
Ricardo Jorge Tomé Gonçalves

Logical Clocks for Could Databases

Tese de Mestrado
Mestrado em Informática
Trabalho efectuado sob a orientação de
Doutor Carlos Miguel Ferraz Baquero Moreno

Agosto 2011

2

i

Declaração

Nome: Ricardo Jorge Tomé Gonçalves

Endereço Electrónico: tome@di.uminho.pt

Telefone: 910467537

Bilhete de Identidade: 13303430

Título da Tese: Logical Clocks in Cloud Databases

Orientador: Doutor Carlos Miguel Ferraz Baquero Moreno

Ano de conclusão: 2011

Designação do Mestrado: Mestrado em Engenharia Informática

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS
PARA EFEITOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ES-
CRITA DO INTERESSADO, QUE A TAL SE COMPROMETE.

Universidade do Minho, 30 de Agosto de 2011

Ricardo Jorge Tomé Gonçalves

ii

Resumo

Ambientes de computação na nuvem, em especial sistemas de base de
dados na nuvem, estão rapidamente a aumentar em importância, aceitação e
utilização entre as grandes aplicações (web), que precisam de alta disponibi-
lidade e tolerância a partições por razões de escalabilidade, para isso sacri-
ficando o lado da coerência (teorema de CAP). Com esta abordagem, o uso
de paradigmas como a Coerência Inevitável tornou-se generalizado. Nestes
sistemas, um grande número de utilizadores têm acesso aos dados presentes
em sistemas de dados de alta disponibilidade. Para fornecer bom desempenho
para utilizadores geograficamente dispersos e permitir a realização de opera-
ções mesmo em presença de partições ou falhas de nós, estes sistemas usam
técnicas de replicação optimista que garantem apenas uma coerência inevitá-
vel. Nestes cenários, é importante que a identificação de escritas concorrentes
de dados, seja o mais exata e eficiente possível.

Nesta dissertação, revemos os problemas com as abordagens atuais para
o registo da causalidade na replicação optimista: estes ou perdem informação
sobre a causalidade ou não escalam, já que obrigam as réplicas a manter infor-
mação que cresce linearmente com o número de clientes ou escritas. Propo-
mos então, os Dotted Version Vectors (DVV), um novo mecanismo para lidar
com o versionamento de dados em ambientes com coerência inevitável, que
permite tanto um registo exato e correto da causalidade, bem como escalabi-
lidade em relação ao número de clientes e número de servidores, limitando
o seu tamanho ao factor de replicação. Concluímos com os desafios surgi-
dos na implementação dos DVV no Riak (uma base de dados distribuída de
chave/valor), a sua avaliação de comportamento e de desempenho, acabando
com uma análise das vantagens e desvantagens da mesma.

iv

Abstract

Cloud computing environments, particularly cloud databases, are rapidly
increasing in importance, acceptance and usage in major (web) applications,
that need the partition-tolerance and availability for scalability purposes, thus
sacrificing the consistency side (CAP theorem). With this approach, use of
paradigms such as Eventual Consistency became more widespread. In these
environments, a large number of users access data stored in highly available
storage systems. To provide good performance to geographically disperse
users and allow operation even in the presence of failures or network parti-
tions, these systems often rely on optimistic replication solutions that guar-
antee only eventual consistency. In this scenario, it is important to be able to
accurately and efficiently identify updates executed concurrently.

In this dissertation we review, and expose problems with current ap-
proaches to causality tracking in optimistic replication: these either lose in-
formation about causality or do not scale, as they require replicas to maintain
information that grows linearly with the number of clients or updates. Then,
we propose Dotted Version Vectors (DVV), a novel mechanism for dealing
with data versioning in eventual consistent systems, that allows both accurate
causality tracking and scalability both in the number of clients and servers,
while limiting vector size to replication degree. We conclude with the chal-
lenges faced when implementing DVV in Riak (a distributed key-value store),
the evaluation of its behavior and performance, and discuss the advantages
and disadvantages of it.

vi

Acknowledgements

I would like to express my special gratitude to Professor Carlos Baquero,
for being my advisor and supporting my work with great advise and encour-
agement, through the last several months. Also a special thanks to Professors
Paulo Sérgio Almeida and Vítor Fonte, both heavily involved in this project.
Without forgetting Nuno Preguiça from Universidade Nova de Lisboa, the
consulter of this project. To all of them, thank you for the continuous support
and encouragement throughout this work and for the counseling provided. I
learned a lot. Without their guidance and dedication this dissertation would
not have been possible.
Thanks to my colleagues and friends at the laboratory, for the pleasant en-
vironment created. Thanks to Pedro Gomes for the exchange of ideas and
brainstorming that we often had. It was of great value.
Additionally, I am grateful to my family and Ana, for all the love and support
given, and for always having confidence in me.
Finally, a special thanks to Fundação para a Ciência e a Tecnologia (FCT) for
supporting this work through project CASTOR (Causality Tracking for Op-
timistic Replication in Dynamic Distributed Systems), under Research Grant
(BI) number: BI1-2010_PTDC/EIA-EIA/104022/2008_UMINHO

viii

Contents

Contents . xi

List of Figures . xiv

List of Tables . xv

List of Acronyms . xvii

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 3

1.3 Contributions . 4

1.4 Dissertation Outline . 4

2 Literature review 7

2.1 CAP Theorem . 7

2.1.1 The CAP systems 8

2.2 Order, Cause and Effect . 10

2.2.1 Order Theoretical Concepts 11

2.2.2 Causality . 11

2.2.3 Happens-before . 12

2.3 Logical Clocks . 13

2.3.1 Scalar Clocks . 14

2.3.2 Vector Clocks . 16

2.3.3 Version Vectors . 17

ix

x CONTENTS

2.3.4 Interval Tree Clocks 19

2.4 Summary . 22

3 Causality Tracking in Cloud Databases 25

3.1 System model . 25

3.2 Cloud Databases . 26

3.2.1 Dynamo . 26

3.2.2 Cassandra . 32

3.2.3 Riak . 38

3.3 Common approaches to Causality tracking 42

3.3.1 Causally compliant total order 44

3.3.2 Version vectors with per-server entry 46

3.3.3 Version vectors with per-client entry 49

3.4 Related Work and Summary 50

4 Dotted Version Vectors 53

4.1 A Kernel for Eventual Consistency 53

4.1.1 Using the kernel operations 54

4.2 Dotted Version Vectors . 58

4.2.1 Definition . 58

4.2.2 Partial order . 59

4.2.3 Update function . 61

4.2.4 Correctness . 62

4.3 Summary . 64

5 Implementing and Evaluating DVV 67

5.1 Implementation . 67

5.1.1 Operation Put in Riak 67

5.1.2 Changing Operation Put to use DVV in Riak 69

5.2 Evaluation . 73

CONTENTS xi

5.2.1 Basho Bench . 73

5.2.2 Setup . 74

5.2.3 Generic Approach 75

5.2.4 TPC-W Approach 79

5.3 Summary . 81

6 Conclusion 85

6.1 Future Work . 86

References 88

Appendix 94

A Implementation of Dotted Version Vectors in Erlang 95

xii CONTENTS

List of Figures

2.1 Design choices regarding conflict handling [37]. 9

2.2 Two communicating processes 13

2.3 Scalar Clocks . 15

2.4 Vector Clocks . 16

2.5 Version Vectors . 18

2.6 ITC id [5] . 19

2.7 ITC event [5] . 20

2.8 ITC stamp [5] . 21

2.9 ITC run case example [5] 21

3.1 Summary of techniques used in Dynamo and their advantages
[13]. 27

3.2 Dynamo ring . 28

3.3 Default values to prune vector clocks in Riak. 41

3.4 Three clients concurrently modifying the same key on two
replica nodes. Causal histories. 43

3.5 Three clients concurrently modifying the same key on two
replica nodes. Perfectly synchronized real time clocks. . . . 45

3.6 Three clients concurrently modifying the same key on two
replica nodes. Per-server entries. 47

3.7 Three clients concurrently modifying the same key on two
replica nodes. Per-client entries. 50

xiii

xiv LIST OF FIGURES

4.1 A get operation using DVV. 55

4.2 A put operation using DVV. 57

4.3 Three clients concurrently modifying the same key on two
replica nodes. Dotted version vectors. 59

4.4 Server clock in replica B 65

4.5 Client Clock for a concurrent update in replica B, using (a)
Version Vectors and (b) Dotted Version Vectors 65

5.1 A put operation in Riak, using VV per-client entry. 68

5.2 Finite State Machine Diagram for PUT operations in Riak,
using VV. 70

5.3 Finite State Machine Diagram for PUT operations in Riak,
using DVV. 71

5.4 CPU, disk I/O and network bandwidth measurements in on
machine, S2k, S316 . 76

5.5 Performance summary for DVV, S361, S2K 77

List of Tables

5.1 Scenario 1 (S1K) with generic approach. 76

5.2 Scenario 2 (S2K) with generic approach. 77

5.3 Scenario 3 (S5K) with generic approach. 78

5.4 Scenario 1 (S1k) with TPC-W approach. 80

5.5 Scenario 2 (S2k) with TPC-W approach. 80

5.6 Scenario 3 (S5k) with TPC-W approach. 80

xv

xvi LIST OF TABLES

Acronyms

ACID Atomicity, Consistency, Isolation, Durability.

API Application Programming Interface.

BASE Basically Available, Soft state, Eventually consistent.

CAP Consistency, Availability, Partition-tolerance.

DVV Dotted Version Vectors.

HTTP Hypertext Transfer Protocol.

ITC Interval Tree Clocks.

NoSQL Not only SQL[Structured Query Language].

NTP Network Time Protocol.

TPC Transaction Processing Council.

VC Vector Clocks.

VV Version Vectors.

xvii

xviii Acronyms

Chapter 1

Introduction

Time is a very important aspect in distributed systems. Due to hardware limi-
tations, software limitations or both, it is often impossible in (asynchronous)
distributed systems to have a global clock like perfectly synchronized physi-
cal computers clocks. Even more advanced solutions like GPS time or NTP
synchronization or are not feasible due to possible unpredictable delays by
hardware or software limitations.

This absence of global clock is a problem for ordering events and for col-
lecting information on the state of the system. But even if this global clock is
possible, what it gives us is the total time of events. It does not deliver infor-
mation on relations between events, like which events led to another event,
and the events that had nothing to do with it, thus not capturing inherently
concurrency between them [15].

Because it is often too difficult or even impossible to have a global clock,
it is useful to know relative order of events. In fact, this relative order may
be an actual requirement for some systems. Causality is the relationship be-
tween two events, where one could be the consequence of the other (cause-
effect) [28, 14]. Due to restraints in global clocks and shared memory in dis-
tributed systems, mechanisms for capturing causality to partial order events
are needed.

Relative order of events can be achieved simply by observing the causal-
ity relation between events, even in asynchronous systems that have no real
time clock. This causality relation can be captured by the happens-before

1

2 CHAPTER 1. INTRODUCTION

relation, which was the basis for the subsequent logical time mechanisms in-
troduced [30, 14, 28, 12].

Causality tracking mechanisms - or simply logical clocks - provide this
happens-before relation for events, which is quite important in resolving a
vast range of problems such as distributed algorithm design [9, 27], tracking
of dependent events [12, 26], knowledge about the progress of the system
[43, 2] and as a concurrency measure [11]. Schwarz and Mattern [38] has an
extensive discussion of causality and its applications.

1.1 Context

The design of Amazon’s Dynamo system [13] was an important influence
to a new generation of databases, such as Cassandra [22], Riak1 and Volde-
mort2 focusing on partition tolerance, write availability and eventual consis-
tency. The underlying rationale to these systems comes from the observation
that when faced with the three conflicting goals of consistency, availabil-

ity and partition-tolerance, only two of those can be achievable in the same
system [8, 16]. Facing wide area operation environments where partitions
cannot be ruled out, these systems relax consistency requirements to provide
high availability.

Instead of providing the ACID properties, they focus on implementing
what it is called a BASE system [33]. A BASE system has weaker consistency
model, focuses on availability, uses optimistic replication and because of all
of this, it is faster and easier to manage large amounts of data, while scaling
horizontally.

This means that eventually, all system nodes will be consistent, but that
might not be the true at any given time. In such systems, optimistic replica-
tion is used to allow users to both successfully retrieve and write data from
replicas, even if not all replicas are available. By relaxing the consistency
level, inconsistencies are bounded to occur, which have to be detected with
minimum overhead. This is where Logical Clocks are useful.

1http://www.basho.com/Riak.html
2http://project-voldemort.com/

http://www.basho.com/Riak.html
http://project-voldemort.com/

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

The mentioned systems follow a design where the data store is always writable.
A consequence is that replicas of the same data item are allowed to diverge,
and this divergence should later be repaired. Accurate tracking of concurrent
data updates can be achieved by a careful use of well established causality
tracking mechanisms [23, 30, 38, 36]. In particular, for data storage systems,
version vectors [30] enables the system to compare any pair of replica ver-
sions and detect if they are equivalent, concurrent or if one makes the other
obsolete. A replica version that is determined to be obsolete can be replaced
by a more recent replica version. Merging concurrently modified replicas
usually requires semantic reconciliation. By semantic, we mean that it is not
an automatic reconciliation, it uses some sort of higher user-based logic to
resolve it. This is achieved by sending to users (or to higher level application
logic) the set of concurrent replica versions, the metadata context, and have
them write a new version that supersedes the provided versions.

When accurate causality tracking and handling of concurrent replica ver-
sions is considered too complex for a given application domain, systems such
as Cassandra resort to physical timestamps derived from node or client clocks,
upon which they establish what replica version is considered the most recent.
The drawback of this simplification is that it enforces a last writer wins strat-
egy where some concurrent updates are lost. In addition, if the clocks are
poorly synchronized some nodes/clients might always lose their competing
concurrent updates.

Even in systems where a full-fledged characterization of causality is sought,
there are important limitations to either system scalability or to the correct-
ness of the causality tracking in present implementations. In this thesis, first
we analyze these problems, with a special focus on solutions used in repli-
cated key-value stores designed for cloud computing environments, such as
Dynamo, Cassandra and Riak.

4 CHAPTER 1. INTRODUCTION

1.3 Contributions

We propose a novel mechanism, Dotted Version Vectors (DVV), that can pro-
vide an accurate and scalable solution to track causality of updates performed
by clients. Our approach builds on version vectors; however, unlike previous
proposals, it does not require an entry per-client, but only an entry per-server
that stores a replica, i.e., according to the degree of replication.

An full prototype of a real data storage system - Riak - using DVV is
provided. Along with it, DVV implementation in Erlang 3 can also be used
to different systems, serving as an aid to future implementations in different
languages. Furthermore, we evaluated both the original Riak implementation
and our implementation. Performance, metadata size growth and conflicts
rates were all measured on different settings for an all around comparison.

Finally, two papers were written in the course of this thesis: 1) Dotted

Version Vectors: Logical Clocks for Optimistic Replication, where Dotted
Version Vectors are described in detail, and 2) Evaluating Dotted Version

Vectors in Riak, where it is presented an overview of DVV implementation,
and a comparison of DVV and Riak’s Version Vectors.
The former is not yet published, but available at http://arxiv.org/abs/
1011.5808; whereas the latter was accepted at Inforum 2011 4.

1.4 Dissertation Outline

This dissertation is organized as follows. Chapter 2 presents some literature
review on the CAP Theorem and its implication on some distributed systems,
following by an overview of some traditional logical clocks to capture causal-
ity relations. Chapter 3 discusses cloud databases, which ones were studied,
and presents a more in depth presentation of classical approaches to capture
causality, specifically in these systems. Chapter 4 presents Dotted Version
Vectors (DVV), a novel mechanism to causality tracking, that scales in cloud
databases without compromising its causality accuracy. In Chapter 5, we de-
scribe briefly the challenges when implementing DVV in Riak, and present

3http://www.erlang.org/
4http://inforum.org.pt/INForum2011

http://arxiv.org/abs/1011.5808
http://arxiv.org/abs/1011.5808
http://www.erlang.org/
http://inforum.org.pt/INForum2011

1.4. DISSERTATION OUTLINE 5

an evaluation of DVV with various benchmark settings, discussing the results
in the end. Finally, in Chapter 6 we conclude our work by describing the
objectives achieved and presenting some ideas for future research.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Literature review

System Model For further scenarios, it will be assumed a model where the
system is an asynchronous distributed system. This means that there is no
global clock and no shared memory between processes. Processes (or Nodes)
execute sequentially and local operations are atomic and instantaneous at the
level of observation. It also implies that there are no guaranties that messages
are delivered in a specific time, nor it is guarantied that the order by which
they arrive to destiny are correct (the order they were sent may not be the
order that they were received). Messages are sent via unicast, so they only
have one destiny. This is also the only way for the processes to communicate.

This model is generic enough and represents well the traditional dis-
tributed system, since no assumptions are made on hardware, communica-
tion topology, network speed, CPU speed, etc. It can also support multicast
messages by grouping a set of atomic sent messages.

2.1 CAP Theorem

Eric Brewer introduced in Brewer [8] the CAP conjecture, an acronym which
stands for Consistency, Availability and Partition-tolerance. Later, the con-
jecture was formally proved by Seth Gilbert and Nancy Lynch [16]. This the-
orem says that only two of the three stated properties, can be fully supported
in a distributed system. Lets described each one.

7

8 CHAPTER 2. LITERATURE REVIEW

Consistency Having consistency means that all system nodes are up-to-date
and are in the same state. There is no inconsistency, be it data inconsistency
or anything else. This is the Strong consistency. Of course, this property
is not “binary”, i.e., there is a middle-ground, where we can have different
levels of consistency. Strong consistency is hard and costly to guarantee when
scaling, since when writing, for the operation to complete, all replicas must
ensure a successful write. Therefore, other types of consistency started to gain
visibility. One example of this is the Eventual consistency, where it is not
guaranteed that nodes are always in sync, but eventually, they will converge
and be consistent.

Availability Availability is property that is depends on how available data
is across the system, at a given time. For example, if my system has two
nodes and one of them crashes, my system would have 50% of availability.
Of course, if data is replicated in both nodes, availability is 100% if at least
one node is available. Therefore, to maximize availability, some degree of
replication is used across data, but that also worsens the consistency com-
plexity.

Partition-tolerance Lets say we have a distributed system, located in two
parts of the globe. If internet fails to link them for some reason, we have a
system with two partitions, each with an arbitrary node configuration. For
example, if we require quorum to correctly write data, and each partition is
equally divided, the system could be unable to write. Partition-tolerance is
the degree to which a system can support or tolerate correctly these type of
failures, where systems are divided in arbitrary partitions.

2.1.1 The CAP systems

The CAP theorem essentially tells us that we can have three system cate-
gories: CP, AP and CA. However, this has been criticized 1 because Partition-
tolerance is something that systems want to have, because if a partition occurs

1http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.
html

http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html
http://dbmsmusings.blogspot.com/2010/04/problems-with-cap-and-yahoos-little.html

2.1. CAP THEOREM 9

Figure 2.1: Design choices regarding conflict handling [37].

and it is not tolerated, then availability is also affected. Therefore, only CP
and AP systems are actually used. The CAP theorem is also a spectrum,
i.e., there are several levels of consistency, availability and partition toler-
ance. And in many cases, systems are actually adjustable or tunable to these
properties, so that it can fit better to more use cases.

