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ABSTRACT 
 

Biosurfactants are molecules produced by a variety of microorganisms that exhibit 

pronounced surface and emulsifying activities. A wide range of chemical structures can be found 

among these compounds. Hence, it is reasonable to expect diverse properties and physiological 

functions for different groups of biosurfactants. Thus, the aim of this thesis was to prepare mixtures 

of biosurfactants produced by different microorganisms, in order to evaluate their main 

characteristics (surface tension, emulsification ability, antimicrobial and anti-adhesive activities) for 

several applications, namely in the oil recovery, health care and biomedical fields. 

Initial screening revealed that biosurfactants from Lactobacillus agilis CCUG31450, 

Bacillus subtilis PX573 and Pseudomonas aeruginosa PX112 possessed the most notable activity. 

Therefore, strategies to improve biosurfactants yield and reduce production costs were conducted. 

The B. subtilis PX573 and P. aeruginosa PX112 biosurfactants yields increased 2.8 and 2.5 times, 

respectively; due to the optimization of the agitation and use of low-cost substrates. Moreover, the 

development of an efficient downstream process led to an additionally increase of the amount of 

P. aeruginosa PX112 biosurfactants recovered. The evaluation of biosurfactants stability at extreme 

environmental conditions was performed. The results showed that biosurfactants were very stable, 

suggesting their application in bioremediation and in the oil industry. The antimicrobial, anti-

adhesive and oil recovery activity of the produced biosurfactants were evaluated, first individually 

and then within different mixtures. In the antimicrobial assays, individual biosurfactants from B. 

subtilis PX573 and P. aeruginosa PX112 showed the most interesting results, mainly against Gram-

positive bacteria. However, it was with the mixture of biosurfactants from lactic acid bacteria 

Lactobacillus paracasei A20 and Lactobacillus animalis ATCC35046 that the most remarkable 

synergetic effect was observed. In the case of the anti-adhesive assays, the probiotic biosurfactants 

from L. agilis CCUG31450 were the most effective and the mixture P. aeruginosa PX112 (CSLM) 

and L. agilis CCUG31450 (MRS) biosurfactants showed the most positive interaction. At last, from 

the oil recovery assays it was found that biosurfactants from B. subtilis PX573 and P. aeruginosa 

PX112 were equally or even a more effective than the chemical surfactants tested.  

In conclusion, each mixture tested in the different assays showed a unique activity that 

was dependent on the type of biosurfactant, the proportion of the mixture and the pathogenic strain 

studied. In some cases, an interesting synergetic effect between different biosurfactants was 

achieved that consequently enhanced their activity in the diverse applications tested.   
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SUMÁRIO 
 Os biosurfactantes são moléculas produzidas por uma variedade de microrganismos que 

exibem uma interessante atividade de superfície e emulsionante. Estes compostos podem 

apresentar uma grande variedade de estruturas químicas. Assim, é aceitável esperar que os 

diferentes grupos de biosurfactantes possam apresentar diversas propriedades e funções 

fisiológicas. Deste modo, esta tese teve como objetivo a preparação de misturas de biosurfactantes 

produzidos por diferentes microrganismos, de forma a avaliar as suas principais características 

(tensão superficial, capacidade de emulsificação, atividades antimicrobiana e anti-adesiva) e testar 

a sua aplicação nas áreas de recuperação do petróleo, saúde e biomédica. 

 Uma análise inicial revelou que os biosurfactantes produzidos por Lactobacillus agilis 

CCUG31450, Bacillus subtilis PX573 e Pseudomonas aeruginosa PX112 apresentavam uma 

atividade mais notável. Assim, foram aplicadas estratégias para promover o aumento da produção 

de biosurfactantes e a redução dos respetivos custos. O rendimento dos biosurfactantes de B. 

subtilis PX573 e P. aeruginosa PX112 aumentou 2.8 e 2.5 vezes respetivamente, devido a 

otimização da agitação e do uso de substratos de baixo custo. Além disso, o desenvolvimento de 

um processo eficiente de recuperação levou a um aumento adicional dos biosurfactantes de P. 

aeruginosa PX112 recuperados. Foi realizada a avaliação da estabilidade dos biosurfactants em 

condições ambientais extremas. Os resultados obtidos mostraram que os biosurfactantes eram 

bastante estáveis, sugerindo a sua aplicação na biorremediação e na indústria petrolífera. Foi, de 

igual modo, avaliada a atividade antimicrobiana, anti-adesiva e de recuperação de petróleo, 

primeiro individualmente e depois com diferentes misturas de biosurfactantes. Nos testes 

antimicrobianos os biosurfactantes individuais produzidos por B. subtilis PX573 e P. aeruginosa 

PX112 revelaram os resultados mais interessantes, principalmente contras as bactérias Gram-

positivas. Contudo, foi na mistura preparada com biosurfactantes das bactérias lácticas 

Lactobacillus paracasei A20 e Lactobacillus animalis ATCC35046 que se observou o efeito 

sinergético mais notável. No caso dos ensaios anti-adesivos, os biosurfactantes probióticos de L. 

agilis CCUG31450 foram os mais efetivos e a mistura com biosurfactantes de P. aeruginosa PX112 

(CSLM) e L. agilis CCUG31450 (MRS) revelou a interação entre biosurfactantes mais positiva. Por 

fim, nos ensaios de recuperação de petróleo verificou-se que os biosurfactantes de B. subtilis 

PX573 e P. aeruginosa PX112 eram igualmente ou até mesmo mais efetivos do que os 

surfactantes químicos testados.  

 Em conclusão, cada mistura testada nos deferentes ensaios revelou uma atividade única 

que era dependente do tipo de biosurfactante, da sua proporção na mistura e da estirpe patogénica 

testada. Em alguns casos, foi observado um efeito sinergético entre os biosurfactantes misturados, 

levando consequentemente um aumento da sua atividade nas diversas aplicações testadas.
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CONTEXT AND MOTIVATION 
 

The interest in microbial surfactants has been progressively increasing in the recent years 

due to their diversity, environmental friendly nature, performance under extreme conditions and 

their biological activities (antimicrobial, anti-adhesive, antifungal, antiviral). These remarkable 

characteristics have led biosurfactants to be an asset in a wide range of potential applications, 

such as therapeutics, biomedical, enhanced oil recovery and food processing. In spite of the 

immense potential of biosurfactants, their use and production at an industrial scale still remains 

limited, mainly due to their high production and extraction costs, low production yields and lack of 

information on their toxicity towards human systems.   

In order to overcome this problem, making biosurfactant production economically feasible, 

a number of strategies have been well explored, for instance the use of cheaper substrates, optimal 

growth and production conditions coupled with novel and efficient multistep downstream 

processing methods, and the use of recombinant and mutant hyper producing microbial strains. 

Another alternative, not yet explored, is the use of biosurfactant “cocktails” with different microbial 

origins to enhance a given feature for a particular application. Since biosurfactants can show a 

wide range of chemical structures, it is predicted that their positive interaction could enhance their 

properties. 

In summary, the combination of these strategies will help to overcome the economic barriers 

of biosurfactants production and at the same time to improve their properties and make them more 

attractive for industrial applications. 

 

 

REASERCH AND AIMS:  
 

The main goal of this work was the preparation of mixtures of biosurfactants produced by 

different microorganisms to study their main characteristics towards different applications.  In this 

sense, the secondary aims were the following: 

 Evaluation of biosurfactants production by different microorganisms, as well as their 

production profile; 
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 Optimization of biosurfactants yields and reduction of production costs using low-cost 

substrates; 

 

 Characterization of biosurfactants, namely their physicochemical and biological 

properties;  

 

 Preparation of mixtures of biosurfactants synthetized by different bacteria; 

 

 Validation of biosurfactants mixtures activities in diverse applications, namely as anti-

adhesion and antimicrobial agents, and their capacity to recover oil envisaging their 

potential application in MEOR. 
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Over the years biosurfactants have been studied and characterized in order to assess their 

activity and understand their biological role and value.  

 

1.1. Microbial surface-active compounds 
 

Several microorganisms produce molecules with surface activity, designated biosurfactants 

[1], which are mostly either anionic or non-ionic [2]. These molecules can be cell-bound or excreted 

by the microorganisms. Structurally, biosurfactants are amphipihilic molecules, i.e. consist of a 

hydrophilic (polar) moiety that can be an amino acid, carbohydrate, cyclic peptide or phosphate; 

and a hydrophobic (nonpolar) moiety composed of unsaturated or saturated hydrocarbon chains 

or fatty acids. Based on their structure the biosurfactants are able to accumulate between fluid 

phases such as oil/water or air/water, lower the  surface and interfacial tension of liquids, and 

form micelles and microemulsions between two different phases [1–3]. The biosurfactants have 

unique properties, such as biodegradability, low toxicity and stability in adverse conditions, that 

confers to these molecules several advantages as compared to the chemical surfactants [2]. 

Additionally, due to their characteristics and natural roles these molecules have gained importance 

in diverse applications. Depending on their chemical composition and properties, biosurfactants 

could be more suitable for one or other application. 

 

 

1.1.1. Classification of biosurfactants 
 

Generally, biosurfactants are classified according to their chemical composition or microbial 

origin [3]. Rosenberg and Ron [4] proposed that microbial surface active compounds can be divided 

into low-molecular-weight molecules, the so-called biosurfactants that reduce surface and 

interfacial tension more efficiently; and high-molecular-weight polymers, named as bioemulsifiers 

that possess powerful emulsion-stabilizing activity. 

The most common biosurfactants include glycolipids, lipopeptides and phospholipids, while 

the bioemulsifiers include polymeric and particulate compounds [5]. Table 1 summarizes the 

different classes of biosurfactants and their producers. 
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Table 1. Types of biosurfactants and their producers. (Adapted from [2–4, 6]).  

Biosurfactant class Producing microorganism 

Glycolipids  
Rhamnolipids Pseudomonas aeruginosa, Pseudomonas chororaphis 
Sophorolipids Candida bombicola, Candida apicola, Candida antarctica,  

Torulopis petrophilum 
Mannosylerythritol lipids 
(MEL) 

C. antarctica, Pseudozyma aphidis, Pseudozyma rugulosa 

Trehalose lipids  Norcadia erithropolis, Rhodococcus erythropolis, Arthobacter sp. 

Lipopeptides  
Surfactin Bacillus subtilis 
Iturin/fengycin B. subtilis 
Lichenysin Bacillus licheniformis 

Phospolipids Acinetobacter sp., Corynebacterium lepus 

Fatty acids/ neutral lipids Corynebacterium insidibasseosum, Candida ingens, Rhodotorula 
glutinis 

Polymeric surfactants  
Emulsan Acinetobacter calcoaceticus 
Liposan Candida lipolytica 
Alasan A. calcoaceticus 

  
Particulate biosurfactants A. calcoaceticus, Cyanobacteria 

Surlactin Lactobacillus 
 

 

1.1.2. Biosurfactants properties 
 

Biosurfactants have aroused interest to several applications due to their properties such as 

surface, interfacial and emulsion activity, as well as stability to extreme environmental conditions 

(temperature, pH and salinity). As previously mentioned, biosurfactants show remarkable 

properties as biological molecules that are advantageous comparing to their chemical counterparts, 

namely biodegradability and low toxicity [2, 5, 7]. These properties are described in detail in the 

following sections. 

 

i. Surface and interfacial tension 
 

Mulligan [8] stated that a good biosurfactant can lower surface tension of water from 75 to 

35 mN/m, and the interfacial tension of water/hexadecane from 40 to 1 mN/m. Several 

biosurfactants showed good surface and interfacial tensions. For instance, the rhamnolipids 
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produced by P. aeruginosa strains decreased the surface tension of water from 72 mN/m to 30 

mN/m and the interfacial tension of water/hexadecane to values lower than 1 mN/m [9]. The 

biosurfactants produced by B. subtilis strains, namely surfactin, can reduce the surface tension of 

water to 25 mN/m and interfacial tension of water/hexadencane to values below 1 mN/m [10]. 

Moreover, a reduction of surface tension to 33 mN/m and interfacial tension to 5 mN/m were 

reported by Cooper and Paddock [11] for sophorolipids from Torulopsis bombicola.  

In general, these studies showed that biosurfactants are more effective and efficient than 

chemical surfactants, with critical micelle concentrations (CMC) about 10 to 40 times lower, i.e. 

lower amounts of biosurfactants are required to achieve a maximal decrease of the surface tension 

[5]. 

 

ii. Emulsifying activity 

 

An emulsion is defined as an heterogeneous system, comprising at least one immiscible 

liquid dispersed in another in the form of droplets [5]. These types of systems possess a minimal 

stability, which may be enhanced by the addiction of surface active compounds. In general, the 

bioemulsifiers are better emulsifiers than the biosurfactants. As an example, it was found that 

sophorolipids from T. bombicola show a good surface and interfacial tension, however did not 

revealed good emulsifying activity [2]. On the contrary, the bioemulsifier liposan from C. lipolytica 

could not reduce the surface tension but showed a good emulsifying activity, being successfully 

used to emulsify edible oils [2]. The emulsifying activity of these microbial surface active molecules 

is especially interesting in the food industry, but also for environmental applications [12]. 

 

iii. Stability to different environmental conditions  
 

The stability of biosurfactants to extreme conditions of pH, temperature and salinity make 

them desirable molecules for applications where these conditions prevail.  Several studies showed 

that many biosurfactants are not affected by extreme environmental conditions. The lichenysin 

produced by B. licheniformis JF-2 is an example of a biosurfactant with good stability, not being 

affected by temperature up to 50oC, pH 4.5 – 9.0, and by NaCl concentrations up to 50 g/l [13]. 

A thermostable (30 - 100oC) and pH (2.0 – 12.0) stable biosurfactant produced by Arthrobacter 

protophormiae was described by Pruthi and Cameotra [14]. Nitschke and Pastore [15], studied 
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the stability of a lipopeptide produced by B. subtilis LB5a. The surface activity did not change within 

the pH range from 4 to 11, and NaCl concentrations up to 20 %. The lipopeptide was stable after 

autoclaving (121oC, 20 min), and even at low temperatures (-18oC) the biosurfactant maintained 

its activity.   

Some industrial processes require the use of new microbial compounds that can resist to 

these extreme conditions. As such, biosurfactants could be considered for such applications [5].  

 

 

iv. Biodegradability 
 

One of the most attractive properties of the biosurfactants compared with the chemical ones 

is their biodegradability [16], which make them useful for environmental applications such as 

bioremediation [8, 17]. Lima et al. [18] evaluated the biosurfactants biodegradability as compared 

to sodium dodecyl sulfate. The authors concluded that the biosurfactants tested were more suitable 

for bioremediation applications due to their biodegradability and impact in the environment. 

The increasing environmental concerns, as well as the regulatory obligations imposed by 

governments, make the biosurfactants interesting alternatives to replace chemical surfactants [5]. 

 

v. Low toxicity 

 

Although the toxicity of biosurfactants has not been widely explored, in general they are 

classified as low or non- toxic molecules, thus being considered appropriate for pharmaceutical, 

food and cosmetic uses [2]. For instance, the synthetic anionic surfactant, Corexit was found to 

have a ten times lower LC50 (lethal concentration to 50 % of test species) against Photobacterium 

phosphoreum than the rhamnolipids tested, proving the higher toxicity of the chemical surfactant. 

Similarly, Marlon A-350, a chemical surfactant commonly used in industry, showed higher toxicity 

and mutagenic activity when compared with biosurfactants produced by P. aeruginosa [19].   

 

 

 

 

 



Study of biosurfactants “cocktails” with enhanced properties |  

 
7 

1.1.3. Natural roles 

 

A wide range of microorganisms have been shown to produce surface active agents as a 

strategy to survive in the environment. These agents can increase the bioavailability of water-

insoluble substrates, provide the uptake of key metal ions necessary as co-factors for enzymes, 

exhibit antimicrobial activity in order to inhibit the growth of other microorganisms, and are involved 

in the interaction of microorganisms with surfaces.  

 

Biosurfactants are responsible for increasing the bioavailability of hydrophobic water-

insoluble substrates. For instance, microorganisms living in environments rich in hydrophobic 

substrates with low solubility in water, such as hydrocarbons, have some limitations to obtain the 

essential nutrients for their metabolism. Due to the hydrophobic character of these substrates, they 

adsorb to surfaces, thus restricting their bioavailability. Therefore, these microorganisms produce 

biosurfactants that can either be excreted to the surrounding environment or remain attached to 

the cell membrane. The biosurfactants are then predominantly produced during growth on water 

immiscible substrates, in order to desorb the substrate that is adsorbed on the surfaces or to  

increase their apparent solubility [7]. Specifically, biosurfactants due to their ability to reduce the 

interfacial tension are particularly effective in making the bound substrates available for 

biodegradation. Moreover, the ones with low CMC are capable of incorporating the hydrocarbons 

in the hydrophobic cavity of their micelles, increasing therefore the substrate solubility in water 

(Figure 1). As an example, the rhamnolipids produced by P. aeruginosa strains, have been involved 

in the degradation of polymeric hydrocarbons. Other authors, showed that rhamnolipids besides 

emulsifying alkanes, also stimulate the growth of P. aeruginosa strains in hexadecane [3]. Some 

authors isolated two mutants of P. aeruginosa, PU-1 and PU-2, that were unable to produce 

rhamnolipids and also could not grow adequately on alkanes, proving therefore the importance of 

biosurfactants in the cell growth on hydrophobic substrates [3]. In the same way, biosurfactant-

negative mutants of P. aeruginosa KY-4025 and P. aeruginosa PG-201 [20] showed poor growth 

on n-paraffin and hexadecane, respectively, as compared to wild type strains. This study clearly 

demonstrates that the addiction of rhamnolipids enables restoring the microbial growth on the 

hydrophobic substrates [3].  
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Figure 1. Incorporation of hydrophobic substrates in the hydrophobic cavity of biosurfactants micelles.  

 

The uptake of metal ions, required for the metabolism of microorganisms, can be stimulated 

by biosurfactants. Some metal ions are important co-factors in the microbial metabolism, therefore 

microorganisms produce biosurfactants that form a complex with the metal ion and interact with 

the cell surface prompting their uptake. Herman et al. [21] found that rhamnolipids are capable of 

removing cadmium, lead and zinc from soil. Moreover, bioemulsifiers have also been described to 

interact with metal ions by binding them, it is the case of emulsan produced by A. calcoaceticus 

that binds to uranium [22].  

The potential of biosurfactants as antibiotics confers the producing-microorganisms 

advantages to compete with other microorganisms present in the same environment. For example, 

biosurfactants have been described to show antimicrobial activity against bacteria, fungi and 

viruses [5]. 

The microorganism’s ability to place themselves in an ecological niche, in which they can 

multiply, is one of their survival strategies. Biosurfactants play a crucial role in this strategy, since 

they are responsible for the interaction of the microorganism with a specific surface. In the case of 

biosurfactants that are excreted, they can form a conditioning film on the interface, thereby 

stimulating certain microorganisms to attach to a surface while inhibiting the attachment of others. 

On the other hand, cell-bound biosurfactants lead to the modification of the cell surface 

hydrophobicity [4]. For instance, Acinetobacter strains that produce cell-bound biosurfactants 

showed a reduction of their hydrophobicity due to biosurfactants [23]. In sum, biosurfactants have 

been shown to be involved in cell adherence, which imparts a great stability under hostile 

environmental conditions and virulence; and in cell desorption when organisms need to find new 

habitats for survival [7].  
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Some biosurfactants have been reported as being produced by microorganisms in 

association with virulence factors. For instance, Van Delden and Iglewski [24] suggested that 

rhamnolipids can be associated to virulence factors in P. aeruginosa strains that are involved in 

opportunistic infections. Olvera et al. [25] found that the synthesis of rhamnolipids in P. aeruginosa 

strains is mediated by the same proteins that are associated to other virulence-factors, such as 

alginate and lipopolysaccharides (LPS). For that reason, the evaluation of rhamnolipids for 

biomedical and therapeutic applications should take into account this aspect.  

 

  

 

1.2. Analytical methods to study biosurfactants 
 

The advances in the discovery of biosurfactants were largely attributed to the development 

of rapid and reliable methods for the screening and selection of biosurfactants producing-

microorganisms, as well as for the evaluation of the biosurfactants properties. Table 2 describes 

the main analytic methods used to study biosurfactants. 

 

 

Table 2. Analytic methods used to screen biosurfactant producers and to evaluate biosurfactants activity. 

Method Description Ref. 

Blood agar screening 

method 

Based on the hemolytic activity of biosurfactants. This method is widely 
used for screening biosurfactants producing-strains. Briefly, each strain 
is streaked onto blood agar plates and incubated during 24h at 37oC. 

The visualization of clear zones around the colonies indicates the 
presence of biosurfactants. The diameter of the clear zones is a 
qualitative method used as an indicator of biosurfactant production. This 
assay does not detect specific types of biosurfactants. 
 

[26, 27,28] 

 

Drop-collapsing test 

Evaluates the presence of biosurfactant in the broth supernatant, based 

on their surface activity. A drop of cell suspension is placed on an oil-

coated-surface; if the drop collapses it indicates the presence of 

surfactant (a positive result); if the drop remains stable, indicates the 

absence of surfactant (a negative response). The assay is fast, easy to 

perform, reproducible and does not require specialized equipment. 

[3, 29] 

Tensiometric 

measurements 

The surface tension of a solution containing biosurfactants is measured 

by a ring-tensiometer. Willumsen and Karlson defined a good 

biosurfactant producer as the one being able to reduce the surface 

tension of the growth medium by >20 mN/m as compared to distilled 

water.  

 

[30] 
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Table 2. Analytic methods for a quick detection of biosurfactants producing-strains and evaluation of biosurfactants 

activity (continuation).  

Method Description Ref. 

Emulsification index 

value (E24) 

The estimation of emulsification index value is performed by vigorously 

shaking the culture broth samples with an equal volume of kerosene or 

n-hexadecane. After 24h, the value of E24 is given by the equation: 

24 % = � ℎ   ℎ  �  ��  ℎ � ℎ  ×  

This method is suitable to determine the activity of emulsifying 

biosurfactants. 

[31, 32, 

33] 

Critical micelle 

concentration (CMC) 

The CMC is defined as the concentration above which micelles are 

formed. Briefly, the surface tension of different biosurfactant 

concentrations is measured. Once the CMC value is reached, the 

surface tension will remain constant. The determination of CMC is 

commonly used to measure the efficiency of the biosurfactants. 

[3, 34,35] 

Hydrophilic-lipophilic 

balance (HLB) 

The HLB value indicates the biosurfactant emulsifying activity. The HLB 

value indicates whether a surfactant will promote water-in-oil or oil-in-

water emulsion. The HLB scale can be constructed by assigning a value 

of 1 to oleic acid, and a value of 20 to sodium oleate. Emulsifiers with 

HLB values less than 6 will favor the stabilization of water-in-oil 

emulsions, whereas emulsifiers with HLB values between 10 and 18 

have the opposite effect and will favor oil-in-water emulsions. These 

values can be calculated by measuring the contact angles. 

[3, 28] 

Colorimetric methods- 

CTAB 

(cetyltrimethylammonium 

bromide) 

This simple test allows the determination, in bacterial culture broth, of 

the presence of anionic biosurfactants. Briefly, anionic biosurfactants 

can form a colored complex with the cationic surfactant CTAB and the 

basic dye methylene blue. This complex can be quantified by 

spectrophotometry.  

[27,36, 37] 

 

 

In general, the methods above described are easy to perform and provide fast results on the 

biosurfactants activity. However, more than one method should always be performed, since most 

of these methods are complementary.  

To establish the biochemical composition of biosurfactants in terms of carbohydrate, protein 

and lipid contents several techniques can be used. For instance, the carbohydrate content of 

biosurfactants can be determined by the phenol–sulfuric acid method using D-glucose as a 

standard [38]. Regarding the protein content, this can be determined using the method described 

by Lowry et al. [39], using bovine serum albumin as a standard, or alternatively by the Coomassie 
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blue method [40, 41]. Additionally, to determine the lipid content it is first necessary to conduct 

an extraction with chloroform:methanol. The organic phase is then evaporated under vacuum and 

the lipid content can be determined by gravimetric estimation [42, 43].  

 For a better understanding of the relationship among the chemical structures of 

biosurfactants, the composition of mixtures and a structural detailed analysis is necessary. This 

can be achieved by mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance 

spectroscopy [27]. Moreover, Fourier transform infrared spectroscopy (FTIR) is most useful for 

identifying types of chemical bonds (functional groups), therefore it can be used to elucidate some 

unknown components of unknown given mixture [28]. Thin-layer chromatography (TLC) has also 

been extensively used for determining the composition of biosurfactants [27].   

 

 

 

1.3. Biosurfactants production 
 

The improvement of biosurfactants production, in order to make their adoption feasible as 

components of large-volume commercial products, is a constant demand by industry [44]. 

Therefore, since the biosurfactants production has distinct characteristics, depending on the type 

of biosurfactant and its producer, it is first mandatory to understand the process before optimization 

can be envisaged. The following sections describe the kinetics of biosurfactants production, as well 

as the influence of the carbon and nitrogen sources, environmental factors and trace elements on 

the production.  

 

1.3.1.  Kinetics of fermentative production 
 

The kinetic of biosurfactants production can be classified in three different groups depending 

on the different production conditions: growth–associated production, production under growth-

limiting conditions, and production by resting cells (Figure 2). 
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Figure 2. Different biosurfactant production kinetics. (A) Growth-associated production; (B) Production under growth-

limited conditions and (C) Production of biosurfactants by resting cells. (Taken from [3]). 

 

The first case, growth–associated production, describes a parallel relation between 

biosurfactants production, substrate consumption and cell growth (Figure 2A) [3]. Several 

researchers have reported biosurfactants being produced in association to cell growth, e.g. 

rhamnolipids production by Pseudomonas spp. [3]; biodispersan by Bacillus sp. strain IAF- 343 

[31]; a surface-active agent by B. cereus IAF-346 [31], and the glycoprotein AP-6 produced by 

Pseudomonas fluorescens 378 [45]. 

