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 Abstract 

 Bacterial vaginosis (BV) is the leading vaginal disorder in women of reproductive age 

worldwide. BV is characterized by the replacement of beneficial bacteria (lactobacilli) and the 

augmentation of anaerobic bacteria. Gardnerella vaginalis is a predominant bacterial species, 

however, whether it is a cause or an effect is unclear and the etiology of BV remains unknown. 

This has consequently led to limitations in the diagnosis and adequate treatment of BV. Aiming 

to improve BV diagnostic, we designed the first Peptide Nucleic Acid (PNA) Fluorescence In 

Situ Hybridization (FISH) methodology to increase the specificity and sensitivity of the detection 

of Lactobacillus spp. and G. vaginalis strains in vaginal samples. We performed a prospective 

study using a collection of vaginal samples that enabled the validation of the PNA-FISH 

methodology as a reliable alternative for BV diagnosis, demonstrating a higher specificity and 

accuracy when compared to classical methods. 

 We hypothesized that G. vaginalis is the initial colonizing species and that its adherence 

is required before other BV-associated anaerobes are able to interact with the vaginal epithelium. 

To test this hypothesis, the initial adhesion of G. vaginalis and other BV-associated bacteria (A. 

vaginae, M. mulieris, P. bivia and F. nucleatum) was analyzed in the presence of two vaginal 

lactobacilli (L. crispatus and L. iners) using human epithelial cells as a model. Our results 

revealed that G. vaginalis had the greatest capacity to initially adhere to epithelial cells, in 

support of the hypothesis, it could be the main candidate for early colonization. Based on the 

previous results, it was also postulated that G. vaginalis could enhance the ability of other 

bacteria to grow and colonize the vaginal epithelium. Hence, the growth of dual species biofilms, 

with G. vaginalis and other BV-associated anaerobes, was evaluated. Interestingly, the G. 

vaginalis biofilm growth was strongly enhanced by any of the BV-associated anaerobes tested. 

Furthermore, it also enhanced the growth of certain BV-associated anaerobes (P. bivia and F. 

nucleatum). These results suggest G. vaginalis as a key role in the early establishment of BV 

biofilms. 

 Finally, we performed a study to evaluate the probiotic potential of intra- and 

extracellular biosurfactants from 86 lactobacilli strains against several clinical G. vaginalis 

strains. We found 6 lactobacilli that were able to inhibit the growth and biofilm formation of 
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several clinical G. vaginalis strains, suggesting their probiotic potential as adjuvants for BV 

treatment.  
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 Sumário 

 A vaginose bacteriana (VB) é a principal causa de desordem vaginal em mulheres de 

idade reprodutiva a nível mundial. A VB é caracterizada pelo decréscimo da flora vaginal 

saudável (lactobacilos) e pelo aumento de bactérias anaeróbicas, sendo a Gardnerella vaginalis a 

espécie dominante. No entanto, o agente etiológico da VB permanece desconhecido, dificultando 

o seu diagnóstico e consequentemente o seu tratamento adequado. Com o intuito de melhorar o 

diagnóstico da VB, desenvolveu-se a primeira metodologia de Hibridação In Situ de 

Fluorescência com sondas de Péptidos de Ácido Nucleico para aumentar a especificidade e a 

sensibilidade da detecção de Lactobacillus spp. e G. vaginalis em amostras vaginais. 

Posteriormente, realizou-se um estudo prospectivo numa coleção de amostras vaginais que 

permitiu validar a metodologia desenvolvida como um método alternativo e robusto para o 

diagnóstico correto da VB, demonstrando uma elevada especificidade e precisão quando 

comparado com os métodos clássicos de diagnóstico. 

 Adicionalmente, postulamos que a G. vaginalis poderá ser o colonizador primário e que a 

sua adesão inicial é necessária para uma posterior colonização por outros anaeróbicos 

associados à VB. Por forma a testar esta hipótese, comparou-se a adesão inicial da G. vaginalis e 

de outros anaeróbios associados à VB (A. vaginae, M. mulieris, P. bivia e F. nucleatum) contra 

dois lactobacilos vaginais (L. crispatus e L. iners) usando células epiteliais humanas como 

modelo. Conclui-se que G. vaginalis teve a maior capacidade de adesão inicial, evidenciando-se 

como o principal candidato a colonizador primário na VB. Com base nestes resultados, postulou-

se que G. vaginalis poderá facilitar o crescimento e a colonização secundária de outros 

anaeróbicos. Deste modo, quantificou-se o crescimento de biofilmes mistos entre G. vaginalis e 

um segundo aneróbio associado à VB. Curiosamente, o biofilme da G. vaginalis apresentou um 

crescimento fortemente incrementado na presença de qualquer um dos outros aneróbios testados. 

Por sua vez, o biofilme da G. vaginalis  promoveu também o crescimento de alguns anaeróbios 

associados à VB (P. bivia e F. nucleatum). Estes resultados sugerem que a G. vaginalis possui de 

facto um papel preponderante na formação inicial dos biofilmes na VB.      

 Por último, avaliou-se o potencial probiótico dos biosurfactantes intra- e extracelular de 

86 lactobacilos em várias estirpes clínicas de G. vaginalis. Este estudo permitiu selecionar 6 
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espécies de lactobacilos capazes de inibir o crescimento e a formação de biofilmes de G. 

vaginalis, demonstrando assim o potencial destes lactobacilos como probióticos candidatos para 

o tratamento da VB.  
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 Structure of the thesis 

 This thesis is organized in seven chapters. The first chapter is a general introduction that 

addresses the bacteria vaginosis (BV) relevance in women, from Portugal and Worldwide, 

standard diagnostic methods applied in BV, their advantages and limitations, and the emergence 

of molecular techniques to increase BV diagnosis accuracy. 

 Chapters II and III report the development and application of new PNA probes through 

Fluorescence In Situ Hybridization (FISH) methodology for the detection of Lactobacillus spp. 

and Gardnerella vaginalis in vaginal swabs. The multiplex PNA-FISH methodology developed 

constitutes an alternative to the currently classical Nugent score criteria using standard Gram 

stain used. 

 Chapter IV and V describe the role of Gardnerella vaginalis in the initial adhesion and 

biofilm formation in BV, respectively. In chapter IV, the initial adhesion of G. vaginalis is 

studied against an epithelial cell line and is further compared with other BV-related anaerobes. 

Chapter V presents a characterization of G. vaginalis dual-species biofilms, showing commensal 

and synergetic relationships between G. vaginalis and other BV-related anaerobes. 

 The chapter VI demonstrates lactobacilli probiotic activity against G. vaginalis growth 

and biofilm formation. Several lactobacilli biosurfactants from a culture collection and vaginal 

isolates are evaluated. Finally, chapter VII summarizes the major conclusions of the thesis 

addressing the role of G. vaginalis on the etiology of BV, mixed species biofilms and resistance 

against probiotic lactobacilli. Furthermore, in this chapter some important issues that should be 

clarified in future work are discussed. 
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 1.1 Bacterial vaginosis  

 Bacterial vaginosis (BV) is an imbalance in the vaginal microflora (1). It is the most 

common vaginal disorder in women of reproductive age and the most common cause of 

vaginal discharge (1, 2). BV is responsible for more than 60% of vulvovaginal infections and 

has been linked to serious public health consequences including pelvic inflammatory disease, 

postoperative infections, acquisition and transmission of the Human immunodeficiency virus 

(HIV), and preterm birth (1, 3). However, the current knowledge about its etiology remains 

scarce (4). BV is associated with numerous bacterial species, mainly anaerobes, such as 

Gardnerella vaginalis, Atopobium vaginae, Mobiluncus mulieris, Prevotella bivia and  

Fusobacterium nucleatum (5–7). Current paradigm is that the establishment of a biofilm 

plays a key role in the pathogenesis of BV (8, 9).  

The lack of basic information about BV etiology has led to an ongoing debate 

between two hypotheses. The first is the polymicrobial hypothesis, which infers that BV is 

caused by a mixture of pathogenic bacteria, principally anaerobes (10). The second is that a 

single pathogenic species, in many cases G. vaginalis, is the primary pathogenic agent being 

frequently transmitted via sexual contact (6). In 1955, Gardner and Dukes isolated G. 

vaginalis (originally described as Haemophilus vaginalis) from the vaginas of 92% of 

patients with BV (11, 12). They postulated that G. vaginalis was the etiological agent 

responsible for BV. However, some studies demonstrated that the artificial infection with 

pure cultures of G. vaginalis did not reliably cause BV (13), making the role of G. vaginalis 

in BV establishment less clear. In addition, other bacteria, such as Atopobium vaginae and 

Mobiluncus mulieris, were positively associated with BV (2, 8), thus suggesting a 

polymicrobial role. Nevertheless, the polymicrobial hypothesis does not currently agree with 

available epidemiological data. Risk factor studies have shown that the BV profile mirrors a 

sexual transmitted disease (6, 14) or sexually enhanced disease (3). As a sexual transmitted 

disease, it is highly likely that BV has a single etiological agent, rather than being caused by 

multiple organisms. However this has not been directly proven. Recently, several studies 

revealed the virulence potential of G. vaginalis and evidenced again this bacterium as main 

etiological candidate (15–18). 
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It is generally accepted that the microflora of the healthy adult vagina is dominated by 

hydrogen peroxide and lactic acid producing lactobacilli, which leads to an acidic pH of the 

vaginal environment (19). The shift in the composition of vaginal microflora that occurs in 

BV has been extensively studied (see Figure 1.1) and is characterized by a decrease in these 

healthy vaginal bacteria and an increase in the numbers of G. vaginalis, A. vaginae, M. 

mulieris and other anaerobes (2, 8, 20, 21). Nonetheless, it remains unknown if certain 

anaerobes are capable of acting as primary pathogens in the vaginal microflora (6). Also, 

increasing number of anaerobes is not specific of BV since it has been also described in other 

vaginal conditions, such as trichomoniasis (22). Therefore, this anaerobe overgrowth may be 

a symptom of the infection rather than specifically related to BV etiology (23). 

