

i

Knowing is not enough; we must apply. Willing is
not enough; we must do.

Johann Wolfgang von Goethe

Acknowledgements

To my supervisor, Professor José Carlos Bacelar Almeida, for the support, exper-
tise and careful guidance provided throughout this work, a special thanks for
everything.

To all the people involved in the SMART project at Minho’s University, in par-
ticular: Manuel Barbosa, José Barros, Manuel Alcino, Paulo Silva, Luís Miranda
and Tiago Oliveira, for all the fruitful discussions and good working environment
provided, a sincere thank you. During the execution of this work, I was given a
research grant - Bolsa de Investigação Científica (BIC), funded by the ENIAC JU
program (GA 120224).

To my home town friends, for understanding the countless times I did not
show up for our weekly meetings, for the continuous support and friendship,
thank you for never letting me down.

To my friends in Braga, but specially to my friends at Confraria do Matador, a
huge thanks for this 5 years of great experiences.

To Sara and Sérgio, I am extremely grateful for all the help provided in the
elaboration of this document.

To all my family, but specially to my parents, José and Maria, and my brother,
Ricardo, words cannot describe how much you mean to me. A huge thank you
from the bottom of my heart, for being my guiding light and source of inspiration,
and for providing the conditions that allowed me to be where I am at this stage
of my life.

iii

iv

Abstract

When building safety-critical systems, guaranteeing properties like correctness
and security are one of the most important goals to achieve. Thus, from a sci-
entific point of view, one of the hardest problems in cryptography is to build
systems whose security properties can be formally demonstrated.

In the last few years we have assisted an exponential growth in the use of tools
to formalize security proofs of primitives and cryptographic protocols, clearly
showing the strong connection between cryptography and formal methods. This
necessity comes from the great complexity and sometimes careless presentation
of many security proofs, which often contain holes or rely on hidden assump-
tions that may reveal unknown weaknesses. In this context, interactive theorem
provers appear as the perfect tool to aid in the formal certification of programs
due to their capability of producing proofs without glitches and providing addi-
tional evidence that the proof process is correct.

Hence, it is the purpose of this thesis to document the development of a frame-
work for reasoning over information theoretic concepts, which are particularly
useful to derive results on the security properties of cryptographic systems. For
this it is first necessary to understand, and formalize, the underlying probability
theoretic notions. The framework is implemented on top of the fintype and finfun
modules of SSREFLECT, which is a small scale reflection extension for the COQ

proof assistant, in order to take advantage of the formalization of big operators
and finite sets that are available.

v

vi

Resumo

Na construção de sistemas críticos, a garantia de propriedades como a correção
e segurança assume-se como um dos principais objetivos. Deste modo, e de um
ponto de vista científico, um dos problemas criptográficos mais complicados é o
de construir sistemas cujas propriedades possam ser demonstradas formalmente.

Nos últimos anos temos assistido a um crescimento enorme no uso de fer-
ramentas para formalizar provas de segurança de primitivas e protocolos crip-
tográficos, o que revela a forte ligação entre a criptografia e os métodos formais.
Urge esta necessidade devido à grande complexidade, e apresentação por vezes
descuidada, de algumas provas de segurança que muitas vezes contêm erros ou
se baseiam em pressupostos escondidos que podem revelar falhas desconheci-
das. Desta forma, os provers interativos revelam-se como a ferramenta ideal para
certificar programas formalmente devido à sua capacidade de produzir provas
sem erros e de conferir uma maior confiança na correção dos processos de prova.

Neste contexto, o propósito deste documento é o de documentar e apresentar
o desenvolvimento de uma plataforma para raciocinar sobre conceitos da teoria
de informação, que são particularmente úteis para derivar resultados sobre as
propriedades de sistemas criptográficos. Para tal é necessário, em primeiro lugar,
entender e formalizar os conceitos de teoria de probabilidades subjacentes. A
plataforma é implementada sobre as bibliotecas fintype e finfun do SSREFLECT,
que é uma extensão à ferramenta de provas assistas COQ, por forma a aproveitar
a formalização dos somat’ orios e conjuntos finitos disponíveis.

vii

viii

Contents

1 Introduction 1

1.1 Objectives . 2

1.2 Contributions . 3

1.3 Dissertation Outline . 3

2 Interactive Theorem Proving 5

2.1 The COQ Proof Assistant . 6

2.1.1 The Language . 7

2.1.2 Proof Process . 9

2.1.3 Canonical Structures . 10

2.1.4 Standard Library . 11

2.2 A Small Scale Reflection Extension to COQ 11

2.3 Important SSREFLECT Libraries . 13

2.3.1 finset . 13

2.3.2 bigop . 16

3 Elements of Probability Theory 21

3.1 Basic Notions . 22

3.1.1 Conditional Probability . 25

3.1.2 Law of Total Probability . 25

3.1.3 Bayes‘ Theorem . 26

3.2 Random Variables and Distributions 27

ix

x CONTENTS

3.2.1 Joint Distribution . 29

3.2.2 Conditional Distribution . 30

4 Finite Probability Distributions in Coq 33

4.1 An Approach to Finite Probability Distributions in COQ 34

4.1.1 Specification of a Finite Probability Distribution 34

4.1.2 Main Lemmas . 36

4.1.3 Conditional Probability . 39

4.2 Improving the Previous Specification 40

4.2.1 Proper Distributions . 41

4.3 Application: Semantics of Security Games 44

5 Elements of Information Theory 47

5.1 Entropy . 49

5.1.1 Joint Entropy . 51

5.1.2 Conditional Entropy . 51

5.2 Mutual Information . 52

6 Entropy in Coq 55

6.1 Random Variables . 56

6.2 Discrete Random Variable Based Distributions 57

6.2.1 Joint Distribution . 59

6.2.2 Conditional Distribution . 60

6.3 Logarithm . 62

6.4 Entropy . 64

6.4.1 Joint Entropy . 65

6.4.2 Conditional Entropy . 65

6.5 Mutual Information . 69

6.6 A Simple Case Study . 70

6.6.1 The One-Time Pad . 70

CONTENTS xi

6.6.2 Proving a Security Property of the OTP’s Key 71

7 Conclusions 75

7.1 Related Work . 76

7.2 Future Work . 77

References 78

xii CONTENTS

List of Figures

3.1 Venn diagram for set operations: union, intersection and comple-
ment. 23

5.1 Relationship of information theory to other fields. 48

5.2 Graphical representation of the relation between entropy and mu-
tual information. 53

6.1 Graph of the logarithm to the base 2. 63

6.2 Generalization of Shannon’s model of a symmetric cipher. 71

xiii

xiv LIST OF FIGURES

Chapter 1

Introduction

Number theory and algebra have been playing an increasingly significant role
in computing and communications, as evidenced by the striking applications of
these subjects in fields such as cryptography and coding theory [Sho05]. How-
ever, the commonly held opinion is that the formalization of mathematics is a
long and difficult task for two reasons: first, standard mathematical proofs (usu-
ally) do not offer a high enough level of detail and second, formalized theory
is often insufficient as a knowledge repository which implies that many lemmas
have to be reproved in order to achieve relevant results.

In the last few years we have assisted an exponential growth in the use of tools
to formalize security proofs of primitives and cryptographic protocols, clearly
showing the strong connection between cryptography and formal methods. This
necessity comes from the great complexity and sometimes careless presentation
of many important scheme’s proofs, which may lead to mistakes undetected un-
til now. Moreover, and although provable cryptography provides high assurable
cryptographic systems, security proofs often contain glitches or rely on hidden
assumptions that may reveal unknown weaknesses. In this context, interactive
theorem provers appear as the perfect tool to aid in the formal certification of pro-
grams due to their capability to produce proofs without the holes usually found
in their paper versions and to provide additional evidence that the proof process
is correct. This idea is reflected by the increasing use, despite some may think,
of interactive theorem provers for industrial verification projects: for instance,

1

2 CHAPTER 1. INTRODUCTION

NASA uses PVS1 to verify software for airline control and Intel uses HOL light2

to verify the design of new chips [Geu09].

Cryptographic protocols provide mechanisms to ensure security that are used
in several application domains, including distributed systems and web services
(and more recently also in the protection of intellectual property). However, de-
signing secure cryptographic protocols is extremely difficult to achieve [BT05]. In
this context there is an increasing trend to study such systems, where the specifi-
cation of security requirements is provided in order to establish that the proposed
system meets its requirements.

Thus, from a scientific point of view, one of the most challenging problems
in cryptography is to build systems whose security properties can be formally
demonstrated. Such properties only make sense in a context where a definition of
security is given: furthermore, knowledge about the adversary’s available infor-
mation and computation power should also be provided. Both adversary and be-
nign entity are probabilistic processes that communicate with each other, and so,
it is possible to model this environment as a probability space. Equally important,
we may use information (and probability) theoretic concepts (e.g., entropy) to de-
rive results on the security properties of cryptographic systems, which clearly
reflects the fundamental role of these two areas in cryptography [Mau93].

1.1 Objectives

The central objective of this work is to build a framework that provides the user
the possibility to reason over information theory concepts, particularly in the
field of cryptography. Thus, it is first necessary to understand, and formalize,
the underlying probability theory notions and also how to use them in order to
build such framework. In this context we aim to develop, in COQ, a library that
formalizes fundamental laws of probability theory and basic concepts of infor-
mation theory.

1http://pvs.csl.sri.com/
2http://www.cl.cam.ac.uk/~jrh13/hol-light/

http://pvs.csl.sri.com/
http://www.cl.cam.ac.uk/~jrh13/hol-light/

1.2. CONTRIBUTIONS 3

1.2 Contributions

This thesis proposes a formal framework to reason about probability and infor-
mation theory concepts, possibly in a cryptographic environment, which is im-
plemented using the COQ proof assistant, and particularly, the SSREFLECT plu-
gin. The key to our implementation is to take advantage of the formalization of
big operators and finite sets provided by the SSREFLECT libraries finset and bigop,
since it allows to precisely capture the mathematical aspects of the concepts in-
volved.

In detail, we make the following contributions:

• Development of a probability oriented framework

A COQ framework is implemented that allows the user to reason about ba-
sic notions of probability and set theory.

• Extension of the framework to include the formalization of relevant in-

formation theoretic concepts

On top of the probability oriented frame work, a formalization of infor-
mation theory concepts is added that should serve as a basis to reason in
cryptographic contexts.

1.3 Dissertation Outline

The remainder of the document is organized as follows: Chapter 2 briefly intro-
duces the COQ proof assistant, its small scale reflection extension, SSREFLECT

and the two most relevant libraries for this work; Chapter 3 explains basic con-
cepts of probability theory; Chapter 4 discusses our approach to the formalization
of discrete probabilities in COQ; Chapter 5 introduces important notions of infor-
mation theory with a focus on the concept of entropy; Chapter 6 presents and
discusses our formalization of such information theoretic concepts. The Chapter
closes with a simple case study.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Interactive Theorem Proving

“For our intention is to provide a medium for doing mathematics different
from that provided by paper and blackboard. Eventually such a medium may
support a variety of input devices and may provide communication with other
users and systems; the essential point, however, is that this new medium is
active, whereas paper, for example, is not."

Constable et al. [CAA+86]

An interactive theorem prover, or proof assistant, is a software tool that aids
in the development of formal proofs by interacting with the user (user-machine
collaboration). Its purpose is to show that some statement, the conjecture, is a
logical consequence of a set of statements, the axioms and hypotheses, given an
appropriate formalization of the problem.

These statements are written using a logic (e.g., first-order logic, high-order
logic), which enables the user to formulate the problem in such a way that the
machine may, unambiguously, understand it. The idea is to allow him to set up
a mathematical context, define properties and logically reason about them. The
user then guides the search for proofs in a proof editing mode where he should
be relieved of trivial steps in order to concentrate on the decision points of the
proofs. Therefore the system must provide a large, and trusted, set of mathemat-
ical theory which usually represents a measure of the success of the system and
serves as a means of achieving complex results. In practice, for serious formaliza-
tion of mathematics a good library is usually more important than a user friendly

5

6 CHAPTER 2. INTERACTIVE THEOREM PROVING

system.

The input language of a proof assistant can be declarative, where the user tells
the system where to go, or procedural, where the user tells the system what to
do [Geu09]. Usually the proofs of the latter are not readable by the common
reader since they only have meaning for the proof assistant whereas the proofs of
the former tend to be written in a more clear and natural way. This is exemplified
by the fact that proof scripts1 need not correspond to a proof in logic, as generally
happens with procedural proofs but not with declarative proofs.

In mathematics, and in particular when dealing with proof assistants, a proof
is absolute. It is the mathematical validation of a statement, whose correction can
be determined by anyone, and is supposed to both convince the reader that the
statement is correct and to explain why it is valid. Each proof can be divided in
small steps that may be individually verified. This is important when handling
the proof of a theorem that turns out to be false as it allows to pinpoint the exact
step(s) that cannot be verified.

Nowadays proof assistants are mainly used by specialists who seek to formal-
ize theories in it and prove theorems. In fact the community of people formalizing
mathematics is relatively small and is spread across the existent proof assistants.

This chapter starts by giving a brief overview about the interactive theorem
prover COQ, namely: its specification language, proof process, canonical struc-
tures mechanism and standard library. The chapter closes by introducing a small
scale reflection extension to the COQ proof system called SSREFLECT and its most
important libraries for the purposes of this work, finset and bigop.

2.1 The COQ Proof Assistant

The COQ system [Teaa] is an interactive theorem prover whose underlying formal
language is based on an axiom-free type theory called the Calculus of Inductive
Constructions2. Its core logic is intuitionistic but it can be extended to a classical
logic by importing the correct module. Laws like the excluded middle, A ∨ ¬A,
or the double negation elimination, ¬¬A ⇒ A, will then become available.

1proofs done using a proof assistant
2calculus of constructions with inductive definitions

2.1. THE COQ PROOF ASSISTANT 7

As a programming language it is capable to express most of the programs al-
lowed in standard functional languages (one of the exceptions being the inability
to express non-terminating programs which enforces restrictions on the recursion
patterns allowed in the definitions).

As a proof assistant, it is designed to allow the definition of mathematical and
programming objects, writing formal proofs, programs and specifications that
prove their correctness. Thus, it is a well suited tool for developing safe programs
but also for developing proofs in a very expressive logic (i.e., high order logic),
which are built in an interactive manner with the aid of automatic search tools
when possible. It may also be used as logical framework in order to implement
reasoning systems for modal logics, temporal logics, resource-oriented logics, or
reasoning systems on imperative programs [BC04].

2.1.1 The Language

COQ objects represent types, propositions and proofs which are defined in a spec-
ification language, called Gallina, that allows the user to define formulas, verify
that they are well-formed and prove them. However, it comprises a fairly ex-
tensive syntax and so we only touch a few important aspects (see [The06] for a
complete specification of the Gallina language).

Every object is associated to (at least) a type and each type is an object of the
system. This means that every well-formed type has a type, which in turn has a
type, and so on3. The type of a type is always a constant and is called a sort. For
instance

true : bool

0 : nat

S : nat -> nat

where nat is the type for natural numbers and bool contains two constants asso-
ciated with truth values (true and false). Hence all objects are sorted into two
categories:

• Prop is the sort for logical propositions (which, if well-formed, have type
3this happens because all types are seen as terms of the language and thus should belong to

another type

8 CHAPTER 2. INTERACTIVE THEOREM PROVING

Prop). The logical propositions themselves are the types of their proofs;

• Set intends to be the type for specifications (i.e., programs and the usual
datatypes seen in programming languages such as booleans, naturals, etc).