However, there are some biosurfactants for which the production is favored by the limitation 

of one or more medium components, as for example nitrogen limitations (Figure 2B) [3]. Examples 

include the production of a glycolipid by Norcadia sp. strain SFC-D [3]; bioemulsifier by Candida 

tropicalis IIP-4 [46]; and a water-soluble biosurfactant by Torulopsis apicola [47].  

For the cases in which no cell growth occurs but the cells continue using the carbon source 

from the medium, biosurfactants production is conducted by resting cells (Figure 2C) [3]. Examples 

of these type of biosurfactant production include the rhamnolipids produced by P. aeruginosa 

CFTR-6 [48]; MELs produced by C. antarctica [49]; and sophorolipids produced by T. bombicola 

[3]. 

 

1.3.2.  Factors affecting biosurfactant production 

 

The composition and properties (e.g. surface and emulsifying activity) of a biosurfactant not 

only depends on the producer strain, but also on the culture conditions. In other words, the nature 

of the carbon and nitrogen sources, as well as the nutritional limitations, trace elements, and 
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operational parameters such as temperature, aeration and pH will greatly influence the amount 

and type of biosurfactant being produced.  

  

i. Carbon Source 

 

Several microorganisms can use different types of carbon sources to produce 

biosurfactants. In general, glucose, sucrose, glycerol, diesel and crude oil, have been reported as 

good sources of carbon for biosurfactant production. However, the use of different substrates 

influences the biosurfactant structures, and consequently their properties. These changes are 

welcome if they induce improvements in the biosurfactants proprieties making  them more suitable 

for some applications [7]. Robert et al. [50] found that P. aeruginosa 4431 could grow on different 

carbon sources producing different rhamnolipids species, thus illustrating the influence of the 

carbon source. Moreover, the chain length of the carbon substrate also affects the biosurfactants 

production. For instance, Kitamoto and co-workers [51] demonstrated the influence of different n-

alkanes on the production of MEL by C. antarctica. Their results showed that the chain length of n-

alkanes affected significantly the production of MEL, the highest productivity being observed with 

n-octadecane. On the contrary, for sophorolipids produced by C. bombicola ATCC22214 it was 

found an increase in the yield with a n-alkane chain length from C12 to C15 [52].  

 

ii. Nitrogen Source 
 

Nitrogen is an important constituent on the culture medium for biosurfactants production, 

since it is an essential component of the proteins that play a role in the growth of microorganisms, 

and therefore in the production of enzymes required for the fermentative process. In the literature, 

several sources of nitrogen have been reported for the production of biosurfactants, e.g. urea, 

peptone, ammonium sulfate, ammonium nitrate, sodium nitrate, meat extract and malt extract. 

Yeast extract has been widely used for the production of biosurfactant. However, its concentration 

greatly depends on the nature of the producing-microorganism and the specific culture medium 

used. Johnson and co-workers [53] showed that potassium nitrate yield a greater amount of the 

biosurfactants produced by R. glutinis as compared with other nitrogen sources, namely urea or 

ammonium sulfate [54]. The influence of different nitrogen sources has also been evaluated for 
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the rhamnolipids production, and the presence of NO3
-, glutamate, and aspartate has been 

suggested to promote the production of rhamnolipids, whereas NH4
+, glutamine, asparagine, and 

arginine to inhibit the rhamnolipids production [55]. Nitrogen limitation has been described to 

increase the biosurfactant production by P. aeruginosa [56] and C. tropicalis IIP-4 [46]. According 

to Desai et al. [3], nitrogen limitation not only causes an increase in the biosurfactants production, 

but also changes their composition. An important parameter studied by several researchers is the 

quantitative ratio between carbon and nitrogen sources (C:N) that is required for biosurfactants 

production. Guerra-Santos et al. [57, 58] found a maximum rhamnolipids production under 

nitrogen limitation at a C:N ratio of 16:1 to 18:1. On the contrary, no biosurfactant production was 

reported for C:N ratios below 11:1 (no nitrogen limitation). Singh et al. [46] tested different C:N 

ratios and hydrocarbons for the production of biosurfactants by C. tropicalis and also reported an 

increase in the production under nitrogen limitation. 

 

iii. Environmental Factors 
 

Environmental factors and growth conditions such as temperature, pH, agitation, and oxygen 

availability also affect the biosurfactant production through their effects on cellular activity and 

growth. 

The biosurfactants produced by Pseudomonas sp. strain DSM-2874 [3] and Arthrobacter 

paraffineus [59] were found to present different compositions as a result of temperature changes.  

Although most of the biosurfactants are produced at temperatures ranging from 25oC to 

30oC [6], thermophilic bacteria such as Bacillus sp. have also been reported to grow and produce 

biosurfactants at temperatures above 40oC [60].  

Casas and Ochoa [61] studied the production of sophorolipids from C. bombicola at different 

temperatures, specifically 25oC and 30oC, and verified that temperature only slightly affects 

sophorolipid production when resting-cells were used. Desphande and Daniels [62] also found the 

maximum growth of C. bombicola at 30oC, but the highest biosurfactants production was observed 

at 27oC.  

As mentioned above, the pH of the culture medium also plays an important role in the 

biosurfactants production. For instance, Zinjarde and Pant [63] reported that the best biosurfactant 

production by a marine yeast, Yarrowia lipolytica NCIM3589, occurred when the pH value was 8.0, 
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which corresponds to the natural sea water pH. Desai and Banat [3] described that the best pH 

for rhamnolipids production by Pseudomonas spp. is in the range between 6.0 and 6.5. The pH 

role in the glycolipids synthesis by C. antarctica and C. apicola was evaluated [54]. When the pH 

value is maintained at 5.5, the biosurfactants production reaches the maximum. However, without 

pH control the synthesis of glycolipids decrease, thus confirming the relevance of controlling the 

pH during the fermentation process.  

Aeration and agitation are also relevant in the production of biosurfactants, since both 

facilitate the oxygen transfer from the gas phase to the aqueous phase. Sheppard and Cooper [64] 

showed that oxygen transfer is a main parameter for the optimization and scale-up of surfactin 

production by B. subtilis. The influence of aeration in the production of biosurfactants by C. 

antarctica was evaluated, an air flow rate of 1 vvm and dissolved oxygen concentration of 50 % was 

observed to provide the highest yield. However, the increase of the air flow rate to 2 vvm caused 

foam formation, thus leading to a decrease in the biosurfactants production up to 84 % [54].   

 

 

iv. Trace elements 
 

Metal ions can act as co-factors of many enzymes that are involved in the biosurfactants 

production, therefore the concentration of these species in the culture media play an important 

role in production of same biosurfactants [54]. Thimon et al. [65] showed that the presence of Fe2+ 

in mineral salt medium increased drastically the production of surfactin B. subtilis. Furthermore, 

the supplementation of 0.01 mM Mn2+, which affected  the nitrogen utilization,  to a defined glucose 

medium led to an increase from 0.33 g/l to 2.6 g/l of surfactin, produced by B. subtilis [66]. 

 

 

1.3.3. Cost reduction strategies for biosurfactants production  
 

As previously mentioned, biosurfactants exhibit several advantages over their chemical 

counterparts. However, the biosurfactants production processes are still not economically 

interesting, thus limiting their commercialization. Indeed, the low production yields, expensive 

substrates and expensive recovery are the main causes for their low competitiveness [1, 67]. As 

such, in order to compete with chemical surfactants, the biosurfactants must present interesting 

functionalities/activities and better production yields [68]. For some applications, such as for 
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medicines, the higher production costs can be acceptable, since in this case biosurfactants 

represent high value products and the required amounts are low. Nevertheless, for the most 

common biosurfactants applications, namely environmental ones, high volumes of biosurfactants 

are required and the costs of production are unbearable [69].  

To make biosurfactants production a cheaper process and commercially attractive, it is 

necessary to boost their production and recovery at larger scales. Therefore, several strategies 

have been proposed to make biosurfactants cost-competitive, including the development of more 

efficient bioprocesses, i.e. (a) optimization of fermentative conditions and cost-effective 

downstream recovery processes; (b) replacement of synthetic media by cheaper and waste 

substrates; and (c) development of overproducing mutant or recombinant strains ( Figure 3) [1, 

70].  

The first two strategies have been widely explored and reported in several studies that 

showed considerably improvements in the biosurfactants production.  

 

 

 

 

 

 

 

 

 

Figure 3. Different cost-reduction strategies for biosurfactants production. (Adapted from [1]). 

 

 

i. Growth on low-cost substrates as promising alternatives 
 

The amount and type of raw substrate used for the production of any bioproduct can 

contribute considerably to the production cost. Specifically, it is estimated that raw substrates 

account for 10-30 % of the total production costs. Therefore, to reduce this cost it has been 
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suggested the use of low-cost raw substrates. For example, the use of agro-based raw materials or 

wastes (e.g. potato, cassava and soybean) have been extensively explored, since these contain 

high levels of carbohydrates or lipids to support biomass growth and biosurfactants synthesis. 

Moreover, plant-derived oils, oil wastes, starchy substrates, distillery wastes and lactic whey have 

also been reported as cheap alternative raw materials for biosurfactants production [5, 69, 70]. 

Table 3 compiles the main low-cost substrates used for biosurfactants synthesis, as well as the 

yield and type of biosurfactant produced. 

 

Table 3. Biosurfactants producing microorganisms growing in different low-cost substrates. (Adapted from  [2, 5, 67, 
70]). 

Low-cost substrate Biosurfactant Producing strain Yield  (g/l) 

Vegetable oils and oil wastes    

Sunflower and soybean oil Rhamnolipids P. aeruginosa  DS10-129 4.31 

Rapeseed oil Rhamnolipids Pseudomonas sp. DSM 2874 45 

Sunflower oil Lipopeptide Serratia marcescens 2.98 

Oil refinery waste Glycolipids C. antarctica; C. apicola 10.5 

Groundnut oil refinery residue Lipopeptide C. lipolytica  4.5 

Palm oil Rhamnolipids Pseudomonas alcaligenes  2.3 

Starchy substrates    

Potato process effluents Lipopeptide B. subtilis 2.7 

Cassava flour wastewater Lipopeptide B. subtilis ATCC 21332, B. subtilis LB5a 2.2 

Sugar industry wastes    

Molasses 
Lipopeptide B. subtilis (MTCC 2423 and MTCC1427) - 

Rhamnolipids P. aeruginosa GS3 0.25 

Dairy industry whey wastes    

Curd whey and distillery Rhamnolipids P. aeruginosa BS2 0.92 

 

Molasses are a co-product of the sugar cane and sugar beet industry, being widespread 

used as substrate due to its low price, compared to other sources of sugar, and the presence of 

several other compounds and vitamins. Specifically, molasses consist of sugars (sucrose 48-56 %), 

non-sugar organic matter (9-12 %), proteins, inorganic components and vitamins [67]. Onbasli and 

Aslim [71] reported the production of rhamnolipids by two strains, Pseudomonas luteola B17 and 

Pseudomonas putida B12, on 5 % (w/v) of sugar beet molasses. There are also reports on the use 

of molasses in combination with other cheap substrates. Patel and Desai [72] reported the 
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production of rhamnolipids by P. aeruginosa GS3 combining molasses and corn steep liquor (CSL) 

as carbon and nitrogen source, respectively.  

Lactic whey is an effluent from dairy industry that has been reported as a good and cheap 

substrate for microbial growth and biosurfactants production. Lactose is the main component of 

lactic whey corresponding to 75 % of dry matter, being also composed by 12-14 % of protein, 

vitamins and organic acids [68]. To use the lactose effectively, the chosen organism must be 

capable of consuming the lactose and the breakdown products, galactose and glucose [69]. Koch 

and co-workers [73] developed a strain of P. aeruginosa able to produce rhamnolipids from whey. 

Daniel et al. [74] reported the production of sophorolipids, obtained by a two-stage process starting 

from deproteinized whey concentrate, using Cryptococcus curvatus ATCC20509 and C. bombicola 

ATCC22214. The B. licheniformis strain M104 was also described to grow in whey producing 

biosurfactants [75], as well as the B. subtilis 20B strain, to produce surfactin [76]. Rodrigues et 

al. [77] performed a screening of Lactobacillus strains able to produce biosurfactants. The lactic 

acid bacteria Lactobacillus casei,Lactobacillus rhamnosus, Lactobacillus pentosus and 

Lactobacillus coryniformis torquens were select as biosurfactants-producing strains, with L. 

pentosus being considered the most promising strain and whey as a potential alternative substrate.  

The combination of cheese whey and molasses was evaluated by Rodrigues and co-workers 

[78], as substrates for the biosurfactants production by Streptococcus thermophilus A and 

Lactococcus lactis 53 strains. The authors reported an increase of 1.2-1.5 times in the mass of 

biosurfactants produced per gram of cell dry weight, with 75 % cost reduction. Therefore, the 

supplemented molasses and cheese whey media was suggested as a relatively inexpensive and 

economical alternative to synthetic media, for biosurfactants production by these probiotic bacteria. 

 

 

ii. Optimization of culture parameters 
 

As already mentioned, the final amount, quality and type of produced biosurfactants depend 

on the culture conditions. Environmental factors are exceptionally significant in the yield and 

characteristics of the biosurfactants produced. The optimization of process conditions, in order to 

increase the amounts of biosurfactants, is a required step for any profit-making biotechnology 

industry [54]. Several elements, media composition and precursors, affect the biosurfactant 

production process. Different elements, such as nitrogen, iron and manganese have been reported 
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to affect the biosurfactants yield. For example, the addition of iron and manganese to the culture 

medium was reported to increase the production of biosurfactants by B. subtilis [79]. The 

interaction of different components in the medium also affects biosurfactant production, therefore 

the ratios of different elements, C:N, C:P, C:Fe or C:Mg, should also be studied and optimized to 

enhance the production yields [70]. 

To maximize the biosurfactants production and reduce the costs it is necessary the use of 

process-optimization strategies that involve multiple factors. The classical method of medium 

optimization involves changing one variable at time, while keeping the others at fixed levels. 

Nevertheless, this methodology is laborious, time consuming and does not guarantee the 

determination of the optimal conditions for biosurfactants production. To overcome some of the 

disadvantages of traditional methodologies, a statistical optimization strategy based on response 

surface methodology (RSM), which explores the relationships between several variables, has been 

used by several researchers [70]. For instance, this methodology was used to determine the 

optimum media and environmental conditions for enhanced surfactin production by B. subtilis [80–

82]. RSM has also been used to optimized culture media for rhamnolipids production by P. 

aeruginosa strains [83]. Rodrigues et al. [84] described the application of RSM for the optimization 

of medium components for biosurfactants production, by probiotic bacteria. An increase in 

productivity was observed in all the cases, showing that optimization methods would help to design 

the best media containing cheaper substrates, and to use the most favorable environmental 

conditions, for the improved production of biosurfactants. 

 

 

iii. Recovery and purification of biosurfactan ts 
 

For many biotechnological products, the downstream processing costs account for most of 

the total production cost, approximately 60 %. Therefore, optimization of biosurfactants production 

using optimal media and culture conditions is not enough to reduce the total costs, i.e. the 

production process is still incomplete without an efficient and economical recovery process. Several 

recovery methods for biosurfactants have been reported. Conventional methods include acid 

precipitation, solvent extraction, centrifugation and ammonium sulfate precipitation. In recent 

years, a few unconventional recovery methods have also been described, such as foam 

fractionation, ultrafiltration and ion exchanged chromatography [2, 70] (Table 4). 
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Extraction with solvents, namely chloroform, acetone and methanol, has shown some 

disadvantages, since they are toxic and harmful to the environment. Due to these disadvantages, 

cheap and less toxic solvents, such as methyl tertiary-butyl ether, have been successfully used to 

recovery biosurfactants produced by Rhodococcus species [41].  

Often, a single downstream processing technique is not enough for biosurfactants recovery 

and purification. In these cases, it is applied a multi-step downstream strategy [2]. For instance, 

extraction of low-molecular-weight biosurfactants normally involves an initial precipitation step, 

followed by extraction with different organic solvents according to the hydrophobicity and 

hydrophilic-lipophilic balance value of the compounds. As an example, rhamnolipids are usually 

precipitated by acidification; followed by solvent extraction, e.g. with ethyl acetate. In the case of 

high-molecular-weight biosurfactants, normally they are extracted by ammonium sulfate 

precipitation and then purified by dialysis [1]. 

In sum, these recovery techniques are already well established for lab-scale applications, 

however some of them could not yet be applied to an industrial scale due to their operational costs. 

Therefore, several efforts have been conducted towards the development of low-cost extraction and 

purification processes, avoiding the use of hazardous and costly organic solvents [1].  

 

 

Table 4. Properties-based biosurfactants recovery strategies and their relative advantages. (Adapted from [2 , 3]). 

Recovery strategy Description Advantages Biosurfactants 

Acid precipitation 
At low pH the biosurfactants 

become insoluble 
Efficient in the recovery of crude 

biosurfactants, low cost 
Surfactin, 
Glycolipids 

Ammonium sulfate 
precipitation 

Salting –out of polymeric or 
protein-rich biosurfactants 

More suitable and efficient for the 
recovery of certain polymeric 

biosurfactants 

Emulsan, 
Biodispersan 

Organic solvent 
extraction 

The presence of hydrophobic 
ends in biosurfactants turn 

them soluble in organic 
solvents 

Solvents can be reused, efficient 
in the recovery of crude 

biosurfactants, partial purification 

Trehalolipids, 
Sophorolipids, 

Liposan 

Alternative organic 
solvent for extraction 

The presence of hydrophobic 
ends in biosurfactants turn 

them soluble in organic 
solvents 

Less toxic than conventional 
organic solvents, low cost, can be 

reused 
- 

Centrifugation 

The centrifugation force leads 
to the precipitation of insoluble 

biosurfactants 
Reusability, effective in crude 

biosurfactants recovery 
- 
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Table 4. Properties-based biosurfactants recovery strategies and their relative advantages. (Adapted from [2 , 3]) 
(continuation). 

Recovery strategy Description Advantages Biosurfactants 

Foam fractionation 
Due to the surface activity, 
biosurfactants form and 

partition into foam 

Suitable for bioreactors that 
facilitate the recovery of foam 

during the fermentation 
Surfactin 

Membrane 
ultrafiltration 

The polymeric membranes can 
trap the micelles of 

biosurfactants formed above 
their CMC 

Fast, highly purity Glycolipids 

Ion – exchange 
chromatography 

Charged biosurfactants are 
attached to ion-exchange resins 
and can be eluted with proper 

buffer 

Reusability, high level of purity, 
fast recovery 

- 

Adsorption on wood – 
activated carbon 

Biosurfactants are adsorbed on 
activated carbon and can be 

desorbed with organic solvents 
Cheaper, reusability, highly purity - 

Adsorption on 
polystyrene resins 

Biosurfactants are adsorbed on 
polystyrene resins and 

desorbed with organic solvents 

Reusability, highly purity, fast 
recovery 

- 

 

 

 

1.4. Biosurfactants applications 
 

In the last years, much attention has been direct towards biosurfactants due to their broad 

range of functional properties, as well as the diversity of producing microorganisms. Their unique 

properties allow their application in a wide variety of commercial areas and industrial processes, 

replacing the chemical surfactants. Some of the potential applications of biosurfactants are 

presented in Table 5, as well as their role in each industrial field. 
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Table 5. Biosurfactants applications in industry. (Adapted from [2]). 

 

 

1.4.1. Biomedical and therapeutic applications  
 

Several biosurfactants have been studied due to their potential as biological active 

compounds that could be useful in the medical field. Specifically, they constitute suitable 

alternatives to synthetic medicines and antimicrobial agents, and may be applied as safe and 

effective therapeutic agents [85].  

 

 

 

i. Antimicrobial activity 
 

Numerous biosurfactants have been shown to possess antimicrobial activity against 

bacteria, fungi, algae and viruses. For instance, the iturin lipopeptide produced by B. subtilis 

showed potential antifungal activity [86], as seen by the alterations in the morphology and structure 

of yeast cells [85]. Surfactin produced by B. subtilis was reported to inactivate the enveloped virus 

such as herpes and retrovirus [87].  

Antimicrobial activity has been reported also for rhamnolipids that were shown to inhibit the 

growth of harmful bloom algae species, Heterosigma akashivo and Protocentrum dentatum at 

Application Role of biosurfactant 

Biomedical and 

therapeutic 
Antibacterial, antifungal, antiviral agents, adhesive agents, immunomodulatory 
molecules, gene therapy  
 

Microbial enhanced 

oil recovery (MEOR) 
Improving oil draining into well bore, reduction of oil viscosity and oil pour point, lowering 
of interfacial tension and dissolving of oil 
 

Bioremediation Emulsification of hydrocarbons, lowering of interfacial tension, metal sequestration 
 

Food Industry Emulsifier, solubilizer, demulsifier, suspension, foaming, defoaming, thickener and 
lubricating agent 
 

Biocontrol in 

agriculture 
Facilitation the biocontrol mechanisms of microbes parasitism, competition, induced 
systemic resistance and hypo-virulence 
 

Cosmetic Emulsifiers, foaming agents, solubilizers, wetting agents, cleansers, antimicrobial 
agents 
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concentrations ranging from 0.4 to 10.0 mg/l [2]. Abalos et al. [88] studied the activity of 

rhamnolipids produced by P. aeruginosa AT10. These biosurfactants showed a good inhibitory 

activity against several bacteria, Micrococcus luteus, Escherichia coli, Alcaligenes faecalis (32 

mg/ml), Mycobacterium phlei, Serratia marcescens (16 mg/ml) and Staphylococcus epidermidis 

(8 mg/ml); it was also detected good antifungal properties against Aspergillus niger (16 mg/ml), 

Chaetonium globosum, Aureobasidium pullulans, Enicillium crysogenum (32 mg/ml) and the 

phytopathogenic Botrytis cinerea and Rhizoctonia solani (18 mg/ml). 

Rodrigues and co-workers [89] reported the antimicrobial activity of two probiotic bacteria, 

L. lactis 53 and S. thermophilus A, against a variety of bacterial and yeast strains isolated from 

explanted voice prostheses. The authors found that the biosurfactants produced by both 

microorganisms have a high antimicrobial activity even at low concentrations, against C. tropicalis 

GB 9/9, one of the strains responsible for prostheses failure. Moreover, at the highest 

concentration tested, 100 mg/ml, the biosurfactants were effective against all the strains of 

bacteria and yeast tested. The activity of probiotic biosurfactants produced by lactobacilli was also 

discussed by Reid et al. [90, 91]. The authors suggested a possible probiotic role of these 

biosurfactants in the restoration and maintenance of healthy urogenital and intestinal tracts as an 

alternative treatment to antibiotics, conferring protection against pathogens. The biosurfactants 

produced by Lactobacillus fermentum RC-14 reduced, in a rat model, infections associated to 

surgical implants, which are mainly caused by Staphylococcus aureus, through inhibition of growth 

and reduction of the adherence to surgical implants [92].  

 

 

ii. Anti-adhesive activity  
 

The anti-adhesive activity of biosurfactants has also been extensively debated, since they are 

capable of inhibiting the adhesion of pathogenic organisms to solid surfaces or to infections sites. 

Moreover, it has been suggested that prior adhesion of biosurfactants to solid surfaces might 

constitute a new and effective means of combating colonization by pathogenic microorganisms 

[93]. For example, pre-coating vinyl urethral catheters by running a surfactin solution through them, 

before inoculation with media, resulted in a decrease in the amount of biofilm formed by Salmonella 

enterica, Salmonella typhimurium, Proteus mirabilis and E. coli [94]. These results showed the 



|1. INTRODUCTION 
 

 
24 

great potential of biosurfactants to treat the infections caused by opportunist microorganisms, such 

as Salmonella species, including in urinary tract infections of AIDS (Acquired Immunodeficiency 

Syndrome) patients [93]. Efforts in the development of strategies to prevent the microbial 

colonization of silicone rubber voice prostheses was investigated by Rodrigues and co-workers [95, 

96]. The ability of biosurfactants obtained from probiotic bacteria to inhibit adhesion of several 

bacterial and yeast strains, through the pre-conditioning of silicone rubber was evaluated. The 

authors observed over 90 % reduction in the initial deposition rates for most of the bacterial strains 

tested. The biosurfactants synthetized by S. thermophilus A proved to be the most effective against 

Rothia dentocariosa GBJ 52/2B, which is one of the microorganisms responsible for valve 

prosthesis failure. Other studies also reported the pre-treatment of silicone rubber with 

biosurfactants produced by S. thermophilus, showing that they were capable of inhibiting 85 % of 

C. albicans adhesion [97], whereas biosurfactants produced by probiotic bacteria, L. fermentum 

and Lactobacillus acidophilus adsorbed on glass could reduce in 77 % the adhering cells of 

Enterococcus faecalis [2]. Gan et al. [92] reported that L. fermentum biosurfactants inhibited S. 

aureus infection and adherence to surgical implants.  

 

 

1.4.2. Microbial enhanced oil recovery (MEOR) 
 

Crude oil recovery occurs in three main phases. Primary recovery, in which oil production 

occurs under natural pressure, leads to the recovery of 15 % of the oil in place. Secondary recovery, 

in which the oil well is flooded with water or other substances including CO2 injection, alkaline 

surfactant polymers or solvents, leads to an additional 15–20 % oil recovery. The tertiary recovery 

or enhanced oil recovery is used to recover the remaining oil after primary and secondary recovery 

methods are exhausted or no longer economic. MEOR has been gaining significance as a tertiary 

process leading to an additional oil recovery up to 10 % [34]. This methodology used 

microorganisms and/or their metabolic end products for the recovery of residual oil that is 

hindered, due to low permeability of some reservoirs or high viscosity resulting in poor mobility. 