Figure 1.1 Microscopic images of Gram-staining vaginal smears illustrate the different grades of 
microflora evolution in Bacteria vaginosis (adaptation from 16). 

In BV patients, a biofilm can be formed on the vaginal epithelium and G. vaginalis is 

typically the predominant species (8, 24), therefore it was hypothesized that G. vaginalis’ 

biofilm induction is needed to induce BV in women. In addition, Patterson et al. (25) also 

demonstrated that G. vaginalis biofilms exhibited increased tolerance to hydrogen peroxide 

and lactic acid when compared to planktonic cells. The distinct gene expression pattern and 

morphological structure of biofilms increase the bacterial resistance against numerous agents, 

such as chemical disinfectants, extreme pH values, host immune defenses and antibiotics 

(26). Also, Patterson et al. (17) demonstrated that G. vaginalis was the only anaerobe to 

exhibit three key virulence determinants, including adherence to vaginal epithelial cells, 

biofilm-producing capacity and cytotoxic activity, when compared with A. vaginae, M. 

mulieris, P. bivia and Veillonella sp. Hence, all these findings suggest that biofilm forming 
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G. vaginalis plays a key role in BV pathogenesis. It is important to notice that the biofilm 

phenotype was not previously considered in the studies addressing the single pathogenic 

species theory, and therefore further studies are required to fully understand BV etiology. 

Currently, it is recognized that planktonic cell growth does not accurately reflect 

bacterial growth in nature or in infectious diseases, where most bacteria grow as biofilms 

(27). A biofilm is defined as a complex and structured community of bacteria attached to a 

surface and surrounded by a matrix of extrapolymeric substances, such as proteins, lipids, 

deoxyribonucleic acids (DNA) and polysaccharides (26). Bacteria may form a biofilm in 

response to many extrinsic or intrinsic factors, such as cellular recognition of specific or non-

specific attachment sites on a surface, nutritional cues, or even by exposure to sub-inhibitory 

concentrations of antibiotics (6, 7, 28). However, when bacteria switch to the biofilm mode 

of growth, it goes through a phenotypic shift in which a large number of genes is 

differentially regulated (26). The development of biofilm formation is characterized by an 

initial attachment and maturation stage (see Figure 1.2). 

 

 

  

 

 

 

 

Figure 1.2 Conceptual model about the development of biofilm formation. The biofilm formation is 
characterized by an initial attachment and a maturation stage (adaptation from 29). 
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  1.2 BV epidemiology and clinic diagnosis 

  BV is the most cited cause of vaginal symptoms prompting women to seek primary 

health care (30). However, BV normally appears initially as asymptomatic, developing 

gradually to the final stage that evidence a characteristic group of symptoms (5). Its 

prevalence changes with several factors, such as ethnic race, sexual habits and age. 

Nevertheless, BV prevalence is commonly higher in pregnant and sexually active women 

from both developed and developing countries (4, 5). In developed countries, the incidence 

of BV is higher than symptomatic genital candidiasis and trichomoniasis (31), reveling 

concerns about the cost-effectiveness for BV diagnosis and appropriateness treatment 

efficiency. Moreover, the epidemiologic studies linked BV with an increased risk for 

sexually transmitted infections (STIs) acquisition  and pelvic inflammatory disease (PID) 

development (32). In addition, during pregnancy, BV has been related to late fetal loss and 

premature birth (33, 34). Initial stages of the infection and its absence of clinical symptoms 

commonly difficult a correct BV diagnosis. Therefore, an improvement of the current 

standard methods for BV diagnosis is currently needed.  

1.2.1 Standard diagnostic methods for BV  

 The diagnosis of BV is normally based on Amsel clinical criteria or Gram stain under 

Nugent score system, which are both fairly subjective and thus complicate the research 

evaluation and clinical practice (30, 32, 35). As previously mentioned, BV is clinically 

described as a syndrome based on the presence of a collection of clinical symptoms without a 

defined etiologic agent. In fact, BV diagnosis by Amsel criteria is made through the 

following criteria: vaginal fluid pH above 4.5; positive “whiff test” (detection of fishy odor 

upon 10% potassium hydrogen addition); presence of clue cells (vaginal epithelial cells 

covered by bacteria) on microscopic examination of vaginal fluid; and homogeneous milky 

vaginal discharge. At least three from four clinical signs must be present to establish a 

positive BV diagnosis (30). Despite the fact that the Amsel criteria requires the least training 

and is therefore the most frequently used diagnostic procedure, it is not the most appropriate 

method to diagnose BV, due to its low specificity (36). Therefore, Nugent and colleagues 
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attempted to improve the BV diagnosis through Gram stain of vaginal swabs. This technique 

enabled the observation of the existent vaginal microflora and also the preservation of the 

clinical sample for further medical evaluation (37). These authors elaborated a Gram stain 

scoring system (37) based in the evaluation of the following morphotypes: large gram-

positive rods (Lactobacillus spp. morphotypes); small gram-variable rods (G. vaginalis 

morphotypes); small gram-negative rods (Bacteroides spp. morphotypes); and curved gram-

variable rods (Mobiluncus spp. morphotypes). Each morphotype is quantified from 1 to 4+ 

with regard to the number of morphotypes observed in the microscopic fields of the Gram-

stained vaginal smear (see Table 1.1). The vaginal microflora diagnosis is then based in the 

sum of each morphotype score, classifying normal microflora (score between 0 – 3), 

intermediate microflora (score between 4 – 6) and BV (score between 7 – 10; see Table 1.1) 

(5, 37).  

Table 1.1 Scheme for grading Gram-stained vaginal contents by Nugent score system 
(adaptation from 5). 

Nugent’s Gram stain scoring system 

Score 
Lactobacillus spp. 

Morphotype 

Gardnerella and Bacteroides 

spp. morphotypes 

Mobiluncus spp. 

morphotype 

0 4+ 0 0 

1 3+ 1+ 1+ or 2+ 

2 2+ 2+ 3+ or 4+ 

3 1+ 3+ – 

4 0 4+ – 

Vaginal microflora diagnosis by Nugent score system 

Total score Interpretation 

0 – 3 Normal vaginal microflora 

4 – 6 Intermediate vaginal microflora 

7 – 10 Bacterial vaginosis in vaginal microflora 

Legend – Morphotypes are scored as the average number see per oil immsersion field. Quantification of each 
individual score: 0 for no morphotype present; 1+ for 1 morphotype present; 2+, 1 to 4 morphotypes present; 
3+, 5 to 30 morphotypes present; 4+, 30 or more morphotypes present. Total score is the sum of the average 
classification of Lactobacillus, Gardnerella and Bacteroides, and finally Mobiluncus spp. 
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This Gram stain scoring system has been used for the past 3 decades, allowing also to 

compare prospective and longitudinal studies in the BV research (14, 38–40). However, 

Gram-stained vaginal smears require skilled personnel to perform the scoring and are not 

used as frequently in clinical practice (2, 41). A comparison between Nugent system score 

and Amsel clinical criteria was performed by Brotman (32), revealing that both methods are 

effective for the diagnosis of symptomatic BV but neither is capable to diagnose BV in early 

stages. In addition, the Amsel criteria do not convey information on the composition of 

vaginal microflora and the Nugent system score provides only morphological information. 

However, the Nugent score is unable to specifically recognize bacterial species due to an 

unspecific stain (32).  

1.2.2 BV prevalence and diagnosis in Portugal 

 Numerous epidemiologic studies performed in different countries revealed that BV 

prevalence varies with geographic location, socioeconomic status, sexual behavior and race 

(3, 4, 42), as discussed above. In Portugal, studies about BV prevalence are almost non-

existent except for two studies elaborated by Guerreiro et al. (43) and Henriques et al. (44). 

Guerreiro and colleagues studied the prevalence of several sexual transmitted diseases, 

including BV, in 840 women from Lisbon region (43). The majority of BV patients were 

young women at reproductive age (58.7%) with low academic education (59.0%) being 

middle or working class (85.0%) and having a fixed partner (79.8%) (43). Also, that study 

correlated BV prevalence to women with high sexual risk behavior, similarly as STIs, being 

in agreement with several international studies (3, 6, 7, 32, 45, 46). In 2012, Henriques and 

colleagues conducted a follow up study to assess Portuguese doctors’ perception of BV 

prevalence in the country, as well as of the standard diagnostic methods used, therapies of 

choice and relapse of BV (44). This study collected the experts perception from 197 

gynecologists from continental Portugal (44), and it was found that 42% and 74% of the 

gynecologists perceived BV as frequent in pregnancy and prevalent in Portuguese women, as 

illustrated in Figure 1.3A and 1.3B, respectively.  
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1.2.3 Pitfalls of the standard BV diagnostic methods 

 Since the first developments of BV research (11), numerous studies were done to 

attempt a correctly BV diagnosis. In 1983, the first clinical diagnostic criteria worldwide 

accepted for BV diagnosis was proposed by Amsel and colleagues (30), as previously 

discussed. However, other score systems continued to be developed towards an increase in 

accuracy. Spiegel et al. (35) latter developed another score system for BV recognition 

through examination  of bacterial morphotypes in Gram-stained smears of vaginal secretion. 

Further improvement of this score system was obtained by Nugent and colleagues in 1991 

(37), gaining also a wide acceptance as BV diagnosis scoring system. Despite the fact that 

the Amsel criteria had become the for the most frequently used for BV diagnosis, most 

research studies have been using the Nugent score system since the nineties (47). In addition, 

Schwebke and colleagues determined the sensitivity (89%) and specificity (83%) of the 

Nugent’s Gram stain scoring system when compared with Amsel criteria, demonstrating that 

this standard method is more sensitive for BV diagnosis (48). However, the specificity 

reported in this study still suggests that BV may be underdiagnosed. Others studies also 

showed some concerns regarding the Nugent score system for BV diagnosis (47, 49, 50) and 

even with Amsel clinical criteria accuracy (51, 52). For instance, Gallo et al. studied the 

accuracy of clinical BV diagnosis by Amsel criteria, verifying a poor sensitivity (60%) in the 

conducted study (52). Moreover, this prospective study suggested that the Amsel criteria for 

routine BV diagnosis is unsuitable for asymptomatic women as previously advised in other 

studies (53, 54).  