Since sorts should be given a type, a Type(0) is added as the type of sorts
Set and Prop (among others). This sort, in turn, has type Type(1), and so on.
This gives rise to a comulative hierarchy of type-sorts Type(i), for all i ∈ N.
Such a hierarchy avoids the logical inconsistencies that result from considering an
axiom such as Type:Type [The06]. Note however that, from the user perspective,
the indices of the Type(i) hierarchy are hidden by the system, and treated as
constraints that are inferred/imposed internally.

Useful COQ types are:

nat type of natural numbers (e.g., 6:nat)
bool type of boolean values (e.g., true:bool)
Prop type of propositions

Type (or Set) type of types (e.g., nat:Set)
T1 -> T2 type of functions from T1 to T2

T1 * T2 type of pairs of type T1 and T2

COQ syntax for logical propositions is summarized by (first row presents the
mathematical notation and the second row presents the corresponding COQ no-
tation):

⊥ � x = y x �= y ¬P P ∨ Q P ∧ Q P ⇒ Q P ⇔ Q
False True x = y x <> y ~ P P \/ Q P /\ Q P -> Q P <-> Q

Note that the arrow (->) associates to the right and so propositions such as
T1 -> T2 -> T3 are interpreted as T1 -> (T2 -> T3).

Finally we show the syntax for universal and existential quantifiers:

∀x, P ∃x, P
forall x, P exists x, P

forall x:T, P exists x:T, P

2.1. THE COQ PROOF ASSISTANT 9

The type annotation :T may be omitted if T can be inferred by the system.
Universal quantification serves different purposes in the world of COQ as it can
be used for first-order quantification like in forall x:T, x = x or for higher-
order quantification like in forall (A:Type)(x:A), x = x or forall A:Prop, A

-> A. Actually, both the functional arrow and the logical implication are special
cases of universal quantifications with no dependencies (e.g., T1 -> T2 states the
same as forall _:T1, T2).

2.1.2 Proof Process

Like in almost every programming language’s compiler, the core of the COQ sys-
tem is a type checker, i.e., an algorithm which checks whether a formula is well-
formed or not. Actually it is the way COQ checks proofs’ correctness: proving
a lemma may be seen as the same as proving that a specific type is inhabited.
This is explained by the fact that COQ sees logical propositions as the type of
their proofs, meaning that if we exhibit an inhabitant of T:Prop, we have given a
proof of T that witnesses its validity [Ber06]. This is the essence of the well known
Curry-Howard isomorphism.

Proof development is carried in the proof editing mode through a set of com-
mands called tactics4 that allow a collaborative (user-machine) proof process. The
proof editing mode is activated when the user enunciates the theorem, using the
Theorem or Lemma commands. These commands generate a top-level goal that the
user will then try to demonstrate. In each step of the process there is a list of goals
to prove that are generated by the tactics applied in the step before. When there
are no goals remaining (i.e., the proof is completed) the command Qed will build
a proof term from the tactics that will be saved as the definition of the theorem
for further reuse.

COQ’s proof development process is intended to be user guided but it still
provides some kind of automatisation through a set of advanced tactics to solve
complex goals. For instance:

• auto: Prolog style inference, solves trivial goals. Uses the hints from a

4a tactic is a program which transforms the proposition to be proved (goal) in a set of (possibly
empty) new subgoals that are sufficient to establish the validity of the previous goal

10 CHAPTER 2. INTERACTIVE THEOREM PROVING

database, which can be extended by the user;

• tauto: complete for (intuitionistic) propositional logic;

• ring: solves equations in a ring or semi-ring structure by normalizing both
hand sides of the equation and comparing the results;

• fourier: solves linear inequalities on real numbers;

• omega: solves linear arithmetic goals.

2.1.3 Canonical Structures

COQ’s canonical structures mechanism are introduced due to their importance
throughout the rest of this document.

A Canonical Structure is an instance of a record/structure5 type that can be
used to solve equations involving implicit arguments [The06]. Its use is subtle in
the SSREFLECT libraries, but provides a mechanism of proof inference (by type
inference), which is used as a Prolog-like proof inference engine as often as pos-
sible [GMT08].

For the purposes of this work, canonical structures are mostly used as a sub-
typing mechanism. In order to demonstrate this idea, we give an example (taken
from [BGOBP08]). It is possible to describe the equality of comparable types as:

Structure eqType : Type := EqType {

sort :> Type;

eqd : sort -> sort -> bool;

_ : forall x y, (x == y) <-> (x = y)

} where "x == y" := (eqd x y).

This structure allows to define a unified notation for eqd. Note that every
eqType contains an axiom stating that eqd is equivalent to the Leibnitz equality,
and hence it is valid to rewrite x into y given x == y. Now, we can extend the
notion of comparable types to the naturals. If we can prove

Lemma eqnP : forall m n, eqn m n <-> m = n.

5a record, or labelled product/tuple, is a macro allowing the definition of records as is done in
many programming languages

2.2. A SMALL SCALE REFLECTION EXTENSION TO COQ 11

for a given specific function eqnP : nat -> nat -> bool then we can make nat,
a Type, behave as an eqType by declaring

Canonical Structure nat_eqType := EqType eqnP.

This creates a new eqType with sort ≡ nat and eqd ≡ eqn (both are inferred
from the type of eqnP), which allows nat to behave as sort nat_eqType during
type inference. Therefore COQ can now make interpretations like n == 6, as eqn
n 6, or 2 == 2, as eqn 2 2.

2.1.4 Standard Library

Usually, proof development is carried with the help of a trusted knowledge repos-
itory. COQ automatically loads a library that constitutes the basic state of the sys-
tem. Additionally, it also includes a standard library that provides a large base of
definitions and facts. It comprises definitions of standard (intuitionistic) logical
connectives and properties, data types (e.g., bool or nat), operations (e.g., +, * or
-) and much more, which are directly accessible through the Require command.
Useful libraries are:

• Logic: classical logic and dependent equality;

• Reals: axiomatization of real numbers;

• Lists: monomorphic and polymorphic lists.

2.2 A Small Scale Reflection Extension to COQ

SSREFLECT6 [Teab] is an extension to the COQ proof system which emerged as
part of the formalization of the Four Colour Theorem by Georges Gonthier in
2004 [Gon05]. Therefore it uses, and extends, COQ’s logical specification lan-
guage, Gallina. It is a script language that strongly focuses on the readability and
maintainability of proof scripts by giving special importance to good bookkeep-
ing. This is essential in the context of an interactive proof development because

6which stands for “small-scale reflection”

12 CHAPTER 2. INTERACTIVE THEOREM PROVING

it facilitates navigating the proof, thus allowing to immediately jump to its erro-
neous steps. This aspect gains even more importance if we think that a great part
of proof scripts consist of steps that do not prove anything new, but instead are
concerned with tasks like assigning names to assumptions or clearing irrelevant
constants from the context.

SSREFLECT introduces a set of changes that are designed to support the use
of reflection in formal proofs by reliably and efficiently automating the trivial
operations that tend to delay them. In fact it only introduces three new tactics,
renames three others and extends the functionality of more than a dozen of the
basic COQ tactics. Several important features include:

• support for better script layout, bookkeeping and subterm selection in all
tactics;

• an improved set tactic with more powerful matching. In SSREFLECT some
tactics can be combined with tactic modifiers in order to deal with several
similar situations:

– a prime example is the rewrite tactic. The extended version allows
to perform multiple rewriting operations, simplifications, folding/un-
folding of definitions, closing of goals and etc.;

• a “view” mechanism that allows to do bookkeeping and apply lemmas at
the same time. It relies on the combination of the / view switch with book-
keeping tactics (and tactics modifiers);

• better support for proofs by reflection.

Note that only the last feature is specific to small-scale reflection. This means
that most of the others are of general purpose, and thus are intended for normal
users. Such features aim to improve the functionality of COQ in areas like proof
management, script layout and rewriting.

SSREFLECT tries to divide the workload of the proof between the prover en-
gine and the user, by providing computation power and functions that the user
may use in his proof scripts. These scripts comprise three kinds of steps [GMT08]:

• deduction steps: to specify part of the construction of the proof;

2.3. IMPORTANT SSREFLECT LIBRARIES 13

• bookkeeping steps: to manage the proof context by introducing, renaming,
discharging or splitting constants and assumptions;

• rewriting steps: to locally change parts of the goal or assumptions.

SSREFLECT is fully backward compatible, i.e., any COQ proof that does not
use any new feature should give no problems when compiling with the extended
system [GMT08].

2.3 Important SSREFLECT Libraries

The SSREFLECT framework includes a vast repository of algebraic and number
theoretic definitions and results (see http://ssr.msr-inria.inria.fr/~hudson/
current/), as a result of the contribution of a large number of people. This library
is divided into files according to a specific area of reasoning. For example, ssralg
provides definitions for the type, packer and canonical properties of algebraic
structures such as fields or rings [GGMR09] whereas finfun implements a type
for functions with a finite domain.

Using this framework will almost certainly take the user to work with more
than one of these theory files due to the hierarchical way they are organized.
Depending on what one intends to do, some will have higher importance and
play a more active role whereas others will merely be needed as the backbone
of the former. While developing this framework, two libraries proved to be of
extreme importance as their results had a direct impact in most definitions and
proofs processes. Next we give a slight overview about finset7 and bigop8, two
SSREFLECT libraries.

2.3.1 finset

finset is an SSREFLECT library that defines a type for sets over a finite type, which
is based on the type of functions over a finite type defined in finfun9. A finite type,

7http://ssr.msr-inria.inria.fr/~hudson/current/finset.html
8http://ssr.msr-inria.inria.fr/~hudson/current/bigop.html
9http://ssr.msr-inria.inria.fr/~hudson/current/finfun.html

http://ssr.msr-inria.inria.fr/~hudson/current/
http://ssr.msr-inria.inria.fr/~hudson/current/
http://ssr.msr-inria.inria.fr/~hudson/current/finset.html
http://ssr.msr-inria.inria.fr/~hudson/current/bigop.html
http://ssr.msr-inria.inria.fr/~hudson/current/finfun.html

14 CHAPTER 2. INTERACTIVE THEOREM PROVING

or finType, is defined as a type with decidable equality (eqType) together with a
sequence enumerating its elements (together with a property stating that the se-
quence is duplicate-free and includes every member of the given type) [GMT08].
The family of functions defined in finfun is implemented with a finType domain
and an arbitrary codomain as a tuple10 of values, and has a signature of the type
{ffun aT -> rT}, where aT must have a finType structure and is a #|aT|.-tuple

rT (i.e., a tuple with #|aT|
11 elements of type rT).

Boolean functions are a special case of these functions, as they allow to define
a mask on the finType domain, and therefore inherit important properties of the
latter, such as (Leibniz) intentional and extensional equalities. They are denoted
by {set T} and defined as:

Inductive set_type (T : finType) := FinSet of {ffun pred T}.

where T must have a finType structure and pred is a boolean predicate (T ->

bool).

The library is extensive and contains many important results of set theory,
such as De Morgan’s laws.

Notations

For types A, B: {set T} we highlight the following notations:

x \in A x belongs to A

set0 the empty set
setT or [set: T] the full set

A :|: B the union of A and B

A :&: B the intersection of A and B

A :\: B the difference A minus B
~: A the complement of A

\bigcup_<range> A iterated union over A, for all i in <range>. i is bound in A

\bigcap_<range> A iterated intersection over A, for all i in <range>. i is bound in A

10SSREFLECT treats tuples as sequences with a fixed (known) length
11# denotes the cardinality of aT

2.3. IMPORTANT SSREFLECT LIBRARIES 15

Most of these notations regard basic set operations but there are also results
that allow the user to work with partitions or powersets, for example. Moreover,
it is also possible to form sets of sets: since {set T} has itself a finType struc-
ture one can build elements of type {set {set T}}. This leads to two additional
important notations: for P: {set {set T}}:

cover P the union of the set of sets P
trivIset P the elements of P are pairwise disjoint

Main Lemmas

We are mainly interested in lemmas regarding set operations (i.e., union, intersec-
tion, complement and De Morgan’s laws), as they play a crucial role in probability
theory (see Chapter 3).

Lemma setIC A B : A :&: B = B :&: A.

Lemma setIA A B C : A :&: (B :&: C) = A :&: B :&: C.

Lemma setIUr A B C : A :&: (B :|: C) = (A :&: B) :|: (A :&: C).

lemmas setIC, setIA and setIUr represent the commutativity, associativity and
distributivity of intersection, respectively. On the other hand:

Lemma setUC A B : A :|: B = B :|: A.

Lemma setUA A B C : A :|: (B :|: C) = A :|: B :|: C.

Lemma setUIr A B C : A :|: (B :&: C) = (A :|: B) :&: (A :|: C).

setUC, setUA and setUIr represent the same properties, but now regarding the
union of sets.

Since ~: denotes the complement, we can state, in COQ, the De Morgan’s laws
as follows (see section 3.1) as follows:

Lemma setCU A B : ~: (A :|: B) = ~: A :&: ~: B.

Lemma setCI A B : ~: (A :&: B) = ~: A :|: ~: B.

Finally, the next lemmas state properties regarding the interaction between an
arbitrary set and the empty/full set.

Lemma setU0 A : A :|: set0 = A.

Lemma setI0 A : A :&: set0 = set0.

16 CHAPTER 2. INTERACTIVE THEOREM PROVING

Lemma setUT A : A :|: setT = setT.

Lemma setIT A : A :&: setT = A.

Note that the names of all lemmas follow a specific pattern: they start by the
word “set” and end with a specific suffix, which is associated to the operation
in scope: I for intersection, U for union, D for difference, C for complement or
commutativity, A for associativity, 0 for empty set and T for full set.

2.3.2 bigop

bigop is an SSREFLECT library that contains a generic theory of big operators (i.e.,
sums, products or the maximum of a sequence of terms), including unique lem-
mas that perform complex operations such as reindexing and dependent com-
mutation, for all operators, with minimal user input and under minimal assump-
tions [BGOBP08]. It relies on COQ’s canonical structures to express relevant prop-
erties of the two main components of big operators, indexes and operations, thus
enabling the system to infer such properties automatically.

To compute a big operator it is necessary to enumerate the indices in its range.
If the range is an explicit sequence of type T, where T has an eqType structure (i.e.,
it is a type with decidable Leibniz equality) this computation is trivial. However,
it is also possible to specify the range as a predicate, in which case it must be
possible to enumerate the entire index type (i.e., work with a finType).

Notations

This library provides a generic notation that is independent from the operator
being used. It receives the operator and the value for empty range as parameters,
and has the following general form:

<bigop>_<range> <general_term>

• <bigop> is one of \big[op/idx] (where op is the operator and idx the value
for empty range): \sum, \prod or \max for sums, products or maximums,
respectively;

• <general_term> can take the form of any expression;

2.3. IMPORTANT SSREFLECT LIBRARIES 17

• <range> binds an index variable i in <general_term> and states the set over
which it iterates; <range> is one of:

(i <- s) i ranges over the sequence s

(m <= i < n) i ranges over the natural interval [m.. n-1]

(i < n) i ranges over the (finite) type ’I_n (i.e., ordinal n)
(i : T) i ranges over the finite type T

i or (i) i ranges over its inferred finite type
(i \in A) i ranges over the elements that satisfy the predicate A,

which must have a finite type domain
(i <- s | C) limits the range to those i for which C holds

There are three ways to give the range: via a sequence of values, via an integer
interval or via the entire type of the bound variable, which must then be a finType
. In all three cases, the variable is bound to <general_term>. Additionally, it is
also possible to filter the range with a predicate - in this case the big operator
will only take the values from the range that satisfy the predicate. This definition
should not be used directly but through the notations provided for each specific
operator, which will allow a more natural use of big operators.