An example of a CP system is Google’s Bigtable [10]. Bigtable does not
replicate data, instead it relies that to its Google file system level which stores
all the data. Therefore, is a node fails, that data is unavailable until that node
is brought back online.

Amazon Dynamo [13] is a systems that in contrast to Bigtable, chooses
availability and partition tolerance. Instead of Strong Consistency, it has
Eventual Consistency. This means that when a node fails, its data is still
available in a replica else where. Even when a partition occurs, data is still
to be read if present in that partition, and also data can be written, even if not
all replicas are available. This means that data can diverge momentarily, but
eventually all data converges.

These AP systems are also called BASE systems. Its a system where the
focus is not on ACID properties. Since availability is more important than
consistency here, we trade the isolation and consistency of ACID, for perfor-
mance and availability of BASE (Basically Available, Soft state, Eventually
consistent) system [33]. With this type of system, data might not always be
fresh, but given sufficient time and updates will propagate to all nodes. This
is the design that web-scale systems or cloud systems use today to face in-
creasing demand in scalability, performance and availability.

NoSQL systems are databases that usually apply a BASE approach in-
stead of an ACID approach. They appeared exactly to face the increasing

10 CHAPTER 2. LITERATURE REVIEW

scalability concerns. To do so, they applied what is called Optimistic Repli-
cation approaches [42, 7, 37]. They increase systems availability by allowing
conflicts to occurs, instead of try to avoid them. Later they are detected and
resolved. One of the focus of optimistic replication is how to handle conflicts.
They happen when operations fail to satisfy their preconditions. In figure 2.1
we can see the different approaches to deal with conflicts. We can simply pre-
vent it from happening, by aborting or blocking operations if necessary. But
this hurts availability. Systems that use a single master do this, because only
the master can write. Of course, conflicts would not occur, but the availability
is very limited. Conflict rates can be reduced if updates are propagated faster,
or by deconstructing multi-update transaction in individual updates. Ignoring
updates is also a possibility. When conflict happens, the older data is over-
written by the new update. This is often called writer wins strategy [40]. If
conflict rates are low, this can be a viable solution for some use cases. But
what we really want is the ability to detect conflicts. Syntactic detection relies
on ordering relations between operations and techniques for expressing them.
These techniques are independent of the data or the use case. In contrast, se-
mantic approaches are more complex to implement, because they differ with
each case. However, having semantic repair can reduce conflicts and provide
a better user experience, by resolving some conflicts automatically.

In the next section, we review ordering relations and the techniques to
express them, usually called causality tracking mechanisms or logical clocks.

2.2 Order, Cause and Effect

Logical Clocks are about ordering events, so some Order Theory must be pre-
sented. More specifically, lets concentrate on Total Order and Partial Order.
Given that, we must define by which property we should order clocks. In
logical clocks we use the causality relation, which gives some sort of cause
and effect between events.

2.2. ORDER, CAUSE AND EFFECT 11

2.2.1 Order Theoretical Concepts

Both Total Order and Partial Order are binary relation on a set. In this case,
let E denote the set of events in a distributed computation, and denoted ≤ the
binary relation.

Antisymmetry If a ≤ b and b ≤ a then a = b

Transitivity If a ≤ b and b ≤ c then a ≤ c

Totality a ≤ b or b ≤ a

Reflexivity a ≤ a

Both Total an Partial Orders have the antisymmetry and transitivity prop-
erties. What separates them is that a Total Order has a Totality property, i.e,
all events in E are mutually comparable (≤). A Partial Order has a weaker
form of Totality, which is Reflexivity, i.e., every event in E holds a relation
to itself. this implies that when E is a Partial Order, some events in E are not
comparable (≤). Given that a totality implies reflexivity, every Total Order is
also a Partial Order.

2.2.2 Causality

Causality is a binary relation on partial order sets. Informally, this relation
implies a cause-effect, where one event is the cause for another. Since all
logical clocks are mechanisms to track causality, lets provide a clear definition
of this relation [23]. → is the smallest transitive relation satisfying:

1. a → b, if a and b are events in the same activity and a occurred before
b;

2. a→ b, if a is the event of sending a message and b is the corresponding
event of receiving that message.

Additionally, if and only if ¬(a→ b)∧¬(b→ a) then a and b are concur-

rent (a ‖ b). Or in other words, if it cannot be said that a causality precedes b

12 CHAPTER 2. LITERATURE REVIEW

and vice-versa.

Given the causality definition, lets introduce two other concepts: char-

acterize and consistent [27, 28, 38]. Let E denote the set of events in a dis-
tributed computation, and let (S , <) denote an arbitrary partially ordered set.
Let θ : E → S denote a mapping.

1. (θ, <) is said to be consistent with causality, if for all a, b ∈ E . θ(a) <
θ(b) if a→ b.

2. (θ, <) is said to characterize causality, if for all a, b ∈ E . θ(a) < θ(b) iff
a→ b.

As an example, real time (total order) is consistent with causality (par-
tial order), since if a → b, then a occurred before b. But real time does
not characterize causality, because if a occurred before b, it does not mean
that a → b. Additionally, real time is a total order and total orders do not
characterize partial orders.

2.2.3 Happens-before

Happens-before was introduced by Lamport [23] and characterizes the causal-
ity relation. It captures the relation between two events, where one event oc-
curs before the other. This means that the first event can potentially be the
cause for the second event (potential causality), but it also might not be. In
other words, they are causally related (not concurrent), but not necessarily is
one the cause for the other. However, this can only be confirmed with se-
mantic information. Nevertheless, this potential causality is consistent with
causality, only extending it with more events. Further, potential causality will
be referred simply as causality.

Within a process p1, a local event e1 causally influences e2 if the last hap-
pens after the first, since in a process, events occur sequentially. An event in
process p1 can only causally influence another event in process p2, if e1 is the
event that sends a message to p2 and e2 is the event that receives that message

2.3. LOGICAL CLOCKS 13

Figure 2.2: Two communicating processes

in p2. This relation is also transitive, which means that events can causally
influence others indirectly by transitivity.

Given the events e1 and e2, from now on, the happens-before relation
can be formally denoted as e1 → e2, when e1 happens-before e2, which only
occurs when:

1. e1 and e2 are from the same process and e1 occurs before e2;

2. e1 is the event that sends a message m to another process and e2 is the
event that receives m;

3. If exists an event e where e1 → e and e→ e2.

Figure 2.2 serves as example to these 3 conditions. For example: e1 → e2

by (1); e2 → e3 by (2); e1 → e4 by (3).

As with causality, if neither one event happens-before the other, they are
concurrent (‖).

2.3 Logical Clocks

In this section, it will be presented some logical clock mechanisms, which
are mechanisms that track causality (happens-before relation) among process-
es/nodes in a distributed system.

A way to capture the happens-before relation is to have a tag in each
event. Lets have a function LCi that maps events from process pi to that tag,

14 CHAPTER 2. LITERATURE REVIEW

thus representing a clock. This clock does not have anything to do with real
time clocks, because it does not relate events in an absolute fashion. Instead it
relates them in a relative and logical way, therefore being called logical. Also,
this logical clock increases monotonically its value. To capture this relation,
a comparison (<) of these tags must be done to partial order them. So for
every pair of events, if e1 → e2 then LC(e1) < LC(e2). Attiya and Welch [6]
described this as clock condition.

Lets introduce some basic terminology used in these contexts:

• Dominate: consider these two clocks LC1 and LC2; LC2 dominates
LC1 if LC1 < LC2, i.e., if all elements of LC1 are less or equal to all
elements of LC2, and at least one element of LC2 is greater than some
element of LC1;

• Conflict: two clocks are in conflict when neither one dominates the
other, thus there is no relative order, they are concurrent; sometimes
these conflicting clocks are also called siblings;

• Syntactical reconciliation: when we can automatically reconcile two
clocks, i.e., when one of the clocks dominates the other;

• Semantical reconciliation: when we cannot automatically reconcile
two clocks, i.e., both clocks are in conflict.

2.3.1 Scalar Clocks

Scalar Clocks mechanism, also know as Lamport Timestamps, was intro-
duced by Lamport [23]. This was the first and most simple mechanism that
opened the way to future and more developed mechanisms. The concept is
rather simple: each process has a local counter, which is an non-negative inte-
ger. Initially is set to zero. Each time an event occurs, the counter is updated
as follows:

• In a local event or a send message event, the counter is incremented by
one;

2.3. LOGICAL CLOCKS 15

• In a sent message, it goes attached with it the current local counter
(already updated by one);

• If the event is a received message, the new local counter is the maxi-
mum between the current local counter and the counter attached to the
message, plus one.

In figure 2.3 we can observe examples of the rules above. For example,
in process P1 the first event is a local event and increments the previous value
counter, which was zero, by one. Again, it can be seen that the second event
in P1 is a message sent to P2, attached with the updated local counter, which
is 2. Finally, the second event of P3 was a received message by P2, and the
value was calculated by max(1, 4) + 1 which results in 5, the updated value of
the counter on this event.
Note that this is an asynchronous distributed system, there are no guaranties
in the order of the messages, as it can be seen in figure 2.3.

It might be a necessity to attach along with scalar clock, the ID of the pro-
cess, for differentiating between events that occurred in different processes
but have the same logical time.
Still, this mechanism is only consistent with causality (total orders do not
characterize partial orders). As an example, using scalar clocks, the second
event of P1 is greater (>) than the first event of P3. But they are not causally
related, they are concurrent (‖), which is not captured by this mechanism.

Figure 2.3: Scalar Clocks

16 CHAPTER 2. LITERATURE REVIEW

2.3.2 Vector Clocks

Vector Clocks (VC) mechanism was introduced simultaneously and indepen-
dently by Fidge [14] and Mattern [28]. Instead of having a counter per pro-
cess, we have a list (or vector) of counters (non-negative integer, initially set
to zero) per process. Each counter has associated the process ID that it repre-
sents. Local events are represented in the local vector and they “synchronize”
when exchanging messages. Each time an event occurs, the vector is updated
as follows:

• In a local event or a send message event for a process Pi, the value in
LCPi[i] is incremented by one;

• In a sent message, it goes attached with it the current local vector LCPi

(already updated);

• If the event is a received message for a process Pi, the value in process
Pi is incremented by one. Considering the message came from Pm,
for every position j, where j , i, the updated value is calculated by:
max(LCPm[j], LCPi[j]).

Figure 2.4: Vector Clocks

In figure 2.4 lies examples of the rules above. For example, in process P1

the first event is a local event and increments by one the previous value of (in
this case) the first position of the local vector. Again, it can be seen that the
second event in P1 is a message sent to P2, attached with the updated local
counter. Finally, the second event of P3 was a received message by P2, and

2.3. LOGICAL CLOCKS 17

the local vector was updated by one in position three. As for positions 1 and
2, the calculation was the same in this case: max(0, 2) which resulted in the
value 2 for both positions.

Vector clocks are partial orders, in contrast with scalar clocks that were
total orders. Partial order can be defined as follows: LCP1 ≤ LCP2 if
∀i, LCP1[i] ≤ LCP2[i] and LCP1 < LCP2 if ∀i, LCP1[i] ≤ LCP2[i]∧∃ j, LCP1[j] <
LCP2[j]. So if ¬(LCP1 ≤ LCP2) ∧ ¬(LCP2 ≤ LCP1) then these vectors are in-

comparable.
So if LCP1 and LCP2 are incomparable vectors, then they are concurrent. On
the other hand, if LCP1 < LCP2 then LCP1 → LCP2 (Attiya and Welch [6]
call this the strong consistency condition). So, it can be concluded that vector
clocks characterize causality.

An important property of this mechanism is that the minimality result
by Charron-Bost [12], indicates that vector clocks are the most concise char-
acterization of causality among process events. However, until now we de-
scribed the process causality, but other forms of causality exist and the mini-
mality result does not applies to it (see chapter 2.3.3).

This mechanism is designed to work in static and well-connect scenarios,
thus they do not scale very well for dynamic systems, where processes can
be added or removed as desired. This happens because vector clocks has to
store information for every node that was added, regardless of its retirement
or not, causing potential unbounded growth.

2.3.3 Version Vectors

Vector clocks are the most concise characterization of causality among pro-
cess events, but process causality is not the only causality. Data causality,
were local events are updates to the local data, and messages are used to syn-
chronize clocks between nodes, which leads to a common state between them.
Examples of these systems are partitioned replicated systems with strong con-
sistency in each partition, replicated file systems, databases and some classes

18 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Version Vectors

of code version control systems.

Parker et al. [30] introduced Version Vectors (VV), which shared equiva-
lent structure from Vector Clocks. But its purpose was, however, different. It
aimed at the detection of mutual inconsistency between replicas in optimistic
replication systems [37]. Being structurally equivalent to Vector Clocks, each
counter here represents the last known update for its respective owner ID.
E.g., a version vector of pairs clientID, counter, represents the number of
updates that each client made. Similarly, a version vector of pairs nodeID,
counter, represents the number of updates that each node made. There are
two main operations: the update operation that updates local nodes, and the
synchronization operation, where two replicas synchronize, thus resulting in
common state between them. Both are viewed as atomic operations. The
algorithm to update version vectors is a little different from vector clocks:

• In a local update of node Pi, the value in vi[i] is incremented by one;

• In a synchronization event between nodes P1 and P2, both clocks are
compared and can only conclude one of three thing: (1) P1 is more
recent (LCP1 → LCP2), thus keep this version in both nodes; (2) P2 is
more recent (LCP2 → LCP1), thus keep this version in both nodes; (3)
P1 and P2 have conflicting data (LCP1 ‖ LCP2). The way that conflicts
are resolved is an application specific problem. Logical clocks propose
it to comparing clocks and detecting conflicts, not necessarily resolve
those conflicts, but it may help.

2.3. LOGICAL CLOCKS 19

Figure 2.5 represents a possible scenario of execution. First of all, arrows
with a circle on top are local updates; vertical arrows are synchronization be-
tween nodes. Nodes start at the same synchronized state [0,0,0] (in the exam-
ple, the relative position of the counter, indicates which node represents, e.g.,
the first position represents P1 counter). P1 for instance, first suffers an up-
date on its data, thus incrementing its position in the vector [1,0,0]. Next, P1

and P2 synchronize, which leads to both of them having, in the end, the same
vector [1,0,0]. Here is a major difference between Vector Clocks and Version
Vectors: in this case, the synchronization did not update the local counter in
the P2 vector, because it was not a local update to its replica, whereas in the
vector clock mechanism, this would be seen as an event, thus incrementing
local counter by one.

One particular common use of these mechanisms is tracking causality
between coexisting replicas, i.e., between replicas forming a consistent cut
[28] of the system state [38, 3]. Still, in these cases, version vectors carry
information about causality, concurrency and past events. So it would serve
for every possible consistent cut, but normally that much information is not
required. Almeida et al. [2] described Bounded Version Vectors, a different
version of this mechanism where past information is discarded.

2.3.4 Interval Tree Clocks

Figure 2.6: ITC id [5]

Interval Tree Clocks (ITC) was introduced by Almeida et al. [5]. It was
the result of the evolution of mechanisms like Version Stamps [3] and Dy-
namic Map Clocks [4]. It can be seen as a generalization of vector clocks.
Therefore it suits well static scenarios. However, its strength is the support
for dynamic systems since processes/nodes can be added or retired in a decen-
tralized manner. It consists in each node having a stamp, which is constituted
by a pair of an unique identifier and an event counter:

20 CHAPTER 2. LITERATURE REVIEW

ITCstamp = {Id, Event}

This mechanism differs from classical ones for two reasons:

1. Unique identifier that does not map into integers, nor it have a pre-
defined set of values. Instead it is a tree structure, that dynamically
adapts to the number of replicas/processes, which can be created or
retired locally.

2. Classical mechanisms use functions over a finite domain, in contrast
functions in ITC are used over an infinite domain R - mainly [0,1[-
that can be divided and joined as needed.

The unique identifier serves the same purpose as the IDs that were tagged
along each counter in vector clocks and version vectors. The unique identifier
in ITC can be represented by:

i ::= 0 | 1 | (i1, i2)

Figure 2.6 demonstrates two possible structures of the id component. On
the right side lies a visual representation of these structures. The id can be the
reunion of various subsets of the the interval [0,1[. A node can only update
areas were it has value of 1, or in the visual representation, it can only update
areas that have a bar.

The event component is where the causal history is stored. It serves the
same purpose as the counters in vector clocks. Its structure is a binary tree,
where each tree node has a counter. This component can be formally de-
scribed as:

e ::= n | (n, e1, e2)

Figure 2.7: ITC event [5]

2.3. LOGICAL CLOCKS 21

Graphically, we can view each counter node as a height, where the the
root serves as the base height and each branch sums its height on top of it
recursively, either in left half or in the right half, depending if it is the left
or right branch, respectively. Figure 2.7 demonstrates two possible represen-
tations of the event component. At the right lies a graphical representation
of this structure. The event can assume infinite forms, because the tree can
create new leafs infinitely.

Figure 2.8: ITC stamp [5]

Figure 2.8 demonstrates the final structure of an ITC stamp. The left pair
is the id component which represent where this node can update the event
structure. In the graphical representation, this id component are the bottom
bars. The right side of the stamp is the event structure that represents causal-
ity tracking that is known by this node. Graphically it is all the bars above the
id component.

Figure 2.9: ITC run case example [5]

Finally, figure 2.9 demonstrates a hypothetical run of this mechanism. It
starts with one node that has all id space available for updates, since its the
only entity in the system. Then there was a need to create/add a new node,
so the initial node was forked, which implies dividing equally the id space
between the two nodes and copying the event structure to both. This event
structure then diverges from there, since the space where they can update the

22 CHAPTER 2. LITERATURE REVIEW

event structure is completely different (the id space for each is different for
both). Eventually, the retirement of a node can be necessary, in which case
the join operation will be performed on both the ITC structure of the node
that will be removed and a random node (or not, there might be optimiza-
tions here, where a carefully selected node can result in a “better” join). This
operation join is achieved by the reunion of the id spaces (visually it is the
overlapping of the two id bars) and the reunion of event structures (visually it
is the maximum height between them for all the spectrum).

Since the implementation size is one of the most important aspects of a
logical clock, a few optimizations are used when updating the event tree, thus
making this process rather tricky. First, it is used the operation Fill on the
space that is going to be updated. Fill either succeeds in doing one or more
simplifications, or returns the unmodified event tree; it never increments an
integer that would not lead to simplifying the tree. If the previous operation
did not update the event tree, then the operation Grow is used to update it.
Grow performs a dynamic programming based optimization to choose the
inflation that can be performed, given the available id tree, so as to minimize
the cost of the event tree growth. It is defined recursively so that:

• incrementing an integer is preferable over expanding an integer to a
tuple;

• to disambiguate, an operation near the root is preferable to one farther
away.

