RIR

CENTRE OF BIOLOGICAL ENGINEERING UNIVERSIDADE DO MINHO

INSTITUTE FOR BIOTECHNOLOGY AND BIOENGINEERING

Physicochemical characterization and extraction of bioactive compound from Larrea tridentata leaves

S. Martins, C.N. Aguilar, S.I. Mussatto, J.A. Teixeira

IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Larrea tridentata plant is originally from arid regions of Northern Mexico and South-western of United States and is commonly known as creosote bush or chaparral. This plant is a notable source of a bioactive compound called nordihydroguaiaretic acid (NDGA) with important biological activities of great interest in the health area [1]. The purpose of the present study was to perform a physicochemical characterization of *Larrea tridentata* leaves, and to evaluate the effect of different organic solvents on NDGA extraction and antioxidant capacity of the extracts.

A high content of total lignin (35.96%) was found in *Larrea tridentata* leaves compared with other fractions, such as cellulose and hemicelluloses (10.09 and 13.10%, respectively). *Larrea tridentata* leaves contained 13.01% protein, 2.62% acetyl groups and 7.91% ash. NDGA extraction varied considerably according to the used solvent. Heating played an important role in NDGA recovery when using methanol; but did not influence the extraction with ethanol or acetone. The highest NDGA content (46.96 ± 3.39 mg/g DW plant) was recovered using 90% methanol. However, the highest total phenolic content (487.13 ± 27.68 mg GAE/g DW plant) was obtained using 90% acetone. All the extracts showed antioxidant capacity with similar results for DPPH radical scavenging activity. Different behavior was observed for FRAP results where extracts obtained using 50% and 90% methanol had significantly higher (*p*<0.05) values (2.58 ± 0.10 and 2.77 ± 0.19 mM FE(II)/ g DW plant, respectively) than the remaining extracts. These high antioxidant activity values for FRAP assay might be explained by the high TPC and NDGA concentrations in both extracts.

References

[1] Lambert JD, Dorr RT, Timmermann BN, "Nordihydroguaiaretic Acid: A Review of Its Numerous and Varied Biological Activities", *Pharm. Biol.* (2004) **42**: 149-158.