of BoWs based on proper
names was also implemented, and is now the default option. In this con-
text, however, the concept of proper name has been slightly simplified – are
considered proper names all the words which met the following conditions:

• appear in the text beginning with an uppercase letter

• do not appear also beginning with a lowercase letter a significant number
of times

A definition of the algorithm developed to extract the BoWs is presented
in Algorithm 5.

Algorithm 5: Extracting proper names from text.
Input: txt: text of the book
Output: Ulist: table of frequencies of proper names

forall the x ∈ txt : x is a word do
lIfx begins with uppercaseUlist[x] + +
else Llist[x] + +

end
forall the u ∈ dom(Ulist) do

l = lowercase version of u
ucount = Ulist[u]
lcount = Llist[l]
ratio = ucount

lcount

if ratio < 10 then delete(Ulist[u])
end

Dealing with Russian books presented additional challenges, as they use
a different script and the regular expressions used were not compatible with
Cyrillic. This was solved by creating additional patterns which included Rus-
sian characters.

Cardinality, union and intersection

Calculation the JSC between two BoWs required that the cardinality of a
BoW could be measured, and also that the operations of union and intersec-
tion were defined. These operations were defined as follows:

Cardinality: total sum of the occurrences of each word in the BoW.

Intersection: the lower number of occurrences of each word in the two
BoWs.

4.3. Implementation 49

Union: the higher number of occurrences of each word in the two BoWs3.

4.3.2 Classification according to similarity

Once the concept of similarity was well defined, and the methods to calculate
it were implemented, they could be used to find duplicates and candidate
pairs. According to their similarity with each other, two documents could be
be classified as:

Exact duplicates: Documents which are completely identical to each other,
from the first to the last byte.

Near duplicates: Documents which are very similar to each other.

Pairing documents: Documents similar to each other.

Unrelated documents: Documents whose contents are not related.

4.3.3 Identifying exact duplicates

Identifying exact duplicates is a straightforward task, because they present a
JSC value of exactly 1. However, very close near duplicates may also have
a similarity just as high. To avoid this, the identification of exact duplicates
relies on the comparison of the MD5 sum of each file [Rivest, 1992] (although
vulnerabilities have been found in the MD5 hashing algorithm [Wang and Yu,
2005], there are no security concerns in this context).

Given that these files are exact copies of each other, only one of the files
should be considered for inclusion in the corpus. The copy (or copies, if more
that one exist) can be safely deleted without any loss of information.

4.3.4 Identifying near duplicates and candidate pairs

Because near candidates have differences between them, the MD5 sum ap-
proach is not applicable, as the sum changes no matter how small the changes
might be. Also, both the near duplicates and the pairing candidates usually

3The union of two sets is usually a set containing all the elements in the original sets,
which means that the union of two identical sets results in a set with every element dupli-
cated. However, from the definition of JSC we have that

JSC(A,B) = 1 when A = B

As such, the result of the intersection and the union between identical BoWs must be the
same, and thus the uncommon definition of the union operation.

50 4. Measuring similarity

present high JSC values, which could make it difficult to distinguish between
them. However, pairing candidates are, by definition, written in different lan-
guages, while near duplicates are written in the same language. This provided
us with a possible solution:

• files with a high JSC value and written in the same language are likely
to be near duplicates;

• files with a high JSC value but written in distinct languages are likely
to be candidate pairs.

The identification of the language in which each file is written is performed
by the Lingua::Identify Perl module [Simões, A., 2011]. The fact that near
duplicates are written in the same language usually also leads to a higher JSC
value when compared to candidate pairs. The initial tests allowed to infer
that books with a JSC value under 0.2 are probably unrelated; candidate
pairs usually present JSC value higher than 0.4 and near duplicates usually
have a JSC over 0.9. These have been implemented as the default values but
can be overridden.

4.4 Processing a pool of files

Implementing the previously described methods as a tool to process a medi-
um/large sized pool of files presented several challenges of a more practical
nature, related with decisions that must be taken when building a corpus.

The methods previously described in this chapter are able to provide an
answer to the questions of finding (near) duplicates and finding candidate
pairs, but they to not determine what should be done with those documents
once they are identified. Exact duplicates can be removed without questions,
but what about near duplicates? How to choose which one should be kept
and which ones can be discarded?

4.4.1 Command line utility

In order to deal with the problems which are more related with the specific
questions of using Text::Perfide::BookPairs to classify files, a command-
line utility, pairbooks was implemented. This program can receive as input:

a file and a list of files, and it compares the first file with every file in the
list.

4.4. Processing a pool of files 51

a single list of files, and compares each file in the list with all the others.

two lists of files, and each file in the first list is compared with every file
in the second.

By default, it outputs, for each file, a list of the files with the highest
similarity value (the size of the list is configurable through a flag). The list
can be printed with additional details (the similarity value and the size of
each BoWs). An example of such a list can be found in Example 4.1.

1 ~ $ pairbooks <(ls -1 PT*) <(ls -1 ES*)
2 PTBR__Umberto_EcoO_nome_da_rosa.txt
3 (0.227) [6954,7382] ES__Umberto_EcoEl_Nombre_de_la_Rosa.pdf.txt
4 (0.018) [6954,11408] ES__Umberto_EcoEl_Pendulo_De_Foucault.pdf.txt
5 (0.018) [6954,5604] ES__Umberto_EcoDiario_Minimo__2.txt

6 PTBR__Umberto_EcoO_Pendulo_de_Focault.txt
7 (0.391) [11276,11408] ES__Umberto_EcoEl_Pendulo_De_Foucault.pdf.txt
8 (0.042) [11276,6024] ES__Umberto_EcoLa_busqueda_de_la_Lengua_Perfec...
9 (0.035) [11276,5604] ES__Umberto_EcoDiario_Minimo__2.txt

10 (...)

Example 4.1: pairbooks: default output.

In order to make it easier to integrate this tool with other alignment-
related tools, it is possible to force the output to be in a format which can be
directly used by Text::Perfide::BookSync and other similar tools. When
this option is activated (through a command-line flag), the output contains
only the files which are most likely to be real pairs. Several thresholds have
been defined, with default values that can be adjusted through command-line
options:

Reject threshold (default 0.2): files with similarity below this value will
not be considered pairs.

Accept threshold (default 0.4): files with similarity above this value will
be considered pairs.

Duplicates threshold (default 0.9): when searching for (near) duplicates,
files with similarity above this value will be considered duplicates.

Sometimes there are pairs of files whose similarity value is under the accept
threshold. As such, it is possible to optionally output these pairs also, as
commented lines, which can be manually checked by the user later. Lines
with files whose similarity is under the reject threshold are printed with a

52 4. Measuring similarity

leading # X and lines with files with a similarity value above the rejection
value but below the accept value will have a leading # ?. The output consists
of a pair of file names per line, separated by tabs. An example of this output
can be found in Example 4.2.

1 ~ $ pairbooks -bpairs -warn <(ls -1 PT*) <(ls -1 ES*)
2 PTBR__Umberto_EcoA_ilha_do_dia_ant... ES__Umberto_EcoLa_Isla_Del_Dia_An...
3 # X PTBR__Umberto_EcoApocaliptico... ES__Umberto_EcoDiario_Minimo__2.t...
4 # ? PTBR__Umberto_EcoO_nome_da_ro... ES__Umberto_EcoEl_Nombre_de_la_Ro...
5 PTBR__Umberto_EcoO_Pendulo_de_Foca... ES__Umberto_EcoEl_Pendulo_De_Fouc...
6 # X PTBR__Umberto_EcoSemiotica_e_... ES__Umberto_EcoLa_estructura_ause...
7 PTPT__Umberto_EcoBaudolino.txt ES__EcoBaudolino.doc.txt

Example 4.2: pairbooks: list of pairs of files, including less probable pairs.

Additionally, the tool can be used to search specifically for near dupli-
cates, in which case it will output files whose similarity is above the duplicate
threshold, as seen in Example 4.3.

1 ~/ $ pairbooks -same -dv=0.7 -v <(ls -1 PT*)
2 PTBR__Umberto_EcoO_nome_da_rosa.txt.bc_out
3 (0.842) [6954,7016] PTPT__Umberto_EcoO_Nome_da_Rosa_Revisto.txt.bc_out
4 (0.794) [6954,6966] PTPT__Umberto_EcoO_Nome_da_Rosa.txt.bc_out

5 PTPT__Umberto_EcoO_Nome_da_Rosa_Revisto.txt.bc_out
6 (0.842) [7016,6954] PTBR__Umberto_EcoO_nome_da_rosa.txt.bc_out
7 (0.759) [7016,6966] PTPT__Umberto_EcoO_Nome_da_Rosa.txt.bc_out

8 PTPT__Umberto_EcoO_Nome_da_Rosa.txt.bc_out
9 (0.794) [6966,6954] PTBR__Umberto_EcoO_nome_da_rosa.txt.bc_out

10 (0.759) [6966,7016] PTPT__Umberto_EcoO_Nome_da_Rosa_Revisto.txt.bc_out

Example 4.3: pairbooks: list of duplicate files.

4.4.2 Optimization

Extracting BoWs from files and comparing them time consuming, because
these tasks involve processing whole books and comparing large data struc-
tures. Furthermore, these tasks are usually performed over large collections
of documents.

Our first implementation created a BoW for each file each time a compar-
ison between two files was needed. This means that, for example:

1. to discover the near duplicates in a collection with size N , the number
of BoWs calculated would be N2.