  Several discrepancies in the Nugent methodology (37) were found by Forsum and 

colleagues, specifically in the scoring of morphotypes on vaginal smears (47). This 

international study involved the participation of 13 researchers that scored 238 slides with 

smears from vaginal fluid, and allowed the recognition of at least three pitfalls in the 

classification of the morphotype types. First, the fixation method may influence the real 

number of Lactobacillus spp. morphotypes in the slide, leading to a mismatch counting in the 

microscopy analysis (47). Also, the staining step and selected stain may lead to inaccuracy in 

distinguishing the Lactobacillus morphotypes from the Gardnerella and Bacteroides spp. 

morphotypes since old lactobacilli from vaginal microflora tend to lose their Gram-positive 

appearance (47). Finally, Gardnerella and Bacteroides spp. may vary in size and form from 



                                                                                                                   General Introduction 
 

12 

 

round to more elongated, impairing the typical morphotype recognition and consequently the 

final Nugent score (47). These inaccuracies lead often to mismatches of vaginal smears 

classification, in particular, intermediate vaginal microflora, conducting to under- or 

overdiagnosis. It is important to refer that all this discrepancies were already postulated by 

other studies (49, 55, 56). All the pitfalls from classical standard methods lead to the search 

of other alternative methods for BV diagnosis. In the last two decades, the development of 

molecular methodologies allowed to gather new information about normal and BV 

microflora, highlighting alternative techniques that may replace the classical standard 

methods for BV diagnosis (40, 57–60).    

1.2.4 Novel molecular methodologies in BV diagnosis 

 BV and normal vaginal microflora are constituted by a multifaceted bacterial 

consortium and consequently its diagnosis requires a complex analysis (61). Understanding 

this bacteria consortium in vaginal epithelium appears to be the key for a complete 

explanation of vaginal health (21, 45). However, the conventional microbiological methods 

have limited utility in evaluating BV patients (60). The Amsel criteria and Nugent’s Gram 

stain scoring system are unable to identify the bacteria species in the vaginal microflora and 

their diagnosis often relys, to some degree, on subjective interpretation by observers (62), as 

discussed above. Alternatively, molecular methodologies have been successfully developed 

to detect and characterize microbial species, allowing the diagnosis of numerous infectious 

diseases (63, 64). In fact, the augmentation of the nucleic acid sequence databases allowed 

the detection of several human pathogens by sequence-based identification (65). The most 

commonly used molecular methods applied to study BV microflora are based on nucleic acid 

sequences detection and quantification (60, 61, 63), such as Fluorescence in situ 

hybridization (FISH) (8, 17, 24, 40, 57, 66) and quantitative Polymerase Chain Reaction 

(qPCR) (60, 67–70). FISH is based in nucleic acid sequences hybridization directly in the 

bacteria without any kind of extraction procedure (71), enabling the spatial visualization of 

bacteria consortium from vaginal swabs (8, 24). On the other hand, qPCR is a molecular 

technique that is also capable of quantifying the phenotypic expression of the bacteria (72), 

enabling the analysis of the interactions between BV-associated bacteria (69, 73).     
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 These molecular techniques are been used to improve our understanding in host 

genetic factors, physiological conditions and environmental factors that may influence the 

vaginal microflora (61). However, molecular methodologies and its implementation in the 

laboratory for BV diagnosis are time-consuming, costly and also involve rigorous 

optimization and commercialization of standardized assays (74). Nevertheless, all these 

requirements from molecular techniques are being overcome and further implementation of 

these methods will be suitable in the future in all clinical microbiology laboratories (63).    

1.2.4.1 Fluorescence in situ hybridization 

 Fluorescence in situ hybridization is a well-established technique that allows whole-

bacterial cell detection (75) and, when using a confocal laser scanning microscopy (CLSM), 

biofilms can also be studied (17). Briefly, FISH is a technique based on the annealing of 

DNA or ribonucleic acid (RNA) molecules, also known as probes, to a specific target 

sequence within a cell. To visualize this specific target sequence, the probes are attached to a 

fluorescent label allowing specific microorganisms identification and visualization of their 

spatial organization in the studied sample (71, 75, 76). The fluorescence detection is usually 

performed by fluorescence microscopy or flow cytometry (71, 76, 77). However, the 

confocal laser scanning microscopy is the best approach for biofilms analysis (77). In spite of 

other techniques used to study microorganisms, which require cells actively in division, FISH 

can also be performed on non-dividing cells, making it a highly versatile methodology (71).  

 The FISH procedure is usually divided in three main steps, more exactly, fixation, 

hybridization and washing (Figure 1.5). 

 

 

 

 

 

 

 

 

 

 
Figure 1.5 Basic steps of fluorescence in situ hybridization (adaptation from 78). 
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As shown in Figure 1.5, the sample is initially fixed to stabilize the cells and permeabilize 

their membranes. Afterwards, labeled oligonucleotide probes are added to the fixed cells, 

leading to the hybridization on the desired sequence targets; and then followed by a washing 

step to remove the unbinding or mismatched probes still present into the cells (79). Finally, 

fluorescence microscopy, flow cytometry or confocal laser scanning microscopy is used for 

identification and visualization of bacteria cells target in the sample (80, 81).  

 For bacterial detection, this methodology commonly used DNA probes to 16S and 

23S ribosomal RNA (rRNA) sequences (71). These rRNA target regions are well suited for 

bacteria identification because all bacteria contain several ribosomes in which target 

molecules are usually amplified up to 100,000 per cell (71, 76). Thereby, the fluorescence 

intensity is easily observed due to the result of multiple probe labels and the enormous 

bacteria ribosomal content. In addition, the fact that the rRNA genes are composed of both 

highly conserved and highly variable regions, allows identification and classification of large 

taxonomic entities, such as, phyla, classes, genera or even species (71, 80).  

 

    



                                                                                                                   General Introduction 
 

15 

 

   

  1.3 Standard treatment of BV 

  BV treatment initially consisted of oral administration of doxycycline or ampicillin 

simultaneously with application of sulfonamide vaginal cream (82). However, this treatment 

was acknowledged to be inefficient against anaerobes present in BV infection (83, 84). Later, 

a therapy with 75% metrodinazole gel once-daily or twice-daily for 5 to 7 days revealed an 

efficient BV treatment in 99% of clinical cases (85). This treatment could be administrated 

orally up to 750 mg of metronidazole daily for one month (36). In addition, Austin and 

colleagues compared the efficacy of BV treatment with metronidazole and clindamycin 

showing that the single use of metronidazole treatment exhibited a significant decrease in the 

majority anaerobes of BV (86). 

  In 1998, Food and Drug Administration (FDA) published a guideline for BV 

treatment aiming to establish different and efficient therapeutics capable to treat BV (5). The 

main goal for BV treatment was the BV anaerobes elimination and simultaneously 

lactobacilli colonization in vaginal epithelium. This colonization has been intended with 

probiotic lactobacilli products in several studies (1, 5, 20).  

 In the past decades, as with many other bacterial species, antimicrobial resistance 

started to appear and novel antibiotics were sought. However, few advances had been 

achieved in BV treatment using antibiotic or probiotic agents. Tinidazole is the only new 

antibiotic for BV treatment approved by FDA in the last few years (5, 36). This antibiotic 

belongs to a second generation being chemically related to metronidazole (first generation 

nitroimidazole). However, tinidazole has a longer half-life and requires different dosing 

regimens when compared to metronidazole (36). Due to a longer half-life, tinidazole can be 

taken with in lower dosages and less frequently per day during the BV treatment. Also, this 

new antibiotic has been applied in recurrent BV cases in which standard therapy did not 

show any improvement in patients (36). On the other hand, the use of probiotics is an 

alternative approach to antibiotics that had been reported in several studies (1, 20, 87, 88). 

Briefly, this kind of BV treatment use probiotic strains to replace BV anaerobes in the 

vaginal epithelium through systemic and/or topic applications of certain products (capsules, 

yogurts, tablets or vaginal suppositories) (20, 89). Although the first choice for BV treatment 



                                                                                                                   General Introduction 
 

16 

 

is usually the antimicrobial therapy, probiotics did not eradicate the healthy vaginal 

microflora showing an advantage when compared to conventional antibiotics. Several 

properties had been studied in probiotic strains for vaginal epithelium, such as, adhesion to 

human epithelial cells, antimicrobial activity or competition growth towards well-known 

pathogens, bacteriocins and hydrogen peroxide production (1, 90). Lactobacillus spp. is one 

of the main probiotic candidates for BV treatment (91). This genus is constituted by a 

heterogeneous microbial group containing more than 100 species and numerous subspecies 

(92). However, few lactobacilli strains are probiotic candidates for BV treatment (1, 91). 

Numerous studies in the treatment of BV with several probiotic lactobacilli had been 

attempted with no significant adverse events, such as L. fermentum (RC-14), L. rhamnosis 

GR-1, L. crispatus, L. plantarum, L. brevis CD2, L. salivarius FV2 and L. gasseri MB335 

(90, 93–96). However, probiotic application in BV treatment did not show the same 

effectiveness as the antimicrobial therapy (1, 20). In 2006, Anukam and colleagues proposed 

that the combination of metronidazole and probiotic lactobacilli strains could be the most 

efficient treatment for BV (89). 