The computation of any big operator is implemented by the following code:

Definition reducebig R I op idx r (P : pred I) (F : I -> R) : R :=

foldr (fun i x => if P i then op (F i) x else x) idx r.

Notation "\big [op / nil]_ (i <- r | P) F" :=

(reducebig op nil r (fun i => P%B) (fun i => F)) : big_scope.

Therefore all big operators reduce to a foldr, which is a recursive high-order
function that iterates a specific function over a sequence of values r, combining
them in order to compute a single final value. For each element in r, foldr tests if
it satisfies the predicate P: if it does so, the value of F on that element is computed
and combined with the rest. The value idx is used at the end of the computation.

Main Lemmas

bigop offers around 80 lemmas to deal with big operators. They are organized in
two categories:

18 CHAPTER 2. INTERACTIVE THEOREM PROVING

• lemmas which are independent of the operator being iterated:

– extensionality with respect to the range, to the filtering predicate or to
the expression being iterated;

– reindexing, widening or narrowing of the range of indices;

• lemmas which are dependent on the properties of the operator. In particu-
lar, operators that respect:

– a plain monoid structure, with only associativity and an identity ele-
ment (e.g., splitting);

– an abelian monoid structure, whose operation is commutativity (e.g.,
permuting);

– a semi-ring structure (e.g., exchanging big operators).

Despite the wide variety of results available, some lemmas proved to be more
important than others. For example, we may use:

Lemma eq_bigl r (P1 P2 : pred I) F :

P1 =1 P2 ->

\big[op/idx]_(i <- r | P1 i) F i = \big[op/idx]_(i <- r | P2 i) F i.

to rewrite a big operation’s range, or

Lemma eq_bigr r (P : pred I) F1 F2 :

(forall i, P i -> F1 i = F2 i) ->

\big[op/idx]_(i <- r | P i) F1 i = \big[op/idx]_(i <- r | P i) F2 i.

to rewrite a big operation’s formula. Similarly, we may use the general rule,

Lemma eq_big : forall (r : seq I) (P1 P2 : pred I) F1 F2 :

P1 =1 P2 -> (forall i, P1 i -> F1 i = F2 i) ->

\big[op/idx]_(i <- r | P1 i) F1 i

= \big[op/idx]_(i <- r | P2 i) F2 i,

which allows to rewrite a big operation in the predicate or the expression parts.
It states that two big operations can be proved equal given two premises: P1 =1

P2, which expresses that it suffices that both predicates should be extensionally

2.3. IMPORTANT SSREFLECT LIBRARIES 19

equal, and (forall i, P1 i -> F1 i = F2 i), which states that both expres-
sions should be extensionally equal on the subset of the type determined by the
predicate P1 [BGOBP08].

Another interesting lemma is the one that allows to permute nested big oper-
ators:

Lemma exchange_big (I J : finType) (P : pred I) (Q : pred J) F :

\big[*%M/1]_(i | P i) \big[*%M/1]_(j | Q j) F i j =

\big[*%M/1]_(j | Q j) \big[*%M/1]_(i | P i) F i j.

This is achieved by first showing that two nested big operations can be seen
as one big operation that iterates over pairs of indices. It is then applied a re-
indexing operation on the pairs in order to obtain this commutation lemma. The
notation *%M indicates that the operator associated to the big operation has an
abelian monoid structure.

To finish, we emphasize yet another important property, distributivity among
operators:

Lemma big_distrl I r a (P : pred I) F :

\big[+%M/0]_(i <- r | P i) F i * a

= \big[+%M/0]_(i <- r | P i) (F i * a).

where both operators have a semi-ring structure. The +%M notation denotes addi-
tion in such structure and *%M its multiplication.

20 CHAPTER 2. INTERACTIVE THEOREM PROVING

Chapter 3

Elements of Probability Theory

The word probability derives from the Latin probare which means to prove or to
test. Although the scientific study of probabilities is a relatively modern devel-
opment, the notion of this concept has its most remote origins traced back to the
Middle Ages1 in attempts to analyse games of chance.

Informally, probable is one of many words used to express knowledge about a
known or uncertain event. Through some manipulation rules, this concept has
been given a precise mathematical meaning in probability theory, which is the
branch of mathematics concerned with the analysis of random events. It is widely
used in areas such as gambling, statistics, finance and others.

In probability theory one studies models of random phenomena. These mod-
els are intended to describe random events, that is, experiments where future
outcomes cannot be predicted, even if every aspects involved are fully controlled,
and where there is some randomness and uncertainty associated. A trivial exam-
ple is the tossing of a coin: it is impossible to predict the outcome of future tosses
even if we have full knowledge of the characteristics of the coin.

To understand the algorithmic aspects of number theory and algebra, and to
know how they are connected to areas like cryptography, one needs an overview
of the basic notions of probability theory. This chapter introduces fundamental
concepts from probability theory (with the same notation and similar presenta-
tion as in [Sho05]), starting with some basic notions of probability distributions
on finite sample spaces and then closing with a brief overview about random

1period of European history from the 5th century to the 15th century

21

22 CHAPTER 3. ELEMENTS OF PROBABILITY THEORY

variables and distributions based on them.

3.1 Basic Notions

Let Ω be a finite, non-empty set. A probability distribution on Ω is a function
P : Ω → [0, 1] that satisfies the following property:

∑
ω∈Ω

P(ω) = 1. (3.1)

The elements ω are the possible outcomes of the set Ω, known as the sample
space of P, and P(ω) is the probability of occurrence of that outcome. Also, one
can define an event as a subset A of Ω with probability defined as follows:

P[A] := ∑
ω∈A

P(ω). (3.2)

Clearly, for any probability distribution P, and every event A,

P[A] ≥ 0 (3.3)

stating that every event has a non-negative probability of occurring.

Additionally, if {A1, A2, ...} ∈ Ω are pairwise disjoint events (i.e., Ai ∩Aj = ∅
for every i �= j) then,

P[∪iAi] = ∑
i

P[Ai], (3.4)

which just states that, for any sequence of mutually exclusive events, the proba-
bility of at least one of these events occurring is just the sum of their respective
probabilities [Ros09b]. Formulas (3.1), (3.3) and (3.4) are called the Axioms of
Probability2.

In addition to working with probability distributions over finite sample spaces,
one can also work with distributions over infinite sample spaces. However, for

2or Kolmogorov’s axioms

3.1. BASIC NOTIONS 23

the purpose of this work we will only consider the former case.

It is possible to logically reason over sets using rules such as De Morgan’s
laws, which relate to the three basic set operations: union, intersection and com-
plement. For events A and B these operations are graphically represented in
Figure 3.1 and can be defined as:

(i) A ∪ B: denotes the logical union between A and B, that is, it represents the
event where either the event A or the event B occurs (or both);

(ii) A ∩ B: denotes the intersection between A and B (logically represents the
event where both occur);

(iii) A := Ω \ A: denotes the complement of A, that is, it represents the event
where A does not occur.

Figure 3.1: Venn diagram for set operations: union, intersection and complement.

From (i), (ii), (iii) and using the usual Boolean logic follows a formal definition
of De Morgan’s laws:

A ∪ B = A ∩ B (3.5)

24 CHAPTER 3. ELEMENTS OF PROBABILITY THEORY

A ∩ B = A ∪ B (3.6)

Moreover, Boolean laws such as commutativity, associativity and distributiv-
ity also play an important role. For all events A, B and C:

• Commutativity: A ∪ B = B ∪A and A ∩ B = B ∩A;

• Associativity: A ∪ B ∪ C = A ∪ (B ∪ C) and A ∩ B ∩ C = A ∩ (B ∩ C);

• Distributivity: A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩
B) ∪ (A ∩ C).

One can also derive some basic facts about probabilities. The probability of
an event A is 0 if it is impossible to happen or 1 if it is certain. Therefore, the
probability of an event ranges between 0 and 1. Additionally,

P[A] = 1 − P[A]. (3.7)

Considering the union of events A and B, we have:

P[A ∪ B] = P[A] + P[B]− P[A ∩ B], (3.8a)

P[A ∪ B] = P[A] + P[B], i f A ∩ B = ∅. (3.8b)

Equation (3.8b) addresses the case where A and B are mutually exclusive, that
is, they cannot occur at the same time (no common outcomes).

Regarding intersection of events there are also theorems worth mentioning:

P[A ∩ B] = P[A|B] · P[B], (3.9a)

P[A ∩ B] = P[A] · P[B], i f A and B are independent events. (3.9b)

Once again the second equation, (3.9b), addresses a special case where A and
B are independent events (i.e. the occurrence of one event makes it neither more

3.1. BASIC NOTIONS 25

nor less probable that the other occurs). (3.9a) introduces a new concept, condi-
tional probability, which we explain next.

3.1.1 Conditional Probability

Informally, one can simply define conditional probability as the probability mea-
sure of an event after observing the occurrence of another one. Otherwise, it can
be formally characterized as: let A and B be events and P[B] > 0 (i.e., B has pos-
itive probability). The conditional probability of event A happening given that B
already occurred is defined as:

P[A|B] = P[A ∩ B]
P[B] , (3.10)

note that if P[B] = 0 (i.e., it is impossible), then, P[A|B] is undefined3. If A and
B are independent it is clear that they are not conditionalized on each other, so:

P[A|B] = P[A], (3.11a)

P[B|A] = P[B]. (3.11b)

From (3.11a) and (3.11b) it is possible to deduce that independence means that
observing an event has no impact on the probability of the other to occur. As
a side note it is important to emphasize that some of the most relevant results
in probability theory, such as the law of total probability or the Bayes’ theorem,
were built on top of the conditional probability. These results are discussed next.

3.1.2 Law of Total Probability

Let {B1,B2, ...,Bi}i∈I be a finite and pairwise disjoint family of events, indexed by
some set I, whose union comprises the entire sample space. Then, for any event
A of the same probability space:

3Borel-Kolmogorov paradox

26 CHAPTER 3. ELEMENTS OF PROBABILITY THEORY

P[A] = ∑
i∈I

P[A ∩ Bi]. (3.12)

Moreover, if P[Bi] > 0 for all i (i.e., every Bi is a partition of Ω), we have:

P[A] = ∑
i∈I

P[A|Bi] · P[Bi]. (3.13)

Equations (3.12) and (3.13) are known as the law of total probability. This is
an important result since, by relating marginal probabilities (P[Bi]) to the condi-
tional probabilities of A given Bi, it allows to measure the probability of a given
event to occur.

3.1.3 Bayes‘ Theorem

Recall the family of events {B1,B2, ...,Bi}i∈I and the event A from section 3.1.2.
Suppose that P[A] > 0, then, for all j ∈ I we have:

P[Bj|A] =
P[A ∩ Bj]

P[A]
=

P[A|Bj] · P[Bj]

∑i∈I P[A|Bi] · P[Bi]
, (3.14)

Equation (3.14) is known as the Bayes‘ theorem, or the principle of inverse
probability [Jay58], and it can be seen as a way to perceive how the probability of
an event to occur is affected by the probability of another one. It has been mostly
used in a wide variety of areas such as science and engineering, or even in the
development of “Bayesian” spam blockers for email systems4 [SDHH98].

Following is a real life example, from [Sho05], regarding the application of
the Bayes’ theorem. It is one of many versions of the same problem, famous for
the counter intuitive manner that it presents the solution. The reader can check
the Monty Hall problem [Ros09a] for another famous problem involving similar
reasoning.

Suppose that the rate of incidence of disease X in the overall population is 1%
and there is a test for this disease; however, the test is not perfect: it has a 5% false

4which work by observing the use of tokens, typically words, in e-mails and then using
Bayesian inference to measure the probability that an e-mail is or is not spam

3.2. RANDOM VARIABLES AND DISTRIBUTIONS 27

positive rate, that is, 5% of healthy patients test positive for the disease, and a 2%
false negative rate (2% of sick patients test negative for the disease). Advised by
his doctor, a patient does the test and it comes out positive. What should the
doctor say to his patient? In particular, what is the probability that the patient
actually has disease X, given the test result turned out to be positive?

Surprisingly, the majority of people, including doctors and area expertises,
will say the probability is 95%, since the test has a false positive rate of 5%. How-
ever, this conclusion could not be far from truth.

Let A be the event that the test is positive and B be the event that the patient
has disease X. The relevant quantity that one needs to estimate is P[A|B], that is,
the probability that the patient has disease X given a positive test result. Using
Bayes’ theorem to do this leads to:

P[B|A] =
P[A|B] · P[B]

P[A|B] · P[B] + P[A|B] · P[B]
=

0.98 · 0.01
0.98 · 0.01 + 0.05 · 0.99

≈ 0.17.

Thus, a patient whose test gave a positive result only have 17% chance to really
have disease X. So, the correct intuition here is that it is much more likely to get
a false positive than it is to actually have the disease.

3.2 Random Variables and Distributions

Generally, we are not interested (only) in events within the sample space, but
rather in some function on them. In most cases it is necessary to associate a real
number, or other mathematical object5, to each of the outcomes of a given event.
For example, suppose one plays a game that consists on rolling a dice and count-
ing the number of dots faced up; furthermore, suppose one receives 1 euro if the
total number of dots equals 1 or 2, 2 euros if the total number of dots is 3 or 4
and that one has to pay 5 euros otherwise. So, as far as “prizes” is concerned,
we have three groups of dots: {1, 2}, {3, 4} and {5, 6}. This means that our “prize”
is a function of the total number of dots faced up after rolling the dice. Now, to
calculate the probability we have to win the the 2 euros prize (or any other), we

5such as boolean values, functions, complex numbers, etc.

28 CHAPTER 3. ELEMENTS OF PROBABILITY THEORY

just have to compute the probability that the total number of dots faced up after
rolling the dice falls into the class {3, 4}, which corresponds to the 2 euros prize.
The notion of a random variable formalizes this idea [Sho05].

Intuitively, random variable is a measure of the outcome of a given event. It is
formally characterized by a function from the probability space to an abstract set:

X : Ω → S. (3.15)

Despite existing several types of random variables, the two most used are the
discrete and the continuous [Fri97]. Suppose that a coin is tossed into the air
5 times and that X represents the number of heads occurred in the sequence of
tosses. Because the coin was only tossed a finite number of times, X can only take
a finite number of values, so it is known as a discrete random variable. Similarly,
suppose that X is now a random variable that indicates the time until a given ice
cream melts. In this case X can take an infinite number of values and therefore it
is known as a continuous random variable.

In order to specify the probabilities associated with each possible value of
a random variable, it is often necessary to resort to alternative functions from
which the probability measurement immediately follows. These functions will
depend on the type of the random variable: because we are only interested in
discrete random variables, suppose X takes on a finite set of possible outcomes
(i.e, X is a discrete random variable), in this case the easiest way to specify the
probabilities associated with each possible outcome is to directly assign to each
one a probability. From (3.15) we can now determine a new function:

pX(x) : S → [0, 1], (3.16)

where pX(x) := P[X = x], for each x ∈ S. As we are dealing with discrete ran-
dom variables pX (or simply p if the random variable is understood from context)
is known as a probability mass function (pmf), the distribution of X. Similarly,
there is a specific family of functions that characterizes the distribution of a con-
tinuous random variable, the probability density function.