Specifically, biosurfactants have been proposed for MEOR in the recent years. The ability of 

biosurfactants to reduce oil/water interfacial tension and to form stable emulsions can help the oil 

move more freely away from rocks and crevices, so that it may travel more easily out of the well 

[1, 7, 34].  
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Rhamnolipids have been most frequently used in MEOR, although lipopeptides, such as 

surfactin and emulsan, have also been demonstrated to be very effective in enhancing oil recovery 

[1]. Biosurfactants produced by Rhodococcus ruber and R. erythropolis were tested to extract 

hydrocarbons from oil shale in flask experiments. The maximum recovery observed was 26 % and 

25 % for the two strains, respectively [98]. Pornsunthorntawee et al. [99] observed that both 

biosurfactants produced by P. aeruginosa SP4 and B. subtilis PT2 were more effective than the 

chemical surfactants tested in the recovery of oil entrapped in a sand-packed column.  

 

In conclusion, the high diversity and properties of biosurfactants have been the focus of 

interest of many researchers. Moreover, their versatility towards a wide range of applications has 

also aroused the industrial attention. For some biosurfactants and their specific producing-

microorganisms, several advances have been achieved in order to reduce production costs, and 

therefore to make them industrially profitable products. Likewise, these studies should also be 

conducted for other producing-microorganisms that have not been deeply investigated, e.g. lactic 

acid bacteria. The applicability of new biosurfactants in different areas should be further explored, 

as well as their interaction with each other, in order to develop enhanced properties and activities. 

In other words, the investigation of biosurfactant mixtures aiming at the enhancement of their 

activity is pointed as a strategy to ease their applicability in different areas, thus competing with 

standard methodologies/compounds applied. 
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2.1. Biosurfactants production 

 

2.1.1. Strains and standard culture conditions 
 

The following bacterial strains were screened for biosurfactant production: Lactobacillus 

animalis ATCC35046 and Lactobacillus hamsteri ATCC43851, obtained from the American Type 

Culture Collection (USA); Lactobacillus agilis CCUG31450, obtained from the Culture Collection of 

University of Göteborg (Sweden); Lactobacillus paracasei A20, isolated from a Portuguese dairy 

industry [100]; S. thermophilus A isolated from a Dutch dairy industry [101]; P. aeruginosa PX112 

and B. subtilis PX573, isolated from crude oil samples obtained from a Brazilian oil field [102, 

103]. The culture media used were: MRS medium (medium introduced by De Man et al. [104]) for 

cultivation of Lactobacillus species (OXOID, Basingstoke, England); M17 medium [105] (OXOID, 

Basingstoke, England) for cultivation of S. thermophilus A; Luria-Bertani (LB) medium for cultivation 

of P. aeruginosa PX112 and B. subtilis PX573. The composition of LB medium was (g/l): NaCl 

10.0; tryptone 10.0; yeast extract 5.0; with pH adjusted to 7.0. All the media were sterilized at 

121°C for 15 min. 

For antimicrobial assays, the following strains kindly provided by the Faculty of Pharmacy, 

University of Porto (Portugal) were used: E. coli, P. aeruginosa, S. aureus, Streptococcus agalactiae 

and C. albicans. For anti-adhesive assays were only used the strains of S. aureus and P. 

aeruginosa, previously mentioned. These strains were cultured in LB medium at 37°C. 

All the strains were stored at -80°C in the appropriate medium supplemented with 20 % 

(v/v) glycerol solution until use. Whenever required, frozen stocks were streaked on agar plates 

and incubated overnight at 37°C for further culturing. The agar plates were stored at 4°C no longer 

than 2 weeks. 

 

2.1.2. Screening of biosurfactant-producing strains 
 

Biosurfactant production by the different bacterial strains was studied in 500 ml flasks 

containing 200 ml of the culture medium established for each strain (Table 6). Each flask was 

inoculated with 2 ml of a pre-culture. Pre-cultures were prepared as follows: for P. aeruginosa 

PX112 and B. subtilis PX573 a single colony was taken from an agar plate and transferred to a 
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flask containing 25 ml of LB liquid medium; in the case of Lactobacillus strains and S. thermophilus 

A, 100 µl of a frozen stock were transferred directly into 25 ml of MRS or M17 medium, 

respectively. Pre-cultures were incubated overnight at 37°C and 100 rpm, except for B. subtilis 

PX573, which was incubated without shaking. The cultures were incubated in the same conditions 

than the corresponding pre-cultures. 
 

Table 6. Media and culture conditions used for the different strains studied. 

Strains Medium Temperature Shaking 

L. agilis CCUG31450 MRS 37°C 100 rpm 

L. animalis ATCC35046 MRS 37°C 100 rpm 

L. hamsteri ATCC43851 MRS 37°C 100 rpm 

S. thermophilus A M17 37°C 100 rpm 

L. paracasei A20 MRS 37°C 100 rpm 

B. subtilis PX573 LB 37°C 0 rpm 

P. aeruginosa PX112 LB 37°C 100 rpm 

 

In order to evaluate growth and biosurfactant production, samples (4 ml) were taken at 

different time points during the fermentation. Biomass concentration was determined by measuring 

the optical density at 600 nm using a multi-detection microplate reader SynergyTM HT (BioTek, USA). 

Whenever its value was higher than 0.7, the samples were diluted and the optical density was 

measured again. In the case of B. subtilis PX573, due to the formation of a pellicle in the surface 

of the medium, it was not possible to evaluate the growth by measuring the optical density during 

the fermentation. In this case, at the end of the fermentation, the cells were harvested by 

centrifugation (9000 rpm, 20 min) and cell dry weight (g/l) was determined (24h at 105°C). 

After measuring the cell growth, the samples were centrifuged (9000 rpm, 20 min) and the 

cell-free supernatants were used to measure the surface tension and the emulsifying activity, as 

described below. 

Biosurfactants can be excreted to the culture medium (extracellular biosurfactants) or 

remain attached to the cell wall (intracellular biosurfactants). Lactic acid bacteria usually produce 

mainly intracellular biosurfactants. In this case, the surface tension measured in the cell-free 

supernatants gives an indication of the extracellular biosurfactants produced; at the end of the 

fermentation the intracellular biosurfactants were extracted and the surface tension of the extract 

was measured to evaluate the intracellular biosurfactants production. 
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All the cultures were maintained until the maximum biosurfactant production was achieved 

(until the surface tension values remained constant). At the end of the fermentation, the 

biosurfactants were recovered as described below. 

 

2.1.3. Alternative culture media 
 

In order to reduce the production costs, biosurfactant production was investigated using 

industrial wastes as cheaper substrates, to replace synthetic media. Alternative low-cost media 

were prepared using molasses; cheese whey and corn steep liquor. All these substrates were 

supplied by local industries. 

 

i . Corn steep liquor (CSL) medium  

 

The CSL medium was prepared by dissolving CSL (10 % (v/v)) in demineralized water. The 

medium was adjusted to pH 7.0 and autoclaved (15 min at 121°C). 

 

ii. CSL and molasses (CSLM) medium 

 

A medium containing CSL and molasses (CSLM) was prepared by dissolving molasses (10 

% (w/v)) and CSL (10 % (v/v)) in demineralized water. The medium was adjusted to pH 7.0 and 

autoclaved (15 min at 121°C). 

 

iii . Cheese whey medium (CWM) 

 

The CWM was prepared by dissolving cheese whey in demineralized water at a concentration 

of 100 g/l. The solution was sterilized (121°C for 15 min) and the precipitates formed were 

removed by centrifugation (9000 rpm, 40 min). The supernatants obtained were used as culture 

medium. The initial pH of this medium was 6.2. 

 

 

2.1.4. Optimization of culture conditions 

 

i. Effect of aeration on biosurfactant production  
 

Environmental factors, namely aeration, can influence growth and biosurfactant production. 

In order to study the effect of aeration and improve biosurfactant production, different conditions 

were tested. B. subtilis PX573 was cultured without shaking (microaerophilic conditions) and at 
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200 rpm, whereas P. aeruginosa PX112 was grown at 100, 180 and 200 rpm. All the experiments 

were performed in 500 ml flasks containing 200 ml of culture medium. Regarding the lactic acid 

bacteria (L. agilis CCUG31450, L. animalis ATCC35046 and L. hamsteri ATCC43851), growth and 

biosurfactant production were studied under aerobic, anaerobic and microaerophilic conditions. 

Aerobic and microaerophilic cultures were performed in 500 ml flasks containing 200 ml of MRS 

medium at 100 rpm and without shaking, respectively. Anaerobic cultures were performed in 50 

ml flasks containing 25 ml of MRS medium. After inoculation, the flasks were sealed with rubber 

stoppers, and oxygen was removed by aseptically bubbling oxygen-free nitrogen into the flasks for 

10 min. 

In all the cases, samples were taken at different time points during the fermentation to 

determine growth and biosurfactant production, except in the case of anaerobic cultures, where 

they were evaluated at the end of the fermentation. 

 

 

2.1.5. Effect of trace elements on biosurfactant production  
 

The effect of different trace elements (iron, manganese and magnesium) on biosurfactant 

production by P. aeruginosa PX112 and B. subtilis PX573 was evaluated. The culture media used 

for these assays were the ones previously optimized for each strain (CSLM for P. aeruginosa PX112 

and CSL for B. subtilis PX573), which were supplemented with different trace elements at different 

concentrations as shown in Table 7 and Table 8. Control assays were performed using the media 

without trace elements. 

 

Table 7. Concentrations of trace elements tested for biosurfactant production by B. subtilis PX573. 

Condition  Concentration (mg/l) References 

B.A 

FeSO
4
.7H

2
O 

7.3 [80; 82] 

B.B 73.1 [106] 

B.C 548.7 [107] 

B.D 

MnSO
4
.H

2
O 

0.0037 [81] 

B.E 0.034 [106] 

B.F 0.34 [80; 82] 

B.G 

MgSO
4
 

100 [80; 106; 82] 

B.H 250 - 

B.I 500 [108] 
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Table 8. Concentrations of trace elements tested for biosurfactant production by P. aeruginosa PX112. 

Condition  Concentration (mg/l) References 

P.A 

FeSO
4
.7H

2
O 

0.3  [109] 

P.B 0.6  [110] 

P.C 7.4  [83] 

P.D 

MnSO
4
.H

2
O 

150 [109] 

P.E 300 [83] 

P.F 500 - 

P.G 

MgSO
4
 

100  [110] 

P.H 200 [83; 55; 109] 

P.I 500 - 

 

The cultures were performed in 250 ml flasks containing 100 ml of medium and incubated 

at the optimal conditions established previously for each strain. Growth and biosurfactant 

production were determined as previously described. 

 

After establishing the optimal concentration of the different trace elements, in the case of B. 

subtilis PX573, the effect of different trace elements combinations on biosurfactant production was 

evaluated. The different combinations tested are shown in Table 9. 

 

Table 9. Trace elements mixtures tested for biosurfactant production by B. subtilis PX573. 

Condition  Concentration (mg/l) 

B.J 
FeSO

4
.7H

2
O 

MnSO
4
.H

2
O 

548.7 

0.034 

B.K 
FeSO

4
.7H

2
O 

MgSO
4
 

548.7 

250 

B.L 
MnSO

4
.H

2
O 

MgSO
4
 

0.034 

250 

B.M 

FeSO
4
.7H

2
O 

MnSO
4
.H

2
O 

MgSO
4
 

548.7 

0.034 

250 
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2.1.6. Biosurfactants recovery 
 

Biosurfactants can be excreted to the culture medium (extracellular biosurfactants) or 

remain attached to the cell wall (intracellular biosurfactants). Therefore, depending on the 

biosurfactant, the processes used for biosurfactant recovery are different. For the extracellular 

biosurfactants, three different techniques were evaluated: acid precipitation (for biosurfactants 

which become insoluble at low pH values); solvent extraction (where organic solvents are used to 

extract the biosurfactants from the culture medium); and ammonium sulfate precipitation (the 

biosurfactants are precipitated through a salting-out process) [2]. Regarding the intracellular 

biosurfactants, they were extracted from the cell-wall as described below. 

 

i. Extracellular biosurfactants  
 

At the end of fermentation, the culture broth was centrifuged (9000 rpm, 20 min) to remove 

the cells and the cell-free supernatants were subjected to the different recovery techniques. 

 

 - Acid precipitation 
 

The cell-free supernatants were adjusted to pH 2.0 with HCl 18 % (v/v) and incubated 

overnight at 4°C to promote the precipitation of the biosurfactants. Afterwards, the precipitates 

(crude biosurfactants) were collected by centrifugation (9000 rpm, 20 min, 4°C). The crude 

biosurfactants were dissolved in a minimal amount of demineralized water and the pH was adjusted 

to 7.0 using NaOH 1 M. Finally, the biosurfactant solutions were freeze-dried and the products 

obtained weighed and stored at -20°C for further studies. 

 

 - Solvent extraction 
 

The cell-free supernatants were extracted with 3 volumes of chloroform or a mixture of 

chloroform:methanol:butanol (1:1:1 v/v/v). The mixtures were continuously shaken at room 

temperature for 5h. Subsequently, the mixtures was transferred to a separating funnel and allowed 

to separate overnight. The organic (lower) phase was recovered and the solvent was removed using 

a rotary evaporator at room temperature. The viscous product obtained was dissolved in a minimal 

amount of demineralized water, the surface tension was measured, and after that the solution was 

freeze-dried. The upper phase was extracted again in the same conditions to recover the maximum 

amount of biosurfactant. 
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- Ammonium sulfate precipitation   
 

Ammonium sulfate was added to the biosurfactant-containing cell-free supernatants to a final 

concentration of 40 % (w/v) with stirring. This process was performed at 4°C and the mixture was 

incubated at 4°C overnight. The precipitate was collected by centrifugation (9000 rpm, 20 min, 

4°C) and resuspended in demineralized water [111]. After measuring the surface tension, the 

solution was freeze-dried. 

 

ii. Intracellular biosurfactants  

 

Biosurfactants attached to the cell wall must be extracted from the cells. At the end of the 

fermentation, cells were harvested by centrifugation (9000 rpm, 20 min), washed once in the same 

volume of demineralized water, and resuspended in phosphate-buffered saline (PBS: 10 mM 

KH2PO4/K2HPO4 and 150 mM NaCl with pH adjusted to 7.0). 15 ml of PBS buffer were used per 

100 ml of culture broth [101]. The suspension was left at room temperature for 2h with gentle 

stirring to promote biosurfactant release. Subsequently, the cells were removed by centrifugation 

and the remaining supernatant liquid was filtered through a 0.2 µm pore-size filter (Whatman, GE 

Healthcare, UK). The supernatant was dialyzed against demineralized water at 4°C in a Cellu-Sep© 

membrane (molecular weight cut-off (MWCO) 6000–8000 Dalton; Membrane Filtration Products, 

Inc., USA) for 48h and freeze-dried. After being lyophilized the biosurfactants were stored at -20°C 

for further studies. In order to confirm biosurfactant production, during the extraction process the 

surface tension was routinely measured as described below. 

 

 

 

2.2. Biosurfactants characterization 

 

2.2.1. Surface-activity determination 

 

Surface tension measurements of culture broth supernatants and biosurfactant solutions 

were performed according to the Ring method as described by Gudiña et al. [112]. A KRÜSS K6 

Tensiometer (KRÜSS GmbH, Hamburg, Germany) equipped with a 1.9 cm De Noüy platinum ring 
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was used. Whenever required, the culture broth supernatants were diluted 10 times (ST-1) or 100 

times (ST-2) with demineralized water and the surface tension was measured as described above. 

In order to increase the accuracy of the surface tension measurements, an average of duplicates 

was determined. All the measurements were performed at room temperature (20°C). 

 

 

2.2.2. Emulsifying activity determination 
 

Emulsifying activity was determined by the addition of 2 ml of n-hexadecane to the same 

volume of cell-free culture broth supernatants or biosurfactant solutions in glass test tubes. The 

tubes were mixed with vortex at high speed for 2 min and subsequently incubated at 25°C for 24h. 

The stability of the emulsion was determined after 24h, and the emulsification index (E24, %) was 

calculated as the percentage of the height of the emulsified layer (mm) divided by the total height 

of the liquid column (mm) [103]. Whenever required, the culture broth supernatants were diluted 

10 times (E24
-1) or 100 times (E24

-2) with demineralized water and the emulsifying activity was 

measured as described above. 

 

 

2.2.3. Critical micelle concentration (CMC) 
 

Critical micelle concentration is defined as the concentration of an amphiphilic compound 

in solution at which the formation of micelles is initiated. Therefore, it is important for several 

biosurfactant applications to establish the CMC, as above this concentration no further effect is 

expected in the surface activity. Crude biosurfactant solutions at different concentrations 

(depending on the microorganism and the culture medium used) were prepared in PBS buffer, and 

the surface tension of each sample was determined by the Ring method at room temperature 

(20°C) as described above. The CMC was determined by plotting the surface tension as a function 

of the logarithm of biosurfactant concentration and it was found at the point of intersection between 

the two lines that best fit through the pre- and post-CMC data [35]. All the measurements were 

done in duplicate. 
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2.2.4. Biosurfactant stability 
 

The applicability of biosurfactants can be conditioned by their stability to different 

environmental parameters. Therefore, the effect of pH, temperature and salinity on the activity of 

biosurfactants produced by B. subtilis PX573 and P. aeruginosa PX112 was determined. Stability 

studies were performed using the cell-free broths obtained by centrifuging the cultures (at the end 

of the fermentation) at 9000 rpm for 20 min. In order to assess the effect of salinity on biosurfactant 

activity, the culture broth supernatants were supplemented with different NaCl concentrations 

(from 10 to 200 g/l). The surface tension and the emulsification indexes were measured as 

described above and compared with the corresponding values without addition of NaCl. To evaluate 

the stability of the biosurfactants to high temperatures, the broth samples were incubated at 121°C 

for 20 min and allowed to cool to room temperature. Surface tension and emulsification indexes 

were measured and compared to the corresponding values before heat treatment. The pH stability 

was studied by adjusting the cell-free broths to different pH values (2.0-13.0) using HCl or NaOH 

solutions. Then surface tension values and emulsification indexes were measured as described 

above. In the case of L. agilis CCUG31450 (that produces mainly intracellular biosurfactants) the 

stability assays were performed in the same way but using the freeze-dried biosurfactants dissolved 

in PBS buffer at a concentration of 7.5 mg/ml.  

 

2.2.5. Thin layer chromatography (TLC) 
 

A preliminary characterization of the different crude biosurfactants obtained was obtained 

by TLC. Lyophilized biosurfactant samples were dissolved in different solvents (methanol or 

acetonitrile) or PBS buffer. Between 4 and 8 µl of each sample were applied to a 10 x 20 cm silica 

gel TLC plate (Fluka® Analytical, Germany). The plates were developed using two different mobile 

phases: (a) chloroform-methanol-water (65:25:4 v/v/v) [113,114]; (b) acetonitrile-water (6:3 v/v) 

[115]. Subsequently the plates were air dried and visualized under ultra-violet (UV) light (254 and 

366 nm) and the different spots detected were recorded. The retention factor (Rf) value for each 

spot was calculated as: 

 �� = migration distance of substance spot migration distance of solvent front  
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2.3. Analytical techniques 
 

The alternative culture media used and some of the biosurfactants produced were analyzed 

for total of carbohydrates and protein contents using the following methods:  

 

 
 

2.3.1. Carbohydrate concentration 
 

Total carbohydrates were determined using the phenol–sulfuric acid method as described 

by DuBois et al. [38]. Briefly, each sample (1 ml) was mixed with 20 µl of phenol solution (80 % 

(w/v)) in glass test tubes. Then 2.5 ml of concentrated sulfuric acid (95-97 %) were added to each 

tube with slight shaking. The samples were left at room temperature for 10 min, shaken again and 

allowed to stand at room temperature for another 20 min. Afterwards, the optical density of each 

sample was measured at 490 nm using a multi-detection microplate reader SynergyTM HT (BioTek, 

USA). The carbohydrates concentration was determined using a calibration curve prepared using 

glucose at concentrations ranging from 1 to 100 mg/l. All the assays were performed in triplicate. 

 

 

2.3.2. Protein concentration 
 

The protein concentration was determined according to the Bradford assay using a protein 

assay kit (Thermo Scientific, USA). Briefly, 30 µl of sample were mixed with 1.5 ml of Bradford 

reagent  and  incubated at room  temperature for 5 min.  Subsequently,  the optical  density at 

595 nm was measured using a multi-detection microplate reader SynergyTM HT (BioTek, USA). The 

total amount of protein was determined using a calibration curve prepared using bovine serum 

albumin (BSA) at concentrations ranging from 0.1 to 1 mg/ml. All the assays were performed in 

triplicate. 
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2.4. Biosurfactants applications 

 

2.4.1. Antimicrobial assays 
 

The antimicrobial activity of the different biosurfactants against several microbial strains (E. 

coli, S. aureus, P. aeruginosa, S. agalactiae and C. albicans) was determined using the micro-

dilution method in 96-well plastic tissue culture plates (Orange Scientific, Belgium). The freeze-

dried biosurfactants were dissolved in LB medium at different concentrations, and biosurfactant 

solutions were sterilized by filtration through a 0.2 µm pore-size filter (Whatman, GE Healthcare, 

UK). Subsequently, 250 µl of sterile biosurfactant solution were placed into the first column of the 

96-well microplate, and 125 µl of sterile LB medium in the remaining wells. After that, 125 µl of 

biosurfactant solution from the first column were transferred to the second column and mixed with 

the medium. Serially, 125 µl were transferred to the subsequent wells, discarding 125 µl of the 

mixture in the tenth column, so that the final volume for each well was 125 µl. This process results 

in two-fold serial dilutions of the biosurfactant in the first 10 columns. Columns 11 and 12 do not 

contain biosurfactant and serve as growth and negative controls, respectively. All the wells (except 

for the 12th column) were inoculated with 5 µl of a pre-culture growth overnight in LB medium at 

37°C diluted to an optical density (600 nm) of 0.3. Microplates were covered and incubated for 

24h at 37°C. After 24h of incubation, 125 µl of demineralized water were added to each well and 

the optical density at 600 nm was determined using a multi-detection microplate reader SynergyTM 

HT (BioTek, USA). The growth inhibition percentages at different biosurfactant concentrations for 

each microorganism were calculated as: 

 % � ℎ � ℎ� � � � = [ − (�� )] ×  

 

where ODc represents the optical density of the well with a biosurfactant concentration c and OD0 

is the optical density of the control well (without biosurfactant) [112]. Triplicate assays were 

performed for the different microorganisms and biosurfactant concentrations. 
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2.4.2. Anti-adhesion assays 
 

The anti-adhesive activity of the different biosurfactants against P. aeruginosa and S. aureus 

was determined according to the procedure described by Gudiña et al. [112]. Briefly, the wells of 

a sterile 96-well flat-bottomed plastic tissue culture plate (Orange Scientific, Belgium) were filled 

with 200 µl of biosurfactant solutions prepared in demineralized water at different concentrations. 

The plate was incubated for at least 18h at 4°C and subsequently washed twice with PBS buffer. 

Control wells contained distilled water. An aliquot of 200 µl of a washed bacterial suspension in 

PBS adjusted to an optical density (600 nm) of 0.6 was added to each well and incubated for 24h 

at 4°C. Unattached microorganisms were removed by washing the wells twice with PBS. The 

adherent microorganisms were fixed with 200 µl of 99 % methanol per well, and after 15 min the 

plates were emptied and left to dry. After that, the  plates were stained for 5 min with  200 µl of 

33 % crystal violet (used for Gram staining) per well. Excess stain was rinsed out by washing the 

wells three times with PBS. Subsequently the plates were air dried; the dye bound to the adherent 

microorganisms was re-solubilized with 200 µl of 33 % (v/v) glacial acetic acid per well and the 

optical density of each well was measured at 595 nm. The microbial inhibition percentages at 

different biosurfactant concentrations for each microorganism were calculated as: 

 % �� �  � ℎ� � � � = [ − (�� )] ×  

 

where ODc represents the optical density of the well with a biosurfactant concentration c and OD0 

is the optical density of the control well (without biosurfactant) [112]. Triplicate assays were 

performed at all the biosurfactant concentrations for the two strains. This procedure allows the 

estimation of the biosurfactant concentrations that are more effective in inhibiting the adhesion of 

the studied microorganisms. 

 

2.4.3. Application of biosurfactants in the removal of crude oil from sand  
 

The applicability of biosurfactants produced by B. subtilis PX573, P. aeruginosa PX112 and 

L. agilis CCUG31450, as well as the chemical surfactants Enordet and Petrostep (supplied by SNF 

FLOERGER (France)) in oil recovery was evaluated, using artificially contaminated sand containing 

12.5 % (w/w) of Arabian Light oil (provided by GALP (Portugal)). Samples of 40 g of sand were 
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mixed with 5 g of crude oil in 100 ml Erlenmeyer flasks by shaking and allowed to age at room 

temperature for 24h. Afterwards, 40 ml of biosurfactants and chemical surfactants solutions (at 

concentrations ranging from 0.5 to 5 g/l) were added to each flask. The flasks were incubated at 

90 rpm and 40°C for 24h and the oil removed was recovered from the surface and its volume was 

measured. The amount of oil recovered (grams) was calculated according to its density (0.837 

g/ml). Control assays were performed using demineralized water at the same conditions. All the 

experiments were carried out in duplicate. 

 

 

2.5. Biosurfactant mixtures  

 

To evaluate the interaction between biosurfactants produced by the different 

microorganisms studied several mixtures with different composition and proportions were 

prepared. Those mixtures were evaluated in different applications, namely in antimicrobial and 

anti-adhesion assays as well as in removal of crude oil from sand. In this last case, two chemical 

surfactants were also tested, alone and in combination with different biosurfactants. In all the 

cases, the freeze-dried biosurfactants were dissolved in demineralized water (or in LB medium for 

the antimicrobial assays) at different concentrations, and then the different mixtures were prepared. 