 Moreover, a clinical study in BV women treated with metronidazole administered 

orally and topic gel application with probiotic lactobacilli products revealed that the 

combination of the therapies was able to promote lactobacilli colonization in vaginal 

epithelium, when compared to each therapy individually applied to the BV women (97). It is 

important to notice that the number of probiotic lactobacilli capable to adhere in the vaginal 

epithelium and also the amount of antimicrobial substances secreted by them are difficult to 

control during BV treatment. However, these antimicrobial substances can be concentrated in 

several probiotic products and then topically applied in appropriate concentrations for BV 

anaerobes elimination (89, 98). Therefore, lactobacilli products can also be used for 

alternative treatment of BV (98, 99). All these studies suggested the combination of probiotic 

lactobacilli and antibiotic therapy as bottom line to achieve an efficient BV treatment and 

simultaneously a lactobacilli recolonization in the vaginal epithelium. 
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  1.4 Conclusions  

  In summary, the lack of knowledge of BV etiology led to difficulties in the 

effectiveness of BV diagnostic and treatment, increasing public health consequences and 

costs. The current BV diagnostic methodologies are unable to detect the early stages of BV 

development and so therapy is usually applied in severe clinical stages of the infection, with 

consequences in the healthy recovery of the patient vaginal microflora. Aiming to improve 

BV diagnostic, molecular methods (such as FISH and qPCR) are becoming a suitable 

alternative to the standard methods and allowing also a better characterization of the 

microbial species in the early stages of BV development.  

  Finally, current BV treatments are strictly based in antibiotic therapy inducing an 

antibiotic resistance in BV anaerobes, besides the severe reduction of the healthy lactobacilli 

strains in vaginal epithelium. A more appropriate treatment is required, aiming to eliminate 

BV pathogens but simultaneously promoting lactobacilli colonization in BV patients. The 

combination of antibiotic therapy with enforcement of probiotic lactobacilli products appears 

to be one of the most viable alternatives to the existing BV treatment.              
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 Abstract 

 Bacterial vaginosis (BV) is a common vaginal infection occurring in women of 

reproductive age. It is widely accepted that the microbial switch from normal microflora to 

BV is characterized by a decrease in vaginal colonization by Lactobacillus species together 

with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and 

optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay 

(PNA-FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. 

Therefore, we evaluated and validated two specific PNA probes by using 36 representative 

Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically 

related or pathogenic bacterial strains commonly found in vaginal samples. The probes were 

also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in 

the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to 

be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 

to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% 

CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed 

samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency 

and applicability of our PNA-FISH. This quick method accurately detects Lactobacillus spp. 

and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two 

bacterial groups, most frequently encountered in the vagina.  

Key words: Fluorescence In Situ Hybridization (FISH); Peptide Nucleic Acid Probe (PNA 

probe); Lactobacillus spp.; Gardnerella vaginalis; Bacterial vaginosis. 
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 2.1 Introduction  

 Fluorescence in situ hybridization (FISH) is a molecular method used to identify 

and quantify microorganisms in a wide range of samples. This technique combines the 

simplicity of microscopic observation and the specificity of DNA/rRNA hybridization, 

allowing detection of selected bacterial species and morphologic visualization (1, 2). 

Nowadays, Peptid Nucleic Acid (PNA) probes are used instead of natural nucleic acids to 

improve FISH efficiency (3–6), because they enable more rapid and more specific 

hybridization (6–10). These types of probes are oligomers, in which single bases are 

linked by a neutral peptide backbone, avoiding repulsion from negative charges or 

attraction to positive charges (6). In addition, PNA probes can hybridize simultaneously 

with complementary DNA or RNA sequences and, due to the polyamide backbone, they 

are also resistant against cytoplasmic enzymes, such as nucleases and proteases (6, 11). 

Plus, the hybridization step can be performed efficiently under low a salt concentration, 

which endorses the destabilization of rRNA secondary structures and consequently 

improves the access to target sequences (6, 12–14). All these advantages became FISH 

using PNA probes (PNA-FISH) methodology in a new tool for diagnosis and therapy-

directing technique (14), providing already a rapid and accurate diagnosis of several 

microbial infections (14–19). 

The main goal of our work was to evaluate the PNA-FISH performance on mixed 

samples using a multiplex approach to detect Lactobacillus spp. and G. vaginalis. To 

validate the PNA probes, we determined both in silico and in vitro their specificity and 

sensitivity, using a broad diversity of representative Lactobacillus and Gardnerella 

strains, as well as other taxonomically related or pathogenic bacterial strains commonly 

found in vaginal samples. To confirm the usefulness of our methodology, the efficiency 

and specificity of the probes was also tested at different concentrations of Lactobacillus 

and G. vaginalis strains in the presence of a monolayer of HeLa cells.  
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 2.2 Materials and Methods 

2.2.1 Culture of bacterial strains  

 All strains from Lactobacillus spp. were grown in Man, Rogosa and Sharpe agar 

(MRS; Sigma-Aldrich, Germany), except Lactobacillus iners that was grown in Brucella 

Blood Agar (BBA; Oxoid, United Kingdom), as well as Atopobium vaginae and 

Gardnerella vaginalis. The remaining bacterial species were cultured on Brain Heart 

Infusion agar (BHI; Oxoid, United Kingdom) or Trypticase Soy Agar (TSA; Oxoid, 

United Kingdom). Each bacterial culture was streaked onto fresh plates every 48-72 h. 

Plates were incubated at 37 ºC or 30 ºC (in the case of L. pentosus strains) under 

anaerobic conditions (AnaeroGen Atmosphere Generation system; Oxoid, United 

Kingdom) for 24–48 h prior to FISH experiments.  

 2.2.2 PNA probe design 

 To identify Gardnerella genus potential oligonucleotides-target for the probe 

design, we used the software Primrose (20), coupled with the 16S rRNA databases from 

the Ribosomal Database Project II (version 10.0; http://rdp.cme.msu.edu/) (21). 

Complementarity with a low number of non-target and a high number of target sequences, 

as well as a higher predicted melting temperature and the absence of self-complementary 

sequences, were the main criteria for the PNA probe design. The selected sequences were 

synthesized (Panagene, Daejeon, South Korea) and the oligonucleotides N terminus was 

attached to an Alexa Fluor 594 molecule via a double 8-amino-3,6-dioxaoctanoic acid 

(AEEA) linker (PNA Probe: Gard162, Alexa Fluor 594-OO-CAGCATTACCACCCG; 

HPLC purified > 90%). The Gard162 probe hybridizes between positions 162 and 176 of 

the G. vaginalis strain 409-05 16S rRNA sequence (RDPII ID: S001872672) and was 

selected for probe design. For the detection of Lactobacillus spp., a sequence between 

positions 663 and 677 of the Lactobacillus sp. strain MDL2 16S rRNA sequence 

(Genebank ID: HM753265.1) was selected for the PNA probe and consequently it was 

denominated as Lac663. This probe was attached to an Alexa Fluor 488 molecule, also 

via an AEEA linker (PNA Probe: Lac663, Alexa Fluor 488-OO-

ACATGGAGTTCCACT; HPLC purified > 90%). 
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2.2.3 In silico determination of sensitivity and specificity 

 The theoretical specificity and sensitivity of both probes were evaluated using 

updated databases available at the Ribosomal Database Project II (RDP II; 

http://rdp.cme.msu.edu/) through the Primrose software, and then were confirmed by a 

BLAST search at the National Centre for Biotechnology Information 

(http://www.ncbi.nlm.nih.gov/BLAST/). Theoretical specificity and sensitivity were 

calculated according to Almeida et al. (22). Only target sequences with at least 1200 base 

pairs and good quality were included. Briefly, theoretical sensitivity was calculated as 

ts/(Tts)x100, where ts stands for the number of target strains detected by the probe and Tts 

for the total number of target strains present in the RDP II database 

(http://rdp.cme.msu.edu/probematch/, last accession date, May 2012). Theoretical 

specificity was calculated as nts/(Tnt)x100, where nts stands for the number of non-target 

strains that did not react with the probe and Tnt for the total of non-target strains 

examined. 

2.2.4 FISH hybridization procedure 

 Biomass from a single colony of each strain was diluted and homogenised in 

sterile water, and then 20 µL were spread on epoxy coated microscope glass slides 

(Thermo Scientific, USA). For mixed samples, 10 µL of the final suspension from each 

strain suspension (prepared as previously referred) for the selected mixed sample were 

spread on glass slides. The slides were air-dried prior to fixation. Next, the smears were 

immersed in 4% (wt/vol) paraformaldehyde (Fisher Scientific, United Kingdom) followed 

by 50% (vol/vol) ethanol (Fisher Scientific, United Kingdom) for 10 min at room 

temperature on each solution. After the fixation step, the samples were covered with 20 

µL of hybridization solution containing 10% (wt/vol) dextran sulphate (Fisher Scientific, 

United Kingdom), 10 mM NaCl (Sigma, Germany), 30% (vol/vol) formamide (Fisher 

Scientific, United Kingdom), 0.1% (wt/vol) sodium pyrophosphate (Fisher Scientific, 

United Kingdom), 0.2% (wt/vol) polyvinylpyrrolidone (Sigma, Germany), 0.2% (wt/vol) 

ficoll (Sigma, Germany), 5 mM disodium EDTA (Sigma, Germany), 0.1% (vol/vol) triton 

X-100 (Sigma, Germany), 50 mM Tris-HCl (at pH 7.5; Sigma, Germany) and 200 nM of 

the PNA probe. Subsequently, the samples on glass slides were covered with coverslips 

and incubated in moist chambers at the hybridization temperature under analysis (from 50 

ºC to 72 ºC) during a range of hybridization times (from 30 to 180 min). Next, the 
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coverslips were removed and a washing step was performed by immersing the slides in a 

pre-warmed washing solution for 30 min at the same temperature of the hybridization 

step. This solution consisted of 5 mM Tris base (Fisher Scientific, United Kingdom), 15 

mM NaCl (Sigma, Germany) and 0.1% (vol/vol) triton X-100 (at pH 10; Sigma, 

Germany). Finally, the glass slides were allowed to air dry. 