4.4. Processing a pool of files 53

2. to find pairs in two sets with size N1 and N2, would require N1 ∗ N2

BoWs to be calculated.

This resulted in too long running times when the size of the sets was moder-
ately high. Some optimizations were then implemented.

The first optimization implemented was a small and simple one: skip any
comparison of a file with itself. In fact, while operating over a collection, all
files were being matched with all files. Skipping self-comparisons allowed to
reduce the number of BoWs created when searching duplicates to N2 − N .
This was not too significant, specially with large sets of documents.

The second optimization was to keep the BoWs in memory after they had
been created, and reuse them instead of recalculating them. This resulted in
an increase on the memory usage, but allowed to reduce the number of BoWs
calculated to N in the first case, and N1 +N2 in the second one.

Finally, we realized that, in the pipeline used Project Per-Fide, pairbooks
was used in two different steps: first to remove the duplicates, and later to find
candidate pairs (possibly more than once if more than one pair of languages
was being aligned). The fact that these were different calls to pairbooks
meant that the BoWs calculated in the first call were erased from memory and
not reused to the later calls. To avoid this, another optimization mechanism
was implemented: instead of keeping the BoW in memory, it was stored in the
disk. The overhead introduced by the writing and reading from disk instead
of memory was largely compensated by not having to recalculate all the bags
in calls afterwards.

4.4.3 Choosing a version

The question of choosing the best document from all the duplicates does not
have an unique answer, as different criteria can be used. In addition to the
method described here, other possible methods are discussed in Section 8.2.

Presently, the selection of the version to be kept is being performed based
on using a dictionary (in this case, aspell [Atkinson, 2006]) to count the
number of unknown words in each version. Then the version with the least
unknown words is kept, and the others are removed. A more formal definition
of this algorithm can be found in Algorithm 6.

54 4. Measuring similarity

Algorithm 6: Selecting a version from a set of duplicates.
Input: dups: files identified as duplicates
Output: file: version which should be kept.

forall the versioni ∈ dups do
UWi : unknown words of version
forall the w ∈ version : w is a word do

if w /∈ dic then increment(UWi)
end

end
return version with the lowest UW

4.5 Evaluation

A set of more than 500 Agatha Christie books in electronic format was put to-
gether to evaluate pairbooks. The books in this set, Set AC1, were converted
to plain text and the duplicates and near duplicates were removed, after which
160 files were left. These files were cleaned with Text::Perfide::BookCleaner,
and then they were split into groups according to their language, as seen on
Table 4.1.

Table 4.1: Number of books in Set AC1, grouped by language.

Language Number
of books

Brazilian
Portuguese 83

Spanish 33
European
Portuguese 35

English 9
Total 160

Then, all the combinations of two languages from Set AC1 were processed
by pairbooks, i.e. for each pair of languages L1 and L2, pairbooks picked
up each file from L1 and found its best match in L2. Candidate file pairs
with a similarity value above 0.4, were accepted, and the ones with a lower
similarity were reported as rejected.

All the candidate pairs (both the accepted ones and rejected ones) were
manually validated, and the number of false positives and false negatives was
counted. Table 4.2 presents the results of pairbooks, the manual corrections

4.5. Evaluation 55

and the precision and recall calculated based on these values.

Table 4.2: Results of pairbooks and manual revision.

Total
identified

Correctly
identified

Total
existing Precision Recall

Set AC1 99 99 118 1.00 0.84

The manual validation of the results provided by pairbooks proved that
relying on file names to find the pairs would not have been a good alternative:
some files names did not match their contents and, furthermore, the transla-
tions of the titles are often very creative, and in many cases the titles of the
same book in different languages seem completely unrelated. This required
some additional inspection of the files contents and online research to confirm
the results.

The results of the evaluation show that pairbooks presents a very high
precision value, having been correct in every positive pair identification. The
recall values are a little lower; however, manually inspecting the rejected pairs
has shown that this could be improved by lowering the accept threshold : from
the rejected candidate pairs, the ones with the highest similarity values were
the ones which were in fact true pairs. Lowering the accept threshold to 0.3
would result in a recall value of 0.93, and a threshold of 0.24 would increase
the recall up to 0.97. Both would have no influence on the precision value.

This test included books written in two variants of Portuguese, English
and Spanish. Undergoing tests which include books written in German and
Russian show that these two languages presents some features which cause
pairbooks to score lower on the precision and recall values. For example,
German language capitalizes all the nouns, which causes pairbooks to extract
too many words from the text.

Some proper names are translated, specially the ones referring to his-
torical characters or locations. Example 4.4 presents the most occurring
proper names in several different language editions of The Name of the Rose,
from Umberto Eco. The number of occurrences and some similarity in the
writing allow to identify the translations: for example, Guilherme/Guiller-
mo/William, Abade/Abad, Malaquias/Malaqúıas/Malachi and Adso/Адсо.
The possibility of providing pairbooks with a list of correspondences be-
tween proper names would allow to minimize this problem.

Russian presents another interesting problem: declensions. These cause
the nouns to be written differently depending on number, genre and grammat-
ical function. Example 4.5 presents pairs of similar words appearing on the

56 4. Measuring similarity

Portuguese

1 743 Guilherme
2 299 Abade
3 232 Deus
4 173 Malaquias
5 152 Berengário
6 135 Bernardo
7 134 Severino
8 127 Venancio
9 121 Jorge

10 115 Bêncio

Spanish

1 769 Guillermo
2 299 Abad
3 236 Dios
4 169 Malaquı́as
5 163 Berengario
6 144 Jorge
7 143 Ubertino
8 138 Severino
9 134 Bernardo

10 131 Adso

Russian

1 175 Малах
2 147 Берен
3 145 Хорхе
4 119 Венанц
5 114 Бенц
6 110 Миха
7 92 Адсо
8 90 Бернард
9 84 Убертин

10 82 Бог

English

1 796 William
2 181 Malachi
3 159 Berengar
4 151 Jorge
5 144 Ubertino
6 143 Pope
7 137 Bernard
8 131 Severinus
9 129 Venantius

10 117 Benno

Example 4.4: Example of the proper names with higher occurrences in The Name
of the Rose [Eco, 1980].

top 30 of the list with the proper names with higher occurrences in The Name
of the Rose. Each pair of words presented is actually the same proper name
written in different forms. The problem of declensions could be tackled by im-
plementing a stemming algorithm or by measuring the edit distance [Navarro,
2001] between the highest occurring words.

90 Бернард
29 Бернарда

69 Северин
32 Северина

51 Христа
35 Христос

46 Адельм
38 Адельма

40 Господь
31 Господа

39 Дольчино
38 Дольчина

Example 4.5: Similar words on the top 30 higher occurrences of proper names in
The Name of the Rose.

4.6 Summary

This chapter described two common problems when performing document
alignment: detecting duplicates and near duplicates within a set of files, and
finding candidate pairs for alignment.

A method for solving both problems was proposed which allows to iden-
tify duplicates and candidate pairs through the measurement of the similarity
between files based on LIEs common to both files. This method was im-
plemented in a Perl module, Text::Perfide::BookPairs and an auxiliary
module, Text::Perfide::WordBags.

Then, it was introduced a command-line utility which implements these
methods to operate over a pool of files. Several execution options were de-

4.6. Summary 57

tailed along with some considerations about the optimizations implemented.

58 4. Measuring similarity

Chapter 5

Synchronizing books

The time rate in the ship and duration on Earth have
been unrelated three times. But now they are effectively
synchronous again, such that slightly over seventy-four
years have passed since we left.

Robert A. Heinlein, Past Through Tomorrow

This chapter introduces the concept of document synchronization, defined
as the structural alignment based on section delimitation performed by the
module Text::Perfide::BookCleaner. A description of its implementation
is made, including the generation of visual representations of the synchro-
nization and files with anchor points for alignment.

5.1 Introduction

A common problem when aligning documents is the existence of unmatched
sections: entire sections which exist in one version and do not have a match
on the other.

Missing sections is a more common occurrence with books than with other
types of documents because books are more likely to include sections which
are version-dependent (prefaces to a given edition, translator notes, author’s
biographies and so on). This may however still happen with other kinds of
documents – for example, because the document was somehow truncated, or
it was only possible to obtain a partial version of it.

The existence of unpaired sections decreases the performance of the align-
ers, which are usually very sensitive to deletions and insertions, and are not

59

60 5. Synchronizing books

capable of dealing with such large differences in the texts. The product of
such alignments is often too bad to be included in a parallel corpus. Manually
correcting the alignment is not a feasible solution when one is dealing with
large amounts of documents, and simply removing by hand the badly aligned
parts also presents the same problem.

A tool capable of establishing a mapping between the sections of two books
and detecting the unpaired sections would allow to identify the problem and
act accordingly. Thus, we created Text::Perfide::BookSync, a Perl module
which implements the functions to detect missing sections in books and align
them at section-level – we denominated this structural alignment process
as book synchronization. This module includes a script, syncbooks, which
implements the whole workflow.

5.2 Implementation

Book synchronization is a process which takes as input two versions of a given
document and builds a mapping between the sections of both versions.

The first step is to compile a list containing the relevant information about
the existing sections in each version of the document. This task relies on the
annotations introduced by Text::Perfide::BookCleaner which mark the
location of each section division.