 

 

2.6. Statistical analysis 
 

Results are presented as the mean ± standard deviation of at least two replicates. The 

analyses were carried out using Microsoft Office Excel software. 

Statistically significant differences of the conditions tested in the different assays were 

evaluated by a one-way ANOVA (P <0.05) applying the Tukey multiple-comparisons. A significant 

difference was considered if P <0.05. Statistical analyses were performed using GraphPad (San 

Diego, USA) software. 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

3. RESULTS AND DISCUSSION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Study of biosurfactants “cocktails” with enhanced properties |  

 

 
45 

3.1. Screening of biosurfactant-producing strains 

 

A total of seven isolates were screened for biosurfactants production under standard 

conditions. As described in the Materials and Methods section, both extracellular and intracellular 

biosurfactants production was evaluated through the measurement of surface tension and 

determination of emulsifying activity.  

 

 

 3.1.1. Lactic acid bacteria 

 

Five out of the seven above mentioned isolates were lactic acid bacteria. As can be seen in 

Table 10, none of the microorganism evaluated was found to decrease the surface tension of the 

culture medium, thus no extracellular biosurfactants were produced. Nevertheless, a decrease in 

the surface tension of the PBS could be observed for the PBS extracts revealing the production of 

intracellular biosurfactants. The isolate L. agilis CCUG31450 showed the most interesting results 

either in relation to surface activity or emulsifying activity.  

 

 

Table 10. Screening of bacterial isolates for biosurfactant production. Reduction of culture medium surface tension 

(–ΔST) (mN/m), corresponding to excreted biosurfactants; reduction of PBS surface tension (–ΔST of PBS) (mN/m), 

corresponding to cell-bound biosurfactants; emulsification index (E24,, %) of biosurfactants in PBS; biomass (OD 600 

nm) and crude biosurfactants concentration (mg/l) obtained for different lactic acid bacteria strains, grown at 37oC in 

MRS medium (except S. thermophilus A (M17)). The control value of surface tension for the biosurfactants extracted 

with PBS was 71.9 mN/m. The results represent means of two independent experiments ± standard deviation (SD). 

 

Microorganism 
Time 

(h) 

-ΔST of culture 

medium 

(mN/m) 

- ΔST of 

PBS 

(mN/m) 

Biomass (OD 

600 nm) 

E24 

(%) 

[Recovered 

Biosurfactants] 

(mg/l) 

L. paracasei 

A20 
96 -1.0 ± 2.6 24.0 ± 3.1 2.752 ± 0.013 4 51.5 ± 12.2 

L. agilis 

CCUG31450 
96 -1.8 ± 3.1 26.1 ± 3.2 1.152 ± 0.001 20 84.4 ± 1.6 

L. animalis 

ATCC35046 
120 -0.5 ± 0.8 25.2 ± 1.7 - - 27.6 ± 5.6 

L. hamsteri 

ATCC43851 
96 -1.5 ± 2.0 18.3 4.065 ± 0.013 0 24.2 ± 1.6 

S. thermophilus 

A 
96 0.9 ± 6.0 22.0 3.975 ± 0.015 12 29.4 
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Several researchers have reported the production of biosurfactants by lactic acid bacteria. 

Examples include the work by Saravanakumari and Mani [116] that reported an extracellular 

biosurfactant from L. lactis able to reduce the surface tension to 40.5 mN/m; and the work by 

Rodrigues et al. [77] that evaluated the ability of L. pentosus CECT-4023 and L. casei to produce 

biosurfactants and observed that both strains were biosurfactant producers. The surface tension 

values of biosurfactant extracted with PBS was 50.5, 53.0 mN/m respectively. They also 

characterized the biosurfactants produced by L. lactis 53 and reported a minimum surface tension 

value of 41.0 mN/m [117]. 

The lactic acid bacteria under study in the current work, namely L. agilis CCUG31450, L. 

animalis ATCC35046 and L. hamsiteri ATCC43851 showed surface tension values of 44.0, 47.7 

and 53.7 mN/m, respectively. These values are quite similar to those previously described in the 

literature for other lactic acid bacteria cultured under the same conditions. Furthermore, the strain 

L. paracasei A20, previously studied by Gudiña et al. [118] was reported to show a surface tension 

value of 50.0 mN/m. The surface tension value obtained is this work (47.9 mN/m) for the same 

strain, is in good agreement with one reported before. Previously studies about biosurfactants 

production by S. thermophilus A, indicated that the crude biosurfactants showed three distinct 

fractions (A, B and C) with surface activity, surface tension values 50, 49 and 36 mN/m, 

respectively [101]. The surface tension value herein obtained for S. thermophilus A, 50.0 mN/m, 

are very close to the values previously reported.  

The biosurfactants production by different lactic acid bacteria in MRS medium was also 

observed by Velraeds et al. [119]. From all strains studied, the most interesting results for the 

reduction of surface tension, determined relative to the surface tension of PBS (68 mN/m), were 

obtained for L. acidophilus ATCC4356 (27.0 mN/m); L. casei subsp. rhamnosus ATCC7469 and 

L. casei subsp. rhamnosus 81 (27.0 mN/m); L. fermentum B54 (29.0 mN/m); and Lactobacillus 

plantarum RC20 (26.0 mN/m). In general, the decrease in surface tension values obtained in this 

work (Table 10) are similar with the ones previously reported for lactic acid bacteria biosurfactants. 
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3.1.2. Bacillus subtilis PX573 

  

B. subtilis PX573 was another isolate tested for biosurfactant production. This strain reduced 

the culture medium surface tension to 31.0 mN/m, thus it was considered a good extracellular 

biosurfactant producer (Figure 4). 

 

 

Figure 4. Time course of biosurfactant production by B. subtilis PX573 showing the profiles of surface tension 

(mN/m) and emulsification index (E24, %). The strain was grown on LB medium at 37oC without shaking. Results 

represent the average of two independent experiments ± SD. 

  

 

Analyzing the fermentative process it can be seen that in the first 24h it occurs a great 

reduction of the surface tension on the culture medium, from 46.9 to 31.6 mN/m. From this time 

point until the end of the fermentation the values of ST and ST-1 remained almost constant. In the 

case of the emulsifying activity, the maximum value, 40.0 %, was observed at 72h. Similar results 

were reported by Vaz et al.[35] using also a B. subtilis strain; in that case, the surface tension of 

the culture medium was reduced to 30.1 mN/m in the first 24h, and then remained nearly constant 

until the end of the fermentation (144h). These researchers also noticed that the E24 values 

contrary to the surface tension continued increasing after the first 24h, similar results was observed 

in the current work with B. subtilis PX573. 

In order to assess the most favorable fermentation interval for the production of 

biosurfactant, its concentration in culture medium was measured over time. The results presented 
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in Table 11 show that the highest biosurfactant concentration is obtained at 48h, although the 

biomass concentration reached its maximum at 72h. These results suggest that the production of 

biosurfactants is probably not associated with cellular growth. 

 

Table 11. Biomass concentration (g dry weight/l) and crude biosurfactant concentration (mg/l) obtained for B. subtilis 

PX573 grown in LB medium at 37oC without shaking. Results represent the average of two independent experiments 

± SD. 

 

Time (h) [Biomass] (mg/l) [Crude biosurfactant] (mg/l) 

48 0.914 ± 0.03 726.7 

72 1.159 ± 0.08 533.3 

 

 

In these experiments, in which the B. subtilis PX573 strain was cultured without agitation, 

we noticed that after 48h of fermentation the biomass was very difficult to separate from the culture 

broth by centrifugation since the cells do not sediment easily, thus compromising the total amount 

of biosurfactant being recovered (most probably underestimated). In summary, although the 

surface tension remained constant until the end of fermentation, the amount of biosurfactant 

recovered was lower at 72h than at 48h of fermentation, not due biosurfactant degradation but 

due to the recovery limitations.   

Ghribi et al. [120] studied the production of biosurfactants by B. subtilis SPB1 in a mineral 

medium with glucose as the carbon source. The bacterium produced 720 mg of biosurfactant/l at 

the end of the fermentation. The amounts of biosurfactant obtained in our study for 48h of 

fermentation are in good agreement with that study. Makkar and Cameotra [121] studied the 

production of biosurfactants by B. subtilis MTCC1427 in a minimum medium supplemented with 

2 % sucrose, at 30°C and pH 9. The biosurfactant concentration obtained in those conditions was 

808.0 mg/l at 48h of fermentation. The same authors also studied the production of biosurfactants 

by a different B. subtilis strain in a mineral salt medium. After 72h of fermentation, the 

biosurfactants production was 342 mg/l, which is quite low as compared with the concentrations 

obtained in the current study (Table 11). Similar results were reported for the strain B. subtilis 28 

studied by Toledo and co-workers [122], that provided 430 mg/l of biosurfactant. 
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3.1.3. Pseudomonas aeruginosa PX112 

 

 P. aeruginosa PX112 was the last isolate being evaluated. Figure 5 illustrates the 

fermentation profiles of growth and biosurfactant production.  

 In the case of this strain, the biosurfactant production was found to be associated with 

cellular growth, as an increase in the biomass concentration led to a decrease in the surface 

tension, especially in the first 48h. The surface tension continued dropping until 72h reaching its 

lowest value (33.0 N/m), and then remained nearly constant until de end of fermentation (96h). 

The E24 values also reached the highest value at 72h, 60.0 %. After this time point the E24 values 

remained constant until the end of fermentation. At the end of fermentation the biosurfactants 

present in the culture medium were recovered by acid precipitation. The amount of biosurfactant 

obtained was 136.1 ± 41.6 mg/l. 

 

 

 

Figure 5. Time course of growth and biosurfactant production by P. aeruginosa PX112 showing the profiles of biomass 

(OD 600 nm), surface tension (mN/m) and emulsification index (E24, %). The strain was grown in LB medium at 37oC 

and 100 rpm. Results represent the average of two independent experiments ± SD. 

 

The biosurfactant production by P. aeruginosa BS-161R in Bushnell-Haas medium was 

evaluated by Kumar et al. [55]. In this case the yield of rhamnolipid produced was 369 mg/l, 

slightly higher than the one that we obtained using the P. aeruginosa PX112 strain (136 mg/l). 

Wei et al. [123] studied the rhamnolipid production by P. aeruginosa J4 grown in LB at 30oC, 200 
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rpm. The yield obtained, 773 mg/l, was much higher than the one obtained for P. aeruginosa 

PX112 in LB medium, at 100 rpm, thus suggesting that an increase in agitation could lead to an 

improvement on the biosurfactant production. The production of biosurfactants by P. aeruginosa 

MR01 in a minimum salt medium was also described in literature [124]. The results showed that 

the biosurfactant production was affect by the NaCl concentration, and reported biosurfactants 

yields between 300 and 500 mg/l. These values are higher than ours probably as a result of the 

higher agitation used or due to the NaCl concentration present in LB medium. 

 

 

 

3.2. Optimization of biosurfactants production 

 

3.2.1. Alternative culture media 

 

In order to reduce the production costs, biosurfactant production was investigated using 

industrial wastes as cheaper substrates, to replace synthetic media. Alternative low-cost media 

were prepared using molasses; cheese whey and corn steep liquor. All these substrates were 

supplied by local industries. Before analyzing the biosurfactants production using the alternative 

media, their characterization regarding protein and carbohydrates concentrations was conducted 

(Table 12).  

 

Table 12. Concentration of carbohydrates and protein (mg/ml) present in the industrial wastes used to prepare the 

different alternative media. Results represent the average of three measurements ± SD. 

 [Carbohydrates] (mg/ml) [Protein] (mg/ml) 

CSL (10% (v/v)) 7.5 ± 0.01 0.5 ± 0.02 

Molasses (10% (w/v)) 49.0 ± 0.92 0.06 ± 0.04 

Cheese whey (100 g/l) 34.9 ± 0.79 8.0 ± 0.9 
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3.2.2. Lactic acid bacteria 

 

An optimization strategy was adopted for the biosurfactant production by L. agilis  

CCUG31450, using alternative media based on low-cost substrates suggested by the literature [1, 

68]. Previously was optimized the culture conditions for the acid lactic bacteria studied. 

 

i.  Optimization of culture conditions 

 

In order to evaluate the most favorable conditions of oxygenation towards an increased 

biosurfactant production, the acid lactic bacteria L. agilis CCUG31450, L. animalis ATCC35046 

and L. hamsteri ATCC43851 were cultured in anaerobic and microaerophilic conditions. The 

fermentations were ended at the time point in which the cells stopped growing. These results were 

compared with the ones obtained for aerobic conditions during the screening process (Section 

3.1). The results suggest that aerobic conditions (Table 10) are more favorable for biosurfactant 

production by these lactic acid bacteria comparing to anaerobic and microaerophilic conditions 

(Table 13), except for the case of L. animalis ATCC35046, for which similar results were obtained 

under aerobic and microaerophilic conditions. For L. agilis CCUG31450, the surface tension 

decrease in aerobic conditions (26.1 mN/m) was higher than in anaerobic and microaerophilic 

conditions (15.0 and 17.4 mN/m, respectively).  

 

 

Table 13. Effect of aeration on the biosurfactants production. Reduction of PBS surface tension (–ΔST) (mN/m) 

obtained for the crude biosurfactants produced by different isolates grown under anaerobic and microaerophilic 

conditions in MRS medium at 37oC. Biomass results represent the average of two measurements ± SD.  

Microorganisms 

Anaerobic   Microaerophilic  

- ΔST of 

PBS 

Biomass (OD 

600 nm) 

Time 

(h) 
 

- ΔST of 

PBS 

Biomass (OD 

600 nm) 

Time 

(h) 

L. agilis CCUG31450 15.0 2.305 ± 0.01 48  17.4 2.590 ± 0.01 48 

L. animalis ATCC35046 21.6 - 120  23.8 2.315 ± 0.00 120 

L. hamsteri ATCC43851 11.5 3.400 ± 0.01 48  16.0 3.605 ± 0.01 48 
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ii. Alternative culture media 

 

Three different alternative media, CWM, CWM+CSL and CSLM, were used to evaluate the 

biosurfactant production by L. agilis CCUG31450. Similarly to the results presented in Table 10, 

also in this case no reduction of the supernatants surface tension values (Table 14) was observed, 

thus demonstrating that L. agilis CCUG31450 does not excrete biosurfactants into the culture 

medium. On the other hand, the analysis of the surface tension reduction of the PBS showed a 

good production of cell-bound biosurfactants for all the alternative media evaluated. Comparing the 

–ΔST values of PBS, obtained for the different alternative media and for the synthetic MRS medium, 

it is possible to observe a higher reduction of the PBS surface tension in the case of biosurfactants 

produced in MRS medium. Statistical analysis demonstrated that these differences were significant 

(p-value = 0.0114). On the other hand, regarding the amount of biosurfactants recovered in the 

different media, a clearly higher amount was observed for the CWM (959 mg/l), contrarily to the 

amount obtained for the MRS medium (87.0 mg/l), after 120h of fermentation. In general, a higher 

concentration of biosurfactants was obtained for all the alternative media comparing with the MRS 

medium. However, these results must be carefully considered, since the recovered compounds 

can eventually include other components from the culture medium that are not surface active 

molecules. 

 

Table 14. Biosurfactant production by L. agilis CCUG31450 in different alternative media. Reduction of culture 

medium surface tension (–ΔST) (mN/m) reduction of PBS surface tension (–ΔST of PBS) (mN/m)) and crude 

biosurfactants concentration (mg/l) obtained in the different media. The results represent the average of two 

measurements ± SD, except the results of MRS medium that represent the average of two independent experiments 

± SD. 

Culture Media 
Time 

(h) 

-ΔST of culture 

medium (mN/m) 

- ΔST of PBS 

(mN/m) 

[Recovered 

biosurfactant] 

(mg/l) 

CWM 
96 - 21.2 ± 0.3 623.5 ± 43.1 

120 -1.3 ± 0.4 22.7 ± 0.1 959.0 ± 9.90 

CWM+CSL 
96 -1.5 ± 2.0 21.0 ± 0.1 294  

120 -2.1 ±0.4 21.7 ± 0.1 492.5 ± 29.0 

CSLM 120 0.3 ± 0.0 21.0 ± 0.9 356.3 

MRS 
96 

120 

-1.8 ± 3.1 

-3.6 

26.1 ± 3.2 

24.0 

84.4 ± 1.6 

87.0 ± 4.0 
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In the literature, cheese whey is described as a good substrate for biosurfactant production, 

once it contains high levels of lactose, protein, organic acids and vitamins [69, 70]. Cheese whey 

can be an interesting substrate for biosurfactant production by lactic acid bacteria, which have the 

ability of using lactose as a carbon source. As can be seen the bacterium L. agilis CCUG31450 

was able to produce biosurfactants in CWM, as confirmed by the decrease of PBS surface tension 

(Table 14), thus demonstrating that CWM could be used alternatively to MRS medium. 

Biosurfactant production by L. pentosus CECT-4023, a strong biosurfactant producer strain, using 

cheese whey as substrate was studied by Rodrigues et al. [77]. Optimization of the biosurfactant 

production led to a maximum biosurfactant concentration of 1.4 g /l. This value is higher than the 

one obtained in the current study (959.0 mg/l).  

Rodrigues et al. [78] also studied the potential of other alternative media for biosurfactants 

production. Cheese whey and/or molasses combined with peptone and yeast extract have been 

used. The results obtained showed that both cheese whey and molasses media can be used as a 

relatively inexpensive and economical alternative to the synthetic media commonly used for 

biosurfactant production by probiotic bacteria. Specifically, an increase about 2 times in the mass 

of produced cell-bound biosurfactant per gram cell dry weight could be obtained when compared 

to the synthetic medium. In the current study, a higher amount of biosurfactants was obtained 

using CWM when compared with the medium composed by molasses, contrary to the findings of 

Rodrigues et al [78]. 

Furthermore, in the current study we attempted to replace the yeast extract by cheaper 

nitrogen sources (CSL) also mentioned in other reports. Lee and co-workers [125] reported the use 

of CSL (5 % (v/v)) as a suitable option to replace yeast extract to produce lactic acid using 

Lactobacilli strains. Although in our work, the -ΔST of PBS was quite similar for the biosurfactants 

produced in CWM and CWM+CSL, the supplementation with CSL did not improve the amount of 

biosurfactants produced, once the results obtained for CWM (959.0 mg/l) are higher than with 

CWM+CSL (492.5 mg/l) after 120h of fermentation.  

It was interesting to notice that a change in the carbon source (from glucose to lactose) 

induced the cells to produce more biosurfactant. However, a higher amount of biosurfactants did 

not imply a higher or equal surface activity. The different carbon sources yielded varying amounts 

of by-products [126]. Therefore, it can be speculated that the use of lactose as carbon source 

instead of glucose induced the cells to use another metabolic pathway, and therefore the amount 
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of cell-bound biosurfactant produced per gram of cell varied. Moreover, it should be noticed that 

biosurfactants produced in different media can have different properties and structures. Therefore, 

further studies were conducted to analyze the activity of the biosurfactants produced by L. agilis 

CCUG31450 in CWM and MRS media.  

 

 

3.2.3. Bacillus subtilis PX573 

 

The high biosurfactant production that was found for B. subtilis PX573 in LB medium makes 

this microorganism an interesting choice to further optimize the biosurfactant production while 

reducing the production costs. Therefore, an alternative medium based on industrial wastes, such 

as CSL, as a low-cost substrate was studied. This alternative medium was supplemented with 

different trace elements and the agitation conditions were also optimized. 

 

i. Alternative culture media  

 

Afterwards the biosurfactant production was evaluated as previously mentioned through the 

measurement of surface tension and emulsifying activity along the time. Whenever required the 

cell-free supernatants were diluted 10 or 100 times, and the corresponding surface tension values 

and emulsification indexes (ST-1/E24
-1 and ST-2/E24

-2) were measured. The lowest surface tension 

value (30.6 mN/m) was observed at 24h, showing a high decrease in the surface tension when 

compared with the CSL medium itself (52.9 mN/m) (Figure 6A). After the first 24h, the surface 

tension values started increasing; this effect is particularly observed for the ST-2 values. In the case 

of the emulsifying activity (Figure 6B), the E24 values remained constant throughout the 

fermentation and no significant changes could be observed comparing with the emulsifying activity 

of the culture medium. However, analyzing the results obtained for the E24
-2, an evident increase 

of the emulsifying activity at 48h (20 %) was found.  
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Figure 6. Profiles of the culture broth supernatant surface tension (mN/m) (A) and emulsification index (E24, %) (B) 

during the time course of the fermentation by B. subtilis PX573. The strain was cultured in CSL medium at 37oC 

without shaking. Results represent the average of two measurements ± SD. 

 

Furthermore, the biosurfactants concentration was also determined at two different 

fermentation time points. As can be seen in Table 15, a higher production of biosurfactants in CSL 

medium was reached at 48h.  

 

Table 15. Biosurfactants concentration (mg/l) obtained using B. subtilis PX573 grown in CSL medium at 37oC and 

without shaking.  

 Time (h) 

 24 48 

[Recovered biosurfactants] (mg/l) 1236.0 2060.0 
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Comparing the biosurfactant concentrations obtained for the different media studied, it was 

found that the CSL medium is the most favorable for biosurfactant production, when compared 

with LB medium, which is in agreement with the ST-1 values previously obtained. Specifically, the 

growth of B. subtilis PX573 in CSL medium showed a biosurfactants production (2060.0 mg/l) 2.8 

times higher comparing with the values obtained using LB medium (726.7 mg/l). Although a higher 

amount of biosurfactants is produced in CSL medium, the efficiency of these molecules being 

produced using different media should also be considered, as described later.  

Several researchers described the production of biosurfactants by B. subtilis strains using 

low-cost substrates. Al-Bahry et al. [127] studied the biosurfactant production by B. subtilis B20 

grown in a low-cost molasses-based mineral media. Acidic precipitation allowed recovering 2.29 

g/l crude biosurfactant using a medium containing 80 g/l molasses. These biosurfactants reduced 

the surface tension from 58 to 27 mN/m. Nitschke et al. [15] obtained a crude biosurfactant 

concentration of 3.0 g/l after 48h of fermentation growing B. subtilis LB5a in cassava waste. These 

biosurfactants reduced the surface tension of the medium to 26.6 mN/m.  The biosurfactant yields 

obtained in the current work (2.06 g/l, 48h) are in agreement with the values reported in the 

literature. In this way, CSL can be considered an interesting alternative low-cost substrate for the 

production of biosurfactants.  

 

 

ii. Optimization of culture conditions  

 

After studying the biosurfactants production using the alternative media CSL, a further 

optimization step was conducted regarding the agitation rates (from 0 to 200 rpm). Similarly to the 

experiments without agitation, the most interesting results regarding the emulsifying activity were 

achieved at 48h (Figure 7B), principally for the E24
-1 (36 %) and E24

-2 (16 %) values comparing with 

the culture medium (E24
-1, 20 %, and E24

-2, 0 %). A pronounced decrease of the surface tension, 

from 52.9 to 29.7 mN/m, was observed in the first 24h (Figure 7A). Nevertheless, the ST-1 and 

ST-2 values were found to continuously decrease until 48h of fermentation. After 48h of 

fermentation, the concentration of biosurfactants was 2171.8 ± 18.0 mg/l.  
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Figure 7. Profiles of the culture both supernatant surface tension (mN/m) (A) and emulsification index (E24, %) (B) 

during the time course of the fermentation by B. subtilis PX573. The strain was grown on CSL medium at 37oC and 

200 rpm. Results represent the average of two measurements ± SD. 

 

iii. Effect of trace elements 
 

The alternative CSL medium was supplemented with three metal ions, Fe2+ (conditions 

B.A, B.B and B.C), Mn2+ (conditions B.D, B.E and B.F) and Mg2+ (conditions B.G, B.H and B.I) at 

different concentrations (Table 7). From Figure 8 it can be seen that almost all the conditions 

studied led to a decrease of surface tension as compared with the control (CSL without 

supplementation). The conditions B.C, B.E and B.H stand out as the best ones, presenting the 

most notable effect in the decrease of surface tension, mainly showed by the ST-2 values at 48h 

(Figure 8C), 48.5 mN/m, 48.7 mN/m and 49.0 mN/m, respectively. These results were analyzed 

by one-way ANOVA followed by a multiple comparison test, Tukey's Multiple Comparison Test. The 
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differences observed between the surface tension values of the control and B.C, B.F and B.H 

conditions were found to be statistically significant (p-value = 0.0108).  

 

 

Figure 8. Effect of trace elements (Fe2+, Mn2+ and Mg2+) at different concentrations on the biosurfactant production 

by B. subtilis PX573. Profile of surface tension (ST) (A) ST-1 (B) and ST-2 (C) along the time. The strain was cultured 

in CSL medium at 37oC and 200 rpm. Results represent the average of two measurements ± SD. 
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Although the differences in the surface tension values were obvious, this was not reflected 

in the amount of biosurfactants being recovered (Table 16). Indeed, a slightly higher biosurfactant 

production was found in the control comparing with the experiments in which trace elements have 

been supplemented. Thus, a higher amount of biosurfactants recovery did not correspond to a 

higher surface activity. It is well-known that biosurfactants produced in different media can present 

different properties, which might have been the case. On the other hand, the presence of impurities 

in the media may also differ, thus leading to different biosurfactant efficiencies.  

Table 16. Biosurfactant production (mg/l) by B. subtilis PX573 grown in CSL medium supplemented with different 

trace elements at 37oC and 200 rpm after 72h of fermentation. 