2.4 Summary

We introduced the CAP theorem and how systems are using it to achieve bet-
ter performance and scalability. These systems discard the ACID constraints,
in favor of a more relaxed approach - BASE. Optimistic Replication is often
used to create more available systems. In specific, they allow data do diverge,
which often creates conflicts. Detecting these conflicts is crucial. To aid in
this task, we introduced logical clocks.

2.4. SUMMARY 23

Logical Clocks are version tracking solutions and their use in cloud stor-
age systems are rooted on Lamport’ seminal work on the definition and role of
causality in distributed systems [23]. This work was the foundation for sub-
sequent advances in causality’s basic mechanisms and theory, including the
introduction of version vectors [30] for tracking causality among replicas in
a distributed storage system and vector clocks [14, 28] for tracking causality
of events in a distributed systems.

Most of this initial work dealt with a fixed, mostly small, number of par-
ticipants. Later, several systems introduced mechanisms for the dynamic
creation and retirement of vector entries to be used when a server enters
and leaves the system. While some techniques required the communication
with several other servers [17], others required communication with a single
server [31]. Interval Tree Clocks [5] are able to track causality in a dynamic,
decentralized scenario where entities can be autonomously created and re-
tired.

24 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Causality Tracking in Cloud
Databases

3.1 System model

Cloud Databases are storage systems for cloud computing environments. They
can be seen as a set of interconnected server nodes that provide a data read-
/write service to a much larger set of clients. We can consider a standard
key-value store interface that exposes two operations: get(k) and put(k,v).
(A delete operation can be implemented, for example, by executing a put
with a special value.)

A given key is replicated in only a subset of the server nodes, which we
call the replica nodes for that key. For our analysis, the approach used to
decide which nodes will replicate a given key (e.g., consistent hashing) is
not important. Depending on the system, in each replica node, for each key,
the system maintains either a single value or multiple concurrent values. We
name each of these values, a replica version or simply a version when no
confusion may arise.

These systems usually rely on an optimistic replication approach [37],
allowing client operations to complete without coordination. In case of con-
current updates to the same key, these systems usually guarantee eventual
consistency by either relying on a last writer wins strategy [40] (e.g. Cassan-

25

26 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

dra [22]) or by maintaining multiple versions for the concurrent updates to
the key (e.g. Amazon’s Dynamo [13], Depot [24], Riak). In the latter case,
conflicts can be solved by issuing a new update that supersedes the concurrent
versions, which is usually done by the client (but could also be automatically
executed by application code running on a server).

For achieving this execution model, these systems must include some
form of causality tracking. Lets analyze some cloud databases and their ap-
proach on tracking causality.

3.2 Cloud Databases

Logical Clocks are mechanisms almost ubiquitously used for versioning data.
Particularly, in storage systems that provide high availability by relaxing its
consistency levels. Such systems provide an eventual consistency model
for data replication that trade-offs consistency for availability and partition-
tolerance. This is done to build distributed systems at a worldwide scale. We
call this type of consistency Eventual Consistency.
Amazon’s Dynamo is one good example of a highly available storage that
uses Eventual Consistency [13]. It also inspired a few other distributed databases
like Cassandra and Riak. As described in Dynamo’s paper, it uses Version
Vectors [23]. Same goes for Riak, although with significantly different ap-
proaches. Cassandra as of 0.8.4, still uses timestamps.

Lets describe some Cloud Databases, explaining some of their internals,
and more importantly what they use for versioning data.

3.2.1 Dynamo

Dynamo is a highly available key-value storage system that some of Ama-
zon’s core services use to provide an “always-on” experience. To achieve this
level of availability, Dynamo sacrifices consistency under certain failure sce-
narios. It makes extensive use of object versioning and application-assisted
conflict resolution in a manner that provides a novel interface for develop-
ers to use. Dynamo’s architecture is mostly described in DeCandia et al. [13].

3.2. CLOUD DATABASES 27

Figure 3.1: Summary of techniques used in Dynamo and their advantages
[13].

Figure 3.1 shows a summary of techniques employed, depending on the prob-
lem.

System Interface Dynamo has two operations - get(key) -> value|[values],

Clock and put(key, context, value) -> ok|value. The Get operation is straight-
forward - providing the key, it returns the corresponding value, or a list of
values in case of conflicting values in the system, and along with this, it also
returns a context, which is an opaque object to the client that contains meta-
data such as the logical clock of the value. The Put operation requires three
parameters - the key, the value and the context that was obtained in a previous
get operation. The node that handles these operations is called the coordina-
tor.

28 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

Figure 3.2: Dynamo ring

Partitioning Dynamo uses consistent hashing for the keys, so that the out-
put in that hash function results in a circular ring, where the max value wraps
around the min value. Figure 3.2 represents such ring. Each physical node
in the system is represented by one or more virtual node in Dynamo’s ring.
This number of virtual node varies for each physical node, in such a way
that the system can load balance itself (more capacity/power equals more vir-
tual nodes, thus accounting for infrastructure heterogeneity), resist to node
failures without overloading the neighbor nodes and scale dynamically when
adding physical nodes (by accepting almost same load for very other node in
the system). From here on, nodes are virtual nodes and not physical node.

Replication For replication, Dynamo uses a configurable replication factor
N per-instance, which means that every value is replicated for N hosts. When
a key/value is initially added to the system, it is assigned to the coordina-
tor. Then it is replicated to the N-1 clockwise successor nodes in the ring.
There also exists a preference list, that are the nodes responsible for storing a
particular value. This list is constituted by the top N nodes described earlier
and also with some extra nodes, in case some of the top N nodes fails. This
mechanism for handling temporary node or network failures is called Hinted

Handoff. In a put operation, if some top N node fails, the next node in the
preference list receives the value and a hinted in the metadata, that indicates
what node this value was intended to. When the failed node comes back to the
system, the backup node copies the value to the original and can now delete

3.2. CLOUD DATABASES 29

the local replica of that value.

Of course, applications that need the highest level of availability can set
W to 1, which ensures that a write is accepted as long as a single node in the
system has durably written the key it to its local store.

Note that a physical node can have more than one virtual node, so to
ensure that in the preference list there are only distinct physical nodes, it is
constructed by skipping positions in the ring.

Versioning For every pair key/value, Dynamo also has a corresponding log-
ical clock, more specifically a Version Vector (VV). These VV are arrays of
pairs {NodeId,Counter}. NodeId is the identifier of the node and Counter is
the respective counter. For every value in Dynamo, VV has the pairs corre-
sponding to the nodes that have a replica for that value. However, Dynamo
applies a truncation to the VV, which means that if the array exceeds a spe-
cific value, then the oldest pair of the array is removed. This can be done
because attached to each pair is a timestamp, that indicates the last time that
node updated the value. Dynamo’s paper [13] does not actually states what
value is used for truncation, but it hints to 10. This truncation approach is
used because VV could grow too much, if too many servers coordinate writes
for that clock and if node failures result in new IDs for the server.

Consistency To maintain consistency among its replicas, Dynamo uses a
consistency protocol similar to those used in quorum systems. This proto-
col has two key configurable values: R and W. R is the minimum number of
nodes that must participate in a successful read operation. W is the minimum
number of nodes that must participate in a successful write operation. Setting
R and W such that R + W > N yields a quorum-like system. In this model,
the latency of a get (or put) operation is dictated by the slowest of the R (or
W) replicas. For this reason, R and W are usually configured to be less than
N, to provide better latency.

30 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

Get/Put Operations Both get and put operations are invoked using Ama-
zon’s infrastructure-specific request processing framework over HTTP. Using
this framework, a client can contact any Dynamo node by either using a load
balancer that will decide based on current load, which node to contact, or by
using a partition-aware library that forwards the request directly to nodes that
are responsible that for that key.

A node handling a read or write operation is known as the coordinator,
which can be any node in the system for read operations, any node in the
preference list for write operations. This restriction happens because nodes
coordinating writes have to update to version clock so that it supersedes the
older local version. This means that if a node receives a write operation and
it is not in the top N nodes of the preference list for that key, then it forwards
the request to the first node of the top N list.

On new write operations, the node creates a new VV, which then sends it
to the top N nodes. Then it awaits that W-1 nodes responses arrive, so that this
write can be considered successful. Similarly, on reads the coordinating node
contacts the top N and awaits for R results before responding to the client. If
more than one version is receive from the nodes, it returns to the client the
version that are in conflict. It is the client responsibility to resolve the conflict
and submit the new version through a write.

Data Versioning

Data Versioning can be resumed by these points:

• Dynamo uses Version Vectors for tracking causality between replicas,
using server ids;

• Reconciliation for divergent replicas is done by the client. In the get
operation it receives the conflicting values and theirs clocks, then ap-
plies some logic to solve the divergence, and writes back to Dynamo
through a put operation;

• The actual size of the VV is truncated when exceeding some value,
therefore losing the oldest entries in the clock.

3.2. CLOUD DATABASES 31

Clearly, this truncation scheme can lead to inefficiencies in reconciliation
as the descendant relationships cannot be derived accurately. When the sys-
tem is facing failure scenarios such as node failures, data center failures, or
network partitions, conflicting updates may occur. It also may occur when the
system is handling a large number of concurrent writers to the same data item,
and different nodes end up coordinating the updates concurrently. Clearly, it
is best to maintain the number of conflicting versions as low as possible,
given the performance concerns and the complexity that it brings. If the ver-
sions cannot be (syntactically) reconciled based on VV alone, they have to
be passed to the business logic for (semantic) reconciliation. This introduces
additional load on services, so it is desirable to minimize the need for it. Addi-
tionally, without the non-truncated VV to decide, this semantic reconciliation
can lead to errors because it is not always easy or even possible to decide the
correct version from a business logic level.

Dynamo’s paper states that in a live production environment, 99.94% of
requests saw only one version of the data, 0.00057% of requests saw 2 ver-
sions, 0.00047% of requests saw 3 versions and 0.00009% of requests saw 4
versions. Concurrent writes was the main reason for the conflicts.

Given that writes are coordinated by the healthy top N node in the prefer-
ence list, and in case of failures, coordinated by the proceeding nodes in the
preference list, we can say that it a fair assumption that not many nodes rather
then the top N, will coordinate a write for a given key. Thus, the actual size
of the VV does not tend to be very large, so the probability of the VV being
truncation is slim (given a reasonably truncation size).

While theoretically the truncation approach could be an issue by having
false conflicting updates, with such a low divergence probability and given the
fact that VV tend to not grow very much, we can pragmatically assume that
this would not be an issue in actual production sites. What can be a problem
is when clients try to write a value that was already overwritten by others,
thus creating conflict. Being Dynamo a closed source software, not much can
be said other than what it is written in the paper. Regarding this issue, it is not
clear if this issue is even accounted for. Maybe they choose to discard writes
that were read from past versions. Nevertheless, it is a problem, given that

32 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

VV using server IDs do not have a way to express conflict in the same server,
for the same key.

3.2.2 Cassandra

Facebook runs the largest social networking platform that serves hundreds
of millions users at peak times using tens of thousands of servers located in
many data centers around the world. To meet the reliability and scalabil-
ity needs of such massive system, Facebook developed Cassandra. Cassandra
uses a synthesis of well known techniques to achieve scalability and availabil-
ity. Cassandra was designed to fulfill the storage needs of the Inbox Search
problem. Inbox Search is a feature that enables users to search through their
Facebook Inbox. This meant the system was required to handle a very high
write throughput, billions of writes per day, and also scale with the number
of users. Since users are served from data centers that are geographically
distributed, being able to replicate data across data centers was key to keep
search latencies down [21].

Cassandra was open sourced by Facebook in 2008, and is now developed
by Apache committers and contributors from many companies. The Apache
Cassandra Project develops a highly scalable second-generation distributed
database, bringing together Dynamo’s fully distributed design and Bigtable’s
ColumnFamily-based data model. It is used in sites such has Digg, Facebook,
Twitter, Reddit, Rackspace, Cloudkick, Cisco, SimpleGeo, Ooyala, OpenX,
and more companies that have large, active data sets. Given the open-source
nature of Apache’s Cassandra, from here on, we will concentrate on it.

Cassandra’s architecture is vastly inspired in Dynamo’s architecture. It
is a system that was designed to run on cheap commodity hardware and han-
dle high write throughput while not sacrificing read efficiency. Next it is
described the fundamental differences between Cassandra and Dynamo. 1

Data Model Instead of using the simple key/value approach that Dynamo
uses, Cassandra inspired itself in Google’s BigTable for its data model. This

1Partially based on http://io.typepad.com/glossary.html

http://io.typepad.com/glossary.html

3.2. CLOUD DATABASES 33

can be described by the following characteristics 2:

• Every row is identified by an unique key, which is a string with no limit
on its size.

• Every instance of Cassandra has one table which is made up of one or
more column families.

• Each column family can contain one of two structures: supercolumns
or columns. Both of these are dynamically created and there is no limit
on the number of these that can be stored in a column family.

• Columns have a name, a value and an user-defined timestamp asso-
ciated with them. Columns could be of variable number per key. For
instance key K1 could have 1024 columns/supercolumns, while key K2

could have 64 columns/supercolumns.

• Supercolumn have a name, and an infinite number of columns asso-
ciated with them. The number of supercolumns associated with any
column family could be infinite and of a variable number per key. They
exhibit the same characteristics as columns.

System Interface Cassandra’s interface is a bit more complicated that Dy-
namo, which only had two operations and was done through a HTTP frame-
work. Cassandra has a high level interface named Thrift 3. Thrift is the name
of the RPC client used to communicate with the Cassandra server. Using
Thrift, we have to create an explicit connect to a node in Cassandra. Using
this open connection, we execute operations available in the Application Pro-
gramming Interface (API) 4. Lets concentrate only in the traditionally read
and write operations, which have the following signature:

get(keyspace, key, column_path, consistency_level)
2http://www.facebook.com/note.php?note_id=24413138919&id=

9445547199&index=9
3Several high level APIs build on top of Thrift, for several programming languages, are

available and can be found in Cassandra’s wiki http://wiki.apache.org/cassandra/
ClientOptions#High_level_clients

4http://wiki.apache.org/cassandra/API

http://www.facebook.com/note.php?note_id=24413138919&id=9445547199&index=9
http://www.facebook.com/note.php?note_id=24413138919&id=9445547199&index=9
http://wiki.apache.org/cassandra/ClientOptions#High_level_clients
http://wiki.apache.org/cassandra/ClientOptions#High_level_clients
http://wiki.apache.org/cassandra/API

34 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

So, to read a value in cassandra we must specify the keyspace (contains mul-
tiple Column Families), the key (a unique string that identifies a row in a
ColumnFamily), the column path (the path to a single column in Cassandra)
and the consistency level for this operation.

The write operation has the following signature:

insert(keyspace, key, column_path, value, timestamp, consistency_level)

Similar to the read operation, with the exception of timestamp. This should
be the actual system time in microseconds since the Unix epoch (midnight,
January 1, 1970).

Replication Cassandra offers a configurable replication factor, which al-
lows essentially to decide how much you want to pay in performance to gain
more consistency. That is, your consistency Level for reading and writing
data is based on the Replication Factor, as it refers to the number of nodes
across which you have replicated data. Replication Factor is configured using
the < ReplicationFactor > element.

The replication strategy, sometimes referred to as the placement strategy,
determines how replicas will be distributed. The first replica is always placed
in the node claiming the key range of its Token. All remaining replicas are
distributed according to a configurable replication strategy. The Gang of Four
Strategy pattern 5 is employed to allow pluggable means of replication, but
Cassandra comes with three out of the box. RackUnawareStrategy is the
simplest strategy that places replicas the nearest on the ring, ignoring physical
proximity. RackAwareStrategy places the second replica on a different data
center than the first replica, and the remaining replicas in different racks in
the same data center. The third is DatacenterShardStrategy which you can
supply a file called “datacenters.properties” in which you indicate the desired
replication strategy for each data center.

5http://en.wikipedia.org/wiki/Strategy_pattern

http://en.wikipedia.org/wiki/Strategy_pattern

3.2. CLOUD DATABASES 35

Consistency Cassandra uses the same semantics of W, R and N for consis-
tency. But has more options for the level of consistency. This configurable
setting allows to decide how many replicas in the cluster must acknowledge
a write operation or respond to a read operation, in order to be considered
successful. The Consistency Level is set according to your stated Replication
Factor, and not the raw number of nodes in the cluster. There are multiple
levels of consistency that you can tune for performance. The best performing
level has the lowest consistency level. They mean different things for writing
and reading.

A brief for the different settings for writes are described below:

• ZERO: Write operations will be handled in the background, asynchronously.
This is the fastest way to write data, and the one that offers the least
confidence that your operations will succeed.

• ANY: This level was introduced in Cassandra 0.6, and means that you
can be assured that your write operation was successful on at least one
node, even if the acknowledgement is only for a hint (see Hinted Hand-
off). This is a relatively weak level of consistency.

• ONE: Ensures that the write operation was written to at least one node,
including its commit log and memtable. If a single node responds, the
operation is considered successful.

• QUORUM: A quorum is a number of nodes that represents consensus
on an operation. It is determined by < ReplicationFactor > / 2 + 1.
So if you have a replication factor of 10, then 6 replicas would have to
acknowledge the operation to gain a quorum.

• DCQUORUM: A version of Quorum that prefers replicas in the same
Data Center in order to balance the high consistency level of Quorum
with the lower latency of preferring to perform operations on replicas
in the same Data Center.

• ALL: Every node as specified in your < ReplicationFactor > configu-
ration entry must successfully acknowledge the write operation. If any

36 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

nodes do not acknowledge the write operation, the write fails. This has
the highest level of consistency, and the lowest level of performance.

And the following for read operations:

• ONE: This returns the value on the first node that responds. Performs a
read repair in the background.

• QUORUM: Queries all nodes and waits for a majority of replies to
respond to the client.

• ALL: Queries all nodes and returns the value with the most recent
timestamp. This level waits for all nodes to respond, and if one does
not, it fails the read operation.

Read Repair This is another mechanism to ensure consistency through-
out the node ring. In a read operation, if Cassandra detects that some nodes
have responded with data that is inconsistent with the response of other newer
nodes, it makes a note to perform a read repair on the old nodes. The read
repair means that Cassandra will send a write request to the nodes with stale
data to get them up to date with the newer data returned from the original read
operation. It does this by pulling all of the data from the node and performing
a merge, and then writing the merged data back to the nodes that were out of
sync. The detection of inconsistent data is made by comparing timestamps
and checksums.

Failure Detection Failure detection is the process of determining which
nodes in a distributed fault-tolerant system have failed. Cassandra’s imple-
mentation is based on the idea of Accrual Failure Detection Hayashibara et al.
[18]. Accrual failure detection is based on two primary ideas: that failure
detection should be flexible by being decoupled from the application being
monitored, and that outputting a continuous level of suspicion, regarding how
confident the monitor is that a node has failed. This is desirable because it can
take into account fluctuations in the network environment. Suspicion offers a
more fluid and pro-active indication of the weaker or stronger possibility of

3.2. CLOUD DATABASES 37

failure based on interpretation (the sampling of heartbeats), as opposed to a
simple binary assessment.