For each section, the following elements are stored:

• section type (if any)

• section number (if any)

• offset of first and last character

• total number of words

• first words within the section

The section alignment is then performed based on this data structure. An
example of the structure created can be found on Example 5.1.

5.2.1 Alignment method

The section alignment is performed as follows: each section mark in each book
is transformed into a token containing that section’s number and type (for
example, a mark inserted by bookcleaner as _sec+R: cap=1_ will originate

5.2. Implementation 61

1 EVIL UNDER THE SUN

2 Agatha Christie
3 (...)

4 _sec+N:cap=1_ Chapter 1

5 When Captain Roger Angmering built
6 himself a house in the year 1782 on
7 the island off (...)

8 _sec+N:cap=2_ Chapter 2

9 When Rosamund Darnley came and sat
10 down by him, Hercule Poirot made no
11 attempt to (...)

1 [{
2 ’title’ => ’begin’,
3 ’id’ => ’begin’,
4 ’wc’ => ’9’,
5 ’end’ => ’105’,
6 ’start’ => 0
7 },{
8 ’title’ =>
9 ’_sec+N:cap=1_ Chapter 1’,

10 ’id’ => ’cap=1_’,
11 ’wc’ => ’4358’,
12 ’end’ => ’24378’,
13 ’start’ => ’106’
14 },{
15 ’title’ =>
16 ’_sec+N:cap=2_ Chapter 2’,
17 ’id’ => ’cap=2_’,
18 ’wc’ => ’3895’,
19 ’end’ => ’46103’,
20 ’start’ => ’24379’
21 },(...)
22]

Example 5.1: Excerpt of original text annotated by Text::Perfide::BookCleaner
(left) and corresponding data structure with section information (right).

the token cap=1). The tokens from each book are printed to a file, and the
Unix diff command is used to compare them.

The diff utility [Hunt et al., 1976] uses the Hunt-McIlroy algorithm to
solve the longest common subsequence problem [Hirschberg, 1975], being ca-
pable of comparing two files and discovering the lines that were added or
removed between them. By comparing the files which contain the section
tokens, we can detect which sections can only be found in one of the original
documents. Example 5.2 presents an example of a diff file generated from
the comparison of two section files.

sec+N:cap=1 Capı́tulo I
sec+N:cap=2 Capı́tulo II
sec+N:cap=3 Capı́tulo III
sec+N:cap=4 Capı́tulo IV
sec+N:cap=5 Capı́tulo V
sec+N:cap=6 Capı́tulo VI
sec+N:cap=7 Capı́tulo VII
sec+N:cap=8 Capı́tulo VIII

sec+O:cap=1 Capı́tulo Primero
sec+N:cap=3 Capı́tulo III
sec+NA:Fin
sec+N:cap=4 Capı́tulo IV
sec+N:cap=5 Capı́tulo V
sec+N:cap=7 Capı́tulo VII
sec+N:cap=8 Capı́tulo VIII

begin begin
cap=1_ cap=1_
cap=2_ <
cap=3_ cap=3_

> Fin_
cap=4_ cap=4_
cap=5_ cap=5_
cap=6_ <
cap=7_ cap=7_
cap=8_ cap=8_

Example 5.2: Excerpt of the section lists of two books (left and center) and the
resulting diff file (right).

Sometimes, two versions of a book have different types for the same sec-
tions. For example, one version may be divided in tomes, and the other may
call it volumes; one version may have chapters while the other has typeless
sections (e.g. sections which are represented only by roman numbers). In

62 5. Synchronizing books

these cases, we have made it possible to perform the section-level alignment
based solely on the section numbers, regardless of their type. This way, hav-
ing different types for matching sections does not prevent two books from
being effectively synchronized.

5.2.2 Ghost sections and chunks

By analyzing the output we can assess which sections were only found in one
of the versions. However, the fact that a given section was not detected by
bookcleaner does not necessarily mean that the section is missing, it just
means that its beginning could not be found – either because it is actually
not there or because bookcleaner was not capable of identifying it.

Ghost sections give origin to a problem: what should be done with them?

• They cannot be aligned because, for all practical purposes, they are
invisible.

• They cannot be removed along with their matching section either, for
the very same reason.

• Removing just the matching section (besides being pointless) would
result in an even bigger problem: unpaired ghost sections.

In order to solve this problem, the concept of chunk has been created. A
chunk consists of a group of consecutive sections, from one version of a book,
and a similar matching group from the other version. The relevance of chunks
relies on how the number of chunks and which sections belong to which chunk
are determined.

Definition 2 A chunk is a data structure which includes a pair of matching
sections, and all the following unpaired sections from both documents until the
next pair of matching sections, which is the beginning of another chunk.

chunk: (section × section) (unmatched)* (unmatched)*

3

Each chunk starts with a pair of matching sections, and includes every fol-
lowing unpaired sections in both versions. Once the next pair of matching
sections is reached, a new chunk is created, and the same procedure is fol-
lowed. An example of the chunks generated from a diff file can be found in
Example 5.3.

5.3. Output objects 63

begin begin
cap=1_
cap=1_
cap=2_ <
cap=3_ cap=3_

> Fin_
cap=4_ cap=4_
cap=5_
cap=5_
cap=6_ <
cap=7_ cap=7_
cap=8_ cap=8_

(...)
{
’left’ => {
’secs’ => [1,

2],
’wc’ => 29837,
’end’ =>

’177232’,
’start’ =>

’352’
},
’right’ => {
’secs’ => [1],
’wc’ => 29004,
’end’ =>

’170262’,
’start’ =>

’842’
}

},
(...)

(...)
{
’left’ => {
’secs’ =>

[5,6],
’wc’ => 34594,
’end’ =>

’549783’,
’start’ =>

’345030’
},
’right’ => {
’secs’ => [5],
’wc’ => 25990,
’end’ =>

’475746’,
’start’ =>

’323935’
}

},
(...)

Example 5.3: Diff file (left) and structure with detailed chunk information (center
and right). Two chunks have been highlighted in orange and blue.

This means that every matched pair of sections will be at the beginning
of a chunk, and every unpaired section will be in a chunk preceded by a
matching section. In a perfectly synchronizable pair of books (a pair where
every section has one and only one match), each section will be placed on a
chunk of its own.

As soon as all the chunks have been determined, the number of words in
each chunk is calculated to be further compared.

5.3 Output objects

After all the chunks have been calculated, as well as their size (in number of
words), three different output objects can be built: a synchronization matrix,
a pair of annotated files, or a pair of sets of split files.

5.3.1 Synchronization matrix

The synchronization matrix consists of an HTML file, built using the Perl
module HTML::Auto. This matrix contains a visual representation of the
synchronization, allowing the user to have a intuitive global perspective on
the results of the synchronization.

An example of a synchronization matrix is presented in Figure 5.1. The
lines of the matrix correspond to the sections of one of the files, and the

64 5. Synchronizing books

Figure 5.1: Matrix produced as a result of synchronizing the previous examples.

columns to the sections of the other. The numbers in the matrix indicate
the chunk those sections belong to. The colors – green, yellow and red –
represent how likely it is that the sections in a given chunk really match.
This is calculated using the formula

L =
wc_left
wc_right

(5.1)

where wc_left and wc_right represent the total number of words in the left
and right sections of the chunk, respectively. If L is between 0.9 and 1.1,
the color green is used; if L is between 0.5 and 0.9 or 1.1 and 1.5, yellow;
otherwise, red. Hovering with the mouse over a given square opens a pop-ip
containing the first words of each sections. This allows the user to confirm if
those two sections have been correctly aligned or not.

5.4. Summary 65

5.3.2 Annotated files

Another possible output object consists of a pair of files which are copies of
the original input files annotated with synchronization marks. For example,
for a given pair of files fileLeft.txt and fileRight.txt, a pair of marked
files fileLeft.txt.sync and fileRight.txt.sync will be created.

The marks are placed at the beginning of each chunk, and they follow the
form <sync id="i">, where i is the number of the chunk. Later on, when
the books are being aligned, these marks can be used as anchor points.

Frequently, the unpaired sections are found in the beginning of the docu-
ment: introductions, prefaces, indexes and other introductory segments. As
such, an option was added to skip the first n chunks, resulting in output files
which only start at chunk n+1.

Some aligners are not capable of handling large files. In these cases, one
possible solution is to split the files in smaller portions. However, the files
have to be split in similar ways (i.e. making sure that each pair of smaller
files contains the same sections). To this purpose, syncbooks is capable of
splitting the original files in smaller files, each containing one chunk. This
way, the original files fileLeft.txt and fileRight.txt are split into sev-
eral fileLeft.ci and fileRight.ci, where i is the number of the chunk
contained in the file.

5.4 Summary

This chapter tackled the problem of unmatched sections in documents to
be aligned. It introduced the concept of book synchronization, a structural
alignment of sections, which allows to detect the missing sections before the
actual alignment. The implementation of this method, as a Perl module de-
nominated Text::Perfide::BookSync, was described, focusing particularly
on the section alignment method. The concept of chunk was introduced, and
its applications were explained.

The several available output objects which can be produced as the result
of the synchronization were listed: the synchronization matrix (a visual rep-
resentation of the synchronization), files annotated with anchor points and
pairs of files containing chunks.

66 5. Synchronizing books

Chapter 6

Prototype of a corpora flow

It is well. The bad moment has passed. Now all is ar-
ranged and classified. One must never permit confusion.
The case is not clear yet – no. For it is of the most
complicated! It puzzles me. Me, Hercule Poirot!