Culture conditions [Recovered biosurfactants] (mg/l) 

Control 2361.6 

B.C 2280.5 

B.E 2085.4 

B.H 2062.7 

 

Several researchers showed that in some cases the optimal concentration determined 

individually for each trace element could not be the optimal for the biosurfactants production when 

all the trace elements are present in the culture medium [106]. Specifically, the results reported 

by Wei et al. [106] suggest an interaction between the metal ions in terms of their effects on 

biosurfactants production. Therefore, in the current work, after determining the best concentration 

of each element, the interaction between them and their effect on biosurfactants production was 

further explored. Four combinations of the three metal ions at their optimal individual concentration 

were evaluated: conditions B.J (Fe2+ and Mg2+), B.K (Fe2+ and Mn2+), B.L (Mg2+ and Mn2+), and 

B.M (Fe2+, Mg2+ and Mg2+) (Table 9, Materials and Methods section). From Figure 9 it can be seen 

that the best results regarding surface tension decrease were obtained in the first 24h. The 

combination of trace elements was found to be more effective in the surface tension reduction then 

the elements themselves. The four conditions tested showed quite similar behaviors, as 

demonstrated by the ST-1 values in the first 24h, B.J: 31.6 mN/m, B.K: 31.5 mN/m, B.L: 31.3 

mN/m and B.M: 31.3 mN/m. However, only slight decreases of the surface tension could be 

observed comparing with the control (36.3 mN/m). The statistical analysis showed that the 

differences between the control and the different combinations of trace elements were not 

significant (p-value >0.05). 
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Figure 9. Effect of different metal ions combinations (Fe2+, Mn2+ and Mg2+) on the biosurfactant production by B. 

subtilis PX573. Profile of surface tension (ST) (A) ST-1 (B) and ST-2 (C) along the time. The strain was cultured in CSL 

medium at 37oC and 200 rpm. Results represent the average of two measurements ± SD.  
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3.2.4 Pseudomonas aeruginosa PX112 

 

- Optimization of culture conditions 
 

As previously mentioned, several environmental factors, such as aeration, can influence the 

bacterial cell growth and/or the biosurfactant production [3, 55, 128]. Therefore, in the current 

work the aeration conditions that maximize the biosurfactants production by P. aeruginosa PX112 

in LB medium were studied (from 100 to 180 rpm). Figure 10 shows that a maximum biomass 

concentration is reached after 48h using 180 rpm, in contrast with the previous results using 100 

rpm (Figure 5), in which the maximum biomass concentration was reached later. Furthermore, it 

was found that this biomass concentration corresponds to the lowest surface tension (34.1 mN/m) 

and highest E24 (60 %) values obtained. After 48h, a strong decrease in the biomass concentration 

was observed, which corresponds to cellular death. Nevertheless, the surface tension and 

emulsification index values remained constant until the end of the fermentation (120h), i.e. these 

results suggest that no biosurfactant degradation occurred until the end of the fermentation. At the 

end of the fermentation, the biosurfactants present in the culture medium were recovered by acid 

precipitation and were further freeze-dried. The biosurfactant concentration at this time point was 

1596.6 mg/l, which represents a great increase of biosurfactant production, i.e. 12 times higher 

than the concentration obtained in the fermentation conducted at 100 rpm (136.1 mg/l). 

 

Figure 10. Time course of growth and biosurfactant production by P. aeruginosa PX112 showing the profiles of 

biomass (OD 600 nm), surface tension (mN/m) and emulsification index (E24, %). The strain was grown on LB medium 

at 37oC and 180 rpm. Results represent the average of two measurements ± SD.  
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i. Alternative culture media 

 

The initial screening tests showed that P. aeruginosa PX112 produced high amounts of 

biosurfactants in LB medium. Therefore, aiming at reducing the production costs, an alternative 

media based in industrial wastes, specifically molasses and CSL, was studied.  

The production of biosurfactants was performed in CSLM medium at 37oC and 180 rpm 

and evaluated through surface tension and emulsification indexes measurements (Figure 11). The 

lowest surface tension value, 30.3 mN/m, was observed at 72h (Figure 11A). In the case of the 

emulsifying activity, the E24
-1 and E24

-2 values increased until the end of the fermentation (144h), 

meaning that the biosurfactant is being continuously produced. The medium CSLM itself (control) 

showed a very high emulsifying activity (E24=60 %), therefore we cannot conclude that the E24 

values determined in the supernatant along the fermentation are due to the production of 

biosurfactants, but most probably correspond to other medium components that also exhibit 

emulsifying activity. For instance, in the first 24h it was observed a decrease in the E24 values 

probably due to the consumption of such medium components. However, regarding the E24
-1 

values, a decrease was observed in the first 24h (to 0 %), after which an increase was observed 

and this increase could be due to biosurfactant production since those medium components must 

have been already exhausted. At 120h, the E24
-1 values reached their maximum (equal to the E24 

value). At the end of fermentation, the biosurfactants present in the culture medium supernatant 

were recovered by acid precipitation and were further freeze-dried. The concentration of 

biosurfactants was 4076.6 mg/l, corresponding to a concentration 2.5 times higher than the one 

obtained using the LB medium. 
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Figure 11. Profiles of the culture both supernatant surface tension (mN/m) (A) and emulsification index (E24, %) (B) 

during the time course of the fermentation by P. aeruginosa PX112. The strain was grown on CSLM medium at 37oC 

and 180 rpm. Results represent the average of two measurements ± SD. 

Based on the positive results obtained for biosurfactants production using the alternative 

media CSLM, a second optimization of the process was conducted, namely regarding the agitation 

rate that was increased from 180 to 200 rpm (Figure 12). Similarly to the results obtained at 180 

rpm, the most interesting results obtained for 200 rpm were a surface tension value of 31.5 mN/m 

and an E24 of 60 % at 72h of fermentation. These values remained approximately constant until de 

end of fermentation (144h).  
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Figure 12. Profiles of the culture both supernatant surface tension (mN/m) (A) and emulsification index (E24, %) (B) 

during the time course of the fermentation by P. aeruginosa PX112. The strain was grown on CSLM medium at 37oC 

and 200 rpm. Results represent the average of two measurements ± SD. 

The biosurfactants produced under a higher agitation rate were recovered at 96 and 120h 

(Table 17). A higher biosurfactant production was recovered after 120h of fermentation. The 

amount of biosurfactant produced at 200 rpm was also found to be higher than the amount 

previously obtained for 180 rpm, although the surface tension and emulsification indexes obtained 

were similar in both cases. 

Table 17. Biosurfactants concentration (mg/l) along the time. Biosurfactants were produced by P. aeruginosa PX122 

in CSLM medium at 37oC and 200 rpm.  

 Time (h) 

 96 120 

[Recovered biosurfactants] (mg/l) 4270.3 5185.4 
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There is a great variety of low cost substrates that have been described in literature and 

could be used for the production of rhamnolipids by P. aeruginosa strains. Mercade et al. [129] 

evaluated the potential use of olive oil mill effluent (OOME) for the production of rhamnolipids. In 

Mediterranean countries, such as Portugal, the OOME is a major pollutant of the agricultural 

industry being produced in large quantities [130], therefore this substrate could also be a suitable 

choice for our study. The biosurfactants produced with this substrate (6.4 g/l) reduced the surface 

tension from 42 to 30 mN/m [130]. Furthermore, Patel and Desai [131] described the use of 

renewable water-soluble by-products (molasses, corn steep liquor) to produce rhamnolipids from 

P. aeruginosa GS3. Benincasa et al. [132] evaluated a number of water-immiscible substrates in 

mineral medium, namely sunflower (4.9 g/l biosurfactant), soybean (4.8 g/l biosurfactant), olive 

oil (5.3 g/l biosurfactant). The results obtained in the current study (Table 17) are in good 

agreement with previous reports from the literature. 

 

 

ii. Effect of trace elements  

 

As previously mentioned, in this work, the composition of trace elements in the medium 

was optimized. In order to define the optimal concentration of metal ions, Fe2+ (conditions P.A, P.B 

and P.C), Mn2+ (conditions P.D, P.E and P.F) and Mg2+ (conditions P.G, P.H and P.I), several shake 

flasks with CSLM medium were inoculated with P. aeruginosa PX112 and supplemented with 

different concentration of these elements (Table 8, Materials and Methods section). As can be seen 

in Figure 13, the conditions P.C, P.D and P.F showed a slightly higher reduction of surface tension, 

mainly in the first 72h, when  compared to the other conditions tested.  However, analyzing the 

ST-2 values at 72h of fermentation (Figure 13C), for the conditions P.C (46.8 mN/m), P.D (46.3 

mN/m) and P.F (46.0 mN/m) it was possible to see that they were quite similar to the control 

(46.6 mN/m), thus no further improvement of the biosurfactant could be observed under those 

conditions. 



|3. RESULTS AND DISCUSSION 
 

 
66 

 

 

 

Figure 13. Effect of trace elements (Fe2+, Mn2+ and Mg2+) at different concentrations on the biosurfactant production 

by P. aeruginosa PX112. Profile of surface tension (ST) (A) ST-1 (B) and ST-2 (C) along the time. The strain was 

cultured in CSLM medium at 37oC and 200 rpm. Results represent the average of two measurements ± SD. 
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iii. Improvement of biosurfactants recovery  

 

 The total amount of biosurfactants being recovered at the end of fermentation is highly 

influenced by the recovery technique used. In this work, we also aimed at exploring other 

techniques that could lead to a maximum biosurfactant recovery and at the same time that are 

simple to perform and inexpensive.  

 Acid precipitation is one of the methods commonly used to recover biosurfactants. However, 

in the case of the biosurfactants from P. aeruginosa PX112, the surface tension values of the 

supernatants after biosurfactants recovery indicated that only a small fraction was being recovered. 

Therefore, as a first approach, different times of acid precipitation were studied. From Table 18 it 

can be seen that the higher concentration of biosurfactants recovered (710 mg/l) was obtained 

after 1 day of acid precipitation. The extension of the exposure time to acid conditions did not show 

a positive effect in the total amount of biosurfactant being recovered. 

The surface tension values of the supernatant (Table 18), before and after acid precipitation, 

were found to be similar, thus meaning that the biosurfactants recovered represent just a small 

fraction of the existing surface active compounds in the medium supernatant.  

 

Table 18. Effect of different acid precipitation times on the amount of biosurfactant recovered. Surface tension values 

(mN/m) of supernatants before and after acid precipitation, and the concentration of recovered biosurfactants (mg/l). 

The supernatants were obtained by growing P. aeruginosa PX112 at 37oC and 180 rpm for 120h. The control surface 

tension (LB medium) was ST=49.4 mN/m, ST-1=62.2 mN/m and ST-2 =69.3 mN/m. The supernatant after acid 

precipitation corresponds to the liquid obtained after centrifugation and removal of the precipitated biosurfactants. 

Results represent the average of two measurements ± SD. 

Supernatant 
Surface Tension (mN/m) Biosurfactant 

recovered (mg/l) 
ST ST-1 ST-2 

Before acid precipitation 32.5 ± 0.4 41.2 ± 0.1 66.1 ± 0.6 - 

After acid precipitation     

1 day 33.0 ± 0.0 43.9 ± 0.1 66.1 ± 1.2 710 

4 days 32.0 ± 0.0 41.2 ± 0.4 64.0 ± 1.3 450 

11days - - - 400 ± 20 

 

Since the surface tension value obtained for the supernatant remaining after biosurfactants 

removal is still quite low we can conclude that most of the biosurfactants being produced stay in 

the supernatant and that acid precipitation was ineffective. Therefore, the evaluation of possible 
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secondary recovery methods to be applied after the acid precipitation is required to assure a 

maximum recovery of biosurfactants. In this work, the recovery of biosurfactants by extraction with 

solvents (chloroform and a mixture of chloroform:methanol:butanol (1:1:1 v/v/v)) and by 

precipitation with ammonium sulfate (40 % (w/v)) were evaluated. The analysis of the surface 

tension values of the supernatant after biosurfactants recovery was generally found to be increased; 

especially after the precipitation with ammonium sulfate. Therefore, most of the methods studied 

were showed to be more efficient as compared to the sole use of acid precipitation. This conclusion 

is supported by the results on the concentration of recovered biosurfactants shown on Table 19. 

Although the surface tension values were lower for the freeze-dried biosurfactants recovered by 

chloroform extraction (29.4 mN/m) than the ones recovered by ammonium sulfate precipitation 

(32.5 mN/m), the concentration of these biosurfactants (4.45 mg/ml) was 2.3 times higher as 

compared to the chloroform extraction (1.93 mg/ml). Regarding the extraction with chloroform, a 

second subsequent extraction was performed, but in this case no further biosurfactants could be 

recovered. In the case of the mixture of chloroform:methanol:butanol was not possible recover the 

biosurfactants, i.e the mixture was not efficient. The optimization of the biosurfactants recovery 

procedure allowed an increase of 6.3 times of the amount of biosurfactants recovered by 

ammonium sulfate precipitation as compared with sole use of acid precipitation (standard 

methodology). Therefore, the results showed that the use of both recovery techniques together 

(acid precipitation flowed by ammonium sulfate precipitation) will improve the amount of 

biosurfactants being recovered, thus making the process more efficient. 

 

Table 19. Different methods for the recovery of biosurfactants produced in LB medium by P. aeruginosa PX112. 

Concentration of the biosurfactant recovered (mg/l), surface tension values (mN/m) of supernatants after being 

subjected to different recovery methods (control (LB medium): ST=49.4 mN/m and ST-1 =62.2 mN/m)) and of freeze-

dried biosurfactant (concentration 1.25 mg/ml) (control PBS: ST=71.9 mN/m). Results represent the average of two 

measurements ± SD. 

 Surface Tension (mN/m) Recovered 

biosurfactants (mg/l) ST ST-1 

After acid precipitation 33.0 ± 0.0 43.9 ± 0.1 - 

Chloroform extraction    

Freeze-dried biosurfactant 29.4 ± 0.1 44.0 ± 0.0 1930 

Supernatant after extraction 35.0 ± 0.0 40.3 ± 0.4  

Ammonium sulfate precipitation    

Freeze-dried biosurfactant 31.5 ± 0.6 57.4 ± 1.1 4450 

Supernatant after extraction  45.3 ± 1.1   
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Likewise, the secondary recovery methods were also evaluated for the biosurfactants 

produced by the same strain but using the CSLM alternative medium. The results gathered in Table 

20 show that the biosurfactants recovery with ammonium sulfate is more efficient comparing to 

the chloroform extraction, similarly to the previous findings with LB medium. Specifically, although 

the surface tension values (28 mN/m) for the freeze-dried biosurfactants recovered by chloroform 

extraction were lower than the ones obtained by ammonium sulfate precipitation, the amount of 

biosurfactants recovered was higher when ammonium sulfate precipitation was used (10 times). 

In conclusion, together with the biosurfactants recovered by ammonium sulfate precipitation it may 

exist also a great amount of impurities, thus leading to higher surface tension values. 

 

Table 20. Different methods for the recovery of biosurfactants produced in CSLM medium by P. aeruginosa PX112 

at 200 rpm during 120h. Concentration of the biosurfactant recovered (mg/l), surface tension values (mN/m) of 

supernatants after being subjected to different recovery methods (control (CSLM medium): ST=52.4 mN/m and ST-

1=58.4 mN/m)) and of freeze-dried biosurfactant (concentration 1.25 mg/ml) (control PBS: ST=71.9 mN/m). Results 

represent the average of two measurements ± SD. 

 

 Surface Tension 

(mN/m) 

Recovered 

biosurfactants (mg/l) 

After acid precipitation 33.0 ± 0.0 -  

Chloroform extraction  

690 Supernatant after extraction  30.5 ± 0.4 

Freeze-dried biosurfactant 28.0 ± 0.1 

Ammonium sulfate precipitation   

Supernatant after precipitation 43.0 ± 0.0 6830 

Freeze-dried biosurfactant 30.0 ± 0.0  

 

As previously mentioned, the method most commonly used to recover rhamnolipids is the 

acid precipitation. However, when a complex carbon source is used, such as molasses or CSL, the 

downstream recovery of biosurfactants is a delicate step because of the similar polarity of the 

product and the substrate components [133]. Therefore, the combination of acid precipitation with 

another recovery technique as suggested in the current study could be helpful in reducing the 

presence of impurities in the crude biosurfactant and in improving the biosurfactant yields. Banat 

[134] also suggested the use of two combined methods to recover rhamnolipids from P. 

aeruginosa, namely acidification of culture media followed by extraction with chloroform/methanol. 
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3.3. Biosurfactants characterization 

 

 One of the issues in any new biosurfactant production process is the fact that in the end a 

crude biosurfactant mixture is obtained and the downstream processes usually retrieve very low 

yields and sometimes are inefficient. As a consequence, the characterization of the pure molecules 

is hard and sometimes not feasible. Nevertheless, it is important for several reasons, e.g. to 

improve the recovery but also the production, to know the structures or at least the functional 

groups that are involved in these biosurfactant mixtures. On the other hand, it is of utmost 

important to have a functional characterization of the biosurfactants since this will open application 

opportunities. 

 

3.3.1. TLC characterization  

 

 The freeze-dried biosurfactants recovered from all isolates under study were characterized 

by TLC. Two different mobile phases were tested: (a) chloroform-methanol-water (65:25:4 v/v/v) 

and (b) acetonitrile-water (6:3 v/v). The mobile phase (b) was the most efficient, being able to 

separate more components from the biosurfactants mixture produced by lactic acid bacteria. 

Different solvents were used to dissolve the freeze-dried biosurfactants. Methanol and acetonitrile 

were not able to dissolve completely the biosurfactants; however, all of them were soluble in PBS 

buffer, thus demonstrating their dominant hydrophilic character. Table 21 summarizes the results 

obtained for the seven isolates studied. L. paracasei A20, L. agilis CCUG31450 and L. animalis 

ATCC35046 show a few Rf values that are quite similar (in bold), which suggests that these 

biosurfactants might have some structural similarities. However, despite some similar Rf values, 

in general, the different biosurfactants showed distinct Rf profiles, meaning that different structures 

are present in the biosurfactant mixtures (it is important to notice that these biosurfactants have 

not been purified).  
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Table 21. TLC analysis of the crude biosurfactants recovered from the seven isolates studied. Solvent system used 

was acetonitrile-water (6:3 v/v). The freeze-dried biosurfactants were dissolved in PBS. The spots were visualized under 

ultraviolet light at 254 and 366 nm. 

Retention factor (Rf) (254 nm) 

L. paracasei 

A20 

L. agilis 

CCUG31450 

L. animalis 

ATCC35046 

L. hamsteri 

ATCC43851 
S. thermophilus A 

P. aeruginosa 

PX112 

B. subtilis 

PX573 

0.23 0.29 0.29 0.58 0.25 0.42 0.37 

0.50 0.32 0.50  0.35   

    0.44   

Retention factor (Rf) (366 nm) 

L. paracasei 

A20 

L. agilis 

CCUG31450 

L. animalis 

ATCC35046 

L. hamsteri 

ATCC43851 
S. thermophilus A 

P. aeruginosa 

PX112 

B. subtilis 

PX573 

0.34 0.39 0.38 0.58 0.39 0.86 0.37 

0.41 0.45 0.46  0.44  0.73 

0.50 0.56      

 

 

3.3.2. Critical micelle concentration (CMC) 

 

To determine the CMC of the freeze-dried biosurfactants, the relationship between their 

concentration and the corresponding surface tension was determined. As described in the 

literature, the most important interfacial properties (as detergency and solubilization) are affected 

by the existence of micelles in solution [35]. Therefore, the CMC is widely used as an index to 

evaluate the surface activity of a given surfactant. At biosurfactant concentrations higher than the 

CMC, the surface tension becomes stable, and there no further significant reduction of the surface 

tension will occur. The results showed, as expected, a progressive decrease in surface tension 

values with the increase of the biosurfactants concentration.  

 

 

i. Lactobacillus agilis CCUG31450 

 

The biosurfactants produced by L. agilis CCUG31450 in MRS and CWM medium were tested 

at different concentrations. The CMC was found to be 7500 mg/l for biosurfactants produced in 

MRS medium (Figure 14A) with a minimum surface tension value of 42.8 mN/m, and 13000 mg/l 
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for those produced in CWM (Figure 14B) with a minimum surface tension value of 47.5 mN/m. 

The lowest CMC value for L. agilis CCUG31450 biosurfactants was obtained with the standard 

medium and not with the alternative. Moreover, this biosurfactants produced in MRS medium were 

able to reduce the surface tension more effectively than the ones produced in CWM. The 

effectiveness is defined as the minimum value to which the surface tension value can be reduced, 

whereas efficiency is defined by the surfactant concentration required to produce a significant 

reduction in the surface tension of water, i.e. the CMC [35]. 

 

 

 

Figure 14. Critical micelle concentration of the biosurfactant produced by L. agilis CCUG31450 in MRS medium (A), 

or in CWM (B) at 100 rmp. The plot represents surface tension (mN/m) of crude biosurfactants versus logarithm of 

biosurfactant concentration. The CMC was determined from the intersection of the regression lines better describe the 

two parts of the curve, below and above the CMC. The reference surface tension value was 71.9 mN/m. Results 

represent the average of two measurements and error bars represent SD of the mean values. 

 

A 

B 
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Regarding the biosurfactant from L. rhamnosus CCM1825, the highest decrease of surface 

tension was registered within the range from 6.0 to 4.5 g/l, namely 43.6 and 45.4 mN/m, 

respectively. For L. fermenti 126 the most pronounced decrease in surface tension ranges from 

45.1 to 46.3 mN/m for a concentration of 9.0 and 6.0 g/l, respectively [135]. As can be seen, the 

CMC values for the biosurfactants produced by L. agilis CCUG31450 in MRS are quite similar to 

the ones obtained with the biosurfactants from L. rhamnosus CCM1825 and L. fermenti 126. 

Moreover, these values were found to be even lower than the ones reported for S. thermophilus A 

biosurfactant, 20 g/l [101]. Nevertheless, Gudiña et al. [112] reported for L. paracasei sbsp. 

paracasei A20 a quite lower value of CMC (2.5 mg/ml) corresponding to a surface tension value 

of 41.8 mN/m.  

The CMC values herein found for L. agilis CCUG31450 biosurfactants are in good agreement 

with previous values reported in the literature. It is important to notice that the biosurfactants 

studied in the current study were not as pure as the ones described by other authors; nevertheless 

it seems that the dialysis process used after recovery is efficient in the removal of impurities. On 

the other hand, the biosurfactants produced in CWM showed a much lower efficiency, this could 

be justified by the presence of impurities. 

 

 

ii. Bacillus subtilis PX573 

 

Both biosurfactant mixtures produced by B. subtilis PX573 in LB and CSL medium were 

tested at different concentrations. The CMC was found to be 250 mg/l for the biosurfactant 

produced in LB medium (Figure 15A), with a minimum surface tension value of 32.6 mN/m; and 

160 mg/l for the biosurfactant produced in CSL medium (Figure 15B), with a minimum surface 

tension value of 29.9 mN/m. Contrarily to was observed for L. agilis CCUG31450, for this strain 

the results suggest that the biosurfactant produced in the low cost medium CSL is able to reduce 

the surface tension more effectively than the one produced in LB medium.  
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Figure 15. Critical micelle concentration of the biosurfactant produced by B. subtilis PX573 in LB medium without 

shaking (A), or in CSL medium at 200 rpm (B). The plot represents surface tension (mN/m) of crude biosurfactants 

versus logarithm of biosurfactant concentration. The CMC was determined from the intersection of the regression lines 

that better describe the two parts of the curve, below and above CMC. The reference surface tension value was 71.9 

mN/m. Results represent the average of two measurements and error bars represent SD of the mean values.  

 

Surfactin, the main biosurfactant produced by B. subtilis, is the most effective biosurfactant 

known so far, being able to decrease the surface tension of water from 72 to 26 - 30 mN/m [127, 

136]. Different CMC values have been reported for surfactin by several authors. Vaz et al. [35] 

reported a CMC of 40 mg/l for biosurfactants produced by B. subtilis EG1 in LB medium, with a 

minimum surface tension value of 29.0 mN/m. Similarly, Arutchelvi et al. [137] showed that crude 

surfactin produced by B. subtilis YB7 reduced the surface tension of water from 72 to 30 mN/m 

with a CMC of 40 mg/l. Nitschke and Pastore [70] reported for the biosurfactant from B. subtilis 

LB5a a minimum surface tension of 26.6 mN/m and a CMC of 33 mg/l. Cooper et al. [10] reported 
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a CMC of 25 mg/l and a minimum surface tension of 27.0 mN/m for surfactin from B. subtilis 

strains. Pereira et al. [138] also described the CMC values obtained for different B. subtilis isolates: 

20 mg/l for isolates #309 and #311; and 30 mg/l for isolate #573. These authors concluded that 

biosurfactants produced by isolates #309 and #311 were more efficient than the ones produced 

by isolate #573, which explained why the isolate #573, although producing higher amounts of 

biosurfactant, provided similar or higher (i.e. less active surfactant) surface tension values.  

In our study, the characterization of the biosurfactants produced by B. subtilis PX573 in 

different media showed similar reductions of the PBS surface tension, from 71.9 to 32.9 mN/m 

(biosurfactants produced in LB medium), and from 71.9 to 29.9 mN/m (biosurfactants produced 

in CSL medium). These results were found to be in accordance with the above mentioned studies. 

In contrast, the CMC values obtained herein are substantially higher when compared with the ones 

referred in literature. These differences are largely due to the purity of biosurfactants since no 

purification process was conducted.  

As previously mentioned, B. subtilis PX573 produced higher amounts of biosurfactants in 

CSL than in LB medium showing a slightly higher reduction of the PBS surface tension and a higher 

efficiency, as seen by the lower CMC value. Although the biosurfactants produced in CSL medium 

exhibited a higher efficiency it is necessary to confirm if the biosurfactants obtained from different 

media display the same activity, such as antimicrobial, anti-adhesive and capacity to recovery oil. 

The evaluation of such activities will be discussed further in the sub-section 3.4 (Biosurfactants 

applications). 