Data Versioning

Cassandra did not implemented Version Vectors like the original Dynamo.
Instead each column is associated with a timestamp. These timestamps are
supplied by the client, so it is important to synchronize client clocks. The
timestamp is by convention the number of microseconds since the Unix epoch
(midnight, January 1, 1970). Cassandra compares timestamps to determine
which version is newer.

Timestamps have some advantages over mechanisms such as VV with
server IDs (like Dynamo). Using timestamps, any node in the system can be
a coordinator for a write for any column. This is true since the client can
pass the actual timestamp, so that the coordinator only has to propagate this
to the replicas. This is how it is done in Cassandra. This actually makes
for better performance than the Dynamo approach where in each write, if the
node that receives the request is not in the top N nodes for that key, then it has
to forward this request to the first healthy node in the preference list. Other
advantage is the fact that processing comparisons between timestamps (long
integers) is much less cpu heavy them comparing logical clocks such as ITC
or VV. Timestamps also have a fixed size, while VV especially and ITC to a
lesser extent, tend to be bigger in size and even growing as time goes on.

Although timestamps are easy to use and have some advantages, it has
disadvantages as well. For example, it requires a global clock coordination
to clients (probably through Network Time Protocol (NTP)). If a malfunction
or malicious client sends a timestamp X from the future, then the following
writes would be discarded, until they have a greater or equal timestamp than
timestamp X. The same goes for a timestamp from the past, where this write
would be discarded, if any timestamp on the server was greater. Also, if a
client reads a value and holds it for to long then writes, it would probably
super-seed writes from other clients that should be considered concurrent,
thus losing updates. In short, Cassandra implies a model where the value
with greater timestamp wins, and if both timestamps are equal, they apply the

38 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

“last write wins” approach [40], where the client updated overwrites server
value.

3.2.3 Riak

Riak is developed by Basho Technologies and is heavily influenced by Dr.
Eric Brewer’s CAP Theorem and Amazon’s Dynamo [13]. Written mostly in
Erlang, with a small amount of Javascript and C, it is a decentralized, fault-
tolerant key-value store, with special orientation to document storage. Being
heavily influenced by Dynamo, Riak adopts the majority of its key concepts.
Being a truly fault-tolerant system, it has no single point of failure, since no
machine is special or central. Next, a brief description of some relevant areas
of Riak.

Data Model Riak is a key-value store that has the additional concepts of
Bucket and Links. A bucket is a container for keys, with a set of common
properties for its contents (e.g. replication factor). This gives the option to use
several times the same key in a Riak system. Links are metadata attached to
objects in Riak. These links make establishing relationships between objects
in Riak as simple as adding a Link header to the request when storing the
object.

Replication Inspired by Dynamo, Riak uses the same ring concept for repli-
cation. Consistent hashing is used to distribute and organize data. This Riak
ring has a 160-bit space size, and by default has 64 partitions, each repre-
sented by virtual nodes (vnodes). Vnodes are what manages client’s requests,
like puts e gets. Each physical node can have several vnodes, depending both
on the number of partitions the ring has and the number of physical nodes.
The average number of vnodes per node can be calculated by (number of
partitions)/(number of nodes). Vnodes positions in the ring are attributed at
random intervals, to attempt a more evenly distribution of data across the ring.

By default, the replication factor (n_val) is 3 (i.e., 3 replica vnodes per
key). Also, the number of successful reads (R) and writes (W) are by default
a quorum number (greater than n_val/2), but can be configured depending on

3.2. CLOUD DATABASES 39

the consistency and availability requirement levels.

System Interface In Riak, all requests are perform over HTTP by RESTful
Web Services. All requests should include the X-Riak-ClientId header, which
can be any string that uniquely identifies the client, to track object modifica-
tions with Version Vectors (VV). Additionally, every get request provides a
context, that is meant to be given back (unmodified) in a subsequent put on
that key. The context contains the VV.

Here are some examples of these operations:

• GET/riak/bucket/key : reads an object;

• PUT/riak/bucket/key : writes an object;

• POS T/riak/bucket/key : writes a new object with a random Riak-
assigned key;

• DELET E/riak/bucket/key : deletes the object;

• GET/stats : reports about the performance and configuration of the
Riak node to which it was requested;

Data Versioning Riak has two ways of resolving update conflicts on Riak
objects. Riak can allow the most recent update to automatically “win” (using
timestaps) or Riak can return/store (depends if it is a get or PUT, respec-
tively) all versions of the object. The latter gives the client the opportunity to
resolve the conflict on its own. This occurs when the allow_mult is set to true
in the bucket properties. When this property is set to false, there is a silent
loss update possibility, e.g., when two clients write to the same key concur-
rently (almost at the same time), one of the updates is going to be discard.
Hereafter, assume that allow_mult is always true.

Riak Object: A riak object represents the value in the key-value tuple, i.e.,
it contains things like metadata, the value(s) itself, the key, the logical
clock, and so on. So, from now on, object is the riak object and value

40 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

or values are the actual data of an object that being stored, e.g., a text,
a binary, an image, etc.

Sibling: A sibling (concurrent object) is created when Riak is unable to
resolve the request automatically. There are two scenarios that will
create siblings inside of a single object:

• A client writes a new object, that did not come from the current
server object (it is not a descendent), conflicting with the server
object;

• A client writes a new object, without context, i.e., without VV.

Riak uses VV to track versions of data. This is required since any node
is able to receive any request, even if not replica for that key, and not ev-
ery replica needs to participate (being later synchronized via read-repair or
gossiping). When a new object is stored in Riak, a new VV is created and
associated with it. Then, for each update, VV is incremented so that Riak can
later compare two object versions and conclude:

• One object is a direct descendant of the other.

• The objects are unrelated in recent heritage (the client clock is not a de-
scendent of the server clock), thus considered concurrent. Both values
are stored in the resulting object, while both VV are merged.

Using this knowledge, Riak can possibly auto-repair out-of-sync data, or
at least provide a client with an opportunity to reconcile divergent objects in
an application specific manner.
Riak’s implementation of VV tracks updates done by clients instead of track-
ing updates “written” or handle by nodes. Both are viable options, but what
Riak’s approach provides are what clients updated the object (and how many
times), in contrast to what nodes updated the object (and how many times).
Specifically, VV are a list of number of updates made per client (using X-
Riak-ClientId), like this: [{client1, 3}, {client2, 1}, {client3, 2}]. This VV would
indicate that client1 updated the object 3 times, client2 updated the object 1
time, and client3 updated the object 2 times. Timestamp data is also stored in
the VV but omitted from the example for simplicity. The reason to use client

3.2. CLOUD DATABASES 41

Figure 3.3: Default values to prune vector clocks in Riak.

IDs instead of server-side IDs in VV, is because the latter can cause silent
update losses, when two or more clients concurrently update the same object
on the same node. 6

There is a major difference between this and the traditional approach of
using the node’s IDs, because the number of clients tends to be much greater
than the actual number of nodes or replicas. Therefore, the VV would grew
in size much faster, probably in an unacceptable way (both size and perfor-
mance). The solution Riak adopted was to prune VV as they grow too big (or
to old), by removing the oldest (timestamp wise) information. The size target
for pruning is adjustable, but by default it is between 20 and 50, depending
on data freshness. Figure 3.3 7 shows the default values for the relevant flags
that dictate when a VV is pruned. Removing information will not cause data
loss, but it can create false conflicts. For example, when a client holds an
object with an old unpruned VV and submits it to the server, where the clock
was pruned, thus creating conflict, where it should not have happened.

In short, the tradeoff is this: prune to keep the size manageable, thus let-
ting false conflicts happen. The probability of false conflict happening should
not be neglected. For example, by having a large number of clients interacting
with a specific object, VV can rapidly grow, thus forcing the pruning. This

6http://blog.basho.com/2010/04/05/why-vector-clocks-are-hard/
7http://wiki.basho.com/Vector-Clocks.html

http://blog.basho.com/2010/04/05/why-vector-clocks-are-hard/
http://wiki.basho.com/Vector-Clocks.html

42 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

can lead to cases where clients have to solve false conflicts, which could be
later resolved in a not so correct way, i.e., if the value that “wins”, is in fact
the one that would have been removed if pruning was not applied.

3.3 Common approaches to Causality tracking

In this section, we analyze the main approaches used currently in cloud databases,
and discuss their properties and limitations.

An important aspect to consider when reasoning about the scalability of
these approaches, is the existence of three different orders of magnitude at
play: a small number of replica nodes for each key; a large number of server
nodes; a huge number of clients, keys and issued operations. Thus, a scalable
solution should avoid mechanisms that are linear with the highest magnitude
and, if possible, even try to match the lowest scale.

When considering the system composed by the clients and the storage
system, a large number of causal relations are established as the clients issue
operations to the servers. Different key-value storage systems trace different
sub-sets of these relations.

One simple way to formally illustrate this is to use causal histories [38].
Causal histories are simply described by sets of unique update event identi-
fiers. These unique update identifiers can be generated by an unique node
identifier and a monotonic integer counter. (We will use replica-based iden-
tifiers but client identifiers could be used as well. The crucial point is that
identifiers have to be globally unique.) The partial order of causality can be
precisely tracked by comparing these sets by set inclusion. Two histories are
concurrent if neither include the other: A ‖ B iff A * B and B * A.

Consider a simple example, illustrated in Figure 3.4: Clients C1,C2,C3

read the same state from synchronized replica nodes and do independent up-
dates. In this simplified description we omit the keys, implicitly assuming
they are the same, and only show the causal information that is committed to
each replica node and respective versions, in the same order.

When client C1 does its first put, replica node Rb will record the version
associated with the causal history {b1} that includes the update identifier, b1,

3.3. COMMON APPROACHES TO CAUSALITY TRACKING 43

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,{})

put(w,{}}

put(x,{})

{b1}:v
{b1}:v
{b2}:w

{a1}:x

x
{a1}

put(y,{a1})

{a1,a2}:y

{}:u

Figure 3.4: Three clients concurrently modifying the same key on two replica
nodes. Causal histories.

44 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

and the history previously observed by C1, {} in this case. When client C2

does its put, the causal history associated with the new value will be {b2},
which does not include b1 because C2 has not observed this version. Thus, Rb

ends up with two concurrent versions, as stated by the causal histories. The
second put from client C1, handled by Ra, supplies a new version y together
with its knowledge of causal history {a1}, obtained from its last get. Replica
Ra records this update and adds a2 to its corresponding causal history. Since
{a1} ⊂ {a1, a2} the version y will syntactically dominate x and replace it in the
committed state in Ra.

At the end of the run we have a value y in Ra than can be detected, by
the causal histories, to be concurrent with the two concurrent values, v and w,
stored on replica node Rb.

Although conceptually simple, causal histories are not adequate for use
in practical systems, since they scale linearly with the number of updates.
Next, we survey the mechanisms used in actual systems.

3.3.1 Causally compliant total order

One simple approach is to establish a total order among updates that is com-
pliant with causal dependencies, and use this order to enforce a last writer

wins policy. The simplest total order is obtained assuming that client clocks
are well synchronized and applying real time clock order (simultaneous events
are usually further ordered over process ids). In this approach, replica nodes
never store multiple versions and writes do not need to provide a get context.

Figure 3.5 depicts the same run used to illustrate the use of causal his-
tories, but now using perfectly synchronized client clocks. One can observe
that concurrent events are ordered by the clocks and that the total order is
compliant with the causal order: If two values would have causal histories c

and c′ such that c ⊂ c′ then the real time clocks t and t′ are such that t < t′.
This can be verified, observing values x and y in the run.

The problem is that although causally we have a partial order with {a1, a2} :
y ‖ {b1} : v ‖ {b2} : w, this approach ends up ordering all updates. The total
order established is compliant with causality, but will order actions that are in

3.3. COMMON APPROACHES TO CAUSALITY TRACKING 45

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

0:u

u

u

u

put(v,5)

put(w,7)

put(x,8)

5:v 7:w

8:x

x

put(y,10)

10:y

0:u

Figure 3.5: Three clients concurrently modifying the same key on two replica
nodes. Perfectly synchronized real time clocks.

46 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

fact concurrent.

The approach based on client real time clocks is used in Cassandra v0.8.x [22].
Although version vectors are the main mechanism in Dynamo, real time
clocks and last writer wins are also indicated as an alternative for applica-
tion settings that tolerate lost updates.

An important drawback with real time is that if client clocks go out of
sync the total order might no longer be compliant with causality. It is easy
to see that a client with systematically delayed clock values will never see
its updates committed and, conversely, that if a clock is always advanced its
client updates will always win over concurrent ones.

An alternative approach that avoids real time clock synchronization and
the potential anomalies when it fails, would be to use Lamport clocks [23],
establishing a total order among updates that is compliant with causal depen-
dencies. Again, this total order would not represent concurrent events and
will loose updates.

3.3.2 Version vectors with per-server entry

A second approach is to track causality by using version vectors [30] with
an entry per server replica node. In this case, each server maintains a ver-
sion vector where each entry summarizes the sequence of updates it reflects.
For example, a causal history of sequential replica events {a1, a2, b1, b2, c1} is
summarized as {(a, 2), (b, 2), (c, 1)}. In traditional version vectors, for a fixed
and ordered set of nodes, this can be further summarized as [2, 2, 1], but this
notation is not adequate for dynamic systems where the number of nodes can
vary over time.

When the client executes a get operation, it receives the version vector
summarizing the causal history of events reflected in the version(s) received.
Later, when the client executes a put, it sends the context on which the update
is executed, i.e., the version vector previously received. The replica node
increments its local counter to reflect the new update, and stores it in the entry
of the received vector corresponding to its own identifier. It then checks if this
new vector causally dominates any version currently stored, and discards any

3.3. COMMON APPROACHES TO CAUSALITY TRACKING 47

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,{})

put(w,{})

put(x,{})

{(b,1)}:v {(b,2)}:w

{(a,1)}:x

x
{(a,1)}

put(y,{(a,1)})

{(a,2)}:y

{}:u

Figure 3.6: Three clients concurrently modifying the same key on two replica
nodes. Per-server entries.

48 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

version made obsolete.

In this case, it is only possible to track the concurrency among updates
that were received in different servers. Figure 3.6 depicts the same example
run but now (as opposed to Figure 3.5) updates y and w are correctly detected
to be concurrent, since {(a, 2)} ‖ {(b, 2)}. If a client get collects these ver-
sions from the two replica nodes, this concurrency will be exposed and the
client, receiving two versions, can submit back a version that dominates both
updates.

However, this approach cannot track causality among updates submitted
to the same server. In the example, when the update w from the client C2 is
submitted to replica Rb, it will get registered with the version vector {(b, 2)}
and appear to dominate the previous committed value v with vector {(b, 1)}.
By comparing the version vectors of both updates, they will not be considered
concurrent. This can be surprising considering the fact that if the second
client had submitted the update to a different server it would be considered
concurrent.

In practice a last writer wins policy was enforced with respect to concur-
rent updates handled in the same replica node, and, in this case, one concur-
rent update was lost. This linearization of concurrent updates, due to the use
of less version vector entries than sources of concurrent activity, is formalized
in plausible clocks [41]. The Dynamo system uses one entry per replica node
and thus falls into this category.

The reason for the concurrent updates of the two clients submitted to
the same server not being considered concurrent is consequence of the fact
that the version vector associated with the second update does not correctly
summarizes its causal history. In fact, the vector {(b, 2)} summarizes updates
{b1, b2}, which includes the update v of the first client C1. One can argue that
the replica node Rb could instead verify that the new update is concurrent
with its current version by checking that the version vector included in the
operation does not dominate the version vector of the current version. In this
case, the replica node could reject the update, implementing a conditional
write semantics. This approach is used, e.g., in Coda [20] and in the CVS
version control system (although not necessarily relying on version vectors).

3.3. COMMON APPROACHES TO CAUSALITY TRACKING 49

However this goes against the usual policy of write availability [13], the norm
in modern key-value stores.

3.3.3 Version vectors with per-client entry

We have seen that version vectors with one entry per replica node are not
enough to track concurrent updates. One natural evolution is to track causal-
ity by using version vectors with one entry per client (if servers can also
update the data, with server side scripts, an entry for each server should also
be included in the version vector). Now the number of entries matches the
number of concurrency sources and one no longer faces a plausible clocks
setting.

As in the previous approach, updates are associated with a version vector.
When a client executes a get operation, it will receive the version vector
associated with the version(s) that it reads. Later, when a client submits a
new update, using put, the replica node will receive this vector and the client
identity.

With per-client entries, the correct way to obtain the integer value used to
register the update would be to have state-full clients that maintain a counter,
increment it and provide it in each put operation, together with the context
previously received. A version vector for the new version can be obtained
from the context version vector by replacing the entry of the client by the
given value. If we want to support the usual model with stateless clients,
which only provide the context received by a get and their unique identifier,
we can do so if we have a read your writes semantics [39] (obtained, e.g.,
through read and write quorums), so that the most recent update by a given
client is present in the context.

Otherwise, the server can, at most, try to infer the most recent update
by that client, by using the maximum of the respective entry in the received
context and all vectors at the server for that key. As a more recent update by
that client can be stored in other server, this can still lead to lost updates.

In Figure 3.7, in the usual run, we illustrate this problem. Client C1 when
writing v in node Rb, has its updated registered as (C1, 1). Its later updates

50 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,{},c1)

put(w,{},c2)

put(x,{},c3)

{(c1,1)}:v
{(c1,1)}:v
{(c2,1)}:w

{(c3,1)}:x

x
{(c3,1)}

put(y,
{(c3,1)},c1)

{(c1,1),(c3,1)}:y

{}:u

Figure 3.7: Three clients concurrently modifying the same key on two replica
nodes. Per-client entries.

will get distinct, and monotonically increasing values as long as the client
reads its last written version. However in this run, the client will issue a later
update in replica Ra and this update will again be registered with (C1, 1). The
consequence is that now value v seems to be dominated by version y, since
{(C1, 1)} < {(C1, 1), (C3, 1)}.

Although, when used with appropriate quorums that ensure read your

writes, this approach can fully trace the causality among concurrent updates
submitted by different clients, it has the obvious drawback of requiring one
entry per client, which makes the size of the vectors now linear with the num-
ber of clients that perform put operations. Dotted version vectors, described
in the next chapter, will provide reliable tracking while avoiding these scala-
bility limitations and quorum formation restrictions.

3.4. RELATED WORK AND SUMMARY 51

3.4 Related Work and Summary

Systems such as Dynamo [13] use unsafe techniques to remove entries (prun-
ing), that are expected not to be necessary, based on time.

Tracking causality through version vectors or vector clocks requires a
space linear with the number of entities in the system, posing scalability
problems for system with a large number of elements [12]. This problem
is experienced in practice, for example, in cloud computing storage systems,
as discussed in Section 3.3.

Besides the safe techniques previously mentioned to remove entries that
are no longer needed, several other directions have been tackled to address
this problem.

The Roam system [35] runs a consensus protocol to decrease, in all
servers, the value of all entries of the version vector by a constant value. The
system only keeps the entries that are larger than zero. The dependency se-

quences [32] mechanism assumes a scenario where dynamic, weakly-connected
sets of entities (mobile hosts) communicate through designated proxy entities
chosen from a stable, well-connected (mobile service stations). The mech-
anism maintains information about the causal predecessors of each event.
It needs to take periodic global snapshots to prune discardable causality-
tracking metadata.