– Hercule Poirot

Agatha Christie, The Mysterious Affair at Styles

This chapter introduces the concept of corpora-flow: a workflow for cor-
pora building. A prototype for a corpora-flow system is presented which uses
files written in a small defined domain-specific language (DSL) to generate a
Makefile which controls the process. This prototype implements several fea-
tures, namely the workflow control mechanisms created to simplify the task
of building a corpus.

6.1 Introduction

Building a corpus is a complex task. One of the many challenges it presents
is the fact that it requires each source document to be adapted, processed
and transformed by different tools in several consecutive steps whose final
result must be ready to be added to the corpus. The tools described so far
are meant to help in such tasks, and can be easily assembled into a pipeline
where no intermediary steps of conversion are needed.

However, the diversity of documents sources, document types, file formats,
notations, encodings, etc. imply that different documents may need different

67

68 6. Prototype of a corpora flow

processing steps in order to reach the same stage. This heterogeneity requires
approaches with different levels of sophistication.

The lowest level approach consists of establishing a simple linear pipeline.
However, frequently this is of little help, because it is not flexible enough to
allow variations of the document workflow. A more sophisticated approach
would have to allow to:

• define several alternatives for any given step.

• skip unwanted steps.

• enter and leave the pipeline at any given point.

• define breakpoints where the process holds to allow the inspection of
the already performed steps, and if necessary, the intervention of other
tools, and resumes its course of action afterwards.

• provide intelligent feedback to the user, while still logging every possible
information to allow deeper inspection.

The next subsections will introduce the concept of workflow and describe
the general functioning of make utilities. Both concepts are used as the basis
of our implementation of the corpora-flow prototype.

6.1.1 Workflow

Because it is a concept used in several distinct areas, there are several different
definitions of workflow. The Workflow Management Coalition Specification
defines workflow as follows [Hollingsworth et al., 1993]:

Definition 3 workflow: the automation of a business process, in whole or
part, during which documents, information or tasks are passed from one par-
ticipant to another for action, according to a set of procedural rules. 3

Workflows are commonly used to manage business processes because they
allow to abstract the process logic – the higher level rules which command a
given process – from the task logic – the steps and operations necessary to
perform an individual task.

In the context of this dissertation, a workflow consists of the different
steps which define a process: all the alternatives, conditions and sequences
of tasks needed to accomplish a given goal. For example, within a project
like Project Per-Fide, which aims to build a corpus, the workflow includes

6.1. Introduction 69

all the tasks which must be performed, from contacting possible sources of
documents and getting the permissions to use them to the tasks of preparing
the documents, aligning them, evaluating the alignments, etc.

This chapter is focused on the computational tasks of the process of build-
ing a corpus, and how to implement a generic system to handle the document
processing – in short, the application of the workflow concept to the construc-
tion of corpora – corpora-flow.

A workflow typically includes the following components:

States: the stopping points of the process.

Actions: the transitions between states.

Pre-conditions: must be verified in order to execute a given action.

Post-conditions: must be verified after executing a given action in order to
move to the next state.

Context: the data passed between states and modified by actions.

A workflow can be seen as a graph, in which the nodes are the possi-
ble states of the workflow, the edges are the actions, and the pre and post-
conditions are annotations at the beginning and end of the edges, respectively.

6.1.2 Makefiles

make utilities are tools capable of determining which pieces of a large program
need to be recompiled, and issuing the commands needed to do so1. Makefiles
are the files used by make which contain the rules and the dependencies which
specify how to derive the target. Example 6.2 presents the basic structure of
a Makefile.

Makefiles allow the definition of macros, which are commonly used to de-
fine variables. A rule consists of a dependency line, in which it is stated that
one target (or multiple targets) depends on a given set of files (components).
Dependency lines are followed by a series of command lines which define how
to transform the components into the target. An example Makefile can be
found in Example 6.2.

1Several “flavors” of make tools are available, which usually present the same basic
behavior but can include some specific features. Most of the features discussed in this
chapter are common to several of these applications; however, unless stated otherwise, we
will be referring to the GNU make utility.

70 6. Prototype of a corpora flow

1 MACRO = definition
2 target [target ...]: [component ...]
3 [<TAB>command 1]
4 .
5 .
6 .
7 [<TAB>command n]

Example 6.1: Basic structure of a Makefile.

1 main.pdf: main.tex
2 pdflatex main.tex

3 clean:
4 rm -f main.pdf

Example 6.2: Example of a Makefile.

The make utility presents several interesting features:

File-oriented: all the rules in a Makefile are triggered by the need to create
a target file, and depend on the existence of a set of source files.

Dependencies: dependencies between processes can be easily indicated by
establishing dependencies between the intervening files.

Timestamp checking: when the target file already exists, rules will be ex-
ecuted only if one or more of the source files have been edited more
recently than the target file.

Fast-fail execution: by default, a make command is interrupted as soon as
one of the steps exits with a non-zero status, or one of the dependencies
could not be satisfied.

Resumable execution: a make process might be interrupted; however, the
files which have already been created do not need to be recalculated in
a later execution.

Parallelization: make is able to parallelize steps which are not linearly de-
pendent on each other.

Patterns: Makefiles allow the definition of rules with target and source pat-
terns which are applied to the files which match the pattern.

The GNU Makefiles use Unix shell commands to described the actions.

6.2. Building a workflow with Makefiles 71

Slay::Makefile [Nodine, M., 2011] is a Perl module which allows to use Perl
code blocks to define the targets, dependencies and the actions in a Makefile.

6.2 Building a workflow with Makefiles

Building a document workflow based on Makefiles allows to take advantage of
the Makefile features described in the previous section. Research has revealed
the existence of simple uses of Makefiles to control workflows [Dziuba, 2011]
and Makeflow, a “workflow engine for executing large complex workflows on
clusters, clouds, and grids” based on Makefiles [Albrecht et al., 2011, Thain
and Moretti, 2011, Yu et al., 2010].

We propose a workflow system where files written in a small DSL would
be parsed and generate a Slay::Makefile prepared to manage the corpora-
flow. An example of a DSL for corpora-flow is presented in Example 6.3.
Simply explained, the DSL states that:

• a workflow is defined by a set of rules.

• each rule includes pre-conditions, an action, and post-conditions.

• an action includes two sets of patterns (which match filenames to be
used as targets or dependencies) and a function (Perl code which im-
plements the behavior of the action).

• a condition includes a function (which checks the validity of the con-
dition) and a filename, which is the file that should be created if the
condition is true.

• within an action, the pre-conditions prevent the execution of the func-
tion.

• within an action, the post-conditions are verified after executing the
function, and must be verified in order to create the targets.

In a workflow implemented this way, all the usual workflow components
are present: the states are given by the existing targets and dependencies,
the actions are implemented as functions, the pre and post-conditions are also
implemented as functions and the context is provided by the contents of the
files (targets and dependencies).

72 6. Prototype of a corpora flow

1 workflow: rule*
2 rule: pre-condition* action post-condition*
3 action: targets dependencies function
4 condition: filename function
5 target: pattern*
6 dependencies: pattern*
7 function: Perl code

Example 6.3: Example of a DSL for a Makefile-based workflow formal definition.

This implementation also verifies the requirements for a workflow for cor-
pora construction, listed in the previous section:

• the definition of alternative steps can be implemented by defining sev-
eral rules, each one containing mutually exclusive pre-conditions.

• skipping unwanted steps can also be performed by guarding them with
pre-conditions.

• the definition of the entry point in the workflow can be performed by se-
lecting the dependency files available when the make command is called.

• the exit point of the workflow is defined by the target selected when the
make command is called.

• the implementation of interactive breakpoints can be achieved by defin-
ing rules whose action calls interactive commands, and rules which de-
pend on files created after the interaction with the user.

• intelligent feedback objects can be built during the execution (for ex-
ample, by writing a Dot file which generates a graph representing the
executed rules of the Makefile).

Chapter 7

Global evaluation

I came here to have you evaluate the proposed procedure.
I first wanted to see if the effort would be worthwhile. I
see now that it would be.

Isaac Asimov, Utopia

The individual evaluation of some of the tools has already been reported.
This chapter, however, presents an evaluation of the whole set of tools, per-
formed with the main goal of assessing the usefulness of the tools in a real
use case scenario – preparing books for alignment.

7.1 Alignment evaluation tools

Evaluating the results of alignments is not an easy task. When a gold stan-
dard exists, alignments can be evaluated by calculating the precision and
recall values. However, when a gold standard is not available, what objective
metrics can be used to evaluate alignments? And how to compare two align-
ments of the same documents, produced under different circumstances (using
different aligners, different pre-processing steps and so forth)?

One possible metric for comparison is the number of correspondences of
each type. Translations may present phenomena like insertions, deletions
and complex correspondences (a sentence split into two or more, or several
sentences merged into a single one), which in the alignment originates 0:1, 1:0
or m:n alignments. However, non-1:1 correspondences are frequently a sign
that the aligner lost its pace. Two alignments of the same documents can
be compared by inspecting the number of correspondences of each type in

73

74 7. Global evaluation

each one, and generally the best alignment will be the one which has a higher
number of 1:1 correspondences and a lower number of correspondences of
other types.

A small set of tools was developed to help in the process of evaluating
alignment results. These tools were used both in this global evaluation and
also in the evaluation of Text::Perfide::BookCleaner (described in Chap-
ter 3), and have been aggregated in the Perl module Lingua::TMX::Utils
(documented in Appendix A.5).