A pmf is a probability distribution, and hence satisfies their characterizing
properties, namely:

3.2. RANDOM VARIABLES AND DISTRIBUTIONS 29

0 ≤ P[X = x] ≤ 1, (3.17)

∑
x∈S

P[X = x] = 1, (3.18)

which are similar to the properties that we have introduced at the beginning of
section 3.1.

Throughout the rest of this document the term random variable will be used
when referring discrete random R-valued variables6 (unless told otherwise). These
variables will be denoted by upper case letters.

3.2.1 Joint Distribution

Probability distributions can also be applied to a group of random variables, in
situations where one may want to know several quantities in a given random
experiment [MD00]. In such cases, these probability distributions are called joint
distributions: they define the probability of an event happening in terms of all
random variables involved.

However, for the purposes of this work, we will only consider cases that just
concern two random variables. Thus, given X and Y, defined on the same prob-
ability space and with codomains Sx and Sy, we can characterize their joint prob-
ability mass function as:

pXY(x, y) : Sxx Sy → [0, 1], (3.19)

where pXY(x, y) := P[X = x, Y = y], for each x ∈ Sx and y ∈ Sy. This joint pmf is
again a probability distribution and hence,

0 ≤ pXY(x, y) ≤ 1, (3.20)

that is, the joint probability of two random variables ranges between 0 and 1 and,

6random variables with a distribution that is characterized by a pmf and whose image is the
real numbers

30 CHAPTER 3. ELEMENTS OF PROBABILITY THEORY

∑
x∈Sx

∑
y∈Sy

P[X = x, Y = y] = 1, (3.21)

which states that the sum of all joint probabilities equals to 1 with respect to a
specific sample space.

From the joint pmf of X and Y we can obtain the marginal distribution of X
by:

pX(x) = ∑
y∈Sy

pXY(x, y), (3.22)

and similarly for Y:

pY(y) = ∑
x∈Sx

pXY(x, y). (3.23)

Moreover, if X and Y are independent, their joint pmf may be defined by the
multiplication of their independent probabilities, that is:

pXY(x, y) = pX(x) · pY(y). (3.24)

3.2.2 Conditional Distribution

Recall equation (3.10), which defines the conditional probability of an event given
the occurrence of another. If X and Y are random variables it is thus natural to
define their conditional pmf as:

pX|Y(x, y) =
pXY(x, y)

pY(y)
, (3.25)

where pX|Y(x, y) := P[X|Y = y], for each x ∈ Sx and y ∈ Sy. This means that
conditional distributions seek to answer the question: which is the probability
distribution of a random variable given that another takes a specific value?

If X and Y are independent random variables, then:

pX|Y(x, y) = pX(x), (3.26)

3.2. RANDOM VARIABLES AND DISTRIBUTIONS 31

and,

pY|X(y, x) = pY(y). (3.27)

Joint distributions relate to conditional distributions through the following
two important properties:

pXY(x, y) = p(X|Y=y)(x) · pY(y), (3.28)

pXY(x, y) = p(Y|X=x)(y) · pX(x), (3.29)

32 CHAPTER 3. ELEMENTS OF PROBABILITY THEORY

Chapter 4

Finite Probability Distributions in

Coq

A probability lays on a hierarchy of numerous other concepts, without which it
cannot be assembled. Recall, from chapter 3, that an event can be described by
a random variable and that a random variable can be characterized by a distri-
bution. These concepts, in turn, are defined by functions and therefore enjoy a
number of specific mathematical properties that one needs to ensure in order to
guarantee the correct specification of a probability.

Suppose you are building a house: it makes sense to start by building the
foundations and then to continue all the way up until the roof, so the house does
not collapse upon itself, right? Similarly, in this case the most important aspect is
to ensure the proper specification and implementation of all concepts involved,
in a bottom up way. So, if we want to be able to work with probabilities it is ad-
visable to first specify the basic components that are a part of them. Although not
being at the bottom of the hierarchy, the functions that underlie the definition of
probability, necessary to formalize both distributions and random variables, can
be classified as the key components for the construction of a framework focused
on reasoning over probabilities.

Fortunately, SSREFLECT is equipped with tools that are ideal to work with
such objects. For instance, finset module offers the possibility to work with sets by
defining a type for sets over a finite type. Also, bigop provides a generic definition
for iterating an operator over a set of indexes. Once knowing how to work with

33

34 CHAPTER 4. FINITE PROBABILITY DISTRIBUTIONS IN COQ

finite sets and how to iterate over their possible values one can start defining the
basic concepts that underlie the probability of an event, like its sample space, and
from there continue developing the framework. Of course there are still many
properties one needs to ensure, but more on that later.

The development of such a framework was not always steady and needed a
lot of tweaking along the way. This chapter presents and discusses some of the
design decisions made through the developing stage of this work. It closes by
presenting a possible application for the formalized concepts.

4.1 An Approach to Finite Probability Distributions

in COQ

Section 3.1 introduced basic notions about probabilities. Those concepts repre-
sented the basis for the construction of a probability-oriented framework and nat-
urally appeared as the first ones in need to be formally characterized. However
there were important aspects to take care first before approaching such matters.

We knew that eventually conditional probabilities would appear along the
way, which meant that we were destined to deal with fractions at a certain point.
For this reason we chose to define probabilities over the rational numbers (since
COQ defines them as fractions), although they are generally defined over real
numbers, using a library developed under [Mah06]. This library provided in-
dispensable theory, necessary to work with rationals - addition, multiplication,
subtraction, etc. - along with proofs of relevant properties regarding their arith-
metic - associativity, commutativity, distributivity, etc.

Next we present the initial approach to the implementation of the framework
with a special focus on the basic concepts introduced in sections 3.1 and 3.1.1.

4.1.1 Specification of a Finite Probability Distribution

Recall definition (3.1) from section 3.1: an event is a set of outcomes, and a subset
of the sample space, to which a probability is assigned. Each probability is given
by its probability function and can be specified in COQ as follows:

4.1. AN APPROACH TO FINITE PROBABILITY DISTRIBUTIONS IN COQ 35

Structure pmf := Pmf {

pmf_val :> {ffun aT -> VType};

_ : (forallb x, (0 <= pmf_val x)) && \sum_(x:aT) pmf_val x == 1

}.

Since we are only interested in discrete distributions, this definition only con-
cerns pmf’s. It contains:

• a function pmf_val that maps each of the event’s outcome to a rational num-
ber VType;

• two properties that every pmf must satisfy:

– each outcome has a non-negative probability of occurring;

– the sum of all probabilities, regarding the same sample space, equals
1.

The :> symbol makes pmf_val into a coercion, which means we can use a P :

pmf as if it were a {ffun aT -> VType} - COQ’s type inference system will insert
the missing pmf_val projection. The rest are important aspects, stated before, we
had to guarantee in order to characterize a discrete distribution. Both properties
are well known axioms of probability and hence we can just impose them to hold.
From here, the probability of an event just follows as:

Variable aT: finType.

Variable d: pmf aT.

Definition prob (E: {set aT}) := \sum_(x \in E) (d x).

Thus, the probability of an event is given by the sum of all atomic events that
compose it. In the definition above, d denotes the pmf that characterizes the
probability distribution of the event E whereas d x maps a specific outcome x to
its probability. An event is defined as a set over a finite type mainly because of
two things:

• it allows handling the sums within the distributions in an efficient and easy
way;

36 CHAPTER 4. FINITE PROBABILITY DISTRIBUTIONS IN COQ

• we can use the tens of lemmas finset had to offer directly. This greatly
smooths the work to be done since those lemmas include results like De
Morgan’s laws or others related to set theory.

In mathematical languages, definitions can often get complex or big enough
to make it hard for the user to use or understand them. In COQ we can redefine
the way those definitions look, by assigning new notations, in order to improve
their cleanliness. Most users are used to a notation similar to the one presented
in chapter 3 so we decided to follow the same path:

Notation "\Pr_ d ’[’ E ’]’" := (prob d E)

(at level 41, d at level 0, E at level 53,

format "’[’ \Pr_ d ’/’ [E] ’]’") : prob_scope.

This notation allows to express the probability of an event as \Pr_d[A], where
A represents an event or a set operation. The idea is to enable the user to write
lemmas or other definitions in a more natural and comfortable way.

4.1.2 Main Lemmas

After defining the concept of probability, it makes sense to move into the formal-
ization of properties that will actually allow to handle it. At this point, the most
logical thing to do is to start with the ones that we talked about in section 3.1.
Union, intersection and complement are extremely important results and thus
are often used in other proofs. But first, take a glimpse at an important property
many times disregarded:

Lemma prob_decomp : forall A B,

\Pr_d[A] = \Pr_d[A :&: B] + \Pr_d[A :&: ~:B].

To prove this lemma it suffices to use results available in finset. First start by
showing that A = A ∩ S, where S represents the full set, and then that A ∩ S =

A ∩ (B ∪ B) since the union of a set with its complement always equals the full
set. Using intersection’s distributivity leads to A ∩ (B ∪ B) = (A ∩ B) ∪ (A ∩ B)
and to a goal state of the proof that looks like \Pr_d[(A :&: B):|: (A :&: ~:

B)] = \Pr_d[(A :&: B)] + \Pr\d[(A :&: ~:B)], where :|: denotes the union
between sets and is defined in finset. Recall from equation (3.8b) that we can

4.1. AN APPROACH TO FINITE PROBABILITY DISTRIBUTIONS IN COQ 37

expand the union of two events into their sum if they are mutually independent.
Since the probability of an event is defined over big operators (as a summation),
we will have to manage the proof at that level in order to complete it:

Lemma big_setU: forall (R : Type) (idx : R) (op : Monoid.com_law idx)

(I : finType) (A B : {set I}) (F : I -> R),

[disjoint A & B] ->

\big[op/idx]_(i \in A :|: B) F i =

op (\big[op/idx]_(i \in A) F i) (\big[op/idx]_(i \in B) F i).

This lemma allows to do just that. It expresses that a big operation, whose
range is a predicate that looks like i ∈ A ∪ B, can be unfolded into an operation
between two big operators, where each one’s range contains a predicate regard-
ing one of the sets1, given that the premise [disjoint A & B] holds. This is ex-
actly what we need to finish the proof - applying this lemma will lead to a last
goal to be proven, [disjoint A :&: B & A :&: ~:B], which is true. Note that
[disjoint A & B]

2 is a boolean expression that evaluates to true if, and only if,
the boolean predicates A, B:pred T (with T:finType) are extensionally equal to
pred0

3, that is, they are disjoint.

Mostly, we intended to prove properties introduced in section 3.1 but along the
way many others emerged. They turned out to be necessary in order to achieve
such initial goals. This happened with prob_decomp, which despite not being one
of the main properties we aimed to prove, later emerged as a relevant result (e.g.,
it was vital to prove equation (3.8a)).

There is no perfect recipe for theorem proving and sometimes it can get really
troublesome. The important thing is to know how to approach the problem and
never give up, because certainly many obstacles will appear. In this case, we soon
realized three important aspects:

• almost all proofs will involve set operations properties manipulation;

• sometimes it will probably be necessary to manage the proof at a lower level
(i.e., handle the big operators per se);

1i ∈ A or i ∈ B since i ∈ (A ∪ B) = (i ∈ A) ∪ (i ∈ B)
2and similarly, [disjoint A :&: B & A :&: ~:B]
3pred0 is defined in the ssrbool library and denotes the predicate that always returns false

38 CHAPTER 4. FINITE PROBABILITY DISTRIBUTIONS IN COQ

• some proofs will rely on additional results (i.e., other properties we are also
aiming to prove).

This is reflected in the next example. Consider equation (3.8a), another im-
portant result of probability theory regarding intersection of events: if one had to
prove its validity in an informal way, like by pencil-and-paper, it could be done
like this:

P[A ∪ B] = P[A] + P[B]− P[A ∩ B]
1⇐⇒

= P[A ∩ B] + P[A ∩ B] + P[B]− P[A ∩ B]
2⇐⇒

= (1 − P[B]) + P[A ∩ B]
3⇐⇒

= 1 − (P[A ∩ B] + P[A ∩ B]) + P[A ∩ B]
4⇐⇒

= 1 − P[A ∩ B]− P[A ∩ B] + P[A ∩ B]
5⇐⇒

= 1 − P[A ∩ B]
6⇐⇒

= P[A ∪ B]

Which is explained as follows: in 1 we just decompose P[A] into P[A ∩ B] +
P[A∩B] through a result we have already talked about, prob_decomp. Then, in 2,
we cut both P[A∩B] since one cancels the other, and apply equation (3.7) to P[B]
to get its complement. After that, in 3, we once again use prob_decomp to replace
P[B] with P[A ∩ B] + P[A ∩ B]. 4 and 5 resumes to the use of simple arithmetic
and finally in 6 we only need to resort to the application of De Morgan’s laws
and to the definition of complement (equations (3.5) and (3.7), respectively). It is
interesting to see how this proof unfolds in COQ because we can clearly see the
relation between it and the informal proof given previously:

4.1. AN APPROACH TO FINITE PROBABILITY DISTRIBUTIONS IN COQ 39

Lemma prob_union : forall A B,

\Pr_d[A :|: B] = \Pr_d[A] + \Pr_d[B] - \Pr_d[A :&: B].

Proof.

move=> A B.

rewrite (prob_decomp A B).

have Heq: forall (a b c:Qcb_fieldType), a+b+c-a = b+c.

by move => ? ? ?; field.

rewrite Heq{Heq}.

rewrite setIC -{3}[B]setCK prob_compl.

rewrite [prob _ (~: _)](prob_decomp (~:B) A).

rewrite -setCU prob_compl.

have Heq: forall (a b c:Qcb_fieldType), a+(b-(a+(b-c))) = c.

by move => ? ? ?; field.

rewrite Heq{Heq}.

by rewrite setUC.

Qed.

Step 1 corresponds to the first rewrite tactic, as you have probably realized
by now. The two following COQ code lines and the second rewrite represent
the arithmetic arrangement in 2, while the third one gets the complement in 4.
The remaining code lines correspond to the last two steps. Lemmas addrC, addrA,
addrKr, setIC, setCl, setCK, and setUC are already defined in SSREFLECT and
represent some of the basic set properties, like associativity and commutativity,
and some of De Morgan’s laws as well.

4.1.3 Conditional Probability

If we introduce the definition:

x/y = z if and only if x = y · z,

we soon realize it contains ambiguities. For y = 0 we cannot prove there is a
unique z such that x = y · z. Suppose that x = 1 and y = 0: there is no z such that
1 = 0 · z and any number z has the property 0 = 0 · 1. Since there is no unique
solution, the result should be left undefined.

40 CHAPTER 4. FINITE PROBABILITY DISTRIBUTIONS IN COQ

This is the mathematical explanation to why equation (3.10) is undefined when
P[B] = 0. COQ does not provide a way to handle these exceptions (there are no
types for infinity or undefined) and so, we had to find an alternative solution.
There were several ways to approach the problem, but only two are highlighted:

• include the property P[B] > 0 as an argument to the definition, thus only
considering cases of conditional probability where both events were de-
fined;

• define conditional probability for all values, with P[B] = 0. This means we
would be able to evaluate all cases thus leading to an easier statement of
properties and proof management;

• explicitly handle partiality with the aid of the “option” type (analogous to
HASKELL’s Maybe).

We deduced that the second option offered more advantages and decided to
move on with it, which led to the following definition of conditional probability:

Definition condProb A :=

if \Pr_d[B] == 0 then

0

else \Pr_d[A :&: B] / \Pr_d[B].

and the respective notation:

Notation "\Pr_ d [A | B]" := (condProb d A B)

(at level 41, d at level 0, A, B at level 53,

format "’[’ \Pr_ d ’/’ [A | B] ’]’") : prob_scope.