 

 

iii. Pseudomonas aeruginosa PX112 

 

The biosurfactants produced by P. aeruginosa PX112 in both LB and CSLM media were 

tested at different concentrations. The CMC was found to be 1250 mg/l for the biosurfactants 

produced in LB medium (Figure 16A) with a minimum surface tension value of 33.9 mN/m; and 

650 mg/l for the biosurfactants produced in CSLM medium (Figure 16) with a minimum surface 

tension value of 30.2 mN/m. Similarly to the previous results for B. subtilis PX573, the 

biosurfactants from P. aeruginosa PX112 were also found to have higher CMC values in LB medium 

as compared to CSLM. Specifically, the CMC of the biosurfactants produced in CSLM medium was 
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found to be 2 times lower than the ones produced in LB. These results also indicate that the 

biosurfactants produced in CSLM medium are able to reduce the surface tension more effectively.  

 

 

 

 

Figure 16. Critical micelle concentration of the biosurfactant produced by P. aeruginosa PX112 in LB medium at 

100 rpm (A), or in CSLM medium at 200 rpm (B). In both cases, the biosurfactants were recovered by acid 

precipitation. The plot represents surface tension (mN/m) of crude biosurfactants versus logarithm of biosurfactant 

concentration. The CMC was determined from the intersection of the regression lines that better describe the two parts 

of the curve, below and above CMC. The reference surface tension value was 71.9 mN/m. Results represent the 

average of two measurements and error bars represent SD of the mean values. 

 

 

The CMC values herein obtained for the P. aeruginosa PX112 biosurfactants were found to 

be superior to the ones reported previously in the literature. CMC values for rhamnolipids produced 

by P. aeruginosa have been reported in the range from 5 mg/l to 200 mg/l depending on the 
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nature of the rhamnolipid and its producer [133, 139]. In particular, the variability of the CMC 

values for pure rhamnolipids and its mixtures greatly depends on the chemical composition of the 

various types of rhamnolipids and also on the hydrophilic/hydrophobic ratio of the rhamnolipids 

constituting the crude biosurfactant [140, 141]. For instance, Nitschke et al. [130] described a 

CMC value of 5 mg/l for the di-rhamnolipid Rha2C10C10 that was lower than the CMC value 

determined for RhaC10C10 (40 mg/l) and for the species more hydrophilic (RhaC10 and Rha2C10) 

which showed CMC values of 200 mg/l [142, 143]. Besides, the differences in CMC values could 

also be related with the presence of impurities [144] or to different microbial sources.  

 Since the biosurfactants produced by P. aeruginosa PX112 did not undergo specific 

purification processes, the presence of impurities lead to increased CMC values as compared to 

the ones reported in the literature. Abdel-Mawgoud et al. [141] described the influence of impurities 

in the CMC value of rhamnolipids. In that study, the authors suggested that the low purity (25 %) 

of the tested rhamnolipid could be responsible for the difference observed in the CMC values 

comparing with standard rhamnolipids.  

Moreover, the interference of medium components on the CMC values has also been widely 

reported in the literature. Depending if the biosurfactant is from the culture supernatant, crude or 

purified, the CMC values could be different, in part due to the medium components that could 

interfere with micellization of biosurfactants, influencing positively or negatively the CMC values. 

Pornsunthorntawee et al. [99] showed that the crude biosurfactant produced by a P. aeruginosa 

strain reduced the surface tension to 29.0 mN/m with a CMC of 200 mg/l. Furthermore, the 

authors showed that the CMC value for the biosurfactants present in the culture supernatant, free 

of cells (120 mg/l), was lower than that of the crude biosurfactant (200 mg/l), probably due to the 

impurities existent in the culture supernatant. In that study, the culture supernatant contained a 

small amount palmitic acid, which is able to interact with the biosurfactant molecules, thus 

affecting the micellization. Therefore, the micellization could occur more easily, leading to a CMC 

value of the culture supernatant lower than that of the extracted biosurfactant [99]. This study 

clearly showed that CMC values are strongly affected by the medium components. In our study, 

and as previously mentioned, the lower CMC values obtained for the biosurfactants produced in 

CSLM could be due to some medium components that might precipitate or sediment during the 

recovery process. Accordingly, these biosurfactants could have different properties comparing to 

the ones produced in LB.  
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Despite of the biosurfactants produced in CSLM medium exhibited a more pronounced 

efficiency it is required to confirm if the biosurfactants obtained from distinct media display the 

same activity, such as antimicrobial, anti-adhesive and capacity to recovery oil. The evaluation of 

such activities will be discussed further in the sub-section 3.4 (Biosurfactants applications). 

 

 

 

3.3.3. Biosurfactants stability 

 

The applicability of biosurfactants in several fields greatly depends on their stability at 

different temperatures, salinities and pH values.  

 

i. Lactobacillus agilis CCUG31450 

 

In this case, as the biosurfactants are cell-bound, a biosurfactant solution in distilled water 

was prepared at a concentration of 7.5 mg/ml (CMC value) using the biosurfactants produced in 

MRS medium. The pH of the biosurfactants solution was changed from 2.0 to 13.0 and the surface 

tension and emulsification indexes were measured. As illustrated in Figure 17A, both acid and 

alkaline conditions led to a slight decrease of the surface and emulsifying activity. The most 

favorable conditions regarding surface tension and emulsification index were observed at pH 7.0. 

The effect of salts on the biosurfactant activity was evaluated. From Figure 17B it can be 

seen that these biosurfactants, mainly their emulsifying activity, were affected by NaCl 

concentrations higher than 50 g/l.  
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Figure 17. Effect of pH (A) and salinity (B) on the stability of the biosurfactants isolated from L. agilis CCUG31450 

in MRS medium. Surface tension values (mN/m) and emulsification indexes (E24, %) obtained with freeze-dried 

biosurfactants dissolved in PBS (pH 7.0) at 7.5 mg/ml under different pH values and NaCl concentrations. 

Measurements were conducted at room temperature. Results represent the average of two measurements and error 

bars represent the SD. 

 

Regarding the biosurfactants stability to an extreme temperature, no negative effect was 

observed (Table 22), i.e. the biosurfactants produced by L. agilis CCUG31450 preserved their 

emulsifying and surface activities. 
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Table 22. Effect of high temperature on the stability of the biosurfactants isolated from L. agilis CCUG31450 in MRS 

medium. Surface tension values (mN/m) and emulsification indexes (E24, %) were obtained with freeze-dried 

biosurfactants dissolved in PBS (pH 7.0) at a concentration of 7.5 mg/ml before and after exposure to 121oC for 20 

min. Results represent the average of two measurements ± SD. 

 

 Before treatment After treatment 

Surface Tension (mN/m) 43.4 ± 0.2 43.4 ± 0.6 

E24 (%) 60 60 

 

 

Gudiña et al. [112] analyzed the sensitivity of the biosurfactants produced by L. paracasei 

sbsp. paracasei A20 to different values of pH. The surface activity of the crude biosurfactants 

remained relatively stable between pH 6.0 and 10.0, with a higher stability at alkaline conditions. 

Similarly, in the current work the L. agilis CCUG31450 biosurfactants were more stable in the same 

pH range, although some instability was found for pH 2.0 and 13.0 at which surface tension values 

was about five units higher than at pH 7.0.  

The instability of the biosurfactants produced by some lactobacilli mainly in acidic conditions 

has been previously described by other researchers, and has been related to the presence of 

negative charged groups at the polar ends of the molecules which are protonated under those 

conditions [112]. The characterization of the intracellular biosurfactants produced by some 

lactobacilli has revealed the presence of proteic fractions probably associated to phosphate groups 

[112], which could also be negatively affected by the denaturalization at acidic pH. Accordingly, in 

our work, for pH values lower than 6.0, precipitation of some of the biosurfactant components was 

observed contributing to an increase of the surface tension.  

Regarding the experiments conducted with different NaCl concentrations, it was found that 

surface tension did not suffer any pronounced change with increasing NaCl concentrations, the 

variations observed were very small, from 43.4 mN/m (control) to 46.3 mN/m (corresponding to 

the higher concentration of NaCl tested) (Figure 17A). On the other hand, the emulsifying activity 

is highly affected by salinity, as can be seen (Figure 17B) a NaCl concentration higher than 50 g/l 

lead to an abrupt loss of emulsifying activity. 
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ii. Bacillus subtilis PX573 

 

 
The pH of the culture broth supernatants obtained at the end of the fermentation (LB 

medium, without shaking, 48h) was changed from 2.0 to 13.0 and the surface tension and 

emulsification indexes were measured. The results in Figure 18A show that the biosurfactant 

activity was retained in the pH range of 6.0-13.0 with a minimum deviation in surface tension and 

emulsification indexes. The minimum surface tension value was observed at pH 6.0 (30.4 mN/m) 

and the higher emulsification index at pH 13.0 (46 %). Below pH 6.0 the surface tension increased 

and no emulsification activity could be observed, probably due to the biosurfactant precipitation. 

Therefore, it could be established that biosurfactants produced by B. subtilis PX573 in LB medium 

exhibited a higher stability at alkaline than acidic conditions.   

 
Regarding the effect of salinity on the biosurfactant activity, the culture broth supernatant 

obtained at the end of the fermentation was supplemented with different NaCl concentrations, 

ranging from 50 to 200 g/l. Both surface tension and emulsifying activity were measured (Figure 

18B). The highest emulsification index (44 %) and surface tension reduction (31.8 mN/m) were 

reached at 50 g/l NaCl. The biosurfactant activity was not affected by NaCl concentrations up to 

50 g/l. The behavior of biosurfactants at 50 g/l of NaCl is similar to the control (without NaCl), 

thus demonstrating that this biosurfactant is stable at increasing concentrations of salt.   
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Figure 18. Effect of pH (A) and salinity (B) on the stability of biosurfactants produced by B. subtilis PX573 in LB 

medium. Surface tension values (mN/m) and emulsification indexes (E24, %) were obtained with the culture broth 

supernatants at different pH values and NaCl concentrations. Results represent the average of three independent 

measurements and error bars represent the SD.   

 

 To study the stability of biosurfactants at high temperatures, the culture broth supernatants 

obtained at the end of fermentation were incubated at 121oC for 20 min. Surface tension and 

emulsification indexes were measured before and after heating. From Table 23, it can be seen the 

high temperatures do not negatively influence the biosurfactant properties. 
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Table 23. Effect of high temperature on the stability of biosurfactants produced by B. subtilis PX573 in LB medium. 

Surface tension values (mN/m) and emulsification indexes (E24, %) were obtained with the culture broth supernatants 

before and after exposure to 121oC for 20 min. Values represent the average of three independent experiments ± SD. 

 Before treatment After treatment 

Surface Tension (mN/m) 31.1 ± 0.9 30.9 ± 1.9 

E24 (%) 50.0 ± 8.5 53.0 ±4.2 

 

 

Al-Bahry et al. [127] reported a higher stability of biosurfactants produced by B. subtilis 

strains at alkaline conditions, specifically in pH values ranging from 6.0 to 12.0. The maximum 

activity was observed at pH of 7.0. At pH 2.0 and 4.0, they observed higher surface tension values, 

since these biosurfactants are not soluble at such acidic conditions and they tend to precipitate. 

They also described that acidic conditions promote structural distortions in the precipitated 

biosurfactants that leads to loss of their capability of reducing surface tension. This effect could 

likewise explain why the biosurfactants produced by B. subtilis PX573 precipitated at acidic 

conditions.  

The biosurfactants produced by B. subtilis PX573 in the current work showed a good surface 

and emulsifying activity under extreme conditions of temperature, thus these results are in 

accordance with the ones described in the literature. Furthermore, Al-Bahry et al. [127] tested the 

B. subtilis B20 biosurfactants stability over a wide range of temperatures (40 - 100oC for 60 min; 

121oC for 20 min) and could not found relevant changes in the surface tension, thus demonstrating 

the biosurfactants stability. Additionally, four different Bacilli isolates were reported to produce 

biosurfactants that were stable for nine days at 80oC [76, 145]. Desai and Banat [3] observed that 

heat treatment of some biosurfactants caused no considerable changes in their properties even 

after autoclaving them at 120oC for 15 min.  

The analysis of the biosurfactants stability to different NaCl concentrations was also studied 

by Gudiña et al. [103]. Their results are similar to the ones obtained in this work, showing the 

minimum surface tension value at 50 g/l NaCl. Other authors, namely Yakimov et al. [146], Abdel-

Mawgoud et al. [147] and Ghojavand et al. [148], also reported similar results. 

The B. subtilis biosurfactants stability compared with several chemical surfactants, namely 

Glucopone®215, Glucopone®650, Findet®1214N/23 and linear alkylbenzene sulfonates was 

studied by Vat el al. [35]. Independently of the temperature tested, the surface tension value 
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obtained for the biosurfactant (at a concentration of 1000 mg/l) was found to be similar to those 

obtained for the commercial chemical surfactants, except for Findet®1214N/23 for which the 

surface tension values were slightly higher. Therefore, it can be assumed that the surface activity 

of that biosurfactant is comparable to the commercial products and it is stable at extreme 

temperature conditions. On the other hand, the commercial chemical surfactants were found to be 

more stable to pH changes as compared to the biosurfactant over the whole range of pH values 

studied. In this study, the authors suggested that the instability of the biosurfactant to acidic pH 

was probably due to the presence of proteinaceous contaminants. Nevertheless, it is important to 

notice that above pH 5.0 the biosurfactant showed a better surface activity than the chemical ones. 

The biosurfactants produced by B. subtilis PX573 showed a similar stability to the 

biosurfactants described by Vaz et al. [35]. Therefore, these biosurfactants could also represent a 

viable alternative to the chemical surfactants used in a number of applications.  

In summary, the B. subtilis PX573 biosurfactants were found to be stable to heat treatement 

and over a wide range of pH values, which together with their excellent surface and emulsifying 

activities, make them suitable candidates to be used in bioremediation of contaminated sites and 

in the petroleum industry (MEOR), in which extreme conditions commonly prevail [149].  

 

 

iii. Pseudomonas aeruginosa PX112 

 

The same experimental setup was used as described above. Figure 19A shows that the 

biosurfactant activity was retained at pH values between 2.0 and 5.0. Contrarily to the 

biosurfactants produced by B. subtilis PX573, the ones produced by P. aeruginosa PX112 exhibited 

a higher stability at acid than at alkaline conditions, showing a minimum surface tension value 

(30.8 mN/m) at pH 4.0 and 5.0. On the other hand, the emulsifying activity was found to be more 

stable at alkaline conditions, with a maximum emulsification index (61 %) being obtained for pH 

values of 7.0 and 8.0. The biosurfactants produced by P. aeruginosa PX112 were found to be 

highly stable to acid conditions, which explain why the acid precipitation is not efficient for the 

complete removal of the biosurfactant present in the culture supernatants.  

Regarding the biosurfactant stability to different NaCl concentrations, the same procedure 

as for B. subtilis PX573 biosurfactant was used. From Figure 19B it can be seen that the increase 

in NaCl concentration has a minimum effect in the surface and emulsifying activity. The 
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biosurfactants produced by P. aeruginosa PX112 were found to be very stable in conditions with 

high salinity.  

 

 

 

Figure 19. Effect of pH (A) and salinity (B) on the stability of biosurfactants produced by P. aeruginosa PX112 in LB 

medium. Surface tension values (mN/m) and emulsification indexes (E24, %) were obtained with the culture broth 

supernatants at different pH values and NaCl concentrations. Results represent the average of three independent 

measurements and error bars represent the SD. 

The stability of these biosurfactants at high temperatures was also investigated. Culture 

broth supernatants obtained at the end of fermentation were incubated at 121oC for 20 min. 

Results gathered in Table 24 showed no negative effect in the biosurfactant properties with the 

temperature increase. 
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Table 24. Effect of a high temperature on the stability of the biosurfactants produced by P. aeruginosa PX112 in LB 

medium. Surface tension values (mN/m) and emulsification indexes (E24, %) were obtained with the culture broth 

supernatants before and after exposure to 121oC for 20 min. Values represent the average of three independent 

experiments ± SD. 

 Room Temperature 121oC 

Surface Tension (mN/m) 34.0 ± 0.35 33.5 ± 0.52 

E24 (%) 60.7 ± 1.15 59.3 ± 3.06 

 

 

 Rhamnolipids, produced by P. aeruginosa, have been widely studied regarding their stability 

in order to find novel applications in which extreme conditions are commonly used. Abel-Mawgoud 

et al. [141] reported that the rhamnolipids surface activity was stable over a wide range of pH 

values (from 2 to 13) with a maximum surface activity reached at pH 7.0 to 8.0. Pirôllo et al. [150] 

also reported that the P. aeruginosa LBI rhamnolipids surface activity remained unaltered over a 

broad pH range (from 5 to 10). In the pH range tested, the biosurfactants herein produced by P. 

aeruginosa PX112 also showed a small variation in surface activity from 30.9 to 34.5 mN/m.  

Given the stability to salts herein found for P. aeruginosa biosurfactants, these can be 

considered as suitable candidates to be applied in the bioremediation of contaminated marine 

environments where high salinities prevail.  

Moreover, the exposure of these biosurfactants to a high temperature did not have a 

negative impact on the surface and emulsifying activities. These results showed to be in agreement 

with other studies reported about rhamnolipids stability. In particular Mohammad et al. [141] 

observed an exceptional stability of the rhamnolipids at high temperatures (heating at 100°C for 

1h and autoclaving at 121oC for 10 min). Similarly, Borodoli and Konwar [151] exposed the P. 

aeruginosa biosurfactants to 100oC for different time periods, and found that their activity remained 

unaffected. In the same way, the rhamnolipids from P. aeruginosa LBI were reported to exhibit a 

good stability when heated [150]. Similarly to the biosurfactants produced by L. agilis CCUG31450 

and B. subtilis PX573, the ones produced by P. aeruginosa PX112 also showed a good stability to 

high temperatures.  

The stability of these biosurfactants at different pH values, salinities and high temperatures 

is an important issue that can affect its application spectrum. Our results show that P. aeruginosa 
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PX112 biosurfactants, similarly to the rhamnolipids tested by Lovaglio et al. [152], could replace 

chemical surfactants in different industrial fields, in which extreme conditions are used.  

 

 

3.3.4. Chemical characterization 

 

In order to have a preliminary chemical characterization of the components present in the 

biosurfactant mixture produced in MRS medium by L. agilis CCUG31450, the protein and 

carbohydrates concentration was determined. The results gathered in Table 25 show that this 

biosurfactant has 10 times more carbohydrates than proteins.  

 

Table 25. Chemical characterization of the biosurfactants produced by L. agilis CCUG31450 in MRS medium. 

Concentration of carbohydrates and protein were obtained with freeze-dried biosurfactants dissolved in demineralized 

water at a concentration of 1 mg/ml and expressed as %. Results represent the average of three measurements ± SD. 

Biosurfactants  % Carbohydrates % Protein 

L. agilis CCUG31450 33.0 ± 3.0 3.5 ± 0.1 

 

 

The biosurfactants produced by lactic acid bacteria have not been so widely studied 

compared to surfactin or rhamnolipids. The most well-known biosurfactants from lactic acid 

bacteria have been described as mixtures containing proteins and polysaccharides [101, 119, 

153].  

In this work, the content in carbohydrates and protein of the biosurfactants produced by L. 

agilis CCUG31450 was also determined and it was found that they were mainly composed of 

carbohydrates. These results are similar  to the ones reported for the biosurfactants produced by 

L. casei subsp. rhamnosus 36 and L. casei subsp. rhamnosus ATCC7469T that possess a higher 

content in polysaccharides [119]. On the other hand, the biosurfactants from L. acidophilus RC14 

and L. fermentum B54 appear to contain more protein than the ones from L. casei subsp. 

rhamnosus 36 and L. casei subsp. rhamnosus ATCC7469T and a lower content in polysaccharides 

[119].  
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In summary, the biosurfactants produced by lactic acid bacteria may have the same 

components but their proportions seem to be very different depending on the producing strain. 

Therefore, the study of this biosurfactants by FTIR will clearly and elucidate the composition and 

structure of the biosurfactants produced by L. agilis CCUG31450. For instance, a FTIR analysis of 

the biosurfactants from L. pentosus clearly indicated the presence of -OH and -NH groups, that are 

commonly present in glycoproteins. This type of biosurfactant structures was also proposed for the 

biosurfactants produced by L. lactis and L. paracasei [135]. Additionally, a glycolipid-like structure 

has previously been proposed for the biosurfactants produced by S. thermophilus [135]. 

It is important to notice that in this work L. agilis CCUG31450 was also able to produce 

biosurfactants in CWM, and that differences in the CMC values comparing to the standard medium 

have been observed, which suggested differences in the biosurfactants composition. Golek et al. 

[153] showed interesting results regarding the influence of medium composition on the growth 

phase of L. casei 8/4 and consequently on the biosurfactants composition, namely the ratios of 

protein and polysaccharides. The highest proportion of protein was noted for the case of surface-

active compounds obtained using the MRS medium. In contrast, the highest proportion of 

polysaccharides was reported for biosurfactants synthesized by L. casei 8/4 on a medium prepared 

from whey permeate enriched with mineral salts. The results obtained suggested that the chemical 

structures of the biosurfactants were not homogeneous and greatly depend on the culture medium 

used. Furthermore, it should be noted that some biosurfactants produced by lactic acid bacteria 

showed high contents of lipids in their composition. For instance, the biosurfactant produced by 

Lactobacillus delbrueckii was classified as a glycolipid showing a higher lipid content as compared 

to its composition in carbohydrates (30 %:70 % (w/w)) [154]. Therefore, the biosurfactants 

produced from CWM should also be characterized. Moreover, besides this preliminary 

characterization, further studies should be conducted to infer the lipid contents of the 

biosurfactants produced by L. agilis CCUG31450.  
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3.4. Biosurfactants applications 

 

3.4.1. Antimicrobial activity 

 

i. Individual biosurfactants  

 

 The antimicrobial activity of the crude biosurfactants isolated from several lactic acid bacteria 

was determined by measuring the growth inhibition percentages obtained for several 

microorganisms. Table 26 shows that only the biosurfactants produced in MRS medium by L. 

animalis ATCC35046, L. paracasei A20 and L. agilis CCUG31450 have antimicrobial activity, 

specifically against S. aureus. The biosurfactants recovered from L. agilis CCUG31450 were 

efficient against other two microorganisms, S. agalactiae and P. aeruginosa. In this last case, the 

effect in the microbial growth inhibition was smaller when compared with the one observed for S. 

aureus.  

As mentioned before, the properties of the biosurfactants produced by the same 

microorganism can differ depending on the media in which they are produced. Therefore, the 

antimicrobial activity of L. agilis CCUG31450 biosurfactants produced in MRS and CWM was 

evaluated. From Table 26, it is possible to observe a clear difference in the antimicrobial activity of 

the biosurfactants produced in different media. Indeed, the biosurfactants produced in CWM did 

not present any activity. Therefore, the results once more suggest that biosurfactants being 

produced in different media may have distinct activities and probably different structures. The 

biosurfactants produced in CWM presented a higher CMC value comparing to the standard 

medium, which could also explain why no antimicrobial activity could be observed 

The biosurfactants produced by L. agilis CCUG31450 in MRS medium were also tested at a 

lower concentration (2.5 mg/ml); however, no antimicrobial activity was observed. 
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Table 26. Antimicrobial activity of the biosurfactants isolated from different lactic acid bacteria in MRS medium 

against several pathogenic bacterial and yeast strains. Percentages of growth inhibition were obtained with freeze-dried 

biosurfactants dissolved in LB medium at a concentration of 5mg/ml. Results represent the average of three 

experiments ± SD. Biosurfactants produced in a) MRS medium; b) CWM. 

Microorganisms 

Microbial growth inhibition (%) 

L. animalis 

ATCC35046 

L. hamsteri 

ATCC43851 

L. paracasei 

A20 

L. agilis 

CCUG31450 a) 

L. agilis 

CCUG31450 b) 

S. aureus 16.9 ± 4.9 0.0 5.2 ± 1.0 20.0 ± 8.1 0.0 

S. agalactiae 0.0 0.0 0.0 10.7 ± 2.7 0.0 

P. aeruginosa 0.0 0.0 0.0 13.5 ± 0.7 0.0 

E. coli 0.0 0.0 0.0 0.0 0.0 

C. albicans 0.0 0.0 0.0 0.0 0.0 

 

 

The biosurfactants produced by B. subtilis PX573 in LB medium were tested against the 

same microorganisms. These biosurfactants showed a good antimicrobial activity against S. 

agalactiae (54.5 %) (Figure 20A), for the highest biosurfactant concentration tested (5 mg/ml). The 

antimicrobial activity against other microorganisms was lower, namely E. coli: 16.4 %, P. 

aeruginosa: 14.5 % and C. albicans: 10.4 %.  

The biosurfactants produced by the same strain in CSL medium were also tested. A much 

stronger antimicrobial activity against all the microorganisms tested was found (Figure 20B). These 

biosurfactants showed antimicrobial activity against S. aureus (48.0 %), and it is important to notice 

that such activity was not observed for the biosurfactants obtained from LB medium. From the 

results obtained, it can be concluded that the biosurfactants produced by B. subtilis PX573 in CSL 

medium exhibited a higher antimicrobial activity than the ones produced in LB medium. As 

mentioned before, this can be due to the different compositions of the biosurfactants, but also to 

the fact that the biosurfactants produced in CSL medium are more efficient (as shown by the CMC 

value).  
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Figure 20. Antimicrobial activity of biosurfactants produced by B. subtilis PX573 in LB medium (A) and in CSL 

medium (B) against several pathogenic bacterial and yeast strains. Percentages of growth inhibition were obtained 

with freeze-dried biosurfactants dissolved in LB medium at different concentrations. Results represent the average of 

three experiments and error bars represent the SD.   

The biosurfactants from P. aeruginosa PX112 in LB medium were found to inhibit the growth 

of all microorganisms tested. Antimicrobial activity against both Gram-positive and Gram-negative 

bacteria and the yeast C. albicans was demonstrated (Figure 21A). A slightly higher antimicrobial 

activity against Gram-positive than Gram-negative bacteria was observed. Specifically, for S. 

agalactiae a complete growth inhibition was achieved even at the lowest biosurfactant 

concentration used.  