 A FISH procedure in suspension was developed and optimized according to the 

previous work of Almeida and colleagues (12, 22) and to the results obtained for the 

FISH procedure on glass slides described above. Hybridization was perfomed at 60 ºC for 

90 min and for washing (60 ºC for 30 min) and a fresh solution was prepared less than 24 

h before use. The suspension samples were stored at 4 ºC in the dark for a maximum of 

24 h before microscopic observation/visualization. Both hybridization procedures (in 

glass slides and in suspension) are able to detect lactobacilli and G. vaginalis strains. 

While glass slide hybridization is the more commonly used technique in analytical 

laboratories (22), hybridization in suspension is frequently used to avoid autofluorescence 

background in complex matrix samples, besides being the hybridization technique used in 

flow cytometry (12, 22).  

2.2.5 Microscopic visualization 

 Prior to microscopy, one drop of non-fluorescent immersion oil (Merck, 

Germany) was added to either slides or filters and covered with coverslips. Microscopic 

visualization was performed using an Olympus BX51 (Olympus Portugal SA, Portugal) 

epifluorescence microscope equipped with a CCD camera (DP72; Olympus, Japan) and 

filters capable of detecting the two PNA probes (BP 470-490, FT500, LP 516 sensitive to 

the Alexa Fluor 488 molecule attached to the Lac663 probe and BP 530-550, FT 570, LP 

591 sensitive to the Alexa Fluor 594 molecule attached to the Gard162 probe).  

 Other filters (such as BP 365-370, FT 400, LP 421) present in the microscope, that 

are not capable of detecting the probe fluorescent signal were used to confirm the absence 

of autofluorescence. In each experimental assay, a negative control was performed 

simultaneously in which all the steps described above were carried out, but where no 

probe was added in the hybridization step. All images were acquired using Olympus 

CellB software using a total magnification of �1000. 
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washed cell monolayer. Then, the plate was incubated for 30 min at 37 °C in anaerobic 

conditions and 120 rpm. Finally, each well was carefully washed twice with 500 µL of 

sterile PBS to remove non-adherent bacteria. The glass slides containing the adhered 

bacteria and eukaryotic cells were fixed and hybridized with both PNA probes and 

observed in fluorescence microscopy, as referred above. An additional 4',6-diamidino-2-

phenylindole (DAPI; Sigma, Germany) staining step was conducted at the end of the 

hybridization procedure, covering each of the glass slides with 10 µL of DAPI for 5 min 

at room temperature in the dark, followed by immediate observation in the fluorescence 

microscope. All these assays were repeated three times on separate days. 

 

 2.3 Results  

2.3.1 In silico analysis of PNA probes  

 The Lac663 probe showed a theoretical sensitivity and specificity of 91.5% and 

99.7% (27), respectively. These results match the best values amongst the existing 

Lactobacillus probes. Gard162 probe presented a theoretical sensitivity of 95.0% and 

specificity of 100% (28). The theoretical specificity and sensitivity of these two probes 

and those developed in other studies were calculated as previously described by Almeida 

et al. (22) and are listed in Table 2.1. ProbeMatch tool, from RPDII 

(http://rdp.cme.msu.edu/probematch/; last accession, May 2012), was used with the 

following data set options: Strain – Both; Source – Both; Size – > 1200 bp; Quality – 

Both. For Lactobacillus probes, the specificity and sensitivity values previously 

determined (27), were considered.   
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2.3.2 FISH Protocol optimization and autofluorescence-related factors 

 FISH protocols on slides and in suspension were adapted from previous protocols 

developed by Almeida et al. (12), due to the relevance of fixation and hybridization 

conditions for an efficient multiplex FISH with different probes. From an initial 

temperature range of 50 to 72 ºC and an incubation time range between 30 and 180 min, 

the best hybridization conditions were set as a moist chamber temperature of 60 ºC during 

90 min of incubation (data not shown). Hybridization conditions started to reveal strong 

signal-to-noise ratio at 59 ºC to 61 ºC from 30 min of incubation up to 120 min, reaching 

its peak at 60 ºC during 90 min of incubation. Hybridization conditions above 60 ºC and 

90 min were also efficient, but the signal-to-noise ratio seemed to decrease beyond the 

selected values of time and temperature. Both hybridization protocols (on slides and in 

suspension) revealed the same results and pitfalls, as discussed below (some examples are 

shown in Figure 2.1). 

 

Figure 2.1 Fluorescence microscopy pictures of Lactobacillus species, G. vaginalis and other related 
bacteria by PNA probes. L01, L. paracasei CECT227; L02, L. delbrueckii ATCC9649; L03, L. murinus 
ATCC35020; L04, L. salivarius 438; GV01, G. vaginalis 5-1; GV02, G. vaginalis ATCC; GV03, Belgian 
G. vaginalis isolate 17; GV03, Belgian G. vaginalis isolate 18; E01, Streptococcus thermophilus A; E02, 
Leuconostoc mesenteroides; E03, Enterococcus faecium; E04, Enterococcus faecalis. The Lac663 and 
Gard162 PNA probes were associated with Alexa Fluor 488 and 594 fluorochromes, respectively. 
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2.3.3 Experimental determination of probe specificity and sensitivity  

 As shown in Table 2.2, the Lac663 probe was able to detect all Lactobacillus 

strains and cross hybridization was found only for Streptococcus thermophilus B. Based 

on these results, an experimental sensitivity of 100% (95% CI, 88.0 to 100.0%) and 

specificity of 98.0% (95% CI, 87.8 to 99.9%) were obtained for the Lac663 PNA probe. 

The Gard162 probe hybridized with all G. vaginalis strains, whereas no hybridization was 

observed for the other species tested. Therefore, this probe revealed a sensitivity of 100% 

(95% CI, 81.5 to 100.0%) and a specificity of 100% (95% CI, 92.8 to 100%). 

 

Table 2.2 Bacterial strains used in PNA-FISH assays and their specificity with Lac663 and 
Gard162 probes. 

Bacterial species Collection strain Lac663 Probe 
efficiency 

Gard162 Probe 
efficiency 

Lactobacillus acidophilus ATCC 4356T ++++ - 

L. crispatus ATCC 33820T ++++ - 

L. gasseri ATCC 9857T ++++ - 

L. reuteri NCFB 2656T +++ - 

L. rhamnosus ATCC 7469T ++++ - 

L. rhamnosus CECT 288T ++++ - 

L. johnsonii ATCC 11506T ++++ - 

L. hilgardii NCFB 962T +++ - 

L. delbrueckii subsp. 
delbrueckii 

ATCC 9649T +++ - 

L. delbrueckii subsp. Lactis ATCC 12315T +++ - 

L. pentosus CECT 4023T ++++ - 

L. casei CECT 5275T ++++ - 

L. coryniformis subsp. torquens CECT 4129T ++++ - 

L. paracasei CECT 227T ++++ - 

L. agilis CCUG 31450T ++++ - 

L. animalis ATCC 35046T +++ - 
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Table 2.2 Bacterial strains used in PNA-FISH assays and their specificity with Lac663 and 
Gard162 probes. (Continuation) 

Bacterial species Collection strain Lac663 Probe 
efficiency 

Gard162 Probe 
efficiency 

L. bifermentans ATCC 35409T +++ - 

L. brevis ATCC 14869T ++++ - 

L. buchneri ATCC 4005T +++ - 

L. fermentum ATCC 11739T +++ - 

L. curvatus subsp. curvatus ATCC 25601T ++++ - 

L. farciminis DSM 20182T ++++ - 

L. fructivorans ATCC 8288T +++ - 

L. gallinarum CCUG 31412T ++++ - 

L. graminis DSM 20719T ++ - 

L. hamster ATCC 43851T +++ - 

L. helveticus ATCC 15009T ++++ - 

L. intestinalis ATCC 49335T +++ - 

L. murinus ATCC 35020T ++++ - 

L. parabuchneri ATCC 12936T ++++ - 

L. paracasei subsp. paracasei CCUG 27320T +++ - 

L. plantarum NCIMB 8827T +++ - 

L. ruminis ATCC 27781T ++++ - 

L. sakei subsp. carnosus CCUG 8045T ++ - 

L. salivarius 
DEVRIESE 

94/438T 
+++ - 

L. plantarum NCCB 46043T +++ - 

L. lactis 53 - - - 

Streptococcus. thermophilus A - - - 

S. thermophilus B - +++ - 

Leuconostoc mesenteroides - - - 

Bacillus subtilis DSM 7-10T - - 

Enterococcus faecium CECT 410T - - 

E. faecalis CECT 184T - - 
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Table 2.2 Bacterial strains used in PNA-FISH assays and their specificity with Lac663 and 
Gard162 probes. (Continuation) 

Bacterial species Collection strain Lac663 Probe 
efficiency 

Gard162 Probe 
efficiency 

Gardnerella vaginalis 5-1 - - ++++ 

G. vaginalis 101 - - ++++ 

G. vaginalis AMD  - - ++++ 

G. vaginalis ATCC - ++++ 

G. vaginalis  Belgian isolate 1 - +++ 

G. vaginalis  Belgian isolate 2 - ++++ 

G. vaginalis  Belgian isolate 3 - ++++ 

G. vaginalis  Belgian isolate 4 - ++++ 

G. vaginalis  Belgian isolate 5 - ++++ 

G. vaginalis  Belgian isolate 6 - ++++ 

G. vaginalis  Belgian isolate 7 - +++ 

G. vaginalis  Belgian isolate 8 - +++ 

G. vaginalis  Belgian isolate 9 - ++++ 

G. vaginalis  Belgian isolate 10 - ++ 

G. vaginalis  Belgian isolate 11 - ++++ 

G. vaginalis  Belgian isolate 12 - +++ 

G. vaginalis  Belgian isolate 13 - +++ 

G. vaginalis  Belgian isolate 14 - ++ 

G. vaginalis  Belgian isolate 15 - +++ 

G. vaginalis  Belgian isolate 16 - +++ 

G. vaginalis  Belgian isolate 17 - ++++ 

G. vaginalis  Belgian isolate 18 - ++++ 

Atopobium vaginae CCUG 38953T - - 

A. vaginae CCUG 42099T - - 

A. vaginae CCUG 44116T - - 

A. vaginae Clinical isolate - - 

Bacillus cereus - - - 

Enterobacter aerogenes CECT 684T - - 

Escherichia coli O157:H7 NCTC 12900T - - 
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Table 2.2 Bacterial strains used in PNA-FISH assays and their specificity with Lac663 and 
Gard162 probes. (Continuation) 

Bacterial species Collection strain Lac663 Probe 
efficiency 

Gard162 Probe 
efficiency 

Staphylococcus aureus CECT 976T - - 

S. aureus CECT 86T - - 

Shigella flexneri ATCC 12022T - - 

Listeria monocytogenes - - - 

L. monocytogenes CECT 5873T - - 

L. seeligeri CECT 917T - - 

Klebsiella pneumoniae subsp. 
Ozaenae 

ATCC 11296T - - 

Salmonella typhi - - - 

S. enterica - - - 

Escherichia coli CECT 434T - - 

Prevotella bivia ATCC 29303T - - 

Mobiluncus mulieris ATCC 26-9T - - 

Fusobacteria nucleatum Clinical isolate - - 

The PNA Probe (Lac663 and Gard162) efficiencies were tested in triplicate experiments for each strain, 
with the following hybridization PNA-FISH qualitative evaluation: (-) Absence of hybridization; (+) Poor 
hybridization; (++) Moderate hybridization; (+++) Good hybridization; (++++) Optimal hybridization. The 
table shows the median value from the three experiments for each strain. 