Inspecting TMXs

tmx_inspect is a command-line utility which extracts sample translation
units (TUs) from a TMX file, and can be used to quickly check the qual-
ity of an alignment – even when an alignment is not perfect (i.e. almost all
sentences being correctly aligned), it can still be usable if a great amount of
sentences were aligned successfully. Usually, when the results of an alignment
are really bad it happened because the aligner lost its pace right near the
beginning of the documents.

tmx_inspect supports several different criteria for selecting the samples
to be extracted from the TMX file:

• A fixed number of samples, equally distributed along the TMX file.
Example: tmx_inspect -n=5 file.tmx

• Fixed points along the file (specified in percentages of the file).
Example: tmx_inspect -perc=’30,50,80,90’ file.tmx

• Sentences matching a given string or regular expression.
Example: tmx_inspect -re=’Harry Potter’ file.tmx

• Defining the size of the sample to extract (how many TUs before and
after each sampling point).
Example: tmx_inspect -ctx=3 -n=5 file.tmx

An example of a sample of a TMX extracted with tmx_inspect can be
found in Example 7.1.

Comparing TMXs

tmx_compare is a tool which takes as input TMX files and outputs a table
with the number of correspondences of each type found in each TMX. This

7.2. Evaluation process 75

Figure 7.1: Example of the output of tmx_inspect.

allows to easily observe the changes in the number of correspondences of
each type, and thus perform a comparative evaluation of the methods which
originated each TMX. An example of the output of tmx_compare can be
found in Example 7.1.

1 ~/ $ tmx_compare tmx1 tmx2
2 PARAM 0:1 1:1 2:1 2:2 Tot_l1 Tot_l2
3 TMX1 15068 101463 14628 7050 147277 142801
4 TMX2 12503 116496 13278 6176 157815 152218

Example 7.1: tmx_compare: example of output.

7.2 Evaluation process

The evaluation of the tools was performed by using them to pre-process books
before alignment. Two sets of books were chosen: Set A comprised Harry
Potter books and Set B comprised books written by Umberto Eco. The
languages the books were written in included Portuguese, English, Russian,
French, Italian, German and Spanish. Two copies of each set were made,
resulting in the following configuration:

Set HP1: Harry Potter books, aligned with no previous processing.

Set HP2: Harry Potter books, pre-processed before alignment.

Set UE1: Umberto Eco books, aligned with no previous processing.

Set UE2: Umberto Eco books, pre-processed before alignment.

76 7. Global evaluation

Books in sets HP1 and UE1 were aligned with no previous cleaning or
synchronizing. Books in sets HP2 and UE2 were pre-processed using the set
of tools developed in the context of this dissertation (see Figure 7.2):

1. first, the books were cleaned with Text::Perfide::BookCleaner.

2. pairs were discovered with Text::Perfide::BookPairs1.

3. pairs were synchronized with Text::Perfide::BookSync.

Figure 7.2: Diagram of the global evaluation.

7.3 Results

The tables presented in this section summarize the results obtained in the
evaluation process. Table 7.1 details the total number of books aligned in
sets HP1 and HP2, the number of those alignments which were considered
normal and bad by the aligner2, the number of alignments which produced
no results and the number of alignments which were manually confirmed as
being bad. Table 7.2 presents the same details for the the sets UE1 and UE2.

1Due to time constraints and to the number of books involver, the pairs in all sets were
discovered with pairbooks, followed by a manual validation.

2The aligned used in Project Per-Fide, cwb-align, marks as bad any alignment with a
high rate of non-1:1 alignments

7.4. Discussion 77

Table 7.1: Number of pairs aligned and results (sets HP1 and HP2).

Set HP1 Set HP2 ∆%
Total aligned 25 27 +8.0
Classified as normal 16 20 +25.0
Classified as bad 9 7 -22.2
Missing 2 0 -100.0
Confirmed as bad 9 7 -22.2

Table 7.2: Number of pairs aligned and results (sets UE1 and UE2).

Set UE1 Set UE2 ∆%
Total aligned 67 76 +13.4
Classified as normal 26 48 +84.6
Classified as bad 41 28 -31.7
Missing 9 0 -100.0
Confirmed as bad 39 28 -28.2

In some cases, the alignment process produced bad results, or no results
at all. In order to compare the quality of the alignments produced, which
was based on the total number of correspondences of each type in each set, it
was decided to include only the successful alignments (alignments classified as
normal) in the comparison. However, given that sets HP1 and HP2 produced
a different number of successful alignments, this would result in comparing
sets with different size and contents. To avoid this, it was decided to evaluate
only the alignments which were successful in both sets. The same is valid for
sets UE1 and UE2.

The results of the alignments from books in sets HP1’ and HP2’ (the sub-
sets from HP1 and HP2 containing only pairs which were successful aligned)
were then compared, and the results are summarized in Table 7.3, which
presents the number of correspondences of each type found, and the total
number of segments (i.e. sentences) in the source language (SL) and the
target language (TL). The same evaluation was performed in subsets UE1’
and UE2’, and the results are presented in Table 7.4.

7.4 Discussion

The results presented in the previous section show that in both test sets the
alignment of Harry Potter books has been improved: the number of nor-

78 7. Global evaluation

Table 7.3: Translation units obtained for each type of correspondence (sets HP1’
and HP2’).

Corresp. Type Set HP1’ Set HP2’ ∆%
0:1 or 1:0 12485 7051 -43.5
1:1 104911 124098 +18.3
2:1 or 1:2 22429 19475 -13.2
2:2 3969 3601 -9.3
Total Seg. SL 152569 164302 +7.7
Total Seg. TL 152901 163774 +7.1

Table 7.4: Translation units obtained for each type of correspondence (sets UE1’
and UE2’).

Corresp. Type Set UE1’ Set UE2’ ∆%
0:1 or 1:0 14797 10286 -30.5
1:1 202168 207146 +2.5
2:1 or 1:2 26752 23022 -13.9
2:2 7105 6461 -9.1
Total Seg. SL 262200 259268 -1.1
Total Seg. TL 265609 260220 -2.0

mal alignments increased 25%, and the number of bad alignments decreased
22% (Table 7.1). The number of alignments with no results decreased to zero.
Alignments which produce no output happen when the aligner quits unex-
pectedly; there are several causes for this, including running out of memory
or catching a file in particular bad conditions.

Even when analyzing the alignments which were successful in both sets,
it is possible to observe an improvement: the number of 1:1 correspondences
increased 18%, while all the number of other types of correspondences de-
creased (Table 7.3).

The improvements were even greater in the set of books written by Um-
berto Eco: The number of successful alignments increased 84.6%, while the
number of bad alignments decreased 31.7% (Table 7.2). Additionally, the
number of alignments with no results decreased from 9 to 0.

Regarding the results of the successful alignments, there was also an in-
crease in the number of 1:1 correspondences, and a decrease in all other
types (Table 7.4).

A deeper inspection of the bad alignments in all sets has revealed that

7.4. Discussion 79

the majority of them included Russian either as the source language or the
target language. German also appeared frequently. This suggests that these
languages present some features which make them harder to align. In the case
of Russian, the fact that it uses a different alphabet is probably a disturbing
factor. The fact that words are frequently concatenated may have been a
disturbing factor in the alignment of German books.

80 7. Global evaluation

Chapter 8

Conclusions and future work

“Well, gentlemen,” said my friend gravely, “I am asking
you now to put everything to the test with me, and you
will judge for yourselves whether the observations I have
made justify the conclusions to which I have come.”

– Sherlock Holmes

Arthur Conan Doyle, The Valley of Fear

This chapter presents a summary of the work performed in the context
of this dissertation, establishing some conclusions about the usefulness and
practical utility of the tools developed and the nature of the problems tackled.

Additionally, future work possibilities are discussed, including specific fea-
tures and methods which could be added to the existing tools.

8.1 Conclusions

This document introduced several problems which one has to face when build-
ing corpora, and described the design and implementation of several algo-
rithms and tools intended to solve them. The tools developed have been
implemented as the following Perl modules:

Text::Perfide::BookPairs

Perl module which implements a similarity measuring algorithm, which is
applied in functions capable of determining if two documents are duplicates or
candidate pairs. Additionally, it includes pairbooks, an utility which applies

81

82 8. Conclusions and future work

the modules’ functions to process a pool of documents, implementing several
optimized methods which make it capable of handling large collections.

Text::Perfide::BookCleaner

Perl module which implements functions to perform cleaning tasks in books
– including removing pages structural elements, delimiting sections, remov-
ing footnotes, normalizing sentence notation and other types of noise which
prevent text documents from being further processed.

Text::Perfide::SciArticleCleaner

Prototype for a Perl module similar to the previous one, but created specifi-
cally to clean scientific articles. Functions from Text::Perfide::BookCleaner
were adapted and additional ones were implemented, such as the normaliza-
tion of mathematical formulas.

Text::Perfide::BookSync

This module implements algorithms to perform book synchronization – struc-
tural alignment at section level – based on the section delimiting performed
with Text::Perfide::BookCleane. This synchronization can then be used in
order to guide lower-level alignments.

Text::Perfide::CorporaFlow

Prototype for Perl module which allows to implement mechanisms to con-
trol the steps included in corpora building workflows – corpora-flows. The
workflow control process is based on an extended notion of Makefiles.