We are now able to express the conditional probability of an event A given the
occurrence of an event B as \Pr_d[A | B].

4.2 Improving the Previous Specification

As a consequence of the previous specification of probability distribution, several
problems emerged. As we will see in Chapter 6, our formalization of the loga-
rithm relies on COQ’s formalization of the natural logarithm, which is defined

4.2. IMPROVING THE PREVIOUS SPECIFICATION 41

over the its axiomatized real numbers. For this reason, it is necessary to change
the definition of probability distribution so that it may map values on the real
numbers. Fortunately, the change is direct since both rational and real numbers
are defined over a field (hence we are able to use the same kind of tactics to reason
over the real numbers).

Furthermore, the formalization of the conditional probability appears to be
a bit limited, as does the rest of the theory. Intuitively, the notion of condi-
tional probability should indicate that the possible values that an experiment can
take are restricted by the occurrence of another experiment. In such cases, it is
possible that the distribution may not be defined over the entire sample space.
This idea motivates the introduction of a relaxed notion of distribution: the sub-
distribution, i.e., a distribution just like the one we have talked in the previous
section but with a single difference, the sum of all probabilities regarding the
same sample space is a value between 0 and 14 (instead of always being equal
to 1). Although this seems a good idea, that could help solve our problems, it
raises a number of new issue: having two distinct definitions to characterize a
distribution is not efficient as it implies the formalization of theory for both (dis-
tributions and sub-distributions) without the possibility to use the results of one
in the proofs of the other, which leads to a far more complex framework than it is
desirable, and so, it is necessary to find an alternative solution.

Next, we introduce and discuss the (final) changes made in order to achieve a
uniform formalization of basic probability theory results.

4.2.1 Proper Distributions

Keeping it simple, and not overcomplicating things, is almost always the right
thing do. Building a uniform platform to reason over probabilities is the best
option to achieve an efficient framework that will actually be capable of doing
something useful.

The complexity that would arise have we adopted the idea of formalizing the
notions of distribution and sub-distribution would be excessive and would not
provide any real advantage since the results obtained would be almost two en-

4to reflect the cases where the distribution may not be defined for the entire sample space

42 CHAPTER 4. FINITE PROBABILITY DISTRIBUTIONS IN COQ

tirely different, and unrelated, sets of theory. Hence, the best scenario should
only include one definition that allows to work in both a distribution and a sub-
distribution context.

This clearly raises a problem: how can we work with two kinds of measures
when they are not defined in comparable scales? The solution is to normalize
every distribution that is conditioned by an event, thus making it possible to see
them as normal distributions (i.e., distributions whose sum of all probabilities
equals 1). By doing so, we eliminate the need to have different definitions for
different types of distributions as all of them will be understood as being of the
same kind.

While developing the theory based on the new definition it became clear that
it was also necessary to handle the cases where a distribution is a zero function,
or in other words, a distribution whose pmf is always 0. This means that a distri-
bution is whether a zero function or a normal distribution, which is reflected by
the following structure:

Structure Distr := mk_Distr {

Distr_val :> {ffun sT -> R};

_ : ffun_ge0 Distr_val &&

(is_ffun0 Distr_val || (ffun_sum setT Distr_val == 1))

}.

Comparing to the structure introduced in section 4.1.1, there are some changes
to be noted. Distr_val now coerces to a function {ffun sT -> R}, which maps
an event sT to its probability (here represented as a real number R instead of a
rational). A few functions are also introduced:

Variable fT: finType.

Definition ffun_ge0 (f:{ffun fT->R}) := forallb a, 0 <= f a.

Definition ffun_sum (X: {set fT}) (f: {ffun fT->R})

:= \sum_(x \in X) f x

Definition ffun0 : {ffun fT -> R} := finfun (fun _ => 0).

Definition is_ffun0 (f: {ffun fT -> R}) := (f == ffun0).

Handling all the properties/proofs related to distributions would sometimes
end up making the code complex and hardly readable if we always had to write

4.2. IMPROVING THE PREVIOUS SPECIFICATION 43

the definition of sum, distribution, etc. For this reason, it is necessary to refine
the code in order to avoid further complications. Therefore ffun_ge0 denotes
the predicate that says whether or not the outcome of a function f is greater or
equal than 0 and ffun_sum denotes the summation over a set, that we explicitly
give, of the possible values of the function f. For instance, in the structure above
we are stating that the summation iterates over the full set setT (i.e., the entire
sample space). This will be particularly useful when handling restricted distribu-
tions. The remaining two functions allow to precisely capture the notion of a zero
function. is_ffun0 has type {ffun aT -> R} -> bool: it returns true if a specific
outcome of the function f is 0 or false otherwise. Note that these functions are
defined at the level of the functions that underlie the definition of a distribution,
which means that it is possible to prove several important properties that are nec-
essary to handle finite functions (and sums and others) without needing to care
about the distributions per se.

Due to the way we define a distribution, for some of the properties to be
proven it is necessary to give a premise that states if the distribution in scope
is a zero function or not, which may be a necessary fact that one needs to know
at the time of the proof. For instance:

Lemma prob_compl: forall E,

~~ is_ffun0 d -> \Pr_d[~: E] = 1 - \Pr_d[E].

Lemma prob_decomp: forall A B,

\Pr_d[A] = \Pr_d[A :&: B] + \Pr_d[A :&: ~:B].

Lemma prob_eq0: forall A, is_ffun0 d -> \Pr_d[A] = 0.

While prob_compl only holds when d is a normal distribution and prob_eq0

when d is a zero function, prob_decomp needs no premise as it holds for all cases.
For simplicity, we always state the premise as is_ffun0 or its boolean negation ~~

is_ffun0, which is equivalent to ffun_sum setT d == 1 (if a distribution is not
a zero function, then it must be a normal distribution). This transition between
properties will be useful later, and so, a reflection lemma5 is available:

Lemma Distr_sumP: forall (d: Distr),

5a reflection lemma is an equivalence property between the boolean and the Prop worlds

44 CHAPTER 4. FINITE PROBABILITY DISTRIBUTIONS IN COQ

reflect (~~ is_ffun0 d) (ffun_sum setT d == 1).

The new definition of conditional probability is somewhat different. The idea
is to define it just as an ordinary probability, but with a small difference: the
distribution is conditioned/restricted by an event:

Definition probCond (d: Distr aT) (A B: Event) :=

prob (condDistr d B) A.

Further explanation on conditional distributions is available in section 6.2.2.

4.3 Application: Semantics of Security Games

“Typically, the definition of security is tied to some particular event S . Se-
curity means that for every efficient adversary, the probability that event S
occurs is very close to some specified target probability: typically, either 0,
1/2, or the probability of some event T in some other game in which the same
adversary is interacting with a different challenger."

V. Shoup [Sho04]

When developing probability theory, one of our interests is to formalize secu-
rity proofs of cryptographic techniques. In cryptography, a security proof can be
organized as a sequence of games, which is typically defined as an “attack game"
played between an adversary and a benign entity. It is not applicable to all proofs
and even when it is, its only purpose is to serve as an organization tool in order
to reduce their complexity. The key idea here is to allow one to transform a prob-
lem into a sequence of games, each one increasingly similar with a well known
cryptographic problem, to a point where the last game is negligibly6 close to the
problem that we want to prove.

Since both adversary and benign entity are probabilistic processes that com-
municate with each other, it is possible to model the game as a probability space.
In order to develop a COQ framework to reason about this kind of security proofs
one can now understand the importance of the specifications given until now.

6with a difference close to 0

4.3. APPLICATION: SEMANTICS OF SECURITY GAMES 45

However, there are some answers left to be answered: what about this se-
quence of games, how can one make the transition between them? And how
can one know when to stop? For the latter question we come up with a COQ

specification that allows to capture the concept of negligibility:

Definition prEq epsilon := | \Pr_d1[E] - \Pr_d2[E] | <= epsilon,

prEq defines what negligibility intends to be in the context of cryptographic
security proofs (the difference between two events is negligible if it is smaller
than a certain quantity epsilon). For the former, the concept of monad has to be
introduced.

Originally, the term monad came from category theory. It can be used as a
way of chaining operations together to build a pipeline, allowing programmers to
construct computations that simulate sequenced procedures. In functional pro-
gramming languages, like COQ or HASKELL, a monad is an abstract data type
constructor used to represent computations, that is defined by a type constructor
and two operations: return and bind. The former is just a way to produce a value
encapsulated in the monad type and the latter is the operation that actually al-
lows to construct sequences of computations. They can be specified in COQ as
follows:

Definition singlff a : {ffun aT -> R} :=

[ffun x => if x==a then 1 else 0].

Definition bindff {bT} (d:Distr aT) (f:aT -> Distr bT)

: {ffun bT -> R} := [ffun b => \sum_a (d a) * (f a b)].

Canonical Structure ret x :=

Distr_build (singlff_ppos x) (singlff_psum x).

Canonical Structure bind {bT} x f :=

Distr_build (@bindff_ppos bT x f) (bindff_psum x f).

singlff and bindff are necessary to guarantee that return and bind hold some
properties after being executed (e.g., the probability of a distribution ranges be-
tween 0 and 1).

At this point, we have at our disposal the tools for managing a security proof

46 CHAPTER 4. FINITE PROBABILITY DISTRIBUTIONS IN COQ

organized as a sequence of games: a COQ formalization of basic concepts from
probability theory much needed to model the games as probability spaces, a way
to construct the sequence of games and a way to know when the proof is com-
pleted. But note that this is not enough to actually construct the proof: one must
resort to other means regarding the aspects of security analysis and cryptographic
construction.

Chapter 5

Elements of Information Theory

Curiously, information theory is one of the few scientific fields to have an identi-
fiable beginning. In [Sha48], C. Shannon presented the world with a theoretical
paper that would eventually reshape the perception of all scientific community
about communications. The idea that it would be possible to quantify, and even
reduce to a mathematical formula, an abstract concept like information attracted
enormous attention [ACK+01]. This led to the possibility to encode, in bits, es-
sentially every kind of communication which represented the starting point of
the Digital Age [ACK+01].

Despite acknowledging the work done until then, it was Shannon’s vision
and ideas that originated an infinity of possibilities and fostered an exponential
growth of communication research, which led to the field of information theory
we nowadays know. His huge contribution allowed to discover fundamental lim-
its on signal processing operations and to answer two extremely important ques-
tions in communication theory: what is the ultimate data compression (the en-
tropy), and what is the ultimate transmission rate of communication (the channel
capacity). Since then, Shannon’s work has blossomed to make a direct impact in a
wide variety of fields, as illustrated in Figure 5.1, such as computer science (Kol-
mogorov complexity), communication theory (limits of communication theory),
probability theory (limit theorems and large deviations) and many others [CT06].

47

48 CHAPTER 5. ELEMENTS OF INFORMATION THEORY

Figure 5.1: Relationship of information theory to other fields.

“Bell Labs were working on secrecy systems. I’d work on communication sys-
tems and I was appointed to some of the committees studying cryptanalytic
techniques. The work on both the mathematical theory of communications
and the cryptography went forward concurrently from about 1941. I worked
on both of them together and I had some of the ideas while working on the
other. I wouldn’t say that one came before the other - they were so close to-
gether you couldn’t separate them”

C. Shannon [Kah96]

Information theory and cryptography share a special bound. In fact, the work
from the former is very much presented in terms of the work of the latter [CLaPS00].
For a long time information theory has been used to provide lower bounds on
the size of the secret key required to attain desired levels of security in specific
systems [Mau93]. Therefore, information theory plays a central role on deriving

5.1. ENTROPY 49

results on the provable security properties of a cryptographic system.

This chapter introduces the important concept of entropy, which is then ex-
tended to define mutual information. As we will see, these quantities are func-
tions of the probability distributions that underlie the process of communication
and maintain a close relation by sharing a number of simple properties, some of
which are presented in this chapter.

5.1 Entropy

Entropy was first defined by C. Shannon, in his 1948 paper [Sha48], as a measure
of the uncertainty associated with a random variable (or in other words, as a
quantification of the expected value of a random variable) and it is perhaps the
most important concept in information theory.

Suppose X is a random variable that describes the experiment where one
tosses a coin and checks the result: if the coin is fair (i.e., both sides of the coin
have equal probability of 1

2) then the entropy of the result reaches its maximum
value, since it is the situation with higher uncertainty; otherwise, if both faces of
the coin have different probabilities, we know that each coin toss will bring less
uncertainty, since one side will have a higher probability to show up, and there-
fore the entropy value will drop. There will be no entropy if the experiment does
not offer any uncertainty (e.g., if the coin is double-headed1 the result will always
be heads) thus making the result trivially predictable.

Information is a complex concept and thus hard to define, but entropy does a
pretty good job. It comprises a set of properties that resembles the general idea of
what a measure of information should be [Sch95]. Formally, for any probability
distribution, the amount of information in X is given by:

H(X) = − ∑
x∈X

p(x) · log p(x), (5.1)

where H(X) denotes the entropy of X with pmf p(x) = P[X = x], for all x ∈ X.
This is not the only way to define entropy but it is probably the best for our pur-
poses. Note that the entropy of a random variable only depends on its probability

1both sides of the coin are heads

50 CHAPTER 5. ELEMENTS OF INFORMATION THEORY

distribution (and not on the actual values that the random variable takes). We use
the binary logarithm (to the base 2) in order to measure the entropy in bits (H(X)

then becomes the average number of bits necessary to describe X). Throughout
the rest of this document the base is omitted but every time a logarithm appears it
should be understood as the binary logarithm. Any change toward the equaliza-
tion of the probabilities increases the entropy (as it increases uncertainty). Since
the value of p(x) ranges between 0 and 1, we can immediately derive the follow-
ing property:

H(X) ≥ 0, (5.2)

stating that the entropy of a random variable is always greater than 0 (with equal-
ity when the random variable is deterministic,i.e., it is certain to be predicted). Ac-
tually, entropy is a concave function, which makes sense since, as stated before,
it takes its minimum value when p(x) = 0 and p(x) = 1 (there is no uncertainty
associated) and its maximum when p(x) = 1

2 (p(x) and p(x) are equiprobable).
Additionally, if AX is the alphabet of X (i.e., the set of all possible outcomes of X),
then:

H(X) ≤ log |AX| (5.3)

represents the upper bound on the entropy of X, with equality if, and only if, X
is distributed uniformly over AX.

It is possible to change the base of the logarithm in the definition using the
rule:

Hb(X) = (logb a) · Ha(X). (5.4)

Note that changing the base of the logarithm is not important because it only
results in information measures which are just constant multiples of each other.