 

2.3.4 Detection of Lactobacillus spp. and G. vaginalis by Multiplex FISH 

 Once the hybridization procedure was fully optimized, the multiplex methodology 

was also tested against mixed bacterial cultures (containing Lactobacillus or/and G. 

vaginalis cells together with others species, Table 2.3) and infected tissue cell line (Table 

2.4). Lac663 and Gard162 probes selectively bound to Lactobacillus and G. vaginalis 

strains, respectively.  
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Table 2.3 Results of the Lac663 and Gard162 probes specificity test in artificial mixed 
samples.  

Species in the artificial mixed 
samples 

Bacteria strain 
collection codes 

Multiplex PNA-FISH assay 
Lac663 Probe 

efficiency 
Gard162 Probe 

efficiency 
L. pentosus; G. vaginalis 5-1 CECT 4023T; - ++++ ++++ 

L. casei; G. vaginalis 101 CECT 5275T; - ++++ ++++ 

L. rhamnosus; G. vaginalis AMD  CECT 288T; - ++++ ++++ 

L. crispatus; G. vaginalis ATCC ATCC 33820T; - ++++ ++++ 

L. delbrueckii; A. vaginae 
ATCC 9649T; 
CCUG 38953T 

+++ - 

L. acidophilus; A. vaginae 
ATCC 4356T; 
CCUG 42099T 

++++ - 

L. gasseri; A. vaginae 
ATCC 9857T; 
CCUG 44116T 

++++ - 

L. paracasei; L. lactis 53 CCUG 27320T; - +++ -/+ 

L. rhamnosus; E. faecium 
ATCC 7469T; 
CECT 410T 

++++ - 

L. reuteri; E. coli O157:H7 
NCFB 2656T; 
NCTC 12900T 

+++ - 

S. aureus; G. vaginalis 5-1 CECT 976T; - - ++++ 

Shigella; G. vaginalis 101 ATCC 12022T; - - ++++ 

L. seeligeri; G. vaginalis AMD  CECT 917T; - - ++++ 

E. aerogenes; G. vaginalis ATCC CECT 684T; - - ++++ 

L. pentosus; G. vaginalis ATCC;    
E. faecalis 

CECT 4023T; -; 
CECT 184T 

++++ ++++ 

L. casei; G. vaginalis AMD ;          
A. vaginae 

CECT 5275T; -; 
CCUG 38953T 

++++ ++++ 

L. rhamnosus; G. vaginalis 101;    
A. vaginae 

CECT 288T; -; 
CCUG 42099T 

++++ ++++ 

L. crispatus; G. vaginalis 5-1;        
A. vaginae 

ATCC 33820T; -; 
CCUG 44116T 

++++ ++++ 

L. casei; L. mesenteroides;            
A. vaginae 

CECT 5275T; -; 
CCUG 38953T 

++++ - 

The PNA probe (Lac663 and Gard162) efficiencies were tested in triplicate experiments for each strain, 
with the following hybridization PNA-FISH qualitative evaluation: (-) Absence of hybridization; (+) Poor 
hybridization; (++) Moderate hybridization; (+++) Good hybridization; (++++) Optimal hybridization. 
Median values from the three experiments for each strain are shown in the table. 
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 The fluorescence signal was easily observable (Figure 2.2) and no cross 

hybridization with other species was detected (Table 2.3). Additionally, the multiplex also 

performed well in the presence of HeLa cells (Table 2.4) for all the bacterial 

concentrations evaluated (1×103 until 1×109 CFU/mL), thus confirming the previous in 

silico analysis of the PNA probes. 

 

Table 2.4 Efficiency of the Lactobacillus spp. and G. vaginalis detection in adhesion assays 
with HeLa cell line. 

Concentration of cells (CFU/mL) Multiplex PNA-FISH assay 

L. crispatus G. vaginalis 5-1 Lac663 Probe efficiency Gard162 Probe efficiency 

1×109 1×109 +++ +++ 

1×105 1×105 +++ +++ 

1×103 1×103 ++++ +++ 

L. iners G. vaginalis 5-1 Lac663 Probe efficiency Gard162 Probe efficiency 

1×109 1×109 +++ +++ 

1×105 1×105 +++ +++ 

1×103 1×103 ++ +++ 

The PNA probe (Lac663 and Gard162) efficiencies were tested in each sample with the following 
hybridization PNA-FISH qualitative evaluation: (-) Absence of hybridization; (+) Poor hybridization; (++) 
Moderate hybridization; (+++) Good hybridization; (++++) Optimal hybridization. The table shows the 
median value from the three experiments for each sample. 
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Figure 2.2 Fluorescence microscopy pictures with Lactobacillus spp. and G. vaginalis at different 
concentrations against HeLa cell line. (a) blue filter; (b) green filter; (c) red filter; (d) overlay of the three 
previous filters. These fluorescence microscopy pictures were taken in the same microscopic field with L. 
iners and G. vaginalis 5-1 from culture strain collection at different concentrations against HeLa cell line by 
DAPI staining and specific PNA probes (Lac663 and Gard162), associated with Alexa Fluor 488 and 594 
fluorochromes, respectively. 
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 2.4 Discussion 

2.4.1 In silico and in vitro probe specificity and sensibility  

 Fluorescence microscopy has become a widely used technique for direct detection 

of bacteria in complex samples. In fact, many authors demonstrated the efficiency of 

FISH methodology for the analysis of lactobacilli and G. vaginalis (33–35, 37, 40–43). 

However, the herein described multiplex approach may be the simpler to perform and still 

has high specificity for lactobacilli and G. vaginalis detection. 

 As previously shown in Table 2.2, the Lac663 and Gard162 probes bound with 

high specificity to each target strain. In fact, Lac663 probe hybridized with all 

Lactobacillus collection strains, whereas no hybridization was observed for the others 

species used, except for Lactococcus lactis 53, Streptococcus thermophilus B and 

Leuconostoc mesenteroides, which showed some cross-hybridization with the probe when 

a washing step of 15 minutes was used. However, extending the washing step to 30 

minutes and using fresh washing solution allowed the removal of the Lac663 probe 

poorly bound from all non-Lactobacillus strains, except for S. thermophilus B. However, 

S. thermophilus coccus morphology allows a clear differentiation from Lactobacillus 

spp., which has a rod-shaped morphology (with the exception of L. iners). Importantly, 

Lac663 probe showed absence of hybridization with several bacterial species from the 

Bacilli class, such as Streptococcus thermophilus A, Enterococcus faecium CECT 410, 

Enterococcus faecalis CECT 184, Bacillus subtilis DSM 7-10 and Bacillus cereus. Also, 

Lac663 probe did not hybridize with other common vaginal pathogenic bacteria, 

providing further evidence of its usefulness for Lactobacillus spp. detection in clinical 

samples.   

 Furthermore, the Gard162 probe showed hybridization with all G. vaginalis 

strains and no cross-hybridization was observed with other species, including other 

related pathogenic bacteria which may be present in the vaginal microflora, such as A. 

vaginae, P. bivia, M. mulieris and F. nucleatum (Table 2.2). It is worth to mention that in 

silico analysis of the Gard162 probe only identified one non-target strain as match, more 

precisely Bifidobacterium indicum HM534842 (RDPII ID: S002908348). However, B. 

indicum is not a common bacterium from vaginal microflora, as it is usually present in the 
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gut (44). Recently, a strong association between the bacterial loads in the vagina and 

rectum of pregnant women was described (45). Although some gut bacteria such as 

Escherichia coli (44) have been associated with vaginal infections, B. indicum has not 

been described as a pathogenic bacterium (46). The FISH efficiency and hybridization 

quality for the Gard162 probe, either alone or together with the Lac663 probe, confirmed 

the applicability of these two probes together in a multiplex PNA-FISH (Figures 2.1 and 

2.2).   

 As shown above in Table 2.1, sensitivity and specificity equations allowed the 

comparison between our PNA probes and other published ones for G. vaginalis detection. 