The modules developed are publicly available on CPAN1. Releasing the
tools as open source software required additional work in order to guarantee
that the tools could be used and installed in other computers, and that the
community standards were followed. It also means that they are continuously
being maintained and improved, as more feature requests and bug reports are
being issued.

1Comprehensive Perl Archive Network – http://cpan.org

http://cpan.org

8.2. Future Work 83

8.2 Future Work

All the methods and tools described and implemented in the context of this
dissertation can be improved and extended. This section lists some features
which are planned already or under consideration.

8.2.1 Document cleaners

• The configuration of the existing book cleaner will be performed through
a file written in a DSL which will allow to:

– define the steps to be performed and their sequence.

– before or after each step, call an external filter to handle specific
issues.

– before or after each step, allow the user to inspect what was done
and the current state of the document.

• Text::Perfide::SciPaperCleaner will be improved, and cleaners for
other types of text can be used (legislation, drama, etc).

• The section ontology will be expanded.

• The algorithm for finding sections will be improved; whenever possible,
it will take advantage of the sections hierarchy provided by the ontology.

8.2.2 Document pair finding

• The algorithm for measuring similarity will accept as an additional pa-
rameter a list of correspondences, allowing the use of elements other
than LIEs to measure the similarity between two documents.

• A machine learning algorithm will be used to check the current default
similarity thresholds which are being used to consider two documents
as duplicates or as a pair.

• Additionally, a similar algorithm will be implemented to search in run-
time for statistical gaps between the similarity values of the documents
from a given set, and adjust the default values automatically if neces-
sary.

84 8. Conclusions and future work

8.2.3 Document synchronization

• The document synchronization tool booksync will be provided with an
interactive mode, allowing the user to inspect the results of a synchro-
nization and, if necessary, adjust some parameters before recalculating
the synchronization. This will include:

– commit the sections which have been correctly synchronized, and
recalculate the remaining ones.

– select sets of chunks to saved into a file, instead of storing each
chunk in a different file.

• The synchronization matrix will be improved to include more informa-
tion. Other visualization tools will be implemented.

• Better synchronization metrics will be devised and implemented.

• Taking advantage of the section ontology of Text::Perfide::BookCleaner,
the synchronization algorithm will support hierarchical sections.

• Other synchronization algorithms will be tested, possibly based on the
size of the sections (similar to sentence and word-level text alignments).

8.2.4 Corpora-flow

• A first complete version of the DSL for the corpora-flow system will be
implemented, as well as the corresponding parser which generates the
Slay::Makefiles.

• The Perl module Text::Perfide::CorporaFlow will be extended to
provide all the necessary functions for implementing a Makefile for the
Project Per-Fide workflow.

References

S. Agarwal and H. Yu. Automatically classifying sentences in full-text biomedical
articles into Introduction, Methods, Results and Discussion. Bioinformatics, 25
(23):3174, 2009. ISSN 1367-4803. Cited on page 43.

M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A portable abstraction
for cluster, cloud, and grid computing. 2011. Cited on page 71.

J.J. Almeida and A. Simões. Automatic Parallel Corpora and Bilingual Terminology
extraction from Parallel WebSites. In Proceedings of LREC-2010, page 50, 2010.
Cited on page 20.

S. Araújo, J.J. Almeida, I. Dias, and A. Simões. Apresentação do projecto Per-Fide:
Paralelizando o Português com seis outras ĺınguas. Linguamática, page 71, 2010.
Cited on page 5.

S. Atkins, J. Clear, and N. Ostler. Corpus design criteria. Literary and linguistic
computing, 7(1):1, 1992. Cited on page 11.

K. Atkinson. Gnu aspell 0.60. 4, 2006. Cited on page 53.

A.Z. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997. Cited
on page 46.

P.F. Brown, J.C. Lai, and R.L. Mercer. Aligning sentences in parallel corpora.
pages 169–176, 1991. doi: http://dx.doi.org/10.3115/981344.981366. URL http:
//dx.doi.org/10.3115/981344.981366. Cited on pages 14 and 16.

L. Burnard. Using sgml for linguistic analysis: The case of the bnc. Markup Lan-
guages, 1(2):31–51, 1999. Cited on page 11.

S.F. Chen. Aligning sentences in bilingual corpora using lexical information. In Pro-
ceedings of the 31st annual meeting on Association for Computational Linguistics,
pages 9–16. Association for Computational Linguistics, 1993. Cited on pages 14
and 16.

85

http://dx.doi.org/10.3115/981344.981366
http://dx.doi.org/10.3115/981344.981366

86 References

Y.C. Chiao, O. Kraif, D. Laurent, T.M.H. Nguyen, N. Semmar, F. Stuck, J. Véronis,
and W. Zaghouani. Evaluation of multilingual text alignment systems: the AR-
CADE II project. In Proceedings of LREC-2006. Citeseer, 2006. Cited on page 23.

Oxford Dictionaries. "corpus", April 2010. Retrieved in October 27, 2011 from
http://oxforddictionaries.com/definition/corpus. Cited on page 9.

Ted Dziuba. Stupid unix tricks: Workflow control with gnu make. 2011. Cited on
page 71.

A. Désilets, B. Farley, M. Stojanovic, and G. Patenaude. WeBiText: Building large
heterogeneous translation memories from parallel web content. Proc. of Translat-
ing and the Computer, 30:27–28, 2008. Cited on page 23.

U. Eco. The Name of the Rose. 1980. Cited on page 56.

S. Evert. The CQP query language tutorial. IMS Stuttgart, 13, 2001. Cited on
pages 24 and 30.

W.A. Gale and K.W. Church. A program for aligning sentences in bilingual cor-
pora. Computational linguistics, 19(1):75–102, 1993. ISSN 0891-2017. Cited on
pages 14, 16 and 24.

C. Gong, Y. Huang, X. Cheng, and S. Bai. Detecting near-duplicates in large-scale
short text databases. Advances in Knowledge Discovery and Data Mining, pages
877–883, 2008. Cited on page 45.

R. Gupta and S. Ahmed. Project Proposal Apache Tika. 2007. Cited on page 28.

Z.S. Harris. Distributional structure. Word, 1954. Cited on page 47.

M. Hart and G. Newby. Project Gutenberg. http://www.gutenberg.org/wiki/
Main_Page, 1997. URL http://www.gutenberg.org/wiki/Main_Page. Cited
on page 14.

D.S. Hirschberg. A linear space algorithm for computing maximal common subse-
quences. Communications of the ACM, 18(6):341–343, 1975. Cited on page 61.

D. Hollingsworth et al. Workflow management coalition: The workflow reference
model. Workflow Management Coalition, 1993. Cited on page 68.

A. Hume. A tale of two greps. Software: Practice and Experience, 18(11):1063–1072,
1988. Cited on page 3.

J.W. Hunt, M.D. McIlroy, and Bell Telephone Laboratories. An algorithm for dif-
ferential file comparison. Bell Laboratories, 1976. Cited on pages 3 and 61.

IMS Corpus Workbench, 1994-2002. URL http://www.ims.
uni-stuttgart.de/projekte/CorpusWorkbench/. http://www.ims.uni-
stuttgart.de/projekte/CorpusWorkbench/. Cited on page 41.

http://oxforddictionaries.com/definition/corpus
http://www.gutenberg.org/wiki/Main_Page
http://www.gutenberg.org/wiki/Main_Page
http://www.gutenberg.org/wiki/Main_Page
http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/
http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/

References 87

P. Jaccard. Etude comparative de la distribution florale dans une portion des alpes
et des jura.[a study comparing the distribution of flora in a portion of the jura
alps] bulletin. Societe Vaudoise des Sciences Natirelles, 37:547–579, 1901. Cited
on page 46.

M. Kay. Text-translation alignment. In ACH/ALLC ’91: "Making Connections"
Conference Handbook. Tempe, Arizona, March 1991. Cited on pages 14 and 15.

J.D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. Genia corpus—a semantically annotated
corpus for bio-textmining. Bioinformatics, 19(suppl 1):i180, 2003. Cited on
pages 1 and 10.

P. Koehn. Europarl: A parallel corpus for statistical machine translation. 5, 2005.
Cited on pages 1 and 21.

J.P. Kumar and P. Govindarajulu. Duplicate and near duplicate documents detec-
tion: A review. European Journal of Scientific Research, 32(4):514–527, 2009.
Cited on page 46.

M. Kupietz. Near-duplicate detection in the ids corpora of written german. Tech-
nical report, Tech. Rep. KT-2006-01. Institut für Deutsche Sprache. ftp://ftp.
ids-mannheim. de/kt/ids-kt-2006-01. pdf, 2006. Cited on page 45.

P. Langlais, M. Simard, J. Veronis, S. Armstrong, P. Bonhomme, F. Debili, P. Is-
abelle, E. Souissi, and P. Theron. Arcade: A cooperative research project on
parallel text alignment evaluation. 1998. Cited on page 17.

K.H. Lee, N. Guttenberg, and V. McCrary. Standardization aspects of eBook content
formats. Computer Standards & Interfaces, 24(3):227–239, 2002. ISSN 0920-5489.
Cited on page 30.

T. Limpiyakorn, F. Kurisu, and O. Yagi. Development and application of real-time
pcr for quantification of specific ammonia-oxidizing bacteria in activated sludge of
sewage treatment systems. Applied microbiology and biotechnology, 72(5):1004–
1013, 2006. Cited on page 44.