In Depot [24], the version vector associated with each update only in-
cludes the entries that have changed since the previous update in the same
node. However, each node still needs to maintain version vectors that include
entries for all clients and servers.

Other storage systems explore the fact that they manage a large num-
ber of objects to maintain less information for each object. In Microsoft’s
WinFS [25], a base version vector for all objects is maintained for the file
system, and each object maintains only the difference for the base in a con-
cise version vector. In Cimbiosys [34], the authors suggest the use of the
same technique in a peer-to-peer system. These systems, as they maintains
only one entry per server, cannot generate two concurrent version vectors
for tagging concurrent updates submitted to the same server from different

52 CHAPTER 3. CAUSALITY TRACKING IN CLOUD DATABASES

clients, as discussed in Section 3.3.

In a separate WinFS work [29], the authors describe a mechanism that al-
lows encoding of non sequential causal histories by registering exceptions to
the sequence; e.g. {a1, a2, b1, c1, c2, c3, c7} could be represented by {(a, 2), (b, 1), (c, 7)}
plus exceptions {c4, c5, c6}.

Another direction is to use unsafe space-folding approaches that can re-
duce the storage and communication overhead at the expense of less accu-
racy of the causality relation captured by these mechanisms. Although de-
vised as an alternative not to version vectors but to vector clocks, plausible

clocks [41] propose techniques for condensing event counting from multiple
replicas over the same vector entry. The resulting order does not contradict
the causal precedence relation, but because counters are effectively shared
between processes, some concurrent events will be perceived as causally re-
lated. In fact, the previously mentioned Lamport clocks [23], are a notable
example of plausible clocks.

Additionally, another approach trading off less accuracy of causality-
tracking for better scalability is the hash history mechanism [19]. It provides
a directed graph not of update operations, but of version hashes over the state
of each replica. Although independent of the number of replicas in the sys-
tem, the storage overhead grows linearly with the number of updates. In order
to minimize this problem, it truncates the histories, pruning the oldest hashes
based on loosely synchronized clocks. Use of hashes, however, can only
guarantee statistical correctness, and pruning may cause incorrect perception
of concurrency.

Chapter 4

Dotted Version Vectors

4.1 A Kernel for Eventual Consistency

We have seen that, as soon as clients can perform concurrent updates managed
by a single replica node, several concurrent versions may have to be kept in
that node. These version sets are returned by a get operation, and their clocks
are supplied as the context in a put operation.

In this section we argue that the mechanics of a distributed key-value
store, in terms of causality tracking, should be based on two core functions
on the sets of logical clocks of replicas.

• sync(S1, S2): takes two clock sets and returns a clock set. It returns
a set of concurrent clocks, each belonging to one of the sets, and that
together cover both sets while discarding obsolete knowledge;

• update(S, Sr, r): takes a clock set (S , the context supplied by the client),
the set of clocks in the replica node S r, and the replica node id r, and
returns a clock. This clock should: 1) dominate all clocks in S , 2) dom-
inate only those clocks in the system that are already dominated by S

and 3) not be dominated by any join of clocks in the system.

The function sync produces a set of concurrent clocks that describe the
collective causal past in the parameters. It simply returns elements from the
sets in the parameters, and it can have a general implementation, defined only

53

54 CHAPTER 4. DOTTED VERSION VECTORS

in terms of the partial order on clocks, regardless of their actual representa-
tion:

sync(S 1, S 2) = {x ∈ S 1 | @y ∈ S 2. x < y} ∪

{x ∈ S 2 | @y ∈ S 1. x < y}

The update operation can be more of a challenge because its constraints
involve a global condition on the system, but it must be implemented without
global knowledge. This is specially the case in dynamic systems, as described
in [5], but here we have the challenge of how to avoid the use of client iden-
tifiers in clocks.

4.1.1 Using the kernel operations

A key-value store can now implement the operations it intends to make avail-
able to clients by using the kernel operations sync and update.

Operation get(k)

When a client asks some node P to perform a get of some key k (step 1 in
Figure 4.1):

• P determines the set of replica nodes R for k;

• P asks to a subset of nodes in R for the value for that key. Depending on
consistency levels, this subset may contain, for example, a single node
or a quorum of nodes (step 2);

• P waits for the replies (step 3);

• P performs a reduce of the replies using the sync operation, and replies
to the client (step 4).

4.1. A KERNEL FOR EVENTUAL CONSISTENCY 55

Client

Node

Node

Node Node

Replica
Node

Replica
Node

Node Replica
Node

Client

Client

Client

Client

1

4

2

3

2

3

get(k)

(c,v)

Figure 4.1: A get operation using DVV.

56 CHAPTER 4. DOTTED VERSION VECTORS

Operation put(k, v, S)

When a client asks some node P to perform a put for some key k, with a clock
S (step 1 in Figure 4.2):

• P determines the set of replica nodes R for k;

• if P is a replica node for k, then P will coordinate the request; otherwise
P will forward the request to some replica node for k, that will act as
coordinator (step 2);

• the coordinator C performs an update operation with its local set of
clocks S C and its Id IdC, resulting in a new clock value u = update(S , S C, IdC);

• C performs a sync between u and the local set of clocks S C, and stores
the result of the sync S ′C = sync(S C, {u}) (step 3);

• C sends S ′C to a subset of other nodes in R. Depending on consistency
levels, this subset may, for example, be empty or contain a quorum of
nodes (step 4);

• each of those nodes performs a sync between S ′C and the local set of
clocks S i, stores the result of the sync S ′i = sync(S i, S ′C), and acknowl-
edges to C;

• C waits for the replies (if the subset is not empty) (step 5);

• C acknowledges to P (step 6), which in turn acknowledges to the client
(or C acknowledges directly if that is possible) (step 7).

Partition-aware client library

We have described the steps used when a generic load balancer or client li-
brary is used. While any node can coordinate a get operation, for a put the
coordinator must be a replica node. Using a partition-aware client library or
load balancer will help in reducing the response time of a put by removing
the forwarding hop.

4.1. A KERNEL FOR EVENTUAL CONSISTENCY 57

Figure 4.2: A put operation using DVV.

58 CHAPTER 4. DOTTED VERSION VECTORS

4.2 Dotted Version Vectors

We now present a concise and accurate representation for the clocks to be
used as a substitute for the classic version vectors in key-value stores. The
mechanism allows a lossless representation of causality (contrary to, e.g.,
Plausible Clocks) while only using server-based ids, and only a component
per replica node, thus avoiding the space consumption explosion that occurs
in id-per-client approaches.

While a version vector compresses causal histories by representing, for
each component, all events in a range up to a given sequence number, we will
be able to represent also individual events that fall outside such ranges.

As an example, a version vector {(a, 2), (b, 1), (c, 3)} represents the causal
history:

{a1, a2, b1, c1, c2, c3}.

We will be able to represent a causal history like:

{a1, a2, b1, c1, c2, c3, c7},

where event c7 falls outside the range from 1 to 3.

DVV are able to represent, for any given component, both a range, and
a range plus and individual event (a “dot”). We will see that a range plus a
single event (as opposed to arbitrary sets) is enough for the scenario at hand.

4.2.1 Definition

A dotted version vector is a logical clock which consists of a mapping from
identifiers to either integers or pairs of integers (m, n). For notational conve-
nience we will use instead a triple (id,m, n) for such elements of the mapping.
The events represented by a clock can be characterized by a semantic function
from clocks (or sets of clocks) to causal histories:

4.2. DOTTED VERSION VECTORS 59

Client
C1

Client
C3

Time

Replica
Node
Rb

Replica
Node
Ra

Client
C2

{}:u

u
{}

u
{}

u
{}

put(v,
{{}})

put(w,
{{}})

put(x,
{{}})

{(b,0,1)}:v
{(b,0,1)}:v
{(b,0,2)}:w

{(a,0,1)}:x

x
{{(a,0,1)}}

put(y,
{{(a,0,1)}})

{(a,1,2)}:y

{}:u

{(a,1,2)}:y
{(b,0,1)}:v
{(b,0,2)}:w

{(b,0,1)}:v
{(b,0,2)}:w

v,w
{(b,0,1)},{(b,0,2)}

put(z,
{{(b,0,1)},{(b,0,2)}})

{(a,1,2)}:y
{(a,0,3),(b,2)}:z

Figure 4.3: Three clients concurrently modifying the same key on two replica
nodes. Dotted version vectors.

C[[(r,m)]] = {ri | 1 ≤ i ≤ m},

C[[(r,m, n)]] = {ri | 1 ≤ i ≤ m} ∪ {rn},

C[[X]] =
⋃
x∈X

C[[x]].

In a component (r,m, n) we will always have n > m.

With this definition, the causal history:

{a1, a2, b1, c1, c2, c3, c7},

that cannot be represented in a version vector, will be represented by the
dotted version vector {(a, 2), (b, 1), (c, 3, 7)}.

4.2.2 Partial order

The order on clocks can be defined, as usual, in terms of inclusion of causal
histories; i.e.:

60 CHAPTER 4. DOTTED VERSION VECTORS

X ≤ Y ⇐⇒ C[[X]] ⊆ C[[Y]]

This can be computed by the function on mappings:

X ≤ Y ⇐⇒ ∀x ∈ X.∃y ∈ Y. x ≤ y,

where the order on individual components of the mapping is defined by the
clauses:

(r,m) ≤ (r,m′) if m ≤ m′,

(r,m) ≤ (r,m′, n′) if m ≤ m′ ∨ m = m′ + 1 = n′,

(r,m, n) ≤ (r,m′) if n ≤ m′,

(r,m, n) ≤ (r,m′, n′) if n ≤ m′ ∨ (m ≤ m′ ∧ n = n′),
x � y otherwise.

This order allows concurrent clocks even using only a component from a
single replica node. As an example:

{(r, 4)} ‖ {(r, 3, 5)},

as they represent the causal histories:

{r1, r2, r3, r4} ‖ {r1, r2, r3, r5},

This situation will arise when {(r, 4)} is stored in a replica node and a
client, which in the past has read some value and got the context {(r, 3)}, now
performs a put using this context. This situation is very common but cannot
be handled with current mechanisms using server-based identifiers.

In Figure 4.3, we present our usual run using dotted version vectors. It
can be seen that causality is accurately tracked, even tough per-server iden-
tifiers are used. We also extend the run so that replica node Rb decides to
do some anti-entropy and sends state to node Ra that syncs its. Then, client
C2 does an interaction (with no affinity) where it reads from Rb and does an
update z to Ra. We can see that, as expected, z will subsume both v and w,
and is registered as concurrent to y.

4.2. DOTTED VERSION VECTORS 61

4.2.3 Update function

An update registered on a replica node r containing the set of versions S r, can
have a reference definition in terms of causal histories using replica node ids
plus sequence numbers to distinguish events, as:

update(S , S r, r) =
⋃

S ∪ {rn+1} with

n = max({0} ∪ {x | rx ∈
⋃

S r}).

To define the update function over dotted version vectors, we make use
of some auxiliary functions. The ids function gives the set of identifiers in a
clock or set of clocks:

ids((r, _)) = r,

ids((r, _, _)) = r,

ids(X) = {ids(x) | x ∈ X}.

The d_e_ function takes a clock or set of clocks and a replica node iden-
tifier and returns the maximum integer contained in the mapping from that
identifier:

dCer = max({0} ∪ {m | (r,m) ∈ C ∨ (r, _,m) ∈ C}),

dS er = max({0} ∪ {dCer | C ∈ S }).

The update function can now be defined:

update(S , S r, r) = {(i, dS ei) | i ∈ ids(S) ∧ i , r} ∪

{(r, dS er, dS rer + 1)}.

It can be seen by this definition that (given that sync does not generate
new values) all clocks have exactly one component which is a triple; all the
others are the same as in classic version vectors.

In the example of Figure 4.3, each put operation generates a new clock

62 CHAPTER 4. DOTTED VERSION VECTORS

for the new version. The first put from client C1 generates the clock (b, 0, 1),
as no version exists previously in replica node Rb. The same for the first put
from client C3 on replica node Ra, which generates the clock (a, 0, 1). A more
interesting case is the first put from client C2 on replica node Rb. In this case,
as there is a version in replica node Rb with a clock that is not dominated by
the context of the put, {}, the clock generated is (b, 0, 2), encoding only the
event b2 of the causal history.

The second put from client C1 exemplifies the situation where a client
overwrites the version it has previously read. In this case, the generated clock
is (a, 1, 2), as the read context dominates (is equal in this case) to the clock of
the version in the replica node.

The most complex example arises in the second put from client C2. This
example exemplifies the situation where a client receives two concurrent ver-
sions and creates a new version that superseeds the previous concurrent up-
dates. In this case, the context of the put is {{(b, 0, 1)}, {{(b, 0, 2)}}, and the
clock generated in replica node Ra is {(a, 0, 3), (b, 2)}. The component (b, 2)
encodes the events b1, b2 of the causal history, which were represented in the
context of the put. The component (a, 0, 3) registers the new update event a3

associated with this put operation.

4.2.4 Correctness

First we define the following predicate over clock sets:

downset(S)⇐⇒ ∀i ∈ ids(S).∀ 1 ≤ n ≤ dS ei. in ∈ C[[S]],

which is true for sets of clocks for which the union of the corresponding
causal histories are downward closed sets, under the order over events ri ≤

s j ⇔ r = s ∧ i ≤ j. In other words, the predicate is true if, for each node r,
the set contains all events from r up to some point in time.

The reason that makes it possible to have an accurate representation of
causality using dotted clocks is that, as we will show, all sets of clocks, kept
at replica nodes or returned to clients, are downsets.

Namely, as the clock set S sent from a client is a downset, the dotted

4.2. DOTTED VERSION VECTORS 63

version vector u computed in an update u = update(S , S C,C) can represent
accurately the appropriate causal history: the union of the causal histories
corresponding to clocks in S plus a new event.

We now show that, in a given system containing replica nodes R, each
r ∈ R with a replica set S r:

∀r ∈ R. downset(S r).

It is easy to see that if both X and Y are downsets, then Z = sync(X,Y) will
also be a downset. This means that if we assume that the invariant holds, then
the values returned to clients are downsets. It also means that, if S ′C computed
by the coordinator in a put operation is a downset, then the values stored in
other replica nodes after receiving a store request from the coordinator will
also be downsets.

Therefore, to prove that the invariant holds, the only interesting case is
what happens in the coordinator in a put operation. The new clock set to
be stored locally will be the result of an update followed by a sync: u =

update(S , S C,C) and S ′C = sync(S C, {u}). Assuming that S and S C are downsets,
S ′C will also be a downset because:

• although {u} itself may not be a downset, for any identifier i other than
C, the computed mapping (i, dS ei) represents a contiguous range of
events starting from 1 for identifier i in the corresponding causal history
of S ; the sync between {u} and S C will therefore be a downset in what
concerns these identifiers;

• for identifier C, as S C represents all events from C up to dS CeC, and u

contains only one more event with number dS CeC+1, then S ′C represents
a contiguous range starting from 1 for id C.

To summarize: even though {u} is not necessarily a downset, syncing
it with the clock set in the coordinator will result in a downset, as only a
successor event is added.

64 CHAPTER 4. DOTTED VERSION VECTORS

4.3 Summary

We have introduced dotted version vectors, a novel solution for tracking
causal dependencies among update events. The base idea of our solution
is to add the capability to represent an extra isolated event over the downward
closed causal history described by version vectors.

As an example, lets consider Replica B with a clock [(A,3),(B,2),(C,2)]
as shown in figure 4.4. Now a client tries to write in replica B, a value with
a clock that is outdated, lets say [(A,3),(B,1),(C,2)]. This results in a conflict
in the replica, but by using VV with server IDs, we don’t have a way to
express concurrency between both values. As we can see in figure 4.5a, every
increment possible to replica’s ID, either create two identical clocks, or one
of them will dominate the other. Using DVV, we can express this type of
concurrency by adding a triple to the clock, as shown in figure 4.5b. This
new clock says that the client update knows updates 1 and 3 in B. Since it
does not know update 2 of replica B, it is in conflict with the other clock that
knows updates 1 and 2. But server value also does not know update 3, so it is
also in conflict with the client value.

DVV allow an accurate tracking of causality among updates executed by
multiple clients, while using server-based identifiers. Their size is only linear
with the number of servers that register the updates, being bounded by the
degree of replication. When compared with previous accurate proposals that
require client-based identifiers, linear with the number of clients, our solution
is much more efficient, as the number of clients tends to be several orders of
magnitude larger than the number of servers that register updates for a given
data element.

4.3. SUMMARY 65

Figure 4.4: Server clock in replica B

(a)

(b)

Figure 4.5: Client Clock for a concurrent update in replica B, using (a) Ver-
sion Vectors and (b) Dotted Version Vectors

66 CHAPTER 4. DOTTED VERSION VECTORS

Chapter 5

Implementing and Evaluating
DVV

5.1 Implementation

Since Dynamo is not open source, Cassandra and Riak were the ones that
were considered to implement DVV. In the end, Riak was chosen. First, it
is written in Erlang, a fast prototyping language. Being in Erlang also gave
the source code a relatively small size, at least, compared to Cassandra. Most
importantly, Riak already uses Version Vectors (VV), which are structurally
similar to DVV, thus it would be much easier to implement. Given that Cas-
sandra still does not use or support logical clocks, the code refactoring and
adaptation would be tremendously harder and more complex than in Riak’s
case. The smaller the changes to be made, the better, since it is less prone to
code bugs, and the comparison between the original and DVV would be more
straightforward. Finally, Riak uses VV with with per-client entry, which was
the approach that originally motivated DVV.

5.1.1 Operation Put in Riak

When a client asks some node P to perform a put for some key K, with a
clock S (step 1 in Figure 5.1):

67

68 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

Client

Node Node

Node

Node

Replica
Node

Replica
Node

Node

Replica
Node

3
5

3
5 4

PUT(K,V,S)

OK

4

4

2Client

Client

Client

Client

1

6

3

5

Figure 5.1: A put operation in Riak, using VV per-client entry.

5.1. IMPLEMENTATION 69

• P updates S with the client Id, resulting in a new clock S ′ (step 2);

• P determines the set of replica nodes R for K, and forwards the request
with S ′ to all of them (step 3);

• each of those nodes performs a synchronization between the receive S ′

and local clock, storing the result locally and after acknowledges to P

(step 4);

• C waits for a subset of replies from replicas in R. Depending on con-
sistency levels, this subset may, for example, be empty or contain a
quorum of nodes (step 5);

• P acknowledges to the client (step 6).