5.1. ENTROPY 51

5.1.1 Joint Entropy

Equation (5.1) may be extended to define joint entropy: the entropy of a group of
random variables. Once again, we will only consider the cases that just concern
two random variables:

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) · log p(x, y). (5.5)

It is obvious that not much needs to be changed. Since (X, Y) can be consid-
ered a single vector-valued random variable [CT06], we define joint entropy, from
the definition of regular entropy, just by swapping the regular distribution for the
joint distribution concerning both random variables in scope. As a measure of un-
certainty, joint entropy always takes a non-negative value (similar reasoning as
in the entropy case) and its content is at most the sum of the individual entropies
of both random variables:

H(X, Y) ≤ H(X) + H(Y), (5.6)

with equality if, and only if, X and Y are independent (i.e., p(x, y) = p(x) · p(y)).
Intuitively, if we observe two experiments the information that we learn is the
sum of the information of each one. However, joint entropy is always greater or
equal than each individual entropy:

H(X) ≤ H(X, Y), (5.7a)

H(Y) ≤ H(X, Y). (5.7b)

5.1.2 Conditional Entropy

Similarly to what happened with joint entropy, we can extend the definition of
entropy to measure the uncertainty regarding the conditional distribution of two
random variables:

52 CHAPTER 5. ELEMENTS OF INFORMATION THEORY

H(X|Y) = − ∑
x∈X

∑
y∈Y

p(x, y) · logp(x|y). (5.8)

Note that (5.8) refers to the average entropy of X conditional on the value of Y,
averaged over all possible outcomes of Y. This is different than conditioning on Y
taking one particular value (which is what happens in conditional distributions).

From (5.2) and since conditioning always reduce entropy (it makes sense that
adding information will most probably reduce the uncertainty) it follows that:

0 ≤ H(X|Y) ≤ H(X), (5.9)

with equality on the left side if, and only if, Y uniquely determines X and equality
on the right side if, and only if, X and Y are independent.

Finally, we show a fundamental rule for transforming uncertainties:

H(X, Y) = H(X) + H(Y|X) = H(Y) + H(X|Y), (5.10)

which is known as the chain rule. It relates joint to conditional entropies by stat-
ing that the total uncertainty about the value of X and Y is equal to the uncer-
tainty about X plus the (average) uncertainty about Y once we know X. Intu-
itively, if we have a message that is described in terms of both X and Y, then it
has H(X, Y) bits of information. If we learn X, we get H(X) bits of information
thus only remaining H(Y|X) bits of uncertainty about the message.

5.2 Mutual Information

Mutual information is the reduction in the uncertainty of one random variable
due to the knowledge of the other, or in other words, it measures the amount of
information that two random variables share. For instance, suppose X represents
the experiment where one flips a coin, and Y represents whether the result was
heads or tails. Clearly, X and Y are related as each outcome provides information
about the other, i.e., they share mutual information. However, if X represents the
experiment where one flips a coin and Y represents the flip of another coin, then

5.2. MUTUAL INFORMATION 53

X and Y do not share mutual information.

Like entropy, mutual information is always a non-negative value and repre-
sents the relative entropy between the joint distribution and the product distri-
bution [CT06]. Formally, it may be defined as:

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) · log
p(x, y)

p(x) · p(y)
, (5.11)

If both random variables are independent (5.11) will be 0 (this is intuitive be-
cause if they are independent there will be no shared information whatsoever).

Mutual information shares a lot of important properties with entropy. It is
symmetric2 (i.e., X tells as much about Y as Y about X) and it may be seen as the
reduction in the uncertainty of X due to the knowledge of Y. Therefore, we can
equivalently express mutual information as:

I(X; Y) = H(Y)− H(Y|X) = H(X)− H(X|Y) = I(Y; X), (5.12)

Figure 5.2: Graphical representation of the relation between entropy and mutual
information.

In some sense mutual information is the intersection between the entropies of
2which exhibited by the fact that joint distributions are symmetric

54 CHAPTER 5. ELEMENTS OF INFORMATION THEORY

both random variables, since it represents their statistical dependence (see Figure
5.2). From equations (5.12) and (5.10) it follows that:

I(X; Y) = H(X) + H(Y)− H(X, Y). (5.13)

Sometimes entropy is referred to as self-information. This happens because
the mutual information of a random variable with itself is the entropy of the
random variable (since both random variables are perfectly correlated, they share
exactly the same information):

I(X; X) = H(X)− H(X|X) = H(X). (5.14)

Chapter 6

Entropy in Coq

Chapter 4 gave insight on how we implemented finite discrete probability dis-
tributions in COQ. At the time, the better option seemed to be approaching the
problem in a simplistic way and model the probability of an event as a function
that would map a specific event in the sample space to its probability of occur-
ring. If in one hand this allowed to keep things clean and “simple”, as that was
all we needed to handle probabilities, in the other it turned out to be a limiting
factor to the development of the framework.

To go forward into the formalization of entropy it was missing some theory
regarding random variables. It then became necessary to extend the framework
to include the missing theory: more specifically, the framework was upgraded in
such a way that it could reflect the relation between the sample space, a specific
random variable and the distribution that characterized it towards the sample
space. This implied the formalization of theory introduced in section 3.2 (regular,
joint and conditional distributions regarding discrete random variables), but also
the formalization of other important concepts that were needed to define entropy
and mutual information (e.g., logarithm to the base 2).

As you shall see, it was possible to reuse much of the work done previously
to define a proper kind of distribution (now based on random variables). In this
context, the most important SSREFLECT libraries continued to be the finset and the
bigop, but also the standard COQ library Rpower1, which offered a formalization of
the natural logarithm (sometimes denoted as ln and others as loge) over the reals

1http://coq.inria.fr/stdlib/Coq.Reals.Rpower.html

55

http://coq.inria.fr/stdlib/Coq.Reals.Rpower.html

56 CHAPTER 6. ENTROPY IN COQ

and served as the basis for the development of the theory related to logarithms.

This Chapter begins by introducing and explaining the main steps taken to
capture, in COQ, the notion of random variable. It is afterwards used to redefine
the previous idea of a discrete distribution in such a way that it may reflect the
relation between the sample space, a random variable and a distribution. The
formalization of joint and conditional distributions is also highlighted. We then
focus on the logarithm to the base 2 in order to define the important notion of
entropy (joint and conditional entropy as well) and mutual information. The
Chapter closes with a simple case study.

6.1 Random Variables

Obviously, without the formalization of random variables we would not be able
to proceed into the formalization of distributions over random variables, and so,
that is the first thing to do. Roughly speaking, a random variable is the value of
measurement associated with a random experiment. Formally it is characterized
by a measurable function from a probability space to some kind of set. In COQ it
could be something like:

Definition RVar {sT} (d: Distr sT) (aT: finType) := sT -> aT.

A random variable is thus coded as function and takes 3 arguments: an im-
plicit2 finite type sT representing the sample space, a distribution d on sT that
characterizes the random variable RVar and a finite type aT for the set of out-
comes. It is necessary to make the second and third arguments (the distribution
and the outcome set, respectively) explicit so we may be able to define different
random variables on the same probability space, which is later needed in order
to work with joint and conditional distributions.

The structure defined in section 4.2 did not represent a “true” discrete prob-
ability distribution since it lacked any reference to random variables, but we are
now in a good position to correct things and do it the proper way. The next
section gives insight on the work done toward that goal: more precisely, the for-
malization of the concepts of regular, joint and conditional entropies.

2in COQ the user can make an argument implicit by putting its name inside braces

6.2. DISCRETE RANDOM VARIABLE BASED DISTRIBUTIONS 57

6.2 Discrete Random Variable Based Distributions

Recall that we defined a distribution as a structure that included a function map-
ping an event to its probability and one property stating that every probability is
a non-negative value and that the distribution is one of two things: a zero func-
tion or a normal distribution, i.e., the sum of all probabilities, regarding the same
sample space, equals 1.

We now give the definition of a distribution over a random variable (note
that the actual definition of the distribution remains the same but it is now used
to define a new kind of distribution that maps values of the random variable,
instead of the sample space, into their probabilities). The first step is to define the
pmf:

Definition pmf_rvar {sT aT} {d: Distr sT} (X: RVar d aT)

: {ffun aT -> R} := [ffun x : aT => \Pr_d[X @^-1: pred1 x]].

pmf_rvar is a finite function from a type aT (recall that X is a random variable
with type {sT -> aT}) to a real number R, and so, it maps a particular value
of the random variable to its probability. By now, the notation used should be
familiar, although the set over which the sum iterates may seem a bit strange.
That notation is defined in the finset library as: f @^-1: R, the preimage of the
collective predicate R under f. In this case, X @^-1: pred1 x allows to define a
predicate that checks if any outcome of the random variable X equals a given x,
which is exactly what we want. Expanding \Pr_d[X @^-1: pred1 x] reveals a
sum over the resulting set that computes the probability of that outcome to occur
in the distribution d.

If we want the new structure to be a distribution it is also necessary to demon-
strate the properties we talked about previously, but now regarding the pmf de-
fined in pmf_rvar. First, we show that it is always a non-negative value:

Lemma pmf_rvar_ge0 : forall aT (X: RVar d aT),

ffun_ge0 (pmf_rvar X).

which is a fairly straightforward lemma to prove, using induction. Then, it re-
mains to demonstrate that all distributions are zero functions or normal distribu-
tions:

58 CHAPTER 6. ENTROPY IN COQ

Lemma pmf_rvar_0 : forall aT (X: RVar d aT),

is_ffun0 d -> is_ffun0 (pmf_rvar X).

Lemma pmf_rvar_sum1: forall aT (X: RVar d aT),

~~ is_ffun0 d -> ffun_sum setT (pmf_rvar X) == 1.

Note that the method introduced in section 4.2 to handle certain properties
is also used in this situation (we are still managing distributions, so we need to
know if they are zero functions or normal distributions). pmf_rvar_0 is easily
provable by induction but for pmf_rvar_sum1 it gets a little trickier. ffun_sum

setT (pmf_rvar X) is actually a summation, over the sample space, of all prob-
abilities related to the random variable X. In fact, pmf_rvar X is just filtering one
value (which is the probability of the event), and so, we just need to show that
the summation is filtering the value that we want (since it iterates over the entire
sample space, this must happen.)

Finally, it is important to make sure that COQ interprets pmf_rvar as a Distr

as it will allow the use of properties related to distributions (besides being an im-
portant aspect regarding the framework’s uniformity). This is achieved through
the use of the canonical structures mechanism:

Canonical Structure pmf {aT} (X: RVar d aT) :=

mk_Distr (pmf_rvarP X).

where pmf_rvarP X provides proof of the properties that demonstrate that pmf_rvar
is a distribution:

Lemma pmf_rvarP : forall aT (X: RVar d aT),

ffun_ge0 (pmf_rvar X) &&

(is_ffun0 (pmf_rvar X) || (ffun_sum setT (pmf_rvar X) == 1)).

The proof of pmf_rvarP is carried by doing case analysis on is_ffun0 d (i.e., if
it is true or if it is false) and invoking the lemmas pmf_rvar_0 and pmf_rvar_sum1

to close the resulting goals, after splitting the boolean conjunction (ffun_ge0 (

pmf_rvar X) is proved by invoking pmf_rvar_ge0).

To check if all went well, we run the command:

Check (pmf X).

6.2. DISCRETE RANDOM VARIABLE BASED DISTRIBUTIONS 59

which should display the following result:

pmf X

: Distr aT

indicating that pmf X is indeed a distribution (the Check command allows the
user to verify if an expression is well-formed and learn what is its type).

6.2.1 Joint Distribution

Naturally, we want to extend the definition of distribution to include two random
variables, as talked in section 3.2.1, since it will be necessary for defining several
concepts related to entropy. However, we can not use pmf_rvar directly since
prob (the underlying way to compute the probability of an event) is not explicitly
defined to handle events as pairs. Therefore, it is first necessary to define the
product of random variables:

Definition RVarX {sT aT bT} (d: Distr sT) (X:RVar d aT) (Y:RVar d bT)

: RVar d (prod_finType aT bT) := fun w => (X w, Y w).

RVarX then packs the image of each element of the sample space along with each
of the given variables. Note that it has type RVar d aT -> RVar d bT -> RVar

d (prod_finType aT bT). In COQ prod_finType enjoys a finType structure (i.e.,
the product of two fintype variables is also a fintype variable): hence, we can
make use of pmf and define the joint distribution of two random variables as:

Definition pmfProd {aT bT} (X: RVar d aT) (Y: RVar d bT) :=

pmf (RVarX X Y).

Since pmf is expecting a random variable as a parameter and RVarX X Y re-
turns something with that type, it follows that pmfProd is well typed. COQ al-
ready interprets pmfProd as a distribution (note that it is defined as a pmf), and
so, all the basic properties needed are automatically ensured.

Once more, verifying the type of pmfProd X Y displays the expected result:

Check pmfProd X Y.

==============

pmf_prod X Y

: Distr (prod_finType aT bT)

60 CHAPTER 6. ENTROPY IN COQ

Most of the times, definitions by themselves do not allow to achieve anything
relevant since one also needs the tools to handle them. Hence, there are a few
properties worth mention due to their usefulness in future proofs. For instance,

Lemma pmfProd_sym: forall {aT bT} (X: RVar d aT) (Y: RVar d bT) x y,

pmfProd X Y (x,y) = pmfProd Y X (y,x).

states the symmetry of the joint distribution. Its proof boils down to showing that
the ranges of both summations are the same (using the lemma eq_bigl). Another
example, which relates joint to marginal distributions (see equations (3.22) and
(3.23)), is:

Lemma pmfProd_indx: forall {aT bT} (X: RVar d aT) (Y:RVar d bT) y,

\sum_(x:aT) pmfProd X Y (x,y) = pmf Y y.

Lemma pmfProd_indy: forall {aT bT} (X: RVar d aT) (Y:RVar d bT) x,

\sum_(y:bT) pmfProd X Y (x,y) = pmf X x.

where the key idea is the same as in pmf_rvar_sum1: the summation is only fil-
tering one value, thus allowing to “eliminate” one of the components of the pair,
which should suffice to get the desired marginal distribution.

6.2.2 Conditional Distribution

We can see conditional distributions as a special case of joint distributions, where
one wants to compute the probability distribution of a random variable given that
another takes a specific value. To exemplify this idea we introduce the following
definition:

Definition RVarR {sT aT} (d:Distr sT) (X:RVar d aT) R

: RVar (condDistr d R) aT := X.

RVarR may seem a bit strange as it appears that it is simply returning a random
variable that taken as parameter. However it is doing more than that. Note that
the returning type is RVar (condDistr d R)aT: in fact, RVarR returns the random
variable with a slight difference, its distribution is conditioned by the set R. In
this context, CondDistr is extremely important as it is the function that actually
computes de conditional distribution. In its essence, it is defined as:

6.2. DISCRETE RANDOM VARIABLE BASED DISTRIBUTIONS 61

Definition cond_ffun {aT} (d: Distr aT) (E: {set aT}) :=

norm_ffun (restr_ffun E d).

where restr_ffun is a function that conditions the values of the distribution d

regarding the event E (i.e., d is only defined for the values of E):

Definition restr_ffun (E: {set aT}) (f: {ffun aT->R}) :=

[ffun x => if x \in E then f x else 0].

Conditioning distributions implies that the sum of all of their values may no
longer be 1. This means that they will not be normal distributions anymore nor
suitable for use when handling any distribution’s theory. We may surpass this
issue by normalizing such distributions in order to establish a point where all
distributions are defined over the same scale:

Definition norm_ffun (f: {ffun aT->R}) :=

scale_ffun (ffun_sum setT f)^-1 f.

Definition scale_ffun (s: R) (f: {ffun aT->R}) :=

[ffun x => s * (f x)].

Not much needs to be said as the definitions are pretty self explanatory. The
actual normalization is performed by scale_ffun, which is 0 if f is a zero func-
tion.

Now, we may define the conditional distribution simply as:

Definition pmfCond {sT aT bT} {d:Distr sT}

(X: RVar d aT) (Y: RVar d bT) (y:bT)

:= pmf (RVarR X (Y @^-1: [set y])).

In pmfCond we impose d to be conditioned by a specific event y of the random
variable Y, which precisely reflects what we were saying at the beginning of this
section. Note that we define pmfCond as a pmf and thus all distributions’ related
properties are automatically ensured.