Chris A. Mattmann and Jukka L. Zitting. Tika in Action. Manning Publications
Co., 1st edition, 2011. URL http://www.manning.com/mattmann/. Cited on
page 28.

T. McEnery and A. Wilson. Corpus linguistics: an introduction. Edinburgh Univ
Pr, 2001. Cited on page 11.

I. Dan Melamed. Annotation style guide for the blinker project. Arxiv preprint
cmp-lg/9805004, cmp-lg/9805004, 1998a. Cited on page 19.

I. Dan Melamed. Manual annotation of translational equivalence: The blinker
project. Arxiv preprint cmp-lg/9805005, cmp-lg/9805005, 1998b. Cited on
page 19.

http://www.manning.com/mattmann/

88 References

R. Moore. Fast and accurate sentence alignment of bilingual corpora. Machine
Translation: From Research to Real Users, pages 135–144, 2002. Cited on
page 16.

G. Navarro. A guided tour to approximate string matching. ACM computing surveys
(CSUR), 33(1):31–88, 2001. Cited on page 56.

Nodine, M. Slay::Makefile Perl module, 2011. Retrieved in October, 2011 from
http://search.cpan.org/~nodine/Slay-Makefile-0.12/. Cited on page 71.

D. Noonburg. xpdf: A C++ library for accessing PDF, 2001. Cited on page 28.

F.J. Och and H. Ney. Improved statistical alignment models. pages 440–447, 2000.
Cited on page 24.

T. Okita. Data cleaning for word alignment. In Proceedings of the ACL-IJCNLP
2009 Student Research Workshop, pages 72–80. Association for Computational
Linguistics, 2009. Cited on page 29.

TMX Oscar. Lisa translation memory exchange, 2000. Cited on page 41.

WC Peh and KH Ng. Basic structure and types of scientific papers. Singapore
medical journal, 49(7):522, 2008. Cited on page 43.

AM Rassinoux et al. Knowledge representation and management: transforming tex-
tual information into useful knowledge. Yearbook of medical informatics, page 64,
2010. Cited on page 6.

ES Raymond. Basics of the unix philosophy. 2003. Cited on page 3.

P. Resnik and N.A. Smith. The Web as a parallel corpus. Computational Linguistics,
29(3):349–380, 2003. ISSN 0891-2017. Cited on page 15.

R. Rivest. Rfc 1321: The md5 message-digest algorithm. Status: INFORMA-
TIONAL, 1992. Cited on page 49.

N. Robinson. A Comparison of Utilities for converting from Postscript or Portable
Document Format to Text. Technical report, CERN-OPEN-2001, 2001. Cited
on pages 20 and 28.

D. Santos and P. Rocha. Evaluating cetempúblico, a free resource for portuguese. In
Proceedings of the 39th Annual Meeting on Association for Computational Lin-
guistics, pages 450–457. Association for Computational Linguistics, 2001. Cited
on pages 1 and 10.

D. Santos and L. Sarmento. O projecto ac/dc: acesso a corpora/disponibilização de
corpora. Actas do XVIII Encontro da Associação Portuguesa de Lingúıstica (APL
2002)(Porto, 2-4 Outubro 2002), APL, pages 705–717, 2003. Cited on pages 1
and 10.

http://search.cpan.org/~nodine/Slay-Makefile-0.12/

References 89

M. Sargent III. Unicode nearly plain-text encoding of mathematics. Unicode tech-
nical note, 28, 2006. Cited on page 44.

S. Seshasai. Efficient Near Duplicate Document Detection for Specialized Corpora.
PhD thesis, Massachusetts Institute of Technology, 2009. Cited on page 46.

M. Simard. The BAF: a corpus of English-French bitext. In First International
Conference on Language Resources and Evaluation, volume 1, pages 489–494.
Citeseer, 1998. URL http://www.iro.umontreal.ca/~simardm/lrec98/. Cited
on pages 21 and 23.

M. Simard and P. Plamondon. Bilingual sentence alignment: Balancing robustness
and accuracy. Machine Translation, 13(1):59–80, 1998. ISSN 0922-6567. Cited
on page 16.

A. Simões and J.J. Almeida. Library::*: a toolkit for digital libraries. 2002. Cited
on page 41.

A. Simões. Parallel corpora word alignment and applications. Unpublished master’s
thesis, Escola de Engenharia-Universidade do Minho, 2004. Cited on page 45.

A. Simões and J.J. Almeida. Natools–a statistical word aligner workbench. Proce-
samiento del Lenguaje Natural, 31:217–224, 2003. Cited on page 24.

A. Simões and J.J. Almeida. NatServer: a client-server architecture for building
parallel corpora applications. Procesamiento del Lenguaje Natural, 37:91–97, 2006.
Cited on page 24.

A. Simões and J.J. Almeida. Parallel corpora based translation resources extraction.
Procesamiento del lenguaje natural, 39:265–272, 2007. Cited on page 24.

Simões, A. Lingua::Identify Perl module, 2011. Retrieved in September,
2011 from http://search.cpan.org/\begingroup\let\relax\relax\
endgroup[Pleaseinsert\PrerenderUnicode{вЇё}intopreamble]ambs/
Lingua-Identify-0.30/. Cited on page 50.

J. Sinclair. Corpus and text-basic principles. Developing linguistic corpora: A guide
to good practice, pages 1–16, 2005. Cited on pages 9 and 11.

L.B. Sollaci and M.G. Pereira. The introduction, methods, results, and discussion
(IMRAD) structure: a fifty-year survey. Journal of the Medical Library Associa-
tion, 92(3):364, 2004. Cited on page 43.

M.Q. Stearns, C. Price, K.A. Spackman, and A.Y. Wang. Snomed clinical terms:
overview of the development process and project status. In Proceedings of the
AMIA Symposium, page 662. American Medical Informatics Association, 2001.
Cited on page 1.

P.N. Tan, M. Steinbach, V. Kumar, et al. Introduction to data mining. Pearson
Addison Wesley Boston, 2006. Cited on page 46.

http://www.iro.umontreal.ca/~simardm/lrec98/
http://search.cpan.org/\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{∼}intopreamble]ambs/Lingua-Identify-0.30/
http://search.cpan.org/\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{∼}intopreamble]ambs/Lingua-Identify-0.30/
http://search.cpan.org/\begingroup \let \relax \relax \endgroup [Pleaseinsert\PrerenderUnicode{∼}intopreamble]ambs/Lingua-Identify-0.30/

90 References

D. Thain and C. Moretti. Abstractions for cloud computing with condor. Cloud
Computing and Software Services, page 153, 2011. Cited on page 71.

J. Tiedemann. Word alignment-step by step. pages 216–227, 1999. Cited on page 23.

J. Tiedemann. Word to word alignment strategies. page 212, 2004. Cited on
page 23.

J. Tiedemann. Building a multilingual parallel subtitle corpus. Proc. CLIN, 2007.
Cited on page 14.

J. Tiedemann. Lingua-Align: An Experimental Toolbox for Automatic Tree-to-
Tree Alignment. In Proceedings of the 7th International Conference on Language
Resources and Evaluation (LREC’2010), 2010. Cited on page 21.

J. Tiedemann, L. Nygaard, and T. Hf. The OPUS corpus–parallel and free. In In
Proceeding of the 4th International Conference on Language Resourcesand Eval-
uation (LREC). Citeseer, 2004. Cited on page 14.

Y. Tsvetkov and S. Wintner. Automatic Acquisition of Parallel Corpora from Web-
sites with Dynamic Content. In Proceedings of LREC-2010, 2010. Cited on
page 15.

UnmarkedSoftware. TextSoap: For people working with other people’s text, 2011.
Cited on page 29.

M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications.
The Knowledge Engineering Review, 11(02):93–136, 1996. Cited on page 40.

D. Varga, P. Halácsy, A. Kornai, V. Nagy, L. Németh, and V. Trón. Parallel corpora
for medium density languages. Recent Advances in Natural Language Processing
IV: Selected Papers from RANLP 2005, 2005. Cited on pages 14, 24 and 30.

J. Verne. La maison à vapeur. 1880. Cited on page 31.

V. Vincze, G. Szarvas, R. Farkas, G. Móra, and J. Csirik. The bioscope corpus:
biomedical texts annotated for uncertainty, negation and their scopes. BMC bioin-
formatics, 9(Suppl 11):S9, 2008. Cited on page 1.

J. Véronis. From the Rosetta stone to the information society. pages 1–24. 2000.
Cited on pages 1, 15 and 28.

J. Véronis and P. Langlais. Evaluation of parallel text alignment systems. volume 13,
pages 369–388. 2000. Cited on pages 17, 21 and 23.

X. Wang and H. Yu. How to break md5 and other hash functions. Advances in
Cryptology–EUROCRYPT 2005, pages 19–35, 2005. Cited on page 49.

M. Wynne, Languages AHDS Literature, and Linguistics (Organization). Developing
linguistic corpora: a guide to good practice. Oxbow Books on behalf of the Arts
and Humanities Data Service, 2005. Cited on page 11.

References 91

R.Z. Xiao. Well-known and influential corpora. 2008. Cited on page 10.

L. Yu, C. Moretti, A. Thrasher, S. Emrich, K. Judd, and D. Thain. Harnessing
parallelism in multicore clusters with the all-pairs, wavefront, and makeflow ab-
stractions. Cluster Computing, 13(3):243–256, 2010. Cited on page 71.