5.1.2 Changing Operation Put to use DVV in Riak

The first thing to be done was an implementation of DVV in Erlang (see
Appendix A). It is a single file, that contains all the required API functions
and core DVV functions - update and sync. This file was placed in Riak

Core, where are all the core mechanisms are implemented (e.g. Merkle Trees
or Consistent Hashing). Then Riak KV - which is Riak’s “business logic” -
was modified to use DDV instead of VV. This required some key changes
to reflect the core differences between them. One of them was eliminating
X-Riak-ClientId, since we do not use the clients ID anymore to update our
clock. Next are the main changes in specific files, regarding Riak’s behavior.

riak_client Here we simply removed the line where the VV was previously
incremented in a PUT operation.

riak_kv_put_fsm This file implements a Finite-State Machine (FSM), that
encapsulates the PUT operation pipeline. Figure 5.2 represents a simplified
representation of this FSM using VV, while figure 5.3 represents the FSM
adapted to use DVV. Originally, in the “initialize" state, the node coordinat-
ing the request would send it to W number of replicas (remember that W is a
parameter provided by the client to tell how many successful responses should

70 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

Figure 5.2: Finite State Machine Diagram for PUT operations in Riak, using
VV.

5.1. IMPLEMENTATION 71

Figure 5.3: Finite State Machine Diagram for PUT operations in Riak, using
DVV.

72 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

the server receive, before answering back to the client). But now with DVV,
we first see if the current node is a replica, and if not, we forward the request
to one. When the coordinator is a replica, we execute the PUT locally. We
created new states in between “initialize" and “waiting_vnode_coordinator",
to handle this local PUT operation. When the this is done, this replica pro-
vides the resulting object, with the updated clock and value(s) and sends them
to the remaining replicas, where they synchronize their local object with the
one that is sent now.

riak_kv_vnode This is where the local put is done. A provided “flag” tells
if this node is the coordinator, and thus the one that should do the update/sync
to the clock. If this flag is false, the node will only sync the local DVV with
the received one. Otherwise, this node is the coordinator, therefore it will run
the update function with both new and local DVV, and the node ID. Then
run the sync function with that resulting DVV and local DVV. Finally, the
coordinator sends the results to replicas, but this time not as coordinators,
thus they only run the sync function between their local object and the object
provided.

riak_object This file encapsulates a Riak object, containing things like
metadata, data itself, the key, the clock, and so on. Before, an object only
had one clock (one VV), even if there was more than one value (i.e. con-
flicting values). When conflicts were detected, both VV were merged so that
there was only one new VV, which dominated both. This has an obvious dis-
advantage: the conflicting objects could only be resolved by a newer object.
Even if by the gossip between replicas, we found that we could discard some
of the conflicting values that were outdated, we could not.

Imagine that for some key, we already have in Riak two conflicting values
A and B. If a client tries to put a value C in that key, and C conflicts with A,
but is newer than C, then the resulting object would have the three values A,
B and C. Even though B dominated C, which makes C dispensable, since we
do not have a VV for every conflicting object (only an global one), we cannot
know if B dominated C.

With DVV, we change this file so that each value has its own clock. In

5.2. EVALUATION 73

the example above, the resulting object would only contain the A and C val-
ues. By discarding this redundant values, we are actually saving space and
simplifying the complexity of operations, since we manipulate smaller data.
It worth noting that this approach to have set of clocks instead of a merged
clock, could also be applied to VV. Since DVV was designed to work with
set of clocks, it was mandatory to change this aspect, which introduces a little
more complexity to the code, but has the advantages stated above.

Others There are several other minor changes throughout the source code,
but are not relevant for the discussion, since they are mainly code refactoring
and handling set of clocks instead of one clock. Additionally, we made sure
that this implementation still passed all unit tests correctly.

5.2 Evaluation

We evaluated this DVV implementation to see especially three things: (1)
if the performance was affected; (2) if there was savings in metadata space
(smaller clocks); (3) if false conflicts were really gone or diminished. Thus,
benchmarks comparing the original version and the DVV version were ran.
Additionally, other metrics other than latency were tracked, to provide some
insight in what was happening and why. What follows is the benchmarking
tool used, the setup for tests and the results performed.

5.2.1 Basho Bench

Basho Bench is a benchmarking tool created to conduct accurate and repeat-
able performance and stress tests. This tool outputs the throughput (i.e. total
number of operations per second, over the duration of the test) and a range of
latency metrics (i.e. 95th percentile, 99th percentile, 99.9th percentile, max,
median and mean latency) for each operation. Basho Bench only requires one
configuration file. The major parameters that were used are:

• Duration: 20 min (was more than enough to see performance stabiliza-
tion, as seen for example in figure 5.5) ;

74 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

• Number of concurrent clients: 250 or 500;

• Requests per client: 1 or 3;

• Types of requests and their relative proportions: various (detailed later);

• Key Space: [0-50000];

• Key Access: Pareto distribution, i.e. 20% of the keys accessed 80% of
the time;

• Value Size: fixed 1KB, 2KB or 5KB;

• Initial random seed was the same for all test, to ensure the same condi-
tions;

• Number of replies (R and W for the read and write operations) = 2.

5.2.2 Setup

Seven machines in total were used, all in the same local network. A Riak
cluster running with 6 similar machines, while another machine was simu-
lating clients requests. The request rates and number of clients were chosen
to try to prevent resource exhausting, since this would create unpredictable
results. Resources were monitored to prevent saturation, namely CPU, disk
I/O and network bandwidth, as can be seen on figure 5.4. We also used the
default replication factor n_val = 3, also a R = W = 2 (R and W the size of
the read and write quorum). Each test took 30 minutes and the same initial
random seed was used for all test, to ensure the same conditions.

The following types of requests were issued from clients:

• get: a simple read operation that returns the object of a given key;

• put: a blind write, where a value is written to a key, with no causal
context supplied, i.e. without a clock. This operation will increase
concurrency (create siblings) if the given key already exists, since an
empty clock does not dominate any clock, thus always conflicting with
the local node value;

5.2. EVALUATION 75

• upd: an update, that is expressed by a get returning an object and a
context (clock), followed by a 50 ms delay to simulate the latency be-
tween client and server, and finally a put that re-supplies the context
and writes a new object, which supersedes the first one acquired in the
get. This operation reduces the possible concurrency (object with mul-
tiple values) that the get brought.

We ran three different combinations of value’s size, number of clients and
number of request per client per second. And they are:

1. Scenario 1 (S1K): value size 1KB, 500 clients, each with 3 req/s (Ta-
ble 5.1 and Table 5.4);

2. Scenario 2 (S2K): value size 2KB, 500 clients, each with 1 req/s (Ta-
ble 5.2 and Table 5.5);

3. Scenario 3 (S5K): value size 5KB, 250 clients, each with 1 req/s (Ta-
ble 5.3 and Table 5.6);

Each table has the latency of each get and put operations, the mean size
of clock metadata and the mean number of values per object (Siblings), i.e., 1
is the minimum, which represents no siblings at all, thus no concurrency. For
each metric, we provide de ratio between DVV and VV. From DVV perspec-
tive, higher is worse, while lower is better (bolded in the table).

5.2.3 Generic Approach

In this test we adopt a generic and naive approach to the operations distribu-
tion. Given the three operations get/put/upd, four settings were evaluated:
1) 30%/10%/60% (S316), 2) 30%/60%/10% (S361), 3) 60%/10%/30%
(S613) and 4) 60%/30%/10% (S631).

In all combinations we find that clock metadata size is always smaller in
DVV, even with the (default size) pruning that occurs in VV. We also know
that pruning is occurring, because the majority of tests reveal that there were

1This particular test was to heavy for the setup used, so the requests per second were
decreased from three to one per client, to ensure that resources were not exhausted.

76 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

Figure 5.4: CPU, disk I/O and network bandwidth measurements in on ma-
chine, S2k, S316

GET PUT
Scenario 1 Clock Mean Median 95th Mean Median 95th Meta Siblings
GET/PUT/UPD (ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

VV 15.3 13.7 30.5 11.3 9.8 23.4 875 4.35
60/30/10 DVV 12.4 10.1 28.9 13.8 11.6 28.8 228 3.61

DVV/VC 0.81 0.74 0.95 1.22 1.18 1.23 0.26 0.83
VV 6.73 5.66 15.5 3.62 2.80 8.85 797 5.87

30/60/10 1 DVV 12.0 8.14 35.2 14.0 10.3 38.2 312 5.50
DVV/VC 1.78 1.44 2.27 3.88 3.70 4.32 0.39 0.94

VV 7.65 6.60 15.9 5.71 5.16 10.1 790 1.34
60/10/30 DVV 3.16 2.89 5.25 4.31 4.06 6.27 127 1.31

DVV/VC 0.41 0.44 0.33 0.76 0.79 0.62 0.16 0.98
VV 10.4 9.07 21.6 7.48 6.74 13.8 859 1.20

30/10/60 DVV 3.45 3.14 5.83 4.56 4.29 6.59 123 1.16
DVV/VC 0.33 0.35 0.27 0.61 0.64 0.48 0.14 0.97

Table 5.1: Scenario 1 (S1K) with generic approach.

5.2. EVALUATION 77

Figure 5.5: Performance summary for DVV, S361, S2K

GET PUT
Scenario 2 Clock Mean Median 95th Mean Median 95th Meta Siblings
GET/PUT/UPD (ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

VV 5.82 4.94 13.4 3.95 3.08 9.61 538 3.19
60/30/10 DVV 6.15 4.78 16.0 7.66 6.20 18.5 192 3.10

DVV/VC 1.06 0.97 1.19 1.94 2.01 1.93 0.36 0.97
VV 9.84 7.74 25.0 5.51 3.75 15.8 705 5.32

30/60/10 DVV 15.6 11.7 42.1 17.8 14.0 44.9 293 5.16
DVV/VC 1.58 1.52 1.68 3.22 3.73 2.84 0.42 0.97

VV 3.47 3.21 6.86 2.93 2.54 6.11 424 1.44
60/10/30 DVV 2.77 2.53 5.15 4.06 3.75 7.54 114 1.28

DVV/VC 0.80 0.79 0.75 1.38 1.48 1.23 0.27 0.89
VV 3.87 3.60 7.52 3.22 2.83 6.71 546 1.15

30/10/60 DVV 2.90 2.62 5.48 4.21 3.87 8.30 113 1.15
DVV/VC 0.75 0.73 0.73 1.31 1.37 1.24 0.21 1.00

Table 5.2: Scenario 2 (S2K) with generic approach.

78 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

GET PUT
Scenario 3 Clock Mean Median 95th Mean Median 95th Meta Siblings
GET/PUT/UPD (ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

VV 9.57 7.60 24.3 6.08 4.24 16.1 449 3.06
60/30/10 DVV 9.97 7.76 26.1 11.4 9.22 27.1 183 2.98

DVV/VC 1.04 1.02 1.07 1.88 2.17 1.68 0.41 0.98
VV 18.1 13.8 48.0 9.77 6.01 29.5 625 4.95

30/60/10 DVV 22.7 17.7 60.5 26.3 21.0 65.5 277 4.89
DVV/VC 1.26 1.28 1.26 2.69 3.50 2.22 0.44 0.99

VV 4.30 3.95 8.55 3.73 3.23 7.19 337 1.32
60/10/30 DVV 3.91 3.48 7.88 5.43 4.94 9.95 110 1.27

DVV/VC 0.91 0.88 0.92 1.46 1.53 1.38 0.32 0.97
VV 4.72 4.35 9.15 3.98 3.50 7.64 458 1.20

30/10/60 DVV 3.92 3.56 7.42 5.50 5.08 9.97 110 1.15
DVV/VC 0.83 0.82 0.81 1.38 1.45 1.30 0.24 0.95

Table 5.3: Scenario 3 (S5K) with generic approach.

more siblings in the VV case, when compared with same DVV run. This
means that, the major difference between the siblings average results from
false conflicts created by pruning. Therefore, we can conclude that, indeed
DVV is smaller than VV, while preventing false conflicts from happening.
Even if the default size pruning was lowered, metadata would be smaller, but
false conflicts rate would rise.

In terms of performance, things are a bit more complex. First, in all S361
scenarios, DVV performance was always worse than VV. Scenarios S361 are
write-heavy, and the majority of those writes are new objects, which could
generate siblings if that key already had an object. If we look at the sib-
lings average in this case, we see an absurd degree of concurrency happening.
Since only a upd can resolve and simplify concurrency, it is obvious why this
is the use case where most concurrency occurs. This in a rather extreme and
unrealistic use case, but shows that DVV suffers in fact from the problem of
the extra hop to a replica, and also suffers from the fact that it has to send all
the possible siblings of the coordinator replica, to the other replicas. Since
the number of siblings is extremely high, this fact is augmented in the per-
formance problems shown here. Almost the same can be said to scenarios
S631.

Scenarios S316 and S613 are a bit more positive in terms of performance,
and only strengthens the previous conclusions. Being read-heavy, or in other

5.2. EVALUATION 79

point view write-light, we can see that performance in some cases for DVV,
is actually better than VV. Having less siblings, and factoring the smaller
clock metadata, on average operations transfer smaller data. In particular
GET operations, which do not differ in procedure between DVV and VV.
Thus we can see that a read-heavy use case can speed up its read process by
having less to read. The write speed can also benefit from DVV when the data
is small, like the scenarios where values have 1KB in size. Since the major
thing that worsens DVV performance is transferring objects in writes, having
a small value relatively to the clock metadata size, can be enough to actually
gain performance even in write operations. As we can see, when the data size
is bigger like the 2KB or 5KB scenario, the savings on metadata and number
of siblings are not enough for writes performance to be better than VV case.

5.2.4 TPC-W Approach

The TPC-W benchmark from the Transaction Processing Council (TPC)[1]
is a transactional Web benchmark designed to evaluate e-commerce systems.
We did not actually run TPC-W, but we used their workload to give us a more
realistic approach. TPC-W uses three different workload mixes, differing in
the ratio of read-only to read-write interactions; the browsing mix contains
95% read-only interactions (S95), the shopping mix 80% (S80), and the or-
dering mix 50% (S50).

We also did not use put operations, because we assume that every client
follows good behavior, thus reading before every right, so that it can (try to)
update the most recent value. These read-write interactions are of course,
already defined by the upd operation.
It is more realistic this way, than doing so many blind puts (put), like the
previous section. So, we only have get and upd operations in these following
tests.

Results

The first thing we can see is that concurrency is very low, as it would be
expected in a more realistic setting (DeCandia et al. [13] reveals their concur-

80 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

GET UPD
Scenario 1 Clock Mean Median 95th Mean Median 95th Meta Siblings

GET/UPD (ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

VV 2.15 2.15 3.63 55.0 54.9 57.7 159 1.00
95/5 DVV 2.01 2.00 3.49 55.7 55.7 58.8 89 1.00

DVV/VC 0.94 0.93 0.96 1.01 1.01 1.02 0.56 1.00
VV 4.23 3.68 8.51 58.6 58.0 64.5 459 1.00

80/20 DVV 2.48 2.32 3.85 56.5 56.4 59.9 106 1.00
DVV/VC 0.59 0.63 0.45 0.97 0.97 0.93 0.23 1.00

VV 7.70 6.61 16.2 64.4 63.5 74.0 682 1.01
50/50 DVV 2.95 2.68 4.76 57.4 57.1 60.0 113 1.00

DVV/VC 0.38 0.41 0.29 0.89 0.90 0.81 0.17 1.00

Table 5.4: Scenario 1 (S1k) with TPC-W approach.

GET UPD
Scenario 2 Clock Mean Median 95th Mean Median 95th Meta Siblings

GET/UPD (ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

VV 1.73 1.84 2.92 54.5 54.6 56.8 74.5 1.00
95/5 DVV 1.72 1.82 2.99 55.3 55.3 58.4 71.8 1.00

DVV/VC 1.00 0.99 1.03 1.01 1.01 1.03 0.96 1.00
VV 2.37 2.39 4.09 55.4 55.3 58.7 202 1.00

80/20 DVV 2.23 2.25 3.77 56.2 56.2 60.1 93.0 1.00
DVV/VC 0.94 0.94 0.92 1.01 1.02 1.03 0.46 1.00

VV 3.26 3.05 6.42 56.9 56.5 62.5 411 1.00
50/50 DVV 2.59 2.44 4.57 56.8 56.6 61.6 104 1.00

DVV/VC 0.80 0.80 0.71 1.00 1.00 0.99 0.25 1.00

Table 5.5: Scenario 2 (S2k) with TPC-W approach.

GET UPD
Scenario 3 Clock Mean Median 95th Mean Median 95th Meta Siblings

GET/UPD (ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

VV 1.90 1.81 3.97 55.5 55.3 59.0 52.7 1.00
95/5 DVV 1.89 1.80 3.95 56.2 55.8 60.8 63.2 1.00

DVV/VC 1.00 1.00 1.00 1.01 1.01 1.03 1.20 1.00
VV 2.84 2.99 5.00 56.8 56.8 61.0 117 1.00

80/20 DVV 2.77 2.90 4.94 57.7 57.7 62.8 82.0 1.00
DVV/VC 0.98 0.97 0.99 1.02 1.02 1.03 0.70 1.00

VV 3.48 3.49 5.92 57.8 57.7 62.6 233 1.00
50/50 DVV 3.24 3.27 5.41 58.6 58.6 64.0 95.8 1.00

DVV/VC 0.93 0.94 0.91 1.01 1.02 1.02 0.41 1.00

Table 5.6: Scenario 3 (S5k) with TPC-W approach.

5.3. SUMMARY 81

rency rates, and they are very similar to these tests). Therefore, it was only
expected that performance would be better compared to the previous tests.
Metadata size continue to be much smaller in most cases. In one case, meta-
data from DVV was actually bigger than VV. Not surprisingly, that case was
the one with fewer clients and fewer updates, therefore VV did not actually
grow so much (probably with more time, VV would tend to get bigger).

Reading performance was always better, or pretty even between both
mechanisms. Updates, although helped by including the reading latencies,
were pretty good when the value’s size was 1KB. As it been said, given that
VV metadata in S50 scenarios rose significantly, compared to DVV metadata,
in S1k cases, this was most relevant to write performance. In contrast, when
value’s size was in average 5KB, updates did not fair nearly as well. Never-
theless, we can see an improvement over the previous tests, which indicate
that in fact, having less conflicts helps DVV case, since it does not have to do
those extra steps where siblings are sent to replicas.

5.3 Summary

We implemented DVV in Riak with success. It did take code changes, some
of which required a more deep refactoring than previously expected. Having
done that, we ran benchmarks to see where DVV was doing good and bad.
So, lets resume the advantages and disadvantages of using DVV instead of
VV.

First, the advantages:

• Simplify API: since DVV uses the node’s internal 160-bit ID, there is
no need for clients to provide IDs, thus simplifying the API and avoid-
ing potential ID collisions;

• Save space: DVV are bounded to the number of replicas, instead of the
number of clients that have ever done a PUT. Since there is a small and
stable number of replicas, the size of DVV would be much smaller than
traditional VV;

82 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

• Eliminates false conflicts: clock pruning does not cause data loss, but
it does cause false conflicts, where data that could be discard, is viewed
as conflicting. Using DVV, the clock is bound to the number of replicas,
therefore pruning is not necessary, thus eliminating false conflicts;

• Enable partial reconciliation: DVV were designed to manage not one
clock, but a set of clocks. That is to say that when we have conflicts,
we save siblings with their own clock. This enables that futures writes
can partially resolve a subset of the conflicts in our set of siblings. On
the other side, Riak’s implementation does not keep individual clocks
for each sibling; instead, it merges conflicting clocks into one, without
incrementing any value. Then, the only way to resolve these conflicts,
is to write a value with a clock that dominates the merged clock;

• Does not require Quorum: imagine using consistency of 1 (R=W=1)
with VV. The same client can update the same key in different replicas,
and they would have the same clock, even tough they were different
updates. Since DVV uses server side IDs, this is not a problem since
updates in different replicas will always create different clock. Thus,
DVV requires less consistency in advance.