For Lac663 probe, theoretical performance was quite similar to what had previously been 

reported for the other probes mentioned in Table 2.1. Although probes Lab158, 

LGC354A and the probe described by Burton et al. (2003) detected approximately 1 to 

8% more Lactobacillus strains in comparison with our probe, Lac633 was found to be the 

probe with the lowest number of false positive hits (Table 2.1). In fact, the Lac663 probe 

does not cross-react with 3,617, 8,781 and 11,332 non-Lactobacillus strains that are 

detected with the Lab158, LGC354A and Burton et al. (2003) probes, respectively. From 

Table 2.1 it can be concluded that only the LAB759 probe was more specific than the 

herein developed Lac663 probe. However, the LAB759 probe shows a clearly lower 

sensitivity percentage (80.17%) compared to our probe (91.50%). It is also important to 

note that our probe has the shortest oligonucleotide sequence from all the probes for 

lactobacilli detection listed in Table 2.1, more precisely 1 and 3 nucleotides less than the 

other PNA probe and the shorter DNA probe (LGC354A), respectively. This implies that 

the Lac663 probe should penetrate better through the cell wall and that 1 base mismatch 

can be more easily discriminated (13). Also, Lab158, LGC354 and PNA Burton et al. 

(32) probes were found to cross-hybridize with one strain (RDPII ID: S000536416) from 

G. vaginalis, which might be incompatible with a multiplex approach to be used in 

vaginal samples. On the other hand, it is possible that this G. vaginalis strain was a 

misidentified L. iners strain, because confusion between both species has been reported 

(47).  

 Gard162 theoretical performance in specificity (100 %) was found to be similar to 

other probes for G. vaginalis detection that have been previously reported (Table 2.1). 

G.vag1008 is the only probe with higher sensitivity (97.5%) than our probe, being able to 

detect an extra G. vaginalis strain. This higher sensitivity is due to the presence of a 
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degenerate oligonucleotide in the sequence of the probe (Table 2.1), allowing G.vag1008 

to act as two different sequence probes. However, G.vag1008 has 24 oligonucleotides 

(i.e. 9 nucleotides more than our probe) and it is a DNA probe, which penetrates the cell 

wall less efficiently (13) and requires longer hybridization periods.  

 GardV probe detected species from several bacterial genera present in vaginal 

samples, such as Alloscardovia, Parascardovia and Scardovia spp. (48). G.vag1008 

probe hybridized with Aeriscardovia spp. that may also be found in vaginal samples (48) 

and therefore, this represents an important pitfall for the G. vaginalis detection with such 

probes.  

 It is important to notice that our Gard162 probe is the first PNA probe specifically 

designed for G. vaginalis detection. Furthermore, other PNA probes for the detection of 

lactobacilli (32, 42) revealed several disadvantages when compared to the Lac663 probe, 

as shown before (24).  

2.4.2 Multiplex FISH detection  

 Although numerous authors attempted to correlate differences between healthy 

and BV vaginal samples (49–52), no consensus was attained, except that biofilm 

formation of G. vaginalis and a decrease in lactobacilli number could be considered as the 

initial stages in the pathogenesis of BV (33, 53). Swidsinski and colleagues conducted an 

international follow-up study in which vaginal samples from several BV patients were 

analyzed by DNA-based FISH and a dense and active bacterial biofilm on vaginal 

mucosa was detected, primarily consisting of G. vaginalis (43). Therefore, multiplex 

FISH to analyze G. vaginalis biofilm establishment and subsequently lactobacilli 

replacement appeared to be a useful molecular methodology for BV diagnosis in vaginal 

samples. Although several authors have been developing specific probes for G. vaginalis 

and Lactobacillus spp. detection by FISH, our multiplex method presents new 

improvements on the method (Table 2.1). 

 To evaluate the efficiency and eventual pitfalls of our multiplex FISH 

methodology previously to a prospective study using vaginal samples (see chapter III), 

we devised an in vitro experiment mimicking the shift from healthy vaginal flora to BV. 

HeLa cells were incubated with different concentrations of G. vaginalis and Lactobacillus 

strains (L. crispatus and L. iners), ranging from normal to BV vaginal microflora contents 
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(1×103 to 1×109 CFU/mL; Table 2.4). The HeLa cell line is an established tool in 

experimental research with lactobacilli. It has not only been used to study attachment of 

several Lactobacillus species, but also of other pathogens (54–56). The Lactobacillus 

strains used in this work were selected because high concentrations of L. crispatus (in 

conjugation with low loads or absence of G. vaginalis) are usually associated to the 

normal vaginal microflora, while high concentrations of L. iners (in conjugation with high 

loads of G. vaginalis) are commonly associated to the microflora of BV diagnosed 

women (23, 47, 57). The efficiency of our multiplex PNA-FISH methodology was 

demonstrated by the ability of the PNA probes to hybridize in a large range of 

Lactobacillus spp. and G. vaginalis concentrations, even in the presence of epithelial cells 

(Table 2.4). As referred above, Swidsinski and colleagues (33, 43) used a multiplex FISH 

methodology to study BV biolfims and a drawback of their approach is that it requires 

pre-treatment with lysozyme before fixation and the use of urine or paraffin-embedded 

samples. These experimental steps increase the analysis time and decrease FISH 

efficiency for Lactobacillus spp. and G. vaginalis strains detection, due to the lower 

number of cells available for hybridization. The advantage of our methodology is that it 

does not require a pre-treatment for FISH analysis. Another DNA hybridization test for 

vaginal infection was reported by Witt and colleagues (58). The authors evaluated the 

Affirm VPIII Kit, which detected G. vaginalis, Candida spp. and Trichomonas vaginalis 

in clinical samples, using two distinct single-stranded nucleic acid probes for each 

organism, which makes the analysis more complex and vulnerable to experimental 

pitfalls. This validated method showed sensitivity and specificity values for G. vaginalis 

of 89.5% and 97.1%, respectively, both lower than our Gard162 experimental values 

(95.0% and 100%, respectively). Furthermore, Fredricks and colleagues developed a 

FISH methodology for molecular identification of unknown bacteria associated with BV 

(35), using DNA probes Eub338-Cy5 and G.vag198-Cy3. However, the Eub338 is an 

unspecific probe used to detect Lactobacillus spp., thus detecting all species of the order 

Bacillales; and G.vag198 corresponds to a twenty five oligonucleotide probe with high 

specificity (100%) but with low sensitivity (85.0%) when compared to our probe (Table 

2.1). Both these probes worked together at a hybridization temperature of 45 ºC, which 

may easily lead to the occurrence of false positive results. Moreover, previous studies 

have shown that probes with Cy fluorochromes present a lower fluorescence signal than 

those with the corresponding Alexa Fluor (59).  
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 To conclude, our main purpose was achieved by demonstrating the in vitro 

applicability of the PNA multiplex methodology for detection of Lactobacillus species 

and G. vaginalis in the presence of HeLa epithelial cells and other taxonomically related 

or pathogenic bacterial strains commonly found in vaginal samples. These in vitro results 

confirmed the previous in silico analysis from Lac663 and Gard162 probes.  

 

 2.5 Conclusions  

 In summary, the use of the PNA multiplex FISH assay herein described 

significantly increases the specificity and sensitivity of the detection of Lactobacillus spp. 

and G. vaginalis strains in mixed samples, and no interference was observed in the 

presence of human epithelial cells. As previously discussed, there are no consensual 

agreements regarding BV markers, except for lactobacilli number decrease and initial 

adherence, and consequent biofilm formation from G. vaginalis. Our approach allows a 

fast identification (approximately 3 hours) of the main bacteria involved in BV 

establishment. The next steps for the validation of this methodology consist in a 

prospective study using a collection of vaginal samples isolated by our research group, 

which will enable the evaluation of PNA-FISH as a BV diagnostic technique, as well as a 

comparison with the standard BV diagnostic method. Furthermore, our research group 

will attempt to detect BV biofilm formation in clinical samples and to characterize 

possible interactions with other unknown bacteria in the biofilm. Finally, the combination 

of the PNA-FISH methodology with other methodologies, such as confocal laser scanning 

microscopy (CLSM) and quantitative polymerase chain reaction (qPCR), may help to 

better understand the BV etiology. 
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 Abstract 

 Bacterial vaginosis (BV) is one of most common vaginal infection and its diagnosis by 

classical methods reveals low specificity. Our goal was to compare BV diagnosis in vaginal 

samples with standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in 

situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology 

for BV diagnosis, providing results in approximately 3 hours. The results showed a sensitivity of 

66.7% (95% confidence interval (CI), from 49.7 to 80.4%) and a specificity of 94.2% (95% CI, 

from 83.1 to 98.5%), demonstrating the higher specificity of the PNA-FISH method and showing 

false positive results in BV diagnosis commonly obtained by the classical methods. This 

methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis 

visualization and the calculation of the microscopic field by Nugent score, allowing a trustful 

evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of 

misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative 

for BV diagnosis. 

Keywords: Fluorescence In Situ Hybridization (FISH); Peptide Nucleic Acid Probe (PNA 

probe); Lactobacillus spp.; Gardnerella vaginalis; Bacterial vaginosis. 
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 3.1 Introduction  

 BV often exhibits high prevalence, high relapse rates and associated 

complications, which makes this infection of paramount global importance (1, 2). As 

previously referred, the BV etiology remains relatively unknown although it is normally 

characterized by a decrease in vaginal lactobacilli number and a simultaneous increase of 

the anaerobes number (2). BV is associated with increased taxonomic richness and 

diversity (3). Therefore, vaginal bacterial communities differ dramatically between 

healthy patients and patients with BV, where G. vaginalis is present in over 90% of BV 

cases (4).   

 The most frequently used method for BV diagnosis is the physician’s assessment 

by Amsel clinical criteria wherein BV diagnosis requires the observation of three of the 

four clinical criteria already mentioned (see Chapter I), ignoring the vaginal microflora 

that the patients may exhibit (5). Alternatively, laboratory diagnostic is based on the 

Nugent score analysis, a microscopic method that quantifies three different bacteria 

morphotypes present in the smears (see Chapter I) but disregarding the clinical symptoms 

of the patients (6). Although both methodologies are easy and fast to perform, they do not 

present a high specificity for BV diagnosis. When combined, these standard tests have a 

sensitivity and specificity of 81 and 70% (5), respectively. To improve BV diagnosis, 

several new molecular methodologies have been proposed (7–9). 