Finally, equations (3.28) and (3.29), which relate joint to conditional distribu-
tions, are extremely important results that we also formalize:

Lemma pmfProd_l1: forall {aT bT} (X: RVar d aT) (Y: RVar d bT) x y,

pmfProd X Y (x,y) = pmfCond X Y y x * pmf Y y.

62 CHAPTER 6. ENTROPY IN COQ

Lemma pmfProd_l2: forall {aT bT} (X: RVar d aT) (Y: RVar d bT) x y,

pmfProd X Y (x,y) = pmfCond Y X x y * pmf X x.

6.3 Logarithm

As you have already seen, in section 5.1, entropy is defined at the expense of the
binary logarithm. The COQ standard library provides a set of theory3 regarding
the formalization of the natural logarithm, which we use in order to define the
binary logarithm.

This is done by using the next rule, which allows to obtain the logarithm with
any base:

logb x =
loga x
loga b

for any a and b positive real numbers. Therefore, we extend the definition in
Rpower and get the following COQ formalization of the binary logarithm:

Definition log2 (x: R_oFieldType) := ln x / ln 2.

Naturally, the library also provides a set of properties to manage the loga-
rithm. We use them to prove the same properties for the binary logarithm, which
in turn are used when handling entropy and mutual information related theory.
These properties hold no matter the base we are considering. For instance, the
logarithm of 1 is 0

Lemma log2_1 : log2 1 = 0.

the binary logarithm of 2 is 1

Lemma log2_2 : log2 2 = 1.

the logarithm of any value between 0 and 1 is negative

Lemma log2_lt0 : forall x, 0 < x < 1 -> log2 x < 0.

3included in the Rpower library, which is available at http://coq.inria.fr/stdlib/Coq.
Reals.Rpower.html

http://coq.inria.fr/stdlib/Coq.Reals.Rpower.html
http://coq.inria.fr/stdlib/Coq.Reals.Rpower.html

6.3. LOGARITHM 63

the logarithm of a product is the sum of the logarithms of the numbers being
multiplied

Lemma log2_mul : forall x y,

(0 < x) -> (0 < y) -> log2 (x*y) = log2 x + log2 y.

and finally, the logarithm of a division is the difference of the logarithms of the
numbers being divided

Lemma log2_div : forall x y,

(0 < x) -> (0 < y) -> log2 (x/y) = log2 x - log2 y.

Figure 6.1: Graph of the logarithm to the base 2.

The logarithm of 0 does not exist, i.e., it is undefined (and the same goes for
negative numbers). This is a problematic case, mathematically explained by the
fact that there is no a such that ba = 0 (where b is the base of the logarithm). In
fact, if we look at the graph of log2 x (see Figure 6.1), at x = 0, we observe the
existence of a vertical asymptote, meaning that logb x → ∞ as we get closer to 0.
The graph also helps to understand some of the above mentioned properties.

As you shall see, this will be a problem when handling entropy and mutual
information related theory. The solution is introduced next, alongside with the

64 CHAPTER 6. ENTROPY IN COQ

formalization of entropy.

6.4 Entropy

The formalization of concepts such as the random variable, probability distribu-
tion and logarithm provides the needed tools to try the same with one of the most
important notions in information theory. In the field of computer science, entropy
may be used to quantify the amount of information associated to a random vari-
able, which, by itself, is the perfect example of its importance, particularly in
areas like cryptography.

The entropy of a random variable may take several different formal defini-
tions. The one that is proposed next is the most suitable for being handled in
the context of this framework, mainly because of all the theory related to sums,
which is available via the bigop library (other definitions would also imply the
formalization of additional concepts, e.g., expectation). It follows from equation
(5.1):

Definition entropy {aT} (X: RVar d aT) :=

- \sum_x (pmf X x) * log2 (pmf X x).

It is also provided a notation

Notation "\H ’(’ X ’)’" := (entropy X)

(at level 41, X at level 53,

format "’[’ \H ’/’ (X) ’]’") : prob_scope.

so it may be possible to manage entropy with the kind of notation that usually
appears in the literature.

This definition introduces only one setback: how to deal with the cases where
we have to handle the logarithm of 0? The solution is to use the convention
that 0 · log 0 = 0, which is easily justified by continuity since x log x → 0 as
x → 0 [CT06]:

Axiom log2L0 : 0 * log2 0 = 0.

Regarding this work, we may understand this convention as the interpretation
of an event of measure zero, and consequently, no entropy.

6.4. ENTROPY 65

It is possible to surpass this problem without axiomatizing 0 · log 0 = 0 if we
define, and use, the support of a function (which is the set of points where the
function is not zero). In such case, the summation that computes the probability
of an event shall exclude the problematic instances where the distribution is 0.
Another possibility is to use the mul0r tactic of the ssralg library whenever we
want to rewrite something like 0 · x into 0, for all x ∈ R. This is possible because
COQ’s natural logarithm is defined for all the real numbers, although it is only
possible to reason over the positive ones, which enables the use of mul0r for every
logarithm.

log2L0will be assumed when handling entropy and mutual information. How-
ever, we still provide a definition for the support of a function due to its possible
implementation in the context of this framework:

Definition supp_ffun (f: {ffun aT -> R}) : {set aT} :=

[set x | f x != 0].

6.4.1 Joint Entropy

Joint entropy is the entropy of a joint probability distribution. Therefore, it is
very much alike regular entropy as shown in section 5.1.1 and demonstrated by
the following definition:

Definition joint_entropy {aT bT} (X:RVar d aT) (Y:RVar d bT) :=

- \sum_x \sum_y pmfProd X Y (x,y) * log2 (pmfProd X Y (x,y)).

A notation is once more provided

Notation "\H ’(’ X ’,’ Y ’)’" := (joint_entropy X Y)

(at level 41, X at level 53, Y at level 53,

format "’[’ \H ’/’ (X , Y) ’]’") : prob_scope.

6.4.2 Conditional Entropy

The formalization of conditional entropy follows from the definition given in sec-
tion 5.1.2 as:

66 CHAPTER 6. ENTROPY IN COQ

Definition cond_entropy {aT bT} (X: RVar d aT) (Y: RVar d bT) :=

- \sum_x \sum_y pmfProd X Y (x,y) * log2 (pmfCond X Y y x).

The corresponding notation is also provided

Notation "\H ’(’ X ’|’ Y ’)’" := (cond_entropy X Y)

(at level 41, X at level 53, Y at level 53,

format "’[’ \H ’/’ (X | Y) ’]’") : prob_scope.

There are several relevant properties related to conditional entropy that are
worth to be proven but we only highlight one. Its importance is huge as it allows
to relate joint to conditional entropies. Additionally, it also plays an important
role in the demonstration of several other properties related to mutual informa-
tion. It is the rule stated by equation (5.10), which in COQ looks like:

Lemma chainR_jEnt: forall aT bT (X:RVar d aT) (Y:RVar d bT),

\H(X,Y) = \H(X) + \H(Y|X).

Since the proof of chainR_jEnt is representative of the importance that some
lemmas previously stated have, we give insight on how it may be carried. It can
be mathematically proven as follows:

H(X, Y) = − ∑
x∈X

∑
y∈Y

p(x, y) · log p(x, y)

1⇐⇒
= − ∑

x∈X
∑
y∈Y

p(x, y) · log (p(x) · p(y|x))

2⇐⇒
= − ∑

x∈X
∑
y∈Y

p(x, y) · log p(x)− ∑
x∈X

∑
y∈Y

p(x, y) · log p(y|x)

3⇐⇒
= − ∑

x∈X
p(x) · log p(x)− ∑

x∈X
∑
y∈Y

p(x, y) · log p(y|x)

4⇐⇒
= H(X) + H(Y|X)

6.4. ENTROPY 67

In Step 1 we just need to show that p(x, y) = p(x) · p(y|x). Unfortunately, we
can not do the substitution directly because of the way summations are defined.
So, we first need to rewrite the entire body of the summation, which in COQ is
done using the lemma eq_bigr (see section 2.3.2):

rewrite (eq_bigr (fun x=> \sum_y pmfProd X Y (x,y) *

log2 (pmfCond Y X x y * pmf X x))).

using this tactic will perform the transformation and originate a side goal4 that
asks to prove

============================

\sum_y pmfProd X Y (x, y) * log2 (pmfProd X Y (x, y)) =

\sum_y pmfProd X Y (x, y) * log2 (pmfCond Y X x y * pmf X x)

in order to do so, it is necessary to rewrite the body of the summation again

rewrite (eq_bigr (fun y=> pmfProd X Y (x, y) *

log2 (pmfCond Y X x y * pmf X x))) //.

by move=> y _; rewrite pmfProd_l2.

we are now able to prove the equality p(x, y) = p(x) · p(y|x) using the lemma
pmfProd_l2 (see section 6.2.1). The side goal generated by the rewrite tactic is
trivially solved by //.

Step 2 comprises a set of operations to perform. Note that it is supposed to
split the summation, which cannot be done directly using eq_bigr. The solution
is to use match goal, a tactic that replaces expressions using pattern matching.
We then start by doing so, thus leading to the following equality to be proven

============================

- (\sum_x \sum_y pmfProd X Y (x, y) * log2 (pmf X x)) -

\sum_x \sum_y pmfProd X Y (x, y) * log2 (pmfCond Y X x y) =

- (\sum_i \sum_y pmfProd X Y (i, y) * log2 (pmfCond Y X i y * pmf

X i))

in which suffices to show that log(p(x) · p(y|x)) = log p(x) + log p(y|x) and then
that p(x, y) · (log p(x) + log p(y|x)) = (p(x, y) · log p(x)) + (p(x, y) · log p(y|x)),

4which is the equality between the previous body of the summation and the new, that we are
trying to rewrite to

68 CHAPTER 6. ENTROPY IN COQ

before splitting the summation. The first two operations are performed at the
same time

rewrite (eq_bigr (fun x => \sum_y (pmfProd X Y (x,y) * log2 (pmf X x)

+

pmfProd X Y (x,y) * log2 (pmfCond Y X x y)))); last

first.

but, like before, we need to prove the transformation per se. Again, we rewrite
the body of the summation in order to prove the side goal that is generated by
the previous rewrite tactic

rewrite (eq_bigr (fun y=> (pmfProd X Y (x, y) * log2 (pmf X x) +

pmfProd X Y (x, y) * log2 (pmfCond Y X x y)))) //.

move=> y _; rewrite log2_mul.

by rewrite GRing.mulr_addr GRing.addrC.

and end by using the lemma log2_mul (see section 6.3) to expand the logarithm,
and also one lemma regarding multiplication’s distributivity, GRing.mulr_addr,
and another regarding addition’s commutativity, GRing.addrC. We complete step
2 by splitting the summation (first the inner, and then the outer)

rewrite (eq_bigr (fun i=> ((\sum_y (pmfProd X Y (i, y) * log2 (pmf X

i)) +

(\sum_y pmfProd X Y (i, y) * log2 (pmfCond Y X i y))))));

last by move=> x _; rewrite big_split.

rewrite big_split.

In step 3, we make use of yet another already mentioned property. Note that
if we take log p(x) out of the (first) inner summation we obtain ∑y∈Y p(x, y),
which is the marginal probability p(x). So, we rewrite the summation to real-
locate log p(x) using the big_distrl tactic (see section 2.3.2)

rewrite (eq_bigr (fun x => log2 (pmf X x) * \sum_y pmfProd X Y (x,y))

);

last by move=> i _; rewrite GRing.mulrC -big_distrl.

and do another rewrite to show that ∑y∈Y p(x, y) = p(x), which is proved using
the lemma pmfProd_indy (see section 6.2.1)

6.5. MUTUAL INFORMATION 69

rewrite (eq_bigr (fun x => pmf X x * log2 (pmf X x)));

last by move=> x _; rewrite pmfProd_indy GRing.mulrC.

Finally, step 4 involves minor proof tweaking since it is practically terminated,
i.e., exchanging summations using exchange_big and using the joint distribu-
tion symmetry property via the pmfProd_sym lemma (see section 2.3.2 and section
6.2.1, respectively).

6.5 Mutual Information

As you have probably noticed, we defined the three kinds of entropy similarly. It
is important to do so as it shall simplify the process of managing them in order to
reach the definition of mutual information. From equation (5.11), the COQ defini-
tion of mutual information follows from the definitions of regular/joint entropy
and binary logarithm as:

Definition mutI {aT} {bT} (X: RVar d aT) (Y: RVar d bT) :=

\sum_x \sum_y

pmfProd X Y (x,y) * log2 (pmfProd X Y (x,y) / (pmf X x * pmf Y

y)).

As usual, a specific notation is provided

Notation "\I ’(’ X ’;’ Y ’)’" := (mutI X Y)

(at level 41, X at level 53, Y at level 53,

format "’[’ \I ’/’ (X ; Y) ’]’") : prob_scope.

The non-negativity of all kinds of entropy naturally follows from their defini-
tions. However, the same does not happen with mutual information: usually, it
follows from a result known as Gibbs’ inequality, which states the non-negativity
of relative entropy (mutual information is the relative entropy between a joint
distribution and the product of its marginals).

Despite the formalization of relative entropy not being one of the purposes of
this work, it is still possible to demonstrate the non-negativity of mutual infor-
mation without it. The proof of Gibbs’ inequality relies on a fundamental result
of the natural logarithm, which we use as an axiom in our framework:

70 CHAPTER 6. ENTROPY IN COQ

Axiom lnine: forall x, ln x <= x - 1.

We are fairly confident about lnine since it only concerns COQ’s own defini-
tion of natural logarithm. Naturally, we extend, and prove, the result to include
our definition of logarithm to the base 2:

Lemma log2ine: forall a, log2 a <= (a - 1) / ln 2.

The non-negativity of mutual information is an important theorem not only by
itself, but also because it allows to derive other results such as the right hand side
equation of equation (5.9): note that 0 ≤ I(X; Y) and I(X; Y) = H(X)− H(X|Y),
so 0 ≤ H(X)− H(X|Y) ⇔ H(X|Y) ≤ H(X).

6.6 A Simple Case Study

We now introduce a simple case study, whose aim is to review the relation be-
tween information theory and cryptography. Therefore, and using the aforemen-
tioned concepts, we prove that for any one-time pad cipher, the entropy of the
key must be greater or equal than the entropy of the message to be encrypted.

6.6.1 The One-Time Pad

“As a practical person, I’ve observed that one-time pads are theoret-
ically unbreakable, but practically very weak. By contrast, conven-
tional ciphers are theoretically breakable, but practically strong.’

S. Bellovin

The one-time pad (OTP) is a type of cipher which has been mathematically
proven to be unbreakable5 if used correctly [Sha49], and thus, there is nothing
that can be used to attack the encryption using statistical analysis or pattern
matching. At first, a secret key is randomly generated and used to encrypt a
message (i.e., ciphertext) that is then decrypted by the receiver using a matching
cipher and the key. It must only be used once to encrypt messages, hence the “

5this holds even if the attacker possesses infinite time and computational power

6.6. A SIMPLE CASE STUDY 71

one-time” in the cipher’s name, and kept secret at all times of the process. The
OTP provides absolute security in theory but is impracticable in real situations
due to several reasons:

• the key has to be as long as the message and used only once;

• obtaining truly random sequences is computationally expensive. However,
failing to ensure this property means that it is possible to get information
about the message by analyzing successive ciphertexts;

• the key distribution and management is often a big problem. Moreover,
using other ciphers to perform key distribution implies that the system is
only as secure as the cipher that was used to transmit the keys.