And now the disadvantages:

• More complex write pipeline: when a non-replica node receives a
PUT request, it must forward it to a replica node. This overhead can be
considerable if the transferred data is big. Which is even worse if the
replica is not in the same network as the non-replica. Another thing that
may affect negatively the performance is the fact that clock update and
synchronization has to first be done in the coordinating replica, and then
sent to the remaining replicas, whereas in VV the object goes directly
to all replicas simultaneously. This is made worse when in the DVV
case, the resulting object of the coordinating replica has siblings, which
means that all siblings will be transferred to the remaining replicas.
With VV, only the client object is sent to replicas.

• Serialize operations on same node and same data: given that DVV
uses server side IDs, a little serialization is necessary in the server, i.e.,

5.3. SUMMARY 83

when two writes to the same replica and to the same key are concurrent,
the second can only start, after the first has written locally. It does
not require to wait for the other replicas replies. Since Riak already
serializes each type request per vnode, with its own database, this was
a non-issue for this implementation.

84 CHAPTER 5. IMPLEMENTING AND EVALUATING DVV

Chapter 6

Conclusion

This dissertation introduced Dotted Version Vectors (DVV), a novel solution
for tracking causal dependencies among update events. DVV allow to ac-
curately track causality among updates executed by multiple clients using
information that is only linear with the number of servers that register these
updates, i.e., they are bounded by the degree of replication. When compared
with previously proposed safe solutions that require information linear with
the number of clients, this solution is much more efficient, as the number
of clients tends to be several orders of magnitude larger than the number of
servers that register updates for a given data element.

Riak implementation of Version Vectors (VV) resorts to pruning, when
the number of entries exceeds some threshold, and consequently does not
reliably represent concurrency, introducing false conflicts.

DVV solution is simple and practical: we have modified Riak to use it.
Evaluation showed a significant reduction in metadata size, and also the elim-
ination of false conflicts.
Performance wise, results showed that for very small data being saved, DVV
excels. However, when data’s average size becomes bigger, the operations
latency suffers due to the more complex write pipeline. Even so, this is some-
what compensated by the scalability capacity of DVV, concerning the number
of clients interacting. The bigger the number of clients, the better DVV per-
form in comparison to VV. Since DVV are independent of the number of
clients, it stays relatively stable, no matter how many clients there are. In

85

86 CHAPTER 6. CONCLUSION

contrast, VV scales linearly with clients, so it resorts to pruning the clock,
which ultimately causes false conflicts observed in our tests. In general, the
bigger the number of clients interacting, and the more read-heavy workload,
the better DVV would compare to VV. In contrast, the bigger the object size,
the worse DVV would compare to VV.
Another relevant benefit is a simplification of Riak’s API, avoiding the need
to generate and transmit globally unique client identifiers.

6.1 Future Work

There are two main reasons that worsens DVV performance, that should be
address. One is the extra hop for non-replica nodes, that could be avoid if
we use a partition-aware client library, or load balancer that knows which
replica to communicate, thus reducing the response time. Another solution is
to allow non-replicas to update the clock, instead of forwarding the request to
a replica. The downside is the size of DVV would tend to scale linearly with
the number of servers, instead of replicas. Even though, being upper bound to
number of servers is much more scalable than scaling with number of clients.

The other problem is when the coordinator’s local write results in con-
flicts, thus creating an object with siblings. Having to transfer all the siblings
to the others replicas can create an negative overhead in network bandwidth.

To mitigate this problem, we could adopt an optimistic approach, where
after a local write by the coordinator, we would only transfer to other replicas
the original client value, and the new updated and synchronized local clock.
If other replicas upon receiving this update realized that they missed data that
should have been transferred (this would be checked using DVV), they would
later synchronize through gossip or via a read repair. However, this approach
could create a bit of an overhead on the server side, but that remains to be
tested.

Another option would be to explore the lesser constraints that DVV puts
on consistency levels. More specifically, the tests realized using Riak, did so
with consistency level of quorum, since VV using entries per-client requires
it. By using entries per-replica, DVV do not requires so many replicas an-

6.1. FUTURE WORK 87

swers (quorum), before returning to the client a positive response.
Taking advantage of this, if we strengthen our consistency level requirement
to quorum, maybe the DVV write pipeline could be simplified. More specif-
ically, maybe we could send the client update to all replicas, without waiting
for the coordinator local write to finish.

Finally, we intend to study how the underlying idea of DVV can be ap-
plied to other mechanisms to track causality, such as Interval Tree Clocks
(ITC), in order to better handle membership changes in the set of nodes. Re-
covering lost Ids in clocks, and creating unique Ids without global coordina-
tion, are two main properties of ITC that could be used to further strengthen
DVV approach.

88 CHAPTER 6. CONCLUSION

Bibliography

[1] Yussuf Abu and Shaaban Jane Hillston. A tpc-w-based tool for bench-
marking e-commerce programming technologies. In In Proc. 18th UK

Performance Engineering Workshop, pages 10–11.

[2] José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero.
Bounded version vectors. In Rachid Guerraoui, editor, DISC, volume
3274 of Lecture Notes in Computer Science, pages 102–116. Springer,
2004. ISBN 3-540-23306-7. URL http://dblp.uni-trier.de/db/
conf/wdag/disc2004.html#AlmeidaAB04.

[3] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Version
stamps " decentralized version vectors. In Proceedings of the 22 nd In-

ternational Conference on Distributed Computing Systems (ICDCS’02),
ICDCS ’02, pages 544–, Washington, DC, USA, 2002. IEEE Com-
puter Society. ISBN 0-7695-1585-1. URL http://dl.acm.org/
citation.cfm?id=850928.851897.

[4] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Improving
on version stamps. In Proceedings of the 2007 OTM Confederated

international conference on On the move to meaningful internet sys-

tems - Volume Part II, OTM’07, pages 1025–1031, Berlin, Heidelberg,
2007. Springer-Verlag. ISBN 3-540-76889-0, 978-3-540-76889-0. URL
http://dl.acm.org/citation.cfm?id=1780453.1780489.

[5] Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Interval tree
clocks. In Proceedings of the 12th International Conference on Princi-

ples of Distributed Systems, OPODIS ’08, pages 259–274, Berlin, Hei-
delberg, 2008. Springer-Verlag. ISBN 978-3-540-92220-9.

89

http://dblp.uni-trier.de/db/conf/wdag/disc2004.html#AlmeidaAB04
http://dblp.uni-trier.de/db/conf/wdag/disc2004.html#AlmeidaAB04
http://dl.acm.org/citation.cfm?id=850928.851897
http://dl.acm.org/citation.cfm?id=850928.851897
http://dl.acm.org/citation.cfm?id=1780453.1780489

90 BIBLIOGRAPHY

[6] Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamen-

tals, Simulations and Advanced Topics. John Wiley & Sons, 2004.

[7] João Barreto. Information sharing in mobile networks: a
survey on replication strategies. Technical report, 2003.
URL http://www.gsd.inesc-id.pt/~{}jpbarreto/bib/

MobReplicationSurvey_Barreto03.pdf.

[8] Eric A. Brewer. Towards robust distributed systems (abstract). In Pro-

ceedings of the nineteenth annual ACM symposium on Principles of dis-

tributed computing, PODC ’00, pages 7–, New York, NY, USA, 2000.
ACM. ISBN 1-58113-183-6. doi: http://doi.acm.org/10.1145/343477.
343502. URL http://doi.acm.org/10.1145/343477.343502.

[9] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determin-
ing global states of distributed systems. ACM Trans. Comput. Syst., 3
(1):63–75, 1985. URL http://dblp.uni-trier.de/db/journals/
tocs/tocs3.html#ChandyL85.

[10] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and
Robert E. Gruber. Bigtable: a distributed storage system for struc-
tured data. In Proceedings of the 7th USENIX Symposium on Op-

erating Systems Design and Implementation - Volume 7, OSDI ’06,
pages 15–15, Berkeley, CA, USA, 2006. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1267308.1267323.

[11] Bernadette Charron-Bost. Combinatorics and geometry of consistent
cuts: Application to concurrency theory. In Jean-Claude Bermond and
Michel Raynal, editors, WDAG, volume 392 of Lecture Notes in Com-

puter Science, pages 45–56. Springer, 1989. ISBN 3-540-51687-5.
URL http://dblp.uni-trier.de/db/conf/wdag/wdag89.html#
Charron-Bost89.

[12] Bernadette Charron-Bost. Concerning the size of logical clocks in dis-
tributed systems. Inf. Process. Lett., 39:11–16, July 1991. ISSN 0020-
0190. doi: 10.1016/0020-0190(91)90055-M. URL http://dl.acm.
org/citation.cfm?id=117603.117606.

http://www.gsd.inesc-id.pt/~{}jpbarreto/bib/MobReplicationSurvey_Barreto03.pdf
http://www.gsd.inesc-id.pt/~{}jpbarreto/bib/MobReplicationSurvey_Barreto03.pdf
http://doi.acm.org/10.1145/343477.343502
http://dblp.uni-trier.de/db/journals/tocs/tocs3.html#ChandyL85
http://dblp.uni-trier.de/db/journals/tocs/tocs3.html#ChandyL85
http://dl.acm.org/citation.cfm?id=1267308.1267323
http://dblp.uni-trier.de/db/conf/wdag/wdag89.html#Charron-Bost89
http://dblp.uni-trier.de/db/conf/wdag/wdag89.html#Charron-Bost89
http://dl.acm.org/citation.cfm?id=117603.117606
http://dl.acm.org/citation.cfm?id=117603.117606

BIBLIOGRAPHY 91

[13] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. SIGOPS Oper. Syst. Rev., 41:205–220, Octo-
ber 2007. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/1323293.
1294281. URL http://doi.acm.org/10.1145/1323293.1294281.

[14] Colin Fidge. Timestamps in message-passing systems that preserve
the partial ordering. In 11th Australian Computer Science Conference,
pages 55–66, 1989.

[15] Victor Francisco Fonte. Causality tracking in dynamic distributed sys-

tems. PhD thesis, University of Minho, Braga, Portugal, January 2009.

[16] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT

News, 33:51–59, June 2002. ISSN 0163-5700. doi: http://doi.acm.
org/10.1145/564585.564601. URL http://doi.acm.org/10.1145/
564585.564601.

[17] Richard A. Golding. A weak-consistency architecture for distributed
information services. Computing Systems, 5:5–4, 1992.

[18] Naohiro Hayashibara, Xavier Dfago, Rami Yared, and Takuya
Katayama. The phi accrual failure detector. Reliable Distributed Sys-

tems, IEEE Symposium on, 0:66–78, 2004. ISSN 1060-9857. doi:
http://doi.ieeecomputersociety.org/10.1109/RELDIS.2004.1353004.

[19] Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The
hash history approach for reconciling mutual inconsistency. In Proceed-

ings of the 23nd International Conference on Distributed Computing

Systems (ICDCS), pages 670–677. IEEE Computer Society, 2003.

[20] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda
file system. In Thirteenth ACM Symposium on Operating Systems Prin-

ciples, volume 25, pages 213–225, Asilomar Conference Center, Pacific
Grove, US, 1991.

http://doi.acm.org/10.1145/1323293.1294281
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601

92 BIBLIOGRAPHY

[21] Avinash Lakshman and Prashant Malik. Cassandra: a structured stor-
age system on a P2P network. In Friedhelm Meyer auf der Heide and
Michael A. Bender, editors, SPAA, page 47. ACM, 2009. ISBN 978-
1-60558-606-9. URL http://doi.acm.org/10.1145/1583991.
1584009.

[22] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized
structured storage system. SIGOPS Oper. Syst. Rev., 44:35–40, April
2010. ISSN 0163-5980.

[23] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21:558–565, July 1978. ISSN 0001-0782. doi:
http://doi.acm.org/10.1145/359545.359563. URL http://doi.acm.
org/10.1145/359545.359563.

[24] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish. Depot: Cloud storage with minimal trust. In OSDI 2010,
October 2010.

[25] Dahlia Malkhi and Douglas B. Terry. Concise version vectors in winfs.
In Pierre Fraigniaud, editor, DISC, volume 3724 of Lecture Notes in

Computer Science, pages 339–353. Springer, 2005. ISBN 3-540-29163-
6.

[26] Keith Marzullo and Gil Neiger. Detection of global state predicates.
In Sam Toueg, Paul G. Spirakis, and Lefteris M. Kirousis, editors,
WDAG, volume 579 of Lecture Notes in Computer Science, pages 254–
272. Springer, 1991. ISBN 3-540-55236-7. URL http://dblp.
uni-trier.de/db/conf/wdag/wdag91.html#MarzulloN91.

[27] Friedemann Mattern. Algorithms for distributed termination detection.
Distributed Computing, 2(3):161–175, 1987. URL http://dx.doi.
org/10.1007/BF01782776.

[28] Friedemann Mattern. Virtual time and global states of distributed sys-
tems. In Parallel and Distributed Algorithms, pages 215–226. North-
Holland, 1989.

http://doi.acm.org/10.1145/1583991.1584009
http://doi.acm.org/10.1145/1583991.1584009
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://dblp.uni-trier.de/db/conf/wdag/wdag91.html#MarzulloN91
http://dblp.uni-trier.de/db/conf/wdag/wdag91.html#MarzulloN91
http://dx.doi.org/10.1007/BF01782776
http://dx.doi.org/10.1007/BF01782776

BIBLIOGRAPHY 93

[29] Lev Novik, Irena Hudis, Douglas B. Terry, Sanjay Anand, Vivek
Jhaveri, Ashish Shah, and Yunxin Wu. Peer-to-peer replication in
winFS. Technical Report MSR-TR-2006-78, Microsoft Research
(MSR), June 2006.

[30] D. S. Parker, G. J. Popek, G. Rudisin, A. Stoughton, B. J. Walker,
E. Walton, J. M. Chow, D. Edwards, S. Kiser, and C. Kline. De-
tection of mutual inconsistency in distributed systems. IEEE Trans.

Softw. Eng., 9:240–247, May 1983. ISSN 0098-5589. doi: http:
//dx.doi.org/10.1109/TSE.1983.236733. URL http://dx.doi.org/
10.1109/TSE.1983.236733.

[31] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M.
Theimer, and Alan J. Demers. Flexible update propagation for weakly
consistent replication. In Sixteen ACM Symposium on Operating Sys-

tems Principles, Saint Malo, France, October 1997.

[32] Ravi Prakash and Mukesh Singhal. Dependency sequences and hierar-
chical clocks: Efficient alternatives to vector clocks for mobile comput-
ing systems. Wireless Networks, pages 349–360, 1997. also presented
in Mobicom96.

[33] Dan Pritchett. BASE: An acid alternative. ACM Queue, 6(3):48–55,
2008. URL http://doi.acm.org/10.1145/1394127.1394128.

[34] Venugopalan Ramasubramanian, Thomas L. Rodeheffer, Douglas B.
Terry, Meg Walraed-Sullivan, Ted Wobber, Catherine C. Marshall, and
Amin Vahdat. Cimbiosys: a platform for content-based partial replica-
tion. In Proceedings of the 6th USENIX symposium on Networked sys-

tems design and implementation, pages 261–276, Berkeley, CA, USA,
2009. USENIX Association.

[35] David Howard Ratner. Roam: A Scalable Replication System for Mobile

and Distributed Computing. PhD thesis, 1998. UCLA-CSD-970044.

[36] Michel Raynal and Mukesh Singhal. Logical time: Capturing causality
in distributed systems. IEEE Computer, 30:49–56, February 1996.

http://dx.doi.org/10.1109/TSE.1983.236733
http://dx.doi.org/10.1109/TSE.1983.236733
http://doi.acm.org/10.1145/1394127.1394128

94 BIBLIOGRAPHY

[37] Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Com-

put. Surv., 37:42–81, March 2005. ISSN 0360-0300. doi: http://doi.
acm.org/10.1145/1057977.1057980. URL http://doi.acm.org/10.
1145/1057977.1057980.

[38] Reinhard Schwarz and Friedemann Mattern. Detecting causal rela-
tionships in distributed computations: in search of the holy grail.
Distrib. Comput., 7:149–174, March 1994. ISSN 0178-2770. doi:
10.1007/BF02277859. URL http://dl.acm.org/citation.cfm?
id=1081582.1081586.

[39] Douglas Terry, Alan Demers, Karin Petersen, Mike Spreitzer, Marvin
Theimer, and Brent Welch. Session guarantees for weakly consistent
replicated data. In International Conference on Parallel and Distributed

Inormation Systems, Austin, TX, US, September 1994.

[40] Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.,
4:180–209, June 1979. ISSN 0362-5915. doi: http://doi.acm.
org/10.1145/320071.320076. URL http://doi.acm.org/10.1145/
320071.320076.

[41] F. J. Torres-Rojas and M. Ahamad. Plausible clocks: constant size log-
ical clocks for distributed systems. Distributed Computing, 12(4):179–
196, 1999.

[42] M. Wiesmann, F. Pedone, A. Schiper, Kem B., and G. Alonso. Un-
derstanding replication in databases and distributed systems. In Pro-

ceedings of the The 20th International Conference on Distributed Com-

puting Systems (ICDCS 2000), ICDCS ’00, pages 464–, Washington,
DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0601-1. URL
http://dl.acm.org/citation.cfm?id=850927.851782.

[43] Gene T. J. Wuu and Arthur J. Bernstein. Efficient solutions to the
replicated log and dictionary problems. Operating Systems Review, 20
(1):57–66, 1986. URL http://dblp.uni-trier.de/db/journals/
sigops/sigops20.html#WuuB86.

http://doi.acm.org/10.1145/1057977.1057980
http://doi.acm.org/10.1145/1057977.1057980
http://dl.acm.org/citation.cfm?id=1081582.1081586
http://dl.acm.org/citation.cfm?id=1081582.1081586
http://doi.acm.org/10.1145/320071.320076
http://doi.acm.org/10.1145/320071.320076
http://dl.acm.org/citation.cfm?id=850927.851782
http://dblp.uni-trier.de/db/journals/sigops/sigops20.html#WuuB86
http://dblp.uni-trier.de/db/journals/sigops/sigops20.html#WuuB86

Appendix A

Implementation of Dotted Version
Vectors in Erlang

1 %% @doc A s i m p l e Er lang i m p l e m e n t a t i o n o f d o t t e d v e r s i o n
v e c t o r s .