 FISH had been applied in several prospective studies and vaginal microbiome 

characterization in BV research (10–13). However, these BV studies used FISH with 

DNA probes, that frequently showed low fluorescent responses due to numerous factors 

(14), such as difficulties into cell membranes permeability, degradation of the probe by 

cell enzymes, low affinity to the target sequence (15). As previously described, PNA 

probes had emerged as more efficient probes, binding to their complementary nucleic 

acid sequences with higher thermal stability and specificity (13–18). 

 To determine the feasibility of our novel PNA probe (described in the previous 

chapter) as a diagnostic method to be used in BV, we selected 91 vaginal samples from 

Portuguese women and characterized it’s microflora using our probe and protocol and 

compared those results with the laboratory microscopic derived method using the Nugent 

score. Finally, G. vaginalis detection by Polymerase Chain Reaction (PCR) was 

performed to confirm the presence of this bacterium in the selected vaginal samples.  
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 3.2 Materials and methods  

3.2.1 Vaginal sample collection and preparation 

 A total of 91 samples of vaginal swabs were obtained, after informed consent, as 

approved by the Institutional Review Board (IRB) of University of Minho. The vaginal 

swabs were collected for Gram stain, PCR and FISH procedures, using the culture swab 

transport system (VWR, CE0344, Italy). These swabs were brushed against the lateral 

vaginal wall to collect the vaginal fluid sample, then placed in the culture swab transport 

media and immediately conserved at 4 ºC. First, the set of swabs was used for Gram stain 

procedure as described by Nugent and colleagues (6). Next, the collected swabs were 

immersed in 1 mL of phosphate buffer saline (PBS) and centrifuged at 17,000 g during 5 

min at room temperature. Afterwards, the pellet was resuspended in 2 mL of saline 

solution (0.9% NaCl prepared in distilled water) and finally diluted 1:10 in saline solution 

or PBS to eliminate possible contaminants for PCR and FISH procedures, as previously 

described (19, 20).  

3.2.2 Classification of vaginal swabs under Nugent score 

 Vaginal swabs evaluation was performed using the Nugent criteria score (6). 

Briefly, vaginal smear was examined under oil immersion objective (1000x 

magnification) and through 10-15 microscopic fields. Initially, each smear was graded as 

per standardized, quantitative, morphological classification developed by Nugent. More 

specifically, composite score was grouped into three categories, scores 0-3 being normal, 

4-6 being intermediate, and 7-10 being definite bacterial vaginosis. Finally, the smears 

that showed scores between 0-3 and 7-10 were selected for further study, as normal (–) 

and BV (+) samples, respectively. Meanwhile, the smears with a Nugent score of 4-6 

were rejected from our study.    
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3.2.3 Polymerase chain reaction for identification of bacteria in vaginal samples 

 A preliminary molecular characterization was performed using PCR detection of 

G. vaginalis. G. vaginalis was specifically detected by 16S rDNA amplification PCR 

using forward primer GV-Ap (5’- TCC TGT CTA CCA AGG CAT CC-3’) and reverse 

primer GV-Sp (5’- CGT GTG ATA ACC GTC AGG TG-3’). This set of primers was 

previously developed and characterized by our research group (19). The PCR 

amplification was then performed according to the publication mentioned above. Briefly, 

all samples were pre-treated during 5 min at 100 ºC and then placed at 4 ºC for 5 min. 

The conditions for PCR amplification were as follows: 1 µL template; 0.25 µM forward 

primer; 0.25 µM reverse primer; 0.5 µL deoxyribonucleotide triphosphate (dNTP) mix; 

2.5 U Taq DNA polymerase (BioRad, Portugal); 2 µL 10× buffer and 14 µL ultra-pure 

water for each PCR reaction. PCR parameters in the MJ Mini Personal thermal cycler 

(BioRad, Portugal) were as follows: denaturation 94 ºC for 30 s; annealing 60 ºC for 30 s; 

and elongation 72 ºC for 60 s. After 40 cycles the reaction mixture was cooled to 4 ºC. 

 For each amplification product, a 2 µL sample was analyzed on a 1% (wt/vol) 

agarose gel electrophoresis followed by ethidium bromide staining. Electrophoreses were 

carried out on all samples and using an aliquot with no template as negative control, an 

internal positive PCR control (no G. vaginalis) and ladder marker IV (Roche 

Biochemicals, Germany). Electrophoresis was carried out at 80 mV for 45 min and 

followed by Gel imaging system (BioRad, Portugal) analysis. 

3.2.4 Fluorescent in situ hybridization and vaginal bacteria quantification 

 The glass slides containing vaginal swabs were first fixed and hybridized with 

Lac663 and Gard162 PNA probes, as described in the previous chapter. Briefly, the glass 

slides were fixed with 4% paraformaldehyde followed by 50% ethanol. Hybridization was 

performed at 60 °C for 90 min and then washed with a fresh solution. An additional 4',6-

diamidino-2-phenylindole (DAPI; Sigma, Germany) staining step was done at the end of 

the hybridization procedure. Then microscopic visualization was performed using an 

Olympus BX51 (Olympus Portugal SA, Portugal) epifluorescence microscope equipped 

with a CCD camera (DP72; Olympus, Japan). These assays were repeated three times and 

a negative control was performed simultaneously with each step previous described. 
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Bacterial cells quantification was conducted through the National Institutes of Health 

image analysis software ImageJ (version 1.451) (21). 

3.2.5 Statistical analysis 

 The data was analyzed to calculate sensitivity, specificity, accuracy, positive and 

negative likelihood ratios (PLR and NLR, respectively) and 95% confidence intervals 

(CI) of the PNA-FISH methodology against the classic Nugent criteria score using a 

clinical online statistical software (www.vassarstats.net/clin1.html; accessed 2013) (22). 

 

 3.3 Results  

 On this prospective study, we used 91 vaginal swabs that were classified by the 

classic Nugent criteria score using Gram staining and our PNA-FISH methodology. Also, 

G. vaginalis presence in vaginal samples was confirmed by PCR.  

 As shown in Table 3.1, 82 vaginal swabs showed the same results in Gram 

staining or PNA-FISH, being 30 samples positive for BV and 52 samples negative. In 

addition, G. vaginalis was detected by PCR in 22 of these 30 BV positive samples and 

only 3 of the 52 normal (BV negative) samples. However, some discrepancies were also 

found between the two methodologies, more exactly in 9 vaginal swabs, which were 

positive for BV by Gram staining but negative by PNA-FISH evaluation. G. vaginalis 

was detected by PCR in 4 of these 9 vaginal swabs (see Table 3.1).  
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Table 3.1 Bacterial vaginosis diagnosis by Gram staining and PNA-FISH method using 
Nugent score criteria. PCR was also performed for G. vaginalis detection. 

Samples BV diagnosis by Nugent BV diagnosis by PNA-FISH method G. vaginalis detection by PCR 

UM057 + + + 

UM059 + + + 

UM064 + + + 

UM065 + + + 

UM066 + + + 

UM074 + + + 

UM090 + + + 

UM104 + + + 

UM121 + + + 

UM126 + + + 

UM127 + + + 

UM137 + + + 

UM165 + + + 

UM209 + + + 

UM222 + + + 

UM226 + + + 

UM230 + + + 

UM231 + + + 

UM234 + + + 

UM235 + + + 

UM242 + + + 

UM262 + + + 

UM056 + + - 

UM072 + + - 

UM086 + + - 

UM163 + + - 

UM224 + + - 
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Table 3.1 Bacterial vaginosis diagnosis by Gram staining and PNA-FISH method using Nugent score 
criteria. (Continuation)  

Samples BV diagnosis by Nugent BV diagnosis by PNA-FISH method G. vaginalis detection by PCR 

UM241 + + - 

UM252 + + - 

UM278 + + - 

UM170 * + - + 

UM245 * + - + 

UM265 * + - + 

UM301 * + - + 

UM108 * + - - 

UM117 * + - - 

UM120 * + - - 

UM132 * + - - 

UM255 * + - - 

UM115 - - + 

UM116 - - + 

UM118 - - + 

UM070 - - - 

UM071 - - - 

UM075 - - - 

UM077 - - - 

UM084 - - - 

UM093 - - - 

UM098 - - - 

UM101 - - - 

UM105 - - - 

UM107 - - - 

UM110 - - - 

UM112 - - - 

UM114 - - - 

UM119 - - - 

UM122 - - - 
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Table 3.1 Bacterial vaginosis diagnosis by Gram staining and PNA-FISH method using Nugent score 
criteria. (Continuation)  

Samples BV diagnosis by Nugent BV diagnosis by PNA-FISH method G. vaginalis detection by PCR 

UM125 - - - 

UM129 - - - 

UM130 - - - 

UM133 - - - 

UM135 - - - 

UM140 - - - 

UM143 - - - 

UM145 - - - 

UM146 - - - 

UM148 - - - 

UM149 - - - 

UM151 - - - 

UM152 - - - 

UM154 - - - 

UM156 - - - 

UM183 - - - 

UM198 - - - 

UM210 - - - 

UM211 - - - 

UM220 - - - 

UM257 - - - 

UM266 - - - 

UM268 - - - 

UM269 - - - 

UM271 - - - 

UM272 - - - 

UM273 - - - 

UM274 - - - 

UM275 - - - 

UM276 - - - 
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Table 3.1 Bacterial vaginosis diagnosis by Gram staining and PNA-FISH method using Nugent score 
criteria. (Continuation)  

Samples BV diagnosis by Nugent BV diagnosis by PNA-FISH method G. vaginalis detection by PCR 

UM277 - - - 

UM300 - - - 

UM302 - - - 

UM303 - - - 

* Discrepancies between Nugent and PNA classification in vaginal sample as Bv+ and Bv–, respectively.  
 

Additionally, PNA-FISH methodology was capable to illustrate clear differences between 

healthy and BV swabs, showing specific detection of Lactobacillus spp. and G. vaginalis 

species directly in clinical samples. In fact, UM300 (healthy) and UM235 (BV) samples 

exhibited a totally different vaginal microflora (see Figure 3.1), being clue