The biosurfactants produced by the same strain in CSLM medium were shown to possess a 

higher antimicrobial activity comparing to the biosurfactants from LB medium, except against C. 

albicans, i.e. only the biosurfactants produced in LB medium showed antimicrobial activity against 

this yeast. 
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Figure 21. Antimicrobial activity of biosurfactants produced by P. aeruginosa PX112 in LB medium (A) or in CSLM 

medium (B) against several pathogenic bacterial and yeast strains. Percentages of growth inhibition were obtained 

with freeze-dried biosurfactants dissolved in LB medium at different concentrations. Results represent the average of 

three experiments and error bars represent the SD.   

 

These antimicrobial assays were also conducted with the biosurfactants produced by P. 

aeruginosa PX112 in LB medium that were recovered by different strategies, in order to verify if 

the recovered biosurfactants showed the same activity independently of the recovery process. 

Comparing the results obtained for the biosurfactants recovered by acid precipitation (Figure 21A), 

chloroform extraction (Figure 22A), and ammonium sulfate precipitation (Figure 22B), clear 

differences could be observed in the antimicrobial activity, especially against E. coli, S. aureus and 

C. albicans. These results revealed that the biosurfactants recovered by ammonium sulfate 
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precipitation did not have any antimicrobial activity against E. coli and C. albicans, showing the 

smaller antimicrobial activity spectrum as compared to the biosurfactants recovered using other 

strategies.  

The biosurfactants recovered by chloroform extraction at a concentration of 5.0 mg/ml 

showed the highest antimicrobial activity (56.1 %) against E. coli, when compared with the ones 

recovered by acid precipitation (26.8 %), or by ammonium sulfate precipitation (0 %). All 

biosurfactants were effective against S. aureus, although the ones recovered by acid precipitation 

revealed an antimicrobial activity significantly lower (p-value = 0.003) than the others. Again, the 

different activities observed for the biosurfactants recovered by different techniques support the 

hypothesis that these could have different structures and properties.  

 

 

Figure 22. Antimicrobial activity of biosurfactants recovered from P. aeruginosa PX112 cultures by chloroform 

extraction (A) or by ammonium sulfate precipitation (B) against several pathogenic bacterial and yeast strains. 

Percentages of growth inhibition were obtained with freeze-dried biosurfactants dissolved in LB medium at different 

concentrations. Results represent the average of three experiments and error bars represent the SD. 
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Ghribi et al. [155] demonstrated the antimicrobial activity of biosurfactants produced by B. 

subtilis SPB1 against several bacteria and fungi strains, some of which with multidrug-resistant 

profiles. Specifically, their biosurfactants were effective against S. aureus, a strain that is known to 

be resistant to at least two β-lactams. Moreover, the authors demonstrated that these 

biosurfactants were more active against Gram-positive than against Gram-negative bacteria, and 

also showed an important antifungal activity, especially against C. albicans. Fernandes et al. [156] 

also studied the activity of B. subtilis R14 biosurfactants against multidrug-resistant bacteria. All 

strains were sensitive to the surfactants, in particular E. faecalis (Gram-positive bacteria). The 

activity against Gram-negative bacteria was lower comparing to Gram-positive ones. The B. subtilis 

C1 strain was described to produce a lipopeptide N1 which revealed antimicrobial activity against 

several Gram-positive bacteria, including S. aureus and Mycobacterium smegmatis [157]. Similarly 

to these reports, the biosurfactants produced by B. subtilis PX573 in the current work showed a 

similar antimicrobial behavior, being more aggressive against Gram–positive (S. aureus and S. 

agalactiae) than Gram–negative bacteria (E. coli). Furthermore, the biosurfactants produced in CSL 

medium by this strain showed antifungal activity against C. albicans, which is in agreement with 

previous reports [155]. 

Regarding the biosurfactants produced by P. aeruginosa strains also several studies have 

been conducted to infer their potential antimicrobial activity. Abalos et al. [88] showed that the 

rhamnolipids from P. aeruginosa AT10 were effective against Gram-negative (E. coli and A. faecalis) 

and Gram-positive bacteria (S. aureus and Clostridium perfringes). In general, the MIC (the 

minimum concentration of product to inhibit the growth of a microorganism) for Gram-positive 

bacteria was lower than for Gram-negative ones, demonstrating their high sensibility to 

rhamnolipids. The authors showed that these rhamnolipids were excellent antifungal agents against 

A. niger and Gliocadium virens. Haba et al. [133] evaluated the antimicrobial activity of P. 

aeruginosa 47T2 NCBIM40044 rhamnolipids. These rhamnolipids inhibited the growth of both 

Gram-positive (S. epidermidis ATCC11228 and S. aureus ATCC6538) and Gram-negative (E. coli 

ATCC8739 and P. aeruginosa ATCC9027) bacteria. Moreover, these rhamnolipids were effective 

against C. albicans ATCC10231 although the MIC value was much higher compared with the ones 

calculated for bacteria. Accordingly, in this work, the biosurfactants produced by P. aeruginosa 

PX112 exhibited potent antimicrobial and antifungal activities. These biosurfactants were more 

effective against Gram-positive bacteria (S. agalactiae and S. aureus) than against Gram-negative 
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ones (E. coli and P. aeruginosa). Besides, although these biosurfactants showed antifungal activity 

against C. albicans this activity was less pronounced as compared to the activity against bacteria.  

 
Generally speaking, cationic surfactants are the most toxic and have historically been used 

as antimicrobials, while anionic surfactants are less toxic but more active against Gram-positive 

than Gram-negative bacteria, and non-ionic surfactants are often considered non-toxic [158]. 

Surfactin and rhamnolipids produced by B. subtilis and P. aeruginosa strains, respectively, have 

been described as anionic surfactants [159, 160]. Therefore, the biosurfactants produced by B. 

subtilis PX573 (Figure 20) and P. aeruginosa PX112 (Figure 21), which most probably are anionic 

biosurfactants, showed a higher antimicrobial activity again the Gram-positive strains, which is in 

agreement with was has been described before. 

 Depending on the biosurfactants nature, the toxic effect on the microorganisms could be 

distinct. For instance, biosurfactants may exert toxic effects by causing membrane disruption 

leading to cellular lysis, by increasing the membrane permeability causing metabolite leakage, by 

altering the physical membrane structure or by disrupting protein conformations thus interfering 

with important membrane functions such as energy generation and transport. The response of a 

given microorganism to a biosurfactant will depend on a variety of factors such as cellular 

ultrastructure, capacity for biodegradation or efflux, biosurfactant concentration and bioavailability, 

and other environmental and culture conditions [158].  

The biosurfactants produced by B. subtilis strains was found to incorporate into membranes 

at low concentrations and induce slow leakage due to changes in membrane ultrastructure [66]. 

Specifically, the incorporation of surfactin in the cell membrane induced pores promoting 

membrane permeabilization. This effect occurs because the biosurfactant interacts with the 

phospholipid acyl chains, resulting in considerable membrane fluidization. Similarly to what is 

observed for surfactin, rhamnolipids have also been reported to interact with the cell membrane 

[140]. Ortiz et al. [161] showed that di-rhamnolipids intercalate into the phosphatidylcholine 

bilayers and produce structural perturbations in the membrane which might affect its function. The 

biosurfactants disrupt cell membranes through the formation of a transient pore. The 

permeabilizing effects of rhamnolipids on Gram-positive and Gram-negative bacteria was also 

studied by Sotirova et al. [162]. These researchers hypothesized that rhamnolipids can act against 

bacteria by two different mechanisms. The biosurfactant forms molecular aggregates in the surface 

of the Gram-positive bacteria or could release lipopolysaccharides from the outer membrane of 

Gram-negative bacteria, thus leading to the formation of transmembrane pores as channels to the 
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periplasm. In both cases it results in a modification of the cell permeability. In this study it was 

found that the biosurfactant PS produced by Pseudomonas sp. PS-17 promoted a higher release 

of proteins in B. subtilis 168 cells compared with those of P. aeruginosa, which confirmed the 

higher susceptibility of Gram-positive cells to the effect of the biosurfactant [162]. 

The mechanism of action of surfactin and rhamnolipids described above can also explain 

the antimicrobial effects observed in this work for the biosurfactants produced by B. subtilis PX573 

and P. aeruginosa PX112. 

 

If in one hand these biosurfactants produced by B. subtilis and P. aeruginosa strains have 

the capacity to interfere with the integrity of the membrane of Gram-positive bacteria, the same 

effect normally is not observed for Gram-negative bacteria. Hamounda et al. [163] postulated that 

the resistance of the Gram-negative bacteria may be attributable to its cell wall LPS [164] and their 

negative surface charge. Assuming that the biosurfactants produced by B. subtilis PX573 and P. 

aeruginosa PX112 have an anionic nature, they could also exert a repulsive effect against the Gram-

negative bacteria. However, it is likely that more than a single mechanism is involved in the 

resistance observed.  

 

In summary, the results showed that, in general, the individual biosurfactants exert a small 

or any antimicrobial activity against C. albicans. The resistance of yeast cells to biosurfactants is 

most likely due to its rigid cell wall structure [163], which prevents the biosurfactants penetration. 

In this work the biosurfactants with the most promising action against the yeast C. albicans were 

the ones produced by P. aeruginosa PX112 in LB medium and by B. subtilis PX573 in CSL, showing 

an antimicrobial activity of 34.9 and 18.1 %, respectively.  

 

 

ii. Biosurfactants mixtures 

 

In this task, different biosurfactants were mixed at different concentrations in a 1:1 

proportion in order to evaluate their interaction and synergistic or antagonistic effect on the 

microorganisms tested. The interaction between biosurfactants is synergistic when their combined 

activity is greater than the additive effect of the single biosurfactants; the synergistic interaction 

allows the use of lower dosages and in some cases can extend the range of actuation [159]. 
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The first mixture tested was prepared with the biosurfactants from P. aeruginosa PX112 in 

CSLM medium and biosurfactants from L. agilis CCUG31450 in MRS medium. As can been seen 

in Figure 23, this mixture was able to completely inhibit the growth of S. agalactiae, thus 

corresponding to a slight increase in the overall antimicrobial activity as compared to the individual 

biosurfactants performance. Statistical analysis demonstrated that the differences observed were 

significant (p-value <0.0001). In contrast, the mixture showed a strong negative interaction 

between the biosurfactants against S. aureus, demonstrated by the abrupt reduction of the overall 

antimicrobial activity. The mixture showed only 21.3 % of antimicrobial activity against S. aureus 

when compared with the biosurfactant produced by P. aeruginosa PX112 (94 %) at the same 

concentration.  

 

 

Figure 23. Antimicrobial activity of biosurfactant mixtures against several pathogenic bacterial and yeast strains. The 

mixtures were prepared at 1:1 proportion with freeze-dried biosurfactants recovered from P. aeruginosa PX112 

(produced in CSLM medium) and L. agilis CCUG31450 (produced in MRS medium). Percentages of growth inhibition 

were obtained with biosurfactant mixtures at different concentrations. The legend shows the individual concentration 

of each biosurfactant present in the mixture. Results represent the average of three experiments and error bars 

represent the SD. 

The biosurfactants obtained from alternative media were also mixed and tested for their 

antimicrobial activity. The mixture was effective against S. agalactiae (Figure 24) completely 

inhibiting its growth (at 2.5 mg/ml biosurfactant) corresponding to a positive interaction between 

the individual biosurfactants. Statistical analysis again showed that the differences observed 

between mixture and individual performances were significant (p-value <0.0001). Contrarily, the 

mixture was not effective against the other microorganisms studied, suggesting an antagonist effect 
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between the biosurfactants present in the mixture. In some cases this antagonist effect was found 

to be very strong. For instance, the individual biosurfactants from B. subtilis PX573 (produced in 

CSL medium) and P. aeruginosa PX112 (produced in CSLM medium) showed antimicrobial activity 

against E. coli of 38.5 % (Figure 20B) and 35.4 % (Figure 21B), respectively. However, the mixture 

of these two biosurfactants showed a very low percentage of growth inhibition (16.3 %) (Figure 24). 

The same was observed for S. aureus and P. aeruginosa. 

 

  

Figure 24. Antimicrobial activity of biosurfactant mixtures against bacterial and yeast strains. The mixtures were 

prepared at 1:1 proportion with freeze-dried biosurfactants recovered from P. aeruginosa PX112 (produced in CSLM 

medium) and B. subtilis PX573 (produced in CSL medium). Percentages of growth inhibition were obtained with 

biosurfactant mixtures at different concentrations. The legend shows the individual concentration of each biosurfactant 

present in the mixture. Results represent the average of three experiments and error bars represent SD. 

 

The antimicrobial assays performed with the individual biosurfactants produced by lactic 

acid bacteria showed a common activity against S. aureus. Therefore, mixtures combining 

biosurfactants from L. paracasei A20, L. animalis ATCC35046 and L. agilis CCUG31450 were 

prepared, and their activity against S. aureus was evaluated. From Figure 25, the antimicrobial 

activity of the mixture (55.3 %) showed a great increase as compared to the individual 

biosurfactants from L. paracasei A20 (5.2 %) and L. animalis ATCC35046 (16.9 %) (Table 26). The 

mixture of these biosurfactants produced a remarkable synergistic effect since the individual 

biosurfactants activity was greatly enhanced. The same synergistic effect was observed for the 

mixture of biosurfactants from L. paracasei A20 and L. agilis CCUG31450 in MRS medium. The 

antimicrobial activity of the mixture is significantly higher (28.9 %) comparing to the individual 
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biosurfactants. Statistical analysis confirm the significance of the differences observed (p-value = 

0.04). However, in the case of the mixture of L. animalis ATCC35046 and L. agilis CCUG31450, 

the antimicrobial activity of the mixture was similar to the one obtained for each biosurfactant at a 

concentration of 5 mg/ml. 

The individual biosurfactants tested in the mixtures that are presented in Figure 25 did not 

show any antimicrobial activity against S. aureus at a concentration of 2.5 mg/ml. However, mixing 

the individual biosurfactants at 2.5 mg/ml led to 17.4 – 26.0 % growth inhibition of S. aureus. In 

summary, a clear synergistic effect could be observed for the mixtures of lactic acid bacteria 

biosurfactants. Actually, these mixtures potentiated the individual performance even at low 

concentrations. The interaction between the different biosurfactants might have led to complex 

structures with more affinity to the microbe’s cell surface where the biosurfactants could exert a 

more potent antimicrobial activity. Although the percentages of growth inhibition were generally 

low, the potential of these biosurfactants as antimicrobial agents should be further explored. 

 

 

Figure 25. Antimicrobial activity of biosurfactant mixtures against S. aureus. The mixtures were prepared at 1:1 

proportion with freeze-dried biosurfactants recovered from different lactic acid bacteria cultivated in MRS medium. 

Percentages of growth inhibition were obtained with biosurfactant mixtures at different concentrations. The legend 

shows the individual concentration of each biosurfactant present in the mixture. Results represent the average of three 

experiments and error bars represent the SD. 

 

Although the biosurfactants of B. subtilis PX573 and P. aeruginosa PX112 as individuals 

demonstrated positive results, their combination with other biosurfactant did not always showed a 
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positive or even a synergistic effect as could be expected, but contrarily in some cases an antagonist 

effect was observed.  

As mentioned before, the biosurfactants produced either by B. subtilis PX573 or by P. 

aeruginosa PX112 are most likely anionic [159, 160]. Therefore, as both are negatively charged, 

a repulsive effect could prevent the interaction between them, which could explain the antagonist 

effect observed. On the other hand, since the bacterial surface has an anionic charge, [165] the 

negative species on the cell surface could induce an electrostatic repulsion between the anionic 

biosurfactants and the cell surface. Since the mixture of both biosurfactants should have an 

extremely anionic nature, the electrostatic repulsion between the cell surface of microorganisms 

and the mixture is amplified comparing to the individual biosurfactants. Kihara et al. [165] studied 

the interaction of anionic surfactants with polyvalent metal cations. In this study it was observed 

that the presence of polyvalent metal cations increases the activity of the anionic surfactants. The 

authors found that the anionic surfactant was remarkably effective against E. coli in the presence 

of only a few polyvalent cations. This effect is observed because polyvalent cations neutralize the 

negative charge of the cell surface in the presence of the surfactant, indicating that the interaction 

between the hydrophobic NaOS-polycation complex and the cell surface is promoted.  

In order to develop more efficient mixtures, an mixture between anionic and cationic 

biosurfactants could promote a better interaction between the mixture and the cell surface of 

microorganisms similarly to the report by Kihara et al. [165]. 

 

On the other hand, the mixture of biosurfactants produced by L. paracasei A20 and L. 

animalis ATCC35046 showed a high synergistic effect. Since the yield of biosurfactants produced 

by lactic acid bacteria is very low, the mixture of these biosurfactants would reduce the amount of 

biosurfactants required to promote a better effect comparing to the amounts required for the 

individual biosurfactants to produce the same effect. The results suggest that these biosurfactants 

in the mixture might have a better affinity to the microbe’s cell surface, thus enhancing their 

antimicrobial activity. However, in order to understand more clearly the interaction between these 

biosurfactants, and consequently their effect on a given microorganism, a more profound study on 

the structure of these biosurfactants should be conducted.  

The individual biosurfactants and the mixtures that presented a good antimicrobial activity 

could be further used as possible substitutes of antibiotics, in particular against microorganisms 
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that are resistant to conventional treatment agents. S. aureus is a common cause of community 

and hospital-acquired infections. Moreover, the clinical impact of S. aureus is rising due to the 

global increase in the incidence of multidrug-resistant strains and its growing prevalence as a major 

cause of surgical infections [92]. As a result, there is an urgent need to identify new antimicrobial 

agents and develop preventive strategies to help in the management of these types of infections. 

Therefore, the biosurfactants and their mixtures herein studied could be an answer to the necessity 

of efficient antimicrobial agents against antibiotic resistant microorganisms. The biosurfactants that 

cannot act by themselves and that did not show a positive interaction with other biosurfactants 

could be further evaluated in combination with antibiotics towards an enhanced activity, reduction 

of antibiotics concentrations, and reduction of pathogenic microorganism’s resistance to those 

pharmaceutical agents. For instance, Ortiz et al. [161] suggested that bacteria with more 

hydrophobic surface will be more susceptible to the action of hydrophobic antibiotics, thus future 

research should focus on the combined use of rhamnolipids with antibiotics to potentiate the 

antibiotics effects. Rivardo et al. [166] showed that V9T14 biosurfactant produced by B. 

licheniformis V9T14 in association with antibiotics (ampicillin) led to a synergistic increase of the 

antibiotic efficacy in biofilm killing, and in some combinations led to the total eradication of E. coli 

CFT073 biofilm. Moreover, it was showed that the concentration of antibiotic required to obtain the 

same effect was decreased by the presence of the biosurfactant. The authors hypothesize that the 

action of V9T14 biosurfactant lies in its interaction with the bacterial membrane, increasing the 

activity of antimicrobial agents by forming pores in the outer membrane and thus facilitating the 

entrance of the antibiotics. The use of surfactin to increase the effect of enrofloxacin against 

planktonic Mycoplasma pulmonis was also reported in literature [167]. 
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3.4.2. Anti-adhesion activity 

 

i. Staphylococcus aureus  

 

The anti-adhesive activity of a variety of individual biosurfactants produced by several 

bacteria in different media were evaluated against S. aureus (Figure 26). The biosurfactants 

produced by L. agilis CCUG31450 in MRS medium showed the greatest anti-adhesive activity, 64.5 

% at 10 mg/ml, in contrast with the ones produced in CWM, in which no anti-adhesive activity was 

detected. Regarding the biosurfactants produced by P. aeruginosa PX112, either in LB or in CSLM 

medium, the anti-adhesive activity against S. aureus was similar and low, 10.6 % and 11.2 %, 

respectively, for the highest concentration tested. The biosurfactants from L. paracasei A20 in MRS 

medium and B. subtilis PX573 in CSL medium revealed also an interesting anti-adhesive activity, 

29.6 % and 46.8 %, respectively. 

 

 

 

Figure 26. Anti-adhesive activity of individual biosurfactants isolated from different bacterial strains against S. aureus. 

Percentages of microbial adhesion inhibition were obtained with freeze-dried biosurfactants dissolved in demineralized 

water at different concentrations. Results represent the average of three experiments and error bars represent SD. 

Biosurfactants produced in a) MRS medium, b) LB medium and c) CSLM medium.  
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Also in this case different biosurfactants combinations were explored towards an enhanced 

activity. Mixtures were performed using freeze-dried biosurfactants from B. subtilis PX573, P. 

aeruginosa PX112, L. paracasei A20 and L. agilis CCUG31450 at different proportions. The mixture 

of biosurfactants produced by B. subtilis PX573 in CSL medium and biosurfactants produced by 

L. aiglis CCUG31450 in MRS medium at 1:1 proportion (Figure 27), showed the most favorable 

results, 68.4 % of microbial adhesion inhibition, marginally higher than the best result obtained 

using individual biosurfactants (64.6 % for the L. agilis CCUG31450 biosurfactant obtained in MRS). 

Likewise the mixture containing the biosurfactants from P. aeruginosa PX112 in CSLM medium 

and L. aglis CCUG31450 in MRS medium showed a good anti-adhesive activity (60.7 %). For both 

mixtures above mentioned a positive interaction could be found between the biosurfactants used. 

On the other hand, the other mixtures tested showed antagonist effects, i.e. the anti-adhesive 

activity of the mixtures were lower than the activity of the individual biosurfactants, at the same 

concentration. 

 

 

Figure 27. Anti-adhesive properties of several biosurfactant mixtures against S. aureus. Percentages of microbial 

adhesion inhibition were obtained with freeze-dried biosurfactants recovered from different bacterial strains and 

dissolved in demineralized water at different proportions. The mixture B. subtilis PX573:L. paracasei A20 was only 

tested at 1:1 proportion. Results represent the average of three experiments and error bars represent SD.  

Biosurfactants produced in a) MRS medium and b) CWM. 
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ii. Pseudomonas aeruginosa  

 

In the same way, several biosurfactants produced in this work were test against P. 

aeruginosa in order to evaluate their anti-adhesive activity (Figure 28). The biosurfactants from L. 

agilis CCUG31450 in CWM showed the greatest anti-adhesive activity, 46.2 % at 1 mg/ml, although 

no anti-adhesive effect was previously found against S. aureus. Regarding the biosurfactants from 

P. aeruginosa PX112 in LB or in CSLM medium, it was observed a small difference in their anti-

adhesive activity against P. aeruginosa, 17.3 % and 27.4 %, respectively, for the highest 

concentration tested. No anti-adhesive activity could be found for the biosurfactants from L. 

paracasei A20, contrarily to what was previously seen for S. aureus. These distinct results suggest 

that each biosurfactant have a unique effect that could be different from microorganism to 

microorganism.  

 

 

Figure 28. Anti-adhesive properties of biosurfactant isolated from different bacterial strains against P. aeruginosa. 

Percentages of microbial adhesion inhibition were obtained with freeze-dried biosurfactants dissolved in demineralized 

water at different concentrations. Results represent the average of three experiments and error bars represent SD. 

Biosurfactants produced in a) MRS medium, b) CWM, c) LB medium and d) CSLM medium. 
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for inhibiting the adhesion of P. aeruginosa, 62.5 %. The mixture of biosurfactants from B. subtilis 

PX573 produced in CSL medium and P. aeruginosa PX112 was found to be very interesting, since 

a positive interaction between both biosurfactants was observed. The anti-adhesive activity of the 

mixture, 40.7 % (1:1 proportion), is superior to the activity of each biosurfactant, 28.3 % for 

biosurfactants from B. subtilis PX573 and 27.3 % for biosurfactants from P. aeruginosa PX112, at 

10 mg/ml.  

 

 

 

 

 

 

 

 

Figure 29. Anti-adhesive properties of several biosurfactant mixtures against P. aeruginosa. Percentages of microbial 

adhesion inhibition were obtained with freeze-dried biosurfactants recovered from different bacterial strains and 

dissolved in demineralized water at different proportions. Results represent average three experiments and error bars 

represent SD. Biosurfactants produced in a) MRS medium and b) CWM. 
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P. aeruginosa. The results are gathered in Table 27 and no anti-adhesive activity against P. 

aeruginosa could be observed either for the biosurfactants recovered by chloroform extraction or 

by ammonium sulfate precipitation. In contrast, the biosurfactants recovered by acid precipitation 

inhibited the adhesion of P. aeruginosa, 17.3 % (Figure 28). On the other hand, for P. aeruginosa 

PX112 biosurfactants produced in LB medium tested against S. aureus, the best results were 

obtained for the ones recovered by chloroform extraction and by ammonium sulfate precipitation 

showing similar anti-adhesive activities, 21.9 % and 28.4 %, respectively, for the higher 

concentration tested. Again, these results suggest that biosurfactants recovered by different 

techniques could have distinct natures. Moreover, the reduced activity of the biosurfactants 
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recovered by acid precipitation could be due to the greater amount of impurities present that will 

naturally interfere with biosurfactants activity. 

 

Table 27. Anti-adhesive properties of biosurfactants isolated from P. aeruginosa PX112 (produced in LB medium) 

with different recovery methods. Percentages of microbial adhesion inhibition against S. aureus and P. aeruginosa 

were obtained with freeze-dried biosurfactants dissolved in demineralized water at different concentrations. Results 

represent the average of three experiments ± SD. 

 % Microbial Adhesion Inhibition 

 S. aureus P. aeruginosa 

Biosurfactants recovered by chloroform 

extraction (mg/ml) 
  

10 21.9 ± 5.4 0.0 ± 0.0 

5 20.0 ± 5.6 0.0 ± 0.0 

2.5 29.4 ± 6.6 0.0 ± 0.0 

1.25 19.1 ± 7.7 0.0 ± 0.0 

Biosurfactants recovered by Ammonium 

sulfate precipitation (mg/ml) 
  

10 28.4 ± 4.7 0.0 ± 0.0 

5  22.4 ± 7.5 0.0 ± 0.0 

2.5 23.9 ± 2.5 0.0 ± 0.0 

1.25 19.7 ± 5.6 0.0 ± 0.0 

 

 

The anti-adhesive activity of the biosurfactants has been widely described in the literature. 