2 %%
3 %% @reference N . M. P reg u i \ c { c } a , C . Baquero , P . S . Almeida ,

V . Fonte ,
4 %% and R . Gon \ c { c } a l v e s (2 0 1 0) . " Do t t ed v e r s i o n v e c t o r s :

L o g i c a l c l o c k s f o r
5 %% o p t i m i s t i c r e p l i c a t i o n " . CoRR , abs / 1 0 1 1 . 5 8 0 8
6
7
8 −module (d o t t e d v v) .
9

10 − a u t h o r (’ R i c a r d o � Gonca lves �<tome@di . uminho . pt > ’) .
11
12 −export ([f r e s h / 0 , d e s c e n d s / 2 , sync / 2 , g e t _ c o u n t e r / 2 ,

g e t _ t i m e s t a m p / 2 ,
13 u p d a t e / 3 , a l l _ n o d e s / 1 , e q u a l / 2 , i n c r e m e n t / 2 , merge / 1 ,

g e t _ m a x _ c o u n t e r / 2]) .
14
15
16 − t y p e d o t t e d v v () : : [d v v _ e n t r y ()] .
17 − t y p e d v v _ e n t r y () : : { dvv_ id () , { counterM () , t imes t amp () } } |

18 { dvv_ id () , { counterM () , coun te rN () , t imes t amp () } } .
19

95

96APPENDIX A. IMPLEMENTATION OF DOTTED VERSION VECTORS IN ERLANG

20 % i d s can have any term () as a name , b u t t h e y must d i f f e r
from each o t h e r .

21 − t y p e dvv_ id () : : t e rm () .
22 − t y p e counterM () : : i n t e g e r () .
23 − t y p e coun te rN () : : i n t e g e r () .
24 − t y p e t imes t amp () : : i n t e g e r () .
25
26 % @doc Cr ea t e a brand new d o t t e d v v .
27 −spec f r e s h () −> d o t t e d v v () .
28 f r e s h () −> [] .
29
30
31
32 % @doc Re tu rn t r u e i f Va i s a d i r e c t d e s c e n d a n t o f Vb , e l s e

f a l s e −− remember , a d o t t e d v v i s i t s own d e s c e n d a n t !
33 −spec d e s c e n d s (Va : : [d o t t e d v v ()] , Vb : : [d o t t e d v v ()]) −>

b o o l e a n ()
34 ; (Va : : d o t t e d v v () , Vb : : d o t t e d v v ()) −> b o o l e a n () .
35 d e s c e n d s (A, B) −>

36 A2 = l i s t s : f l a t t e n (A) ,
37 B2 = l i s t s : f l a t t e n (B) ,
38 case (A2 =:= B2) and (A2 =:= []) of
39 t rue −> f a l s e ;
40 f a l s e −> d e s c e n d s 1 (A, B)
41 end .
42 d e s c e n d s 1 (_ , []) −> t rue ;
43 d e s c e n d s 1 (S1= [{ _ , _ } | _] , S2) −> d e s c e n d s 1 ([S1] , S2) ;
44 d e s c e n d s 1 (S1 , S2= [{ _ , _ } | _]) −> d e s c e n d s 1 (S1 , [S2]) ;
45 d e s c e n d s 1 (S1 , S2) −>

46 d e s c e n d s 2 (S1 , S2) .
47
48 d e s c e n d s 2 (_ , []) −>

49 t rue ;
50 d e s c e n d s 2 ([] , _) −>

51 f a l s e ;
52 d e s c e n d s 2 ([H | T] , S) −>

53 case b e l o n g s D e l e t e (H, S) of
54 f a l s e −> f a l s e ;
55 { true , S2 } −> d e s c e n d s 2 (T , S2)
56 end .
57

97

58 b e l o n g s D e l e t e (_ , []) −>

59 f a l s e ;
60 b e l o n g s D e l e t e (E , [H | T]) −>

61 case d e s c e n d s _ a u x (l i s t s : f l a t t e n (E) , l i s t s : f l a t t e n (H))
a n d a l s o (e q u a l (E ,H)== f a l s e) of

62 t rue −> { true , T} ;
63 f a l s e −> b e l o n g s D e l e t e (E , T)
64 end .
65
66
67 d e s c e n d s _ a u x (_ , []) −>

68 % a l l d o t t e d v v s descend from t h e empty d o t t e d v v
69 t rue ;
70 d e s c e n d s _ a u x (Va , [{ IdB , { CtrB , _ } } | V b t a i l]) −>

71 CtrA =

72 case g e t _ c o u n t e r (IdB , Va) of
73 undef ined −> f a l s e ;
74 {CAm, CAn} −> i f CAn == CAm+1 −>

75 CAn ;
76 t rue −>

77 {CAm, CAn}
78 end ;
79 CA −> CA
80 end ,
81 case CtrA of
82 f a l s e −>

83 f a l s e ;
84 { CtrAm , _CtrAn } −>

85 i f CtrB > CtrAm−>

86 f a l s e ;
87 t rue −>

88 d e s c e n d s _ a u x (Va , V b t a i l)
89 end ;
90 _ −>

91 i f
92 CtrA < CtrB −>

93 f a l s e ;
94 t rue −>

95 d e s c e n d s _ a u x (Va , V b t a i l)
96 end
97 end ;

98APPENDIX A. IMPLEMENTATION OF DOTTED VERSION VECTORS IN ERLANG

98 d e s c e n d s _ a u x (Va , [{ IdB , { CtrBm , CtrBn , T} } | V b t a i l]) when
CtrBn == CtrBm+1 −>

99 d e s c e n d s _ a u x (Va , ([{ IdB , { CtrBn , T} }]++ V b t a i l)) ;
100 d e s c e n d s _ a u x (Va , [{ IdB , { CtrBm , CtrBn , _T } } | V b t a i l]) −>

101 CtrA =

102 case g e t _ c o u n t e r (IdB , Va) of
103 undef ined −> f a l s e ;
104 {CAm, CAn} −> i f CAn == CAm+1 −>

105 CAn ;
106 t rue −>

107 {CAm, CAn}
108 end ;
109 CA −> CA
110 end ,
111
112 case CtrA of
113 f a l s e −>

114 f a l s e ;
115 { CtrAm , CtrAn } −>

116 i f (CtrBn == CtrAn) and (CtrAm < CtrBm) −>

117 f a l s e ;
118 (CtrBn == CtrAn) and (CtrAm >= CtrBm) −>

119 d e s c e n d s _ a u x (Va , V b t a i l) ;
120 CtrBm == CtrAm −> %% CtrBn =/= CtrAn
121 f a l s e ;
122 CtrBn > CtrAm −>

123 f a l s e ;
124 t rue −>

125 d e s c e n d s _ a u x (Va , V b t a i l)
126 end ;
127 _ −>

128 i f
129 CtrA < CtrBm −>

130 f a l s e ;
131 CtrA < CtrBn −>

132 f a l s e ;
133 t rue −>

134 d e s c e n d s _ a u x (Va , V b t a i l)
135 end
136 end .
137

99

138
139 merge (S) −> merge2 (l i s t s : f l a t t e n (S)) .
140 merge2 ([]) −> [] ;
141 merge2 (S) −>

142 S2 = s e t s : f r o m _ l i s t (S) ,
143 S3 = s e t s : t o _ l i s t (S2) ,
144 Old = [[SB | | SB <− S3 , d e s c e n d s ([SA] , [SB])] | | SA <− S3] ,
145 Old2 = f l a t t e n (Old) ,
146 VOld = s e t s : f r o m _ l i s t (Old2) ,
147 VRes = s e t s : s u b t r a c t (S2 , VOld) ,
148 s e t s : t o _ l i s t (VRes) .
149
150
151
152 %%%%%%%%%%%%%%%%%%%% sync (S1 , S2) −> S
153 % @doc Takes two c l o c k s e t s and r e t u r n s a c l o c k s e t .
154 % I t r e t u r n s a s e t o f c o n c u r r e n t c l o c k s ,
155 % each b e l o n g i n g t o one o f t h e s e t s , and t h a t
156 % t o g e t h e r c o v e r bo th s e t s w h i l e d i s c a r d i n g o b s o l e t e

knowledge .
157 −spec sync (Se t1 : : [d o t t e d v v ()] , Se t2 : : [d o t t e d v v ()]) −> [

d o t t e d v v ()] .
158 sync (S1= [{ _ , _ } | _] , S2) −> sync ([S1] , S2) ;
159 sync (S1 , S2= [{ _ , _ } | _]) −> sync (S1 , [S2]) ;
160 sync (S1 , S2) −>

161
162 sync2 (S1 , S2) .
163 sync2 ([] , []) −> [] ;
164 sync2 ([] , S2) −> S2 ;
165 sync2 (S1 , []) −> S1 ;
166 sync2 (Set1 , Se t2) −>

167 S = Se t1 ++ Set2 ,
168 SU = [s e t s : t o _ l i s t (s e t s : f r o m _ l i s t (B)) | | B <− S] ,
169 Old = [[S2 | | S2 <− SU ,
170 d e s c e n d s (S1 , S2)]
171 | | S1 <− SU] ,
172 Old2 = f l a t t e n (Old) ,
173 VOld = s e t s : f r o m _ l i s t (Old2) ,
174 VS = s e t s : f r o m _ l i s t (SU) ,
175 VRes = s e t s : s u b t r a c t (VS , VOld) ,
176 s e t s : t o _ l i s t (VRes) .

100APPENDIX A. IMPLEMENTATION OF DOTTED VERSION VECTORS IN ERLANG

177
178
179 % @priva te
180 f l a t t e n ([]) −> [] ;
181 f l a t t e n ([H | T]) −> H ++ f l a t t e n (T) .
182
183 % @doc I n c r e m e n t DottedVV a t Node .
184 −spec i n c r e m e n t (Id : : dvv_ id () , Do t t edvv : : d o t t e d v v ()) −>

d o t t e d v v () .
185 i n c r e m e n t (Id , Do t t edvv) −>

186 u p d a t e (Dot tedvv , Dot tedvv , Id) .
187
188 %%%%%%%%%%%%%%%%%%%% up da te (Sc , Sr , r) −> S
189 % @doc Update d o t t e d v v a t Node .
190 −spec u p d a t e (Sc : : [d o t t e d v v ()] , Sr : : [d o t t e d v v ()] , IDr : :

dvv_ id ()) −> d o t t e d v v () .
191 u p d a t e (A, B , Id) −> u p d a t e 2 (l i s t s : f l a t t e n (A) , l i s t s : f l a t t e n (B) ,

Id) .
192 u p d a t e 2 (Sc , Sr , IDr) −>

193 MaxC = g e t _ m a x _ c o u n t e r (IDr , Sc) ,
194 MaxR = g e t _ m a x _ c o u n t e r (IDr , Sr) ,
195 case (MaxC == MaxR) of
196 t rue −>

197 [{ Id , g e t _ m a x _ c o u n t e r _ t i m e (Id , Sc) } | | Id <− a l l _ n o d e s
(Sc) , Id =/= IDr] ++

198 [{ IDr , {MaxR + 1 , t imes t amp () } }] ;
199 f a l s e −>

200 [{ Id , g e t _ m a x _ c o u n t e r _ t i m e (Id , Sc) } | | Id <− a l l _ n o d e s
(Sc) , Id =/= IDr] ++

201 [{ IDr , {MaxC , MaxR + 1 , t imes t amp () } }]
202 end .
203
204
205 %%%%%%%%%%%%%%%%%%%% i d s (X) −> [i d]
206 % @doc Re tu rn t h e l i s t o f a l l nodes t h a t have e v e r

i n c r e m e n t e d d o t t e d v v .
207 −spec a l l _ n o d e s (Dot t edvv : : d o t t e d v v ()) −> [dvv_ id ()]
208 ; ([Dot tedvv : : d o t t e d v v ()]) −> [dvv_ id ()] .
209
210 a l l _ n o d e s ([]) −> [] ;
211 a l l _ n o d e s ({X, _ }) −> [X] ;

101

212 a l l _ n o d e s (Dot t edvv= [{ _ , _ } | _]) −>

213 s e t s : t o _ l i s t (s e t s : f r o m _ l i s t ([X | | {X, { _ , _ } } <− Dot tedvv]
++ [X | | {X, { _ , _ , _ } } <− Dot tedvv])) .

214
215
216
217 %%%%%%%%%%%%%%%%%%%% [S] r −> max (Sr)
218 % @priva te
219 −spec g e t _ m a x _ c o u n t e r (Id : : dvv_ id () , [Dot tedvv : : d o t t e d v v ()

]) −> counterM () .
220 g e t _ m a x _ c o u n t e r (A, B) −> g e t _ ma x _c o un t e r _ au x (A, B , 0) .
221 ge t _m a x_ c ou n t e r _a u x (_ , [] , Acc) −>

222 Acc ;
223 ge t _m a x_ c ou n t e r _a u x (Id , [{ Id2 , {_M, N, _T } } | T a i l] , Acc) when Id

=:= Id2 −>

224 case N < Acc of
225 t rue −> g e t _ ma x _c o un t e r _a u x (Id , T a i l , Acc) ;
226 f a l s e −> g e t _ ma x _c o un t e r _ au x (Id , T a i l ,N)
227 end ;
228 ge t _m a x_ c ou n t e r _a u x (Id , [{ Id2 , {M, _T } } | T a i l] , Acc) when Id =:=

Id2 −>

229 case M < Acc of
230 t rue −> g e t _ ma x _c o un t e r _a u x (Id , T a i l , Acc) ;
231 f a l s e −> g e t _ ma x _c o un t e r _ au x (Id , T a i l ,M)
232 end ;
233 ge t _m a x_ c ou n t e r _a u x (Id , [_ | T a i l] , Acc) −>

234 ge t _m a x_ c ou n t e r _a u x (Id , T a i l , Acc) .
235
236
237
238 g e t _ m a x _ c o u n t e r _ t i m e (A, B) −> g e t _ m a x _ c o u n t e r _ t i m e _ a u x (A, B , { 0 ,

t imes t amp () }) .
239 g e t _ m a x _ c o u n t e r _ t i m e _ a u x (_ , [] , Acc) −>

240 Acc ;
241 g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , [{ Id2 , {_M, N, T} } | T a i l] , Acc={N2 ,

_T2 }) when Id =:= Id2 −>

242 case N < N2 of
243 t rue −> g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , T a i l , Acc) ;
244 f a l s e −> g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , T a i l , {N, T})
245 end ;

102APPENDIX A. IMPLEMENTATION OF DOTTED VERSION VECTORS IN ERLANG

246 g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , [{ Id2 , {M, T} } | T a i l] , Acc={N2 , _T2 }
) when Id =:= Id2 −>

247 case M < N2 of
248 t rue −> g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , T a i l , Acc) ;
249 f a l s e −> g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , T a i l , {M, T})
250 end ;
251 g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , [_ | T a i l] , Acc) −>

252 g e t _ m a x _ c o u n t e r _ t i m e _ a u x (Id , T a i l , Acc) .
253
254
255
256 % @doc Get t h e c o u n t e r v a l u e i n d o t t e d v v s e t from Node .
257 −spec g e t _ c o u n t e r (Id : : dvv_ id () , Do t t edvv : : d o t t e d v v ()) −>

counterM () | { counterM () , coun te rN () } | undef ined .
258 g e t _ c o u n t e r (Id , Do t t edvv) −>

259 case p r o p l i s t s : g e t _ v a l u e (Id , Do t t edvv) of
260 {M, _ } −> M;
261 {M, N, _ } −> {M,N} ;
262 undef ined −> undef ined
263 end .
264
265
266 % @doc Get t h e t i m e s t a m p v a l u e i n a d o t t e d v v s e t from Node .
267 −spec g e t _ t i m e s t a m p (Node : : dvv_ id () , Do t t edvv : : d o t t e d v v ())

−> t imes t amp () | undef ined .
268 g e t _ t i m e s t a m p (Node , Dot t edvv) −>

269 case p r o p l i s t s : g e t _ v a l u e (Node , Do t t edvv) of
270 { _ , _ , TS} −> TS ;
271 { _ , TS} −> TS ;
272 undef ined −> undef ined
273 end .
274
275 % @priva te
276 t imes t amp () −>

277 c a l e n d a r : d a t e t i m e _ t o _ g r e g o r i a n _ s e c o n d s (e r l a n g :
u n i v e r s a l t i m e ()) .

278
279
280
281
282 % @doc Compares two d o t t e d v v s f o r e q u a l i t y .

103

283 −spec e q u a l (Do t t edvv : : [d o t t e d v v ()] , Do t t edvv : : [d o t t e d v v ()
]) −> b o o l e a n () .

284 e q u a l ([] , []) −> t rue ;
285 e q u a l (S1= [{ _ , _ } | _] , S2) −> e q u a l ([S1] , S2) ;
286 e q u a l (S1 , S2= [{ _ , _ } | _]) −> e q u a l (S1 , [S2]) ;
287 e q u a l (S1 , S2) −>

288 e q u a l 2 (S1 , S2) .
289
290
291 e q u a l 2 ([] , []) −>

292 t rue ;
293 e q u a l 2 ([] , _) −>

294 f a l s e ;
295 e q u a l 2 (_ , []) −>

296 f a l s e ;
297 e q u a l 2 ([H | T] , S) −>

298 case b e l o n g s D e l e t e 2 (H, S) of
299 f a l s e −> f a l s e ;
300 { true , S2 } −> e q u a l 2 (T , S2)
301 end .
302
303
304 b e l o n g s D e l e t e 2 (_ , []) −>

305 f a l s e ;
306 b e l o n g s D e l e t e 2 (E , [H | T]) −>

307 case e q u a l 3 (E ,H) of
308 t rue −> { true , T} ;
309 f a l s e −> b e l o n g s D e l e t e 2 (E , T)
310 end .
311
312 e q u a l 3 (VA,VB) −>

313 VSet1 = s e t s : f r o m _ l i s t (VA) ,
314 VSet2 = s e t s : f r o m _ l i s t (VB) ,
315 case s e t s : s i z e (s e t s : s u b t r a c t (VSet1 , VSet2)) > 0 of
316 t rue −> f a l s e ;
317 f a l s e −>

318 case s e t s : s i z e (s e t s : s u b t r a c t (VSet2 , VSet1)) > 0 of
319 t rue −> f a l s e ;
320 f a l s e −> t rue
321 end
322 end .

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Context
	Problem Statement
	Contributions
	Dissertation Outline

	Literature review
	CAP Theorem
	The CAP systems

	Order, Cause and Effect
	Order Theoretical Concepts
	Causality
	Happens-before

	Logical Clocks
	Scalar Clocks
	Vector Clocks
	Version Vectors
	Interval Tree Clocks

	Summary

	Causality Tracking in Cloud Databases
	System model
	Cloud Databases
	Dynamo
	Cassandra
	Riak

	Common approaches to Causality tracking
	Causally compliant total order
	Version vectors with per-server entry
	Version vectors with per-client entry

	Related Work and Summary

	Dotted Version Vectors
	A Kernel for Eventual Consistency
	Using the kernel operations

	Dotted Version Vectors
	Definition
	Partial order
	Update function
	Correctness

	Summary

	Implementing and Evaluating DVV
	Implementation
	Operation Put in Riak
	Changing Operation Put to use DVV in Riak

	Evaluation
	Basho Bench
	Setup
	Generic Approach
	TPC-W Approach

	Summary

	Conclusion
	Future Work

	References
	Appendix
	Implementation of Dotted Version Vectors in Erlang