92 References

Appendix A

Software Documentation

This section includes documentation for the commands and modules developed No-
tice that these tools are being developed continuously: so, for up-to-date documen-
tation check the current versions available at CPAN – http://search.cpan.org.

A.1 Software Installation

The Perl modules presented in this document are available at CPAN – http://
cpan.org, and, as such, can be installed with any of the CPAN modules installation
utilities – cpan, cpanm, cpanp, etc.

Alternatively, they can be manually downloaded from CPAN, compiled and in-
stalled. More information in included in the INSTALL file contained in the package
of each tool.

A.1.1 Requirements

At the moment, these tools only work on Unix systems, and depend on:

• A modern version of Perl (above 5.8)

• Unix tools like grep, diff, sort, etc

• Several Perl modules, installable through CPAN.

A.2 bookcleaner

Prepare books for alignment and other operations

93

http:// search.cpan.org
http://cpan.org
http://cpan.org

94 A. Software Documentation

Synopsis

1 bookcleaner [options] file*

2 bookcleaner [options] file.dbooks

Description

Prepare a textual book (or a list of books in a file with the extension "dbooks", with
one book path per line) for future align operations. The following steps are done:

Step1 – pages, headers footers

Step1 – pages, headers footers (-p1=0 to skip this step)

Step2 – sections

Step2 – sections (-p2=0 to skip this step)

Step3 – paragraphs

Step3 – paragraphs (-p3=0 to skip this step)

Step4 – footnotes

Step4 – footnotes (Deactivated by default. -p4=1 to perform this step.)

Step5 – char level cleaning

Step5 – char level cleaning (-p5=0 to skip this step)

Commit

Commit

Options

1 -c Commit at the end (removes several debug marks (_pb, etc) before creating output file

2 -j=1c Just do step 1 and commit
3 -j=...p Just ... and send output to STDOUT

4 -simplify to do several char level simplifications:

A.3. pairbooks 95

5 translate some CP1252 chars to unicode
6 translate several dashes, quotes and double quotes to ascii
7 defaul=1
8 use -simplify=0 to avoid simplification

9 -v=34 Create temporary output files of the step 3 (file.ou3) and 4 (file-ou4)

10 -minhf=3 removes headers or footers if they appear more than 3
11 times (def:5)

12 -pipe send output to STDOUT

13 -latin1

14 -o=FILE send output to FILE (default is original file with extension bc_out)

15 -dry Dry run (DEBUG option, makes bookcleaner do nothing and just output
16 the names of the files received as input

17 -dir=DIR create all output files under DIR/

AUTHOR

Andre Santos
J.Joao Almeida, jj@di.uminho.pt

See also

perl(1).
Text::Perfide::BookCleaner(3pm)
Ontology sections.the

A.3 pairbooks

For a given book, finds its most probable pairs in a collection

Synopsis

1 pairbooks [options] book candidates*

2 pairbooks [options] book_list1 book_list2

96 A. Software Documentation

Description

Options

1 -nr=3 Returns the 3 most similar candidates

2 -bpairs Output results in .bpairs format (1 pair of books per
3 line, separated with a \t

4 -rv=LOW Reject value - book pairs with pairability value
5 lower that LOW will be automatically rejected.
6 Default is 0.2

7 -av=HIGH Accept value - book pairs with pairability value
8 equal or above HIGH will be automatically approved.
9 Default is 0.4

10 -dv=VAL Duplicates value - book pairs with pairability value
11 equal or above VAL will be considered duplicates
12 (the same book in the same language).
13 Default is 0.9. Use with -same.

14 -warn Comments pairs with pairability value under HIGH
15 (see -av).
16 Rejected pairs will have a leading ’# X’, while
17 dubious pairs will have a leading ’# ?’.

18 -same Instead of finding pairs, tries to find candidates
19 to be *the same book in the same language* (see -dv)

20 -debug Prints debug information

21 -recalc Calculate file.bag even if it exists already.

22 -normbf Do not remove .bag files at the end

23 -v

AUTHOR

Andre Santos, andrefs@cpan.org
J.Joao Almeida, jj@di.uminho.pt

A.4. syncbooks 97

See also

perl(1).

A.4 syncbooks

Synchronizes books based on section marks produced with Text::Perfide::BookCleaner

Synopsis

1 syncbooks [options] file.bpairs

2 syncbooks [options] file1 file2

Description

Synchronizes two books (file1 and file2) or several pairs of books, passed in a file
with extension "bpairs", each pair in one line with names separated by tab.

Options

1 -split splits file1 and file2 in numbered files (chunks) where each
2 file1.lXXX matches file2.rXXX

3 -mark inserts synchronization marks <sync id="..."> and generates
4 file1.sync and file2.sync. This is the default.

5 -rm=n do not output the first n chunks to the sync files
6 (use with -mark)

7 -noclean do not remove any sections marks left after synchronizing (default is to remove)

8 -html treate a C<teste.html> file with alignment matrix.

9 -num ignore section type, use only section numbering to align

10 -dump generate file with Dumper from secs and chunks (debug only)

AUTHOR

Andre Santos, andrefs@cpan.org

98 A. Software Documentation

See also

perl(1).
Text::Perfide::BookCleaner(3)

A.5 Lingua::TMX::Utils

The great new Lingua::TMX::Utils!

VERSION

Version 0.01

Synopsis

Provides functions for analyzing TMX files.

1 use Lingua::TMX::Utils;

2 my $tmx_file = ’file.tmx’;
3 tmx_inspect($tmx_file);

4 my $tmx1 = ’file1.tmx’;
5 my $tmx2 = ’file2.tmx’;
6 print_tmx_cmp(tmx_cmp($tmx1,$tmx2));

EXPORT

1 tmx_cmp

2 print_tmx_cmp

3 tmx_inspect

SUBROUTINES/METHODS

tmx_cmp

tmx_cmp($tmx1,$tmx2,...);
For each TMX file passed as argument, measures the number of segments in

each type of alignment (0:1/1:0, 1:1, 1:2/2:1, 2:2) and the total number of segments
in each variant.

A.5. Lingua::TMX::Utils 99

print_tmx_cmp

print_tmx_cmp(tmx_cmp($tmx1,$tmx2,...));
Pretty prints the results of tmx_cmp()

print_tmx_cmp

print_tmx_cmp($tmx); print_tmx_cmp($tmx,$n);
For a given $tmx file, prints $n*2 (default $n=5) sample lines of the $tmx at 30,

50, 80 and 90% of the file.

AUTHOR

Andre Santos, <andrefs at cpan.org>

BUGS

Please report any bugs or feature requests to bug-lingua-tmx-utils at rt.cpan.org,
or through the web interface at http://rt.cpan.org/NoAuth/ReportBug.html?Queue=Lingua-
TMX-Utils. I will be notified, and then you’ll automatically be notified of progress
on your bug as I make changes.

SUPPORT

You can find documentation for this module with the perldoc command.

1 perldoc Lingua::TMX::Utils

You can also look for information at:

• RT: CPAN’s request tracker (report bugs here)

http://rt.cpan.org/NoAuth/Bugs.html?Dist=Lingua-TMX-Utils

• AnnoCPAN: Annotated CPAN documentation

http://annocpan.org/dist/Lingua-TMX-Utils

• CPAN Ratings

http://cpanratings.perl.org/d/Lingua-TMX-Utils

• Search CPAN

http://search.cpan.org/dist/Lingua-TMX-Utils/

100 A. Software Documentation

ACKNOWLEDGEMENTS

LICENSE AND Copyright

Copyright 2011 Andre Santos.
This program is free software; you can redistribute it and/or modify it under the

terms of either: the GNU General Public License as published by the Free Software
Foundation; or the Artistic License.

See http://dev.perl.org/licenses/ for more information.

	Introduction
	Context and Motivation
	Project overview
	Design Goals
	Developed tools

	Case Studies
	Multi-language document alignment
	Biomedical text mining

	Document Summary

	Background
	Introduction to corpora
	What is a corpus?
	Types of corpora

	Building corpora
	Common tasks
	Parallel corpora

	Text alignment
	Brief history
	Alignment and evaluation projects
	The alignment process
	Current projects and tools

	Cleaning documents
	Introduction
	Motivation
	Common problems
	Design Goals

	Cleaning books
	Pages
	Sections
	Paragraphs
	Footnotes
	Words and characters
	Commit

	Diagnostic report
	Declarative objects
	Sections Ontology

	Evaluation
	Cleaning scientific articles
	Sections
	Pages
	Normalizing mathematical notation

	Summary

	Measuring similarity
	Introduction
	Measuring similarity
	Implementation
	Extraction of bag-of-words
	Classification according to similarity
	Identifying exact duplicates
	Identifying near duplicates and candidate pairs

	Processing a pool of files
	Command line utility
	Optimization
	Choosing a version

	Evaluation
	Summary

	Synchronizing books
	Introduction
	Implementation
	Alignment method
	Ghost sections and chunks

	Output objects
	Synchronization matrix
	Annotated files

	Summary

	Prototype of a corpora flow
	Introduction
	Workflow
	Makefiles

	Building a workflow with Makefiles

	Global evaluation
	Alignment evaluation tools
	Evaluation process
	Results
	Discussion

	Conclusions and future work
	Conclusions
	Future Work
	Document cleaners
	Document pair finding
	Document synchronization
	Corpora-flow

	Software Documentation
	Software Installation
	Requirements

	bookcleaner
	pairbooks
	syncbooks
	Lingua::TMX::Utils