Microorganisms produce biosurfactants, which prevent the adhesion of other microorganisms, as 

a mechanism of defense from environmental assaults. In other words, the biosurfactants are 

responsible for conditioning the surface causing physical and chemical alterations that can prevent 

bacteria from adhering [168]. This ability to decrease the bacterial attachment to a given surface 

has been reported for biosurfactants produced by a large range of microorganisms such as 

Lactobacillus spp., Bacillus spp., P. aeruginosa, Streptococcus spp., Candida spp. [94–

96,119,169–171]. For instance, the biosurfactant released by an oral Streptococcus mitis strain 

reduced the adhesion of Streptococcus mutans [168]. Similarly, L. fermentum RC-14 releases 

components with surface activity that can inhibit the adhesion of uropathogenic bacteria, including 

E. faecalis [172]. 
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In this work, the most interesting anti-adhesive activity, either against S. aureus or P. 

aeruginosa, was observed for the biosurfactants from lactic acid bacteria, mostly L. agilis 

CCUG31450. Several studies already reported the efficiency of other lactic acid bacteria in 

decreasing the bacteria and yeast adhesion, namely L. lactis, L. acidophilus, L. fermentum, L. 

casei and L. rhamnosus strains [173]. Walenka et al [173] described the inhibition of S. aureus 

adhesion due to biosurfactants obtained from three strains of L. acidophilus. The authors suggested 

that the anti-adhesive effect of the biosurfactant mixture could be due to the changes in the cell-to-

surface interactions causing alterations in the hydrophobicity of the surface. The same changes in 

the properties of the surface could also explain the anti-adhesive effect that was observed for the 

biosurfactants from L. agilis CCUG31450. 

However, the exact mechanisms of anti-adhesive activity has not yet been explained, it 

seems to be highly dependent on the properties of the target bacteria, surface properties and 

biosurfactant type [174]. 

Regarding biosurfactants produced by L. paracasei A20, clear differences in the anti-

adhesive activity were observed. A 29.6 % inhibition was observed against S. aureus, while no 

activity was observed against P. aeruginosa. The biosurfactants from L. agilis CCUG31450 in CWM 

showed an opposite effect, being more effective against P. aeruginosa (35.2 %) than against S. 

aureus (0 %). This distinct effect of the biosurfactants could be due to the differences in the bacteria, 

since S. aureus is a Gram-positive and P. aeruginosa is a Gram-negative. In order to better 

understand the influence of cell surface properties on the anti-adhesive activity of biosurfactants, 

Zeraik and Nitschke [174] performed a physicochemical characterization of cell surfaces of some 

microorganisms.  All bacteria studied, S. aureus, Listeria monocytogenes, and M. luteus, were 

classified as strongly hydrophobic. S. aureus showed the highest hydrophobic characteristic, thus 

clarifying its great affinity to the hydrophobic polystyrene surface. Similarly, Makin et al. [175] 

studied the characteristics of the surface of P. aeruginosa, in order to understand its influence in 

the action of the biosurfactants. The authors showed that P. aeruginosa has two chemically and 

immunologically distinct LPS O-polysaccharide species, termed the A and B. The presence or 

absence of species A and B and their proportion influence the surface characteristics of the strains, 

thus affecting their ability to adhere to hydrophilic (glass) and hydrophobic (polystyrene) surfaces. 

Therefore, the differences in the activity of the same biosurfactants against distinct bacteria could 

also be explained due to the hydrophobic/hydrophilic characteristics of the cells surface. 
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In the case of surface properties, is known that biosurfactants could adsorb to a substratum 

surface and alter the hydrophobicity of the surface interfering with the microbial adhesion 

processes [168]. Rodrigues et al. [117] postulated that biosurfactants reduce the hydrophobic 

interactions, and consequently the microbial adhesion. Hydrophobic surfaces have shown to be 

particularly colonized by microorganisms, probably because these surfaces facilitate the close 

approach between microorganism and solid substratum. Consequently, when a surface is 

conditioned with biosurfactant, it becomes more hydrophilic, with an expected decrease of 

microbial attachment. Zeraik and Nitschke [174] observed a decrease in the hydrophobicity of 

surfaces treated with surfactin and also a substantial decrease of bacterial attachment, which is in 

agreement with the aforementioned explanation. Correspondingly, the results obtained in this work 

showed that biosurfactants from B. subtilis PX573 in CSL medium, probably surfactin, were 

responsible for a microbial adhesion decrease of 46.8 % for the Gram-positive S. aureus and of 

28.6 % for the Gram-negative P. aeruginosa. According to the previous explanation, these 

biosurfactants probably altered the hydrophobicity of the surface causing a decrease in the 

microbial adhesion. Furthermore, Zeraik and Nitschke [174] showed that polystyrene becomes 

more hydrophilic after being conditioned with surfactin, while conditioning with rhamnolipids 

increased the surface hydrophobicity. Being the microorganism S. aureus extremely hydrophobic 

that could explain why the biosurfactants from B. subtilis PX573 showed a stronger anti-adhesive 

activity (46.8 %) than the biosurfactants from P. aeruginosa PX112 in LB medium (10.6 %), and in 

CSLM medium (11.2 %) at 10 mg/ml. The differences observed could also be attributed to the 

chemical composition of the biosurfactants (one is a lipopeptide, while the other is a glycolipid), 

their molecular orientation on the surfaces, as well as their surface properties.  

 

As previously mentioned, the chemical structure of biosurfactants, mainly the proportions of 

their components, seems to significantly affect their anti-adhesive properties [135]. Velraeds et al. 

[119] revealed that biosurfactants containing a higher fraction of proteins, synthesized by L. 

acidophilus RC14 and L. fermentum B54, are more effective in impeding the adhesion of E. faecalis 

1131 to glass than those containing high polysaccharide and phosphate contents. These effects 

can explain the differences observed for biosurfactants produced by different lactic acid bacteria, 

or by the same microorganisms but in different media. Also, it should be noted that the more 

hydrophilic or hydrophobic character of the biosurfactants will influence its activity. Rodrigues et 

al. [101] showed that the most active fraction isolated from a biosurfactant mixture produced by 
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S. thermophilus A exhibited a high hydrophilic character. Furthermore, the authors showed that 

adsorbing the biosurfactant from L. lactis 53 onto the surface of silicone rubber turned the surface 

more hydrophilic. Likewise the biosurfactants from L. agilis CCUG31450 produced in MRS may 

have a good hydrophilic character and consequently lead to a more hydrophilic surface that is 

traduced in a higher anti-adhesive activity. This hydrophilic character of the biosurfactants showed 

a more pronounced effect against S. aureus (64.6 %) (Figure 26) (most probably the strain with 

the stronger hydrophobic character), comparing to P. aeruginosa, 0 % (Figure 28) (most probably 

this strain possesses a more hydrophilic cell surface) at the highest concentration tested. 

 

 

An interesting result obtained in this work was observed for the mixture of biosurfactants 

produced by L. agilis CCUG31450 in different media. As can been seen the biosurfactants 

produced in MRS medium showed a stronger anti-adhesive activity against S. aureus, 64.6 % 

(Figure 26). However, no activity was observed against P. aeruginosa (Figure 28). The anti-adhesive 

assays with biosurfactants produced in CWM, on the contrary presented no activity against S. 

aureus but a good anti-adhesive activity against P. aeruginosa (46.2 %), for the concentration 1 

mg/ml. Considering these results, both biosurfactants were mixed aiming at producing a mixture 

with a wider spectrum of action, i.e. effective against the two pathogenic microorganisms. The 

mixture at 1:1 proportion (individual concentration of biosurfactants 10 mg/ml) proved to be 

effective against the two strains tested. Specifically, it was observed a reduction of cell adhesion of 

47.4 % for P. aeruginosa (Figure 29) and 22.7 % for S. aureus (Figure 27). In the case of P. 

aeruginosa strain, the mixture showed an increase of activity, 47.4 %, when compared with the 

individual biosurfactants, 0 %, for the ones produced in MRS medium; and 35.2% for the ones 

produced in CMW (Figure 28). Therefore, it is possible to conclude that the mixture showed a 

positive interaction, resulting in a synergistic anti-adhesive effect. On the other hand, for the strain 

S. aureus the anti-adhesive effect observed, 22.7 %, was reduced as compared with the individual 

effects of the biosurfactants produced in MRS medium, 64.0 % (Figure 26). In this case, the results 

suggest a negative interaction between the biosurfactants, i.e. an antagonistic effect.  
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The remarkable anti-adhesive activity observed for some of the biosurfactants and mixtures, 

tested in this work, point them as potential agents for diverse applications. 

Bacteria growing as a biofilm remain a significant challenge in the biomedical field, growing 

on abiotic material such as catheters and prosthesis, as they tend to be more tolerant to 

antimicrobial treatments. Frequent replacement of the prosthesis is uncomfortable, costly, time 

consuming, and may lead to damage of the patients cellular tissues [136]. Therefore, the 

application of these biosurfactants with anti-adhesive activity against pathogenic microorganisms 

could limit biofilm infection by preventing the microbial adhesion to the surfaces of medical devices, 

and consequently preventing biofilm formation and leading to a reduction of a large number of 

hospital infections without the use of synthetic drugs and chemicals [101]. 

For example, as a potential application, these biosurfactants could be used to pre-coat the 

surfaces of prosthesis, implants and surgical instruments, where no microbial populations are 

desirable [168]. These applications were already explored in other studies, for example PTFE 

(Polytetrafluoroethylene) surfaces pre-conditioned with rhamnolipids were able to reduce L. 

monocytogenes attachment [176]. Pre-coating of vinyl urethral catheters with surfactin from B. 

subtilis caused a reduction in the amount of biofilm formed by several microorganisms, such as A. 

faecalis, Klebsiella aerogenes, S. typhimurium  [94, 168]. L. lactis and S. thermophilus A produce 

biosurfactants that are able to decrease the amount of bacteria in a multi-species biofilm on voice 

prosthesis [101, 117]. Surfactin and rhamnolipids are able to prevent E. coli and P. mirabilis 

biofilm attachment. S. enterica biofilm adhesion on vinyl urethral catheters (14Fr) was inhibited by 

pre-coating the surface of the device with 100 µg of surfactin and the same effect was observed 

for E. coli. On the other hand, the treatment was completely ineffective against P. aeruginosa [94].  

The anti-adhesive activity observed for the biosurfactants tested, highlighting the ones 

produced by L. agilis CCUG31450 and B. subtilis PX573 in CSL, against the pathogens evaluated 

indicate their potential usefulness for biomedical applications in the protection of biomaterials, but 

also to prevent food contamination [177, 178]. Nitschke et al [179] tested biosurfactants with anti-

adhesive activity and observed a reduction in the adhesion of food pathogens L. monocytogenes, 

Enterobacter sakasakii and Salmonella enteritidis on stainless steel and polypropylene surfaces.  
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3.4.3. Oil recovery  

 

 Two chemical surfactants and three biosurfactants were selected to perform oil recovery 

assays. From all the individual surfactants studied, the best results of oil recovery from 

contaminated sand were obtained with the chemical surfactant Enordet (54.4 %) and the 

biosurfactants from P. aeruginosa PX112 (produced in CSLM medium) (55.0 %) (Figure 30). On 

the other hand, at the same concentration, the biosurfactants produced in CSL medium by B. 

subtilis PX573 showed a poorer activity in oil recovery, only 25.1 %, corresponding to half the 

percentage observed for the most efficient surfactants. The biosurfactants from L. agilis 

CCUG31450 in CWM were also tested, although no oil recovery was observed.   

 

 

Figure 30. Removal of crude oil from contaminated sand by different biosurfactants and chemical surfactants. 

Percentages of oil recovered were obtained with freeze-dried biosurfactants isolated from several bacterial strains and 

surfactants dissolved in demineralized water at different concentrations. Only Enordet and the biosurfactants recovered 

from B. subtilis PX573 were tested at a concentration of 0.5 mg/ml. Results represent the average of two independent 

experiments and error bars represent SD. In the control conditions (demineralized water) no oil recovery was observed.  

 

Several mixtures with chemical surfactants and biosurfactants were prepared at different 

proportions and concentrations to study oil recovery. The analysis of the results in Table 28 showed 

that the mixture yielding the best percentage of oil recovery, 55.0 %, was the one containing 

biosurfactants produced in alternative media by B. subtilis PX573 and P. aeruginosa PX112 at an 

individual concentration of 5 mg/ml. However, when comparing this mixture with the results 
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obtained for the individual biosurfactants, it was not observed any improvement on the oil recovery. 

The values obtained for all the concentrations tested for this mixture were very similar to the values 

observed for the individual biosurfactants from P. aeruginosa PX112.  

Another mixture that yielded a good oil recovery, 52.0 %, was the one containing the 

biosurfactant from B. subtilis PX573 (1 mg/ml) and Enordet (2.5 mg/ml). However, this mixture 

did not revealed an enhanced activity when compared with the chemical surfactant alone (49.1 

%).On the other hand, analyzing the results obtained for the mixture with the same surfactants, but 

at different concentrations (B. subtilis PX573 (0.5 mg/ml) and Enordet (1 mg/ml)), an interesting 

and different effect was observed. The effect of this mixture in oil recovery was enhanced (31.1 %) 

when compared with the effect of Enordet alone (23.9%), although the individual biosurfactants 

from B. subtilis PX573 at this concentration (0.5 mg/ml) did not show any ability to recover oil 

from the contaminated sand. Another example of a positive interaction between biosurfactants was 

observed for the mixture of biosurfactants from B. subtilis PX573 (2.5 mg/ml) and Enordet (1 

mg/ml). As can be seen, the mixture showed an enhanced activity, 42.5 %, when compared with 

the individual activity of the biosurfactants from B. subtilis PX573, 26.3 %, and Enordet, 23.9 %. 

The other two combinations of B. subtilis PX573 and Enordet tested also resulted in an increased 

percentage of oil recovered.  

Each mixture has an interaction between their biosurfactants that can be very distinct and 

unique. A positive interaction could also be observed (23.9 % oil recovery) for the biosurfactants 

from B. subtilis PX573 (1 mg/ml, 15.0 %) and the surfactant Petrostep (1 mg/ml, 15.6 %). On the 

other hand, the other combinations tested with these surface active compounds did not resulted 

in a positive effect. For the three different mixtures of biosurfactants from B. subtilis PX573 and 

from P. aeruginosa PX112, no increase in the oil recovery could be observed. Moreover, the 

mixtures of biosurfactants from P. aeruginosa PX112 and the chemical surfactants resulted in 

similar and low amounts of oil recovered.  
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Table 28. Removal of crude oil from contaminated sand by different biosurfactants and chemical surfactants mixtures. Percentages of oil 
recovered were obtained with freeze-dried biosurfactants isolated from several bacterial strains and surfactants mixtures dissolved in 
demineralized water at different proportions. In the control assays (demineralized water) no oil recovery was observed. Results represent the 
average of two independent experiments ± SD.  
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The study of the efficiency in oil recovery by chemical surfactants and biosurfactants has 

also been reported by other researchers. Pornsunthorntawee et al. [99] showed that 

biosurfactants from B. subtilis PT2 had a greater efficiency in oil recovery than those produced 

by P. aeruginosa SP4, suggesting that the two excreted biosurfactants should have different 

characteristics, which are probably governed by the sources of the bacteria. On the contrary, 

the results obtained in this work showed that the biosurfactants from P. aeruginosa PX112 were 

more efficient than the ones from B. subtilis PX573. The results suggested that probably the P. 

aeruginosa PX112 biosurfactants could be more compatible with the Arabian Light oil tested. 

As previously discussed, the emulsifying activity of biosurfactants from P. aeruginosa PX112 

(Figure 12) was higher compared with the values obtained for the biosurfactants from B. subtilis 

PX573 (Figure 7), suggesting that the P. aeruginosa PX112 biosurfactants are more effective 

in removing oil from the sand and promoting oil solubilization. 

Pornsunthorntawee et al. [99] showed that biosurfactants could recover oil more 

effectively than three synthetic surfactants (Tween80, SDBS, Alfoterra 145-5PO). In this study, 

we saw that the P. aeruginosa PX112 biosurfactants were equally effective as Enordet and more 

effective than Petrostep (Figure 30). The higher ability of these biosurfactants to solubilize oil 

could be explained by their hydrophobicity. Moreover, being an anionic biosurfactant, its 

negative charge on the head group is able to aid the repulsion between the attached oil droplets 

and the sand surface, leading to the detachment of the oil from the sand surface. Briefly, on 

one hand the hydrophobicity of biosurfactants improves the solubilization of the oil, and on the 

other hand their anionic nature promotes the detachment of oil from sand.  

The two biosurfactants tested gave interesting values of oil recovery, either individually 

or in combination with chemical surfactants, suggesting that they have a great potential for 

application in MEOR, as well as in oil removal from contaminated places. 
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4.1. Conclusions  
 

The aim of the present work was to prepare mixtures of biosurfactants produced by 

different microorganisms in order to evaluate their main characteristics (surface tension, 

emulsification ability, antimicrobial and anti-adhesive activities) for several applications, namely 

in the oil recovery, health care and biomedical fields. To reach these purposes several subjects 

were studied and different applications were positively tested. The main conclusions drawn from 

this work are the following: 

 From the several bacteria tested, L. agilis CCUG31450, P. aeruginosa PX112 and B. 

subtilis PX573 were found to be the best biosurfactants producers. 

 

 The optimization of environmental factors showed that an increase on the agitation up to 

200 rpm improved the biosurfactants production by B. subtilis PX573 and P. aeruginosa 

PX112, probably due to a higher oxygen transfer. 

 

 Low-cost media, prepared with molasses and CSL, proved to be suitable alternatives to 

synthetic media for the production of biosurfactants by B. subtilis PX573 and P. 

aeruginosa PX112, leading to a remarkable increase in the biosurfactant yields of 2.8 

and 2.5 times, respectively.  

 

 The supplementation of the low-cost media with trace elements, Fe2+, Mn2+ and Mg2+, 

showed to be a beneficial for the production of biosurfactants by B. subtilis PX573, most 

probably because these trace elements play a key role as co-factors in the enzymes that 

are involved in the biosurfactants synthesis.   

  

 The conjugation of acid precipitation with a second recovery methodology, mainly 

ammonium sulfate precipitation, led to an improvement of the biosurfactants recovery 

from the culture broth supernatants.   

 

 Growth of L. agilis CCUG31450 under aerobic conditions demonstrated to be the most 

favorable condition for the synthesis of this type of biosurfactants.  
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 The low-cost medium prepared with cheese whey for biosurfactant production by L. agilis 

CCUG31450, although conducting to an increase of the biosurfactants yield, did not led 

to a further decrease of the surface tension as compared to the biosurfactants being 

produced in MRS medium.  

 

 The biosurfactants herein studied showed, in general, a capacity to withstand extreme 

conditions of pH, salinity and temperature without losing their physical and chemical 

properties. Therefore, they are promising molecules to be used in processes as 

bioremediation of hydrocarbon-contaminated sites or in the petroleum industry (MEOR). 

 

 The evaluation of the antimicrobial activity of the individual biosurfactants revealed that 

the lactic acid bacteria, L. animalis ATCC35046, L. paracasei A20 and L. agilis 

CCUG31450, exhibit a common positive effect against S. aureus. Besides, L. agilis 

CCUG31450 was the lactic acid bacteria with the greatest range of antimicrobial activity, 

being effective against three out of five pathogenic strains tested. The biosurfactants 

produced by B. subtilis PX573 and P. aeruginosa PX112 in low-cost media, demonstrated 

to be, in general, more effective against the microorganisms tested, supporting the 

positive replacement of synthetic media by the alternative media suggested.   

 

 In summary, the biosurfactants with a more pronounced activity evidenced a stronger 

antimicrobial activity against Gram-positive bacteria than against the Gram-negative ones, 

probably due to their easier interaction with Gram-positive cell membrane leading to the 

loss of cell integrity. Moreover, biosurfactants produced by B. subtilis PX573 and P. 

aeruginosa PX112, besides their notable activity against Gram-positive bacteria; were 

also found to be active against the yeast strain used. Therefore, these biosurfactants can 

be used as antimicrobial agents or can be conjugated with antibiotics to enhance their 

activity and reduce the resistance of pathogenic microorganisms. Nevertheless, some 

rhamnolipids have been reported as virulence factors, thus further work should be 

conducted in order to understand if these rhamnolipids are adequate for given 

applications.   
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 Biosurfactants are pointed as an alternative to antibiotic treatments, being effective 

against multi-resistant microorganisms, shush as S. aureus. The mixture of several 

biosurfactants, depending on the biosurfactants and pathogenic organism evaluated, 

showed either synergistic or antagonistic effects. The most interesting synergistic effect 

observed was for the mixture of L. paracasei A20 with L. animalis ATCC35046 

biosurfactants. 

 

 Biosurfactants usefulness as anti-adhesive agents was also assessed against two 

pathogenic strains. In the case of S. aureus, the most efficient individual biosurfactant 

was the one produced by L. agilis CCUG31450 (MRS), and the best results of anti-

adhesive activity (68.4 %) were detected for the mixture (1:1 proportion) prepared with 

biosurfactants from L. agilis CCUG31450 and B. subtilis (CSL). For the pathogenic strain 

P. aeruginosa, the higher adhesion inhibition was achieved with the individual 

biosurfactants of L. agilis CCUG31450 (CWM), and the mixture (1:2 proportion) of 

biosurfactants  from  P. aeruginosa PX112 (CSLM) and L. agilis CCUG31450 (MRS), 

62.5 %. In conclusion, each mixture prepared showed a unique effect on the adhesion of 

pathogenic microorganisms that was dependent on the type of biosurfactants, the 

proportion of biosurfactants in the mixture and the pathogenic organism.  

 

 The anti-adhesive activity observed, mostly for probiotic biosurfactants, suggests their 

application as bio-detergent solutions for cleaning surgical material, and for coating 

agents to increase prosthesis and catheters lifetime, thus reducing health costs.  

 

 The good surface and emulsifying activity of biosurfactants from B. subtilis PX573 and 

P. aeruginosa PX112 indicated their potential to be applied in oil recovery. The results 

from the oil recovery assays showed that these biosurfactants were efficient, and in some 

case were even more active than the two chemical surfactants (Enordert and Petrostep) 

tested. From all the mixtures prepared with biosurfactants and chemical ones, the higher 

oil recovery percentage (55 %) was obtained for the mixture containing biosurfactants 

produced in alternative media by B. subtilis PX573 and P. aeruginosa PX112, at an 

individual concentration of 5 mg/ml. An interesting result was detected for the mixture 

of B. subtilis PX573 biosurfactants (0.5 mg/ml) and Enordet (1 mg/ml), The effect of 



|4. GENERAL CONCLUSIONS AND RECOMMENDATIONS 
 

 
120 

this mixture in oil recovery was enhanced (31.1%) when compared with the effect of 

Enordet alone (23.9%), although the individual biosurfactants from B. subtilis PX573 at 

this concentration (0.5 mg/ml) did not show any ability to recover oil from the 

contaminated sand. Therefore, biosurfactants could be applied in MEOR or could be 

mixed with chemical surfactants already used in oil recovery in order to reduce the 

concentrations required of these surfactants, and consequently reduce their negative 

environmental impacts.  

 

 

4.2. Recommendations  
 

The results achieved in this work showed the successful implementation of some 

strategies to improve biosurfactants yields and reduce production costs. Moreover, it was given 

an interesting perspective of the properties and activities of distinct biosurfactants, as well as 

their potential to be used in the therapeutic, biomedical and oil recovery field. However, further 

research should be done as suggested bellow: 

 Since the results achieved in the production of biosurfactants by B. subtilis PX573 and 

P. aeruginosa PX112, using low-cost substrates as medium for fermentation, were very 

promising, it would be interesting to study the fermentation scale-up, reactor design and 

mode of operation.  

 

 In the case of L. agilis CCUG31450 growth in CWM, the results were not as favorable as 

predicted, i.e. the biosurfactants produced in this medium showed a poor activity. 

Therefore, more studies should be conducted in order to optimize the cheese whey 

concentration in the alternative medium, the requirement of trace elements, or even test 

different low-cost substrates.  

 

 The strategies applied to reduce the production costs, namely the use of low-cost 

substrates, provided encouraging results. Nevertheless, other strategies involving 

different variables of the production process can also be explored, as for example the 

assessment of overproducing strains.  
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 The effect of environmental factors in the biosurfactants activity was tested distinctly, 

without considering the effects of any interactions between them. In future research, the 

effect of extreme conditions of pH, temperature and salinity should be evaluated also for 

the mixtures.  

 

 Another point of interest is the biochemical composition of biosurfactants. In general, 

they have been characterized as multi-components biosurfactants. Therefore, further 

purification and characterization steps are required, mainly in the case of biosurfactants 

produced by the lactic acid bacteria, for which information on their structures is still 

scarce. This characterization of biosurfactants, in terms of structure, would help to better 

understand their interaction in the mixtures, thus facilitating the prediction of the mixture 

effect and activity. 

 

 In the biomedical and therapeutic applications, most of the time it is desirable an agent 

that is active against more than one pathogenic microorganism. Therefore, it would be 

worth to test the antimicrobial and anti-adhesive activity of biosurfactants against 

microbial consortia. Moreover, several pathogenic strains are biofilm forming-

microorganisms which could interfere with the antimicrobial effect of biosurfactants. The 

analysis of anti-biofilm activity of the biosurfactants will provide a new overview of the 

biosurfactants effectiveness. 

 

 Biosurfactants showed interesting antimicrobial and anti-adhesive activities indicating 

their potential application in the medical field. Nevertheless, the therapeutic application 

of these biosurfactants, produced by different bacteria, requires an evaluation of their 

biocompatibility before they can be considered for use in health-related areas.  
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