6.6.2 Proving a Security Property of the OTP’s Key

Figure 6.2: Generalization of Shannon’s model of a symmetric cipher.

There are two dual and complementary security goals in communication: con-

72 CHAPTER 6. ENTROPY IN COQ

fidentiality (or secrecy) and authenticity6 [Mau93]. OTP’s are information theo-
retically secure, in the sense that even if the adversary intercepts the ciphertext,
he will not be able to get any information about the message (in cryptography,
this is a very strong notion of security which is sometimes called perfect secrecy).
However, we do not propose to demonstrate such properties but instead, to show
that, for every OTP cipher, the size of the key must be at least as large as the mes-
sage to be encrypted.

Suppose that two entities communicate in the environment illustrated by Fig-
ure 6.2: it contains a secret randomizer S (which we ignore for simplicity pur-
poses) known only to the sender of a message X, a secure channel that handles
key distribution and an adversary that watches the communication channel.

Using information theoretic concepts, we may formulate the problem as fol-
lows: every cipher must be uniquely decipherable, that is, there is only one com-
bination of cyphertext/key that gives the appropriate message:

H(X|Y, Z) = 0, (6.1)

Furthermore we define perfect secrecy as the statistical independence between
the message X and the ciphertext Y:

I(X; Y) = 0, (6.2)

or alternatively,

H(X|Y) = H(X), (6.3)

Now, showing that H(X) ≤ H(Z) resumes to:

6authenticity means that an active adversary cannot successfully insert a fraudulent message
Ỹ that will be accepted by the receiver

6.6. A SIMPLE CASE STUDY 73

H(X) = H(X|Y) ≤ H(X, Z|Y)
1⇐⇒

= H(Z|Y) + H(X|Y, Z)
2⇐⇒

= H(Z|Y)
3⇐⇒

≤ H(Z).

At the beginning, on the left hand side of the equation we use the definition
of perfect secrecy (equation (6.3)) and the right hand side is explained by the fact
that joint entropy has at least as much information as the individual ones (see
equation (5.7a)). By using the basic expansion rule for conditional entropy we
reach step 1. In step 3 we know that H(Z|Y) + H(X|Y, Z) = H(Z|Y) because
of equation (6.1). Finally, we know that removing knowledge can only increase
uncertainty, so H(Z|Y) ≤ H(Z).

74 CHAPTER 6. ENTROPY IN COQ

Chapter 7

Conclusions

We have proposed a framework for reasoning over probability and information
theoretic concepts that was implemented as a library of definitions and theorems
for the COQ proof assistant. This library consists of a set of files to handle the
underlying theory, namely: reals and logarithm (to the base 2), finite functions,
finite discrete distributions, probability theory notions, random variables based
distributions and information theory notions. Furthermore we have used SSRE-
FLECT, a small scale extension for the COQ system, to demonstrate all the results.
Its contribute was vast, mainly due to its improved rewrite tactics, reflection fea-
tures and specifications of finite functions and finite sets, which turned out to be
the base for the development of this library. We have illustrated the framework’s
use by proving, for a one-time pad cipher, that the size (entropy) of the key must
be greater than or equal to the size (entropy) of the message to be encrypted.
The main advantages of using a proof assistant are that proof holes are not pos-
sible and that all the assumptions must be stated. However, we cannot simply
claim that something is obvious: all aspects of the proof must be handled (even
the tedious ones), which is why it is necessary to develop extensive and trustful
knowledge repositories.

The framework relies on COQ’s canonical structures for expressing structural
and specific properties related to the probability distributions. In this perspective,
the canonical structures mechanism was indeed very useful as it allowed rewrit-
ing and resolution to infer such properties automatically whenever needed.

75

76 CHAPTER 7. CONCLUSIONS

7.1 Related Work

ALEA: a library for reasoning on randomized algorithms in COQ

The ALEA [PM10] library proposes a method for modelling probabilistic pro-
grams in the COQ proof assistant. It interprets programs as probabilistic mea-
sures, and more precisely as monadic transformations, which allows to derive
important results that are necessary to estimate the probability for randomised
algorithms to satisfy certain properties. ALEA has been used in larger devel-
opments, such as the CertiCrypt1 framework, for the interactive development of
formal proofs for computational cryptography.

The probability theory part of the library is divided in two files:

• Probas: includes the definition of a dependent type A for distributions on
a given type. Such distributions are records that contain a function with
type (A → [0, 1]) m−→ [0, 1] and proofs that this function enjoys the stability
properties of measures. In this library, the interval [0, 1] corresponds to a
pre-determined type that is axiomatized (operations on this type are also
axiomatized);

• SProbas: includes the definition of a relaxed notion of distributions, called
sub-distributions, suitable to model programs using both non-deterministic
and random choice.

This work is limited to discrete distributions to ensure monadic transforma-
tion to interpret properly programs as mathematical measures [APM09]. As the
main focus is put on the computation of programs, the monadic approach comes
in handy. However such approach increases the library’s complexity and ham-
pers its use.

David Nowak’s toolbox

In [Now07], David Nowak proposes a certification toolbox2 for cryptographic al-
gorithms, which is built on top of the COQ proof assistant. The toolbox is divided

1http://certicrypt.gforge.inria.fr/
2source code is available at http://staff.aist.go.jp/david.nowak/toolbox/coqindex.

html

http://certicrypt.gforge.inria.fr/
http://staff.aist.go.jp/david.nowak/toolbox/coqindex.html
http://staff.aist.go.jp/david.nowak/toolbox/coqindex.html

7.2. FUTURE WORK 77

in two layers: the first includes various extensions of the standard library of COQ

(e.g., the formalization of probability distributions) and the second includes the-
ory to handle security proofs.

The proofs of cryptographic protocols are seen as a sequence of games which
in turn are interpreted as probabilistic algorithms. The probabilistic nature of the
framework is formalized with recourse to the definition of a distribution monad
while games are defined as functions returning a distribution. Moreover, prob-
abilities are computed by deciding whether a predicate is true or false for each
value of the distribution.

Unlike what happens in the ALEA library, the definition of a distribution is
kept as simple as possible: it is implemented as a list of pairs that associate
a value to its corresponding weight, a real number, in the distribution. How-
ever, Nowak’s toolbox lacks the rewriting features that SSREFLECT adds to COQ,
which implies a number of difficulties when rewriting equalities between games.

Information theory formalizations in HOL

If we consider formalizations outside COQ’s context, the range of options greatly
increase. In this context, we highlight [MHeT11] and [Cob08] due to their focus
on the formalization of some entropy notions. The former presents a formaliza-
tion in HOL of measures, Lebesgue integration and probability theories (based
on the set of extended real numbers R3), which then are used to formalize the no-
tions of entropy and relative entropy. The latter provides an information theoretic
technique for proving information leakage of programs formalized in the HOL4
theorem-prover, which is based on the use of information theoretic notions such
as regular/conditional entropy and regular/conditional mutual information.

7.2 Future Work

Currently, the framework includes the formalization of basic concepts of prob-
ability and information theory. The next step should be to continue along the

3the set of real numbers R extended with two additional elements, namely, the positive infinity
+∞ and the negative infinity −∞

78 CHAPTER 7. CONCLUSIONS

same line and add more results to the library, such as the Bayes’ theorem, the
total probability law or more properties regarding entropy. To smooth the proof
process, we may redefine summations to only iterate over their range’s support,
which will dramatically decrease the cases that we need to evaluate at proof time.

SSREFLECT’s finite functions seem to be a bit restrictive as they do not allow
to formalize potentially interesting notions (e.g., R-valued random variables and
distributions over lists of any type) even though our theory is perfectly legit to
comprise such cases. With a finite support it is still possible to use summations:
in this context, the only thing that needs to change is the starting point regarding
our finite sets, instead of relying on SSREFLECT’s finset library, we can use one
that provides the formalization of finite sets over (potentially) infinite types.

Bibliography

[ACK+01] O. Aftab, P. Cheung, A. Kim, S. Thakkar, and N. Yeddanapudi. In-
formation theory and the digital age. Final paper of MIT Course “The
Structure of Engineering Revolutions”, 2001.

[APM09] Philippe Audebaud and Christine Paulin-Mohring. Proofs of ran-
domized algorithms in coq. Sci. Comput. Program., 74:568–589, June
2009.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer Verlag, 2004.

[Ber06] Yves Bertot. Coq in a hurry. CoRR, abs/cs/0603118, 2006.

[BGOBP08] Yves Bertot, Georges Gonthier, Sidi Ould Biha, and Ioana Pasca.
Canonical big operators. In Proceedings of the 21st International Con-
ference on Theorem Proving in Higher Order Logics, TPHOLs ’08, pages
86–101, Berlin, Heidelberg, 2008. Springer-Verlag.

[BT05] Gilles Barthe and Sabrina Tarento. A machine-checked formalization
of the random oracle model. In in Proceedings of TYPES?04, Lecture
Notes in Computer Science. Springer-Verlag, 2005.

[CAA+86] Robert L. Constable, Stuart F. Allen, S. F. Allen, H. M. Bromley,
W. R. Cleaveland, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B.
Knoblock, N. P. Mendler, P. Panangaden, Scott F. Smith, James T.
Sasaki, and S. F. Smith. Implementing mathematics with the nuprl
proof development system, 1986.

79

80 BIBLIOGRAPHY

[CLaPS00] Eugene Chiu, Jocelyn Lin, Brok Mcferron andNoshirwan Petigara,
and Satwiksai Seshas. Mathematical theory of claude shannon. Final
paper of MIT Course “The Structure of Engineering Revolutions”, 2000.

[Cob08] Aaron R. Coble. Formalized information-theoretic proofs of privacy
using the hol4 theorem-prover. In Privacy Enhancing Technologies,
pages 77–98, 2008.

[CT06] T. M. Cover and Joy A. Thomas. Elements of Information Theory 2nd
Edition. Wiley-Interscience, 2006.

[Fri97] Bert Fristedt. A Modern Approach to Probability Theory (Systems & Con-
trol). Birkhauser, 1997.

[Geu09] H Geuvers. Proof assistants: History, ideas and future, 2009.

[GGMR09] François Garillot, Georges Gonthier, Assia Mahboubi, and Laurence
Rideau. Packaging Mathematical Structures. In Tobias Nipkow and
Christian Urban, editors, Theorem Proving in Higher Order Logics, vol-
ume 5674 of Lecture Notes in Computer Science, Munich, Allemagne,
2009. Springer.

[GMT08] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale
Reflection Extension for the Coq system. Research Report RR-6455,
INRIA, 2008.

[Gon05] Georges Gonthier. A computer-checked proof of the four colour the-
orem. 2005.

[Jay58] E. T. Jaynes. Probability theory in science and engineering. 1958.

[Kah96] David Kahn. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet. Scribner, 1996.

[Mah06] Assia Mahboubi. Programming and certifying a cad algorithm
in the coq system. In Thierry Coquand, Henri Lombardi, and
Marie-Franccoise Roy, editors, Mathematics, Algorithms, Proofs, num-
ber 05021 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany,
2006. Internationales Begegnungs- und Forschungszentrum f"ur In-
formatik (IBFI), Schloss Dagstuhl, Germany.

BIBLIOGRAPHY 81

[Mau93] Ueli M. Maurer. The role of information theory in cryptography. In
IN FOURTH IMA CONFERENCE ON CRYPTOGRAPHY AND COD-
ING, pages 49–71, 1993.

[MD00] Arian Maleki and Tom Do. Review of probability theory. CS 229,
2(1):1–12, 2000.

[MHeT11] Tarek Mhamdi, Osman Hasan, and Sofiène Tahar. Formalization of
entropy measures in hol. In Marko C. J. D. van Eekelen, Herman
Geuvers, Julien Schmaltz, and Freek Wiedijk, editors, Interactive The-
orem Proving - Second International Conference, ITP 2011, Berg en Dal,
The Netherlands, August 22-25, 2011. Proceedings, volume 6898 of Lec-
ture Notes in Computer Science, pages 233–248. Springer, 2011.

[Now07] David Nowak. A framework for game-based security proofs. Cryp-
tology ePrint Archive, Report 2007/199, 2007. http://eprint.iacr.
org/.

[PM10] Christine Paulin-Mohring. A library for reasoning on randomized
algorithms in Coq - version 5. Description of a Coq contribu-
tion, Université Paris Sud, November 2010. http://www.lri.fr/

~paulin/ALEA/alea-v5.pdf.

[Ros09a] Jason Rosenhouse. The Monty Hall Problem: The Remarkable Story of
Math’s Most Contentious Brain Teaser. Oxford University Press, USA,
2009.

[Ros09b] Sheldon Ross. First Course in Probability, A (8th Edition). Prentice
Hall, 2009.

[Sch95] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C, 2nd Edition. Wiley, 1995.

[SDHH98] Mehran Sahami, Susan Dumais, David Heckerman, and Eric
Horvitz. A bayesian approach to filtering junk E-mail. In Learn-
ing for Text Categorization: Papers from the 1998 Workshop, Madison,
Wisconsin, 1998. AAAI Technical Report WS-98-05.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.lri.fr/~paulin/ALEA/alea-v5.pdf
http://www.lri.fr/~paulin/ALEA/alea-v5.pdf

82 BIBLIOGRAPHY

[Sha48] Claude E. Shannon. A mathematical theory of communication. The
Bell system technical journal, 27:379–423, July 1948.

[Sha49] Claude E. Shannon. Communication Theory of Secrecy Systems. Bell
Systems Technical Journal, 28:656–715, 1949.

[Sho04] V. Shoup. Sequences of games: a tool for taming complexity in secu-
rity proofs. Manuscript, 2004.

[Sho05] Victor Shoup. A computational introduction to number theory and alge-
bra. Cambridge University Press, New York, NY, USA, 2005.

[Teaa] Development Team. The coq proof assistant. Contact: http://coq.
inria.fr/.

[Teab] Development Team. Ssreflect. http://www.msr-inria.inria.fr/

Projects/math-components.

[The06] The Coq Development Team. The Coq Proof Assistant Reference Manual
– Version V8.1, October 2006.

http://coq.inria.fr/
http://coq.inria.fr/
http://www.msr-inria.inria.fr/Projects/math-components
http://www.msr-inria.inria.fr/Projects/math-components

	Introduction
	Objectives
	Contributions
	Dissertation Outline

	Interactive Theorem Proving
	The Coq Proof Assistant
	The Language
	Proof Process
	Canonical Structures
	Standard Library

	A Small Scale Reflection Extension to Coq
	Important SSReflect Libraries
	finset
	bigop

	Elements of Probability Theory
	Basic Notions
	Conditional Probability
	Law of Total Probability
	Bayes` Theorem

	Random Variables and Distributions
	Joint Distribution
	Conditional Distribution

	Finite Probability Distributions in Coq
	An Approach to Finite Probability Distributions in Coq
	Specification of a Finite Probability Distribution
	Main Lemmas
	Conditional Probability

	Improving the Previous Specification
	Proper Distributions

	Application: Semantics of Security Games

	Elements of Information Theory
	Entropy
	Joint Entropy
	Conditional Entropy

	Mutual Information

	Entropy in Coq
	Random Variables
	Discrete Random Variable Based Distributions
	Joint Distribution
	Conditional Distribution

	Logarithm
	Entropy
	Joint Entropy
	Conditional Entropy

	Mutual Information
	A Simple Case Study
	The One-Time Pad
	Proving a Security Property of the OTP's Key

	Conclusions
	Related Work
	Future Work

	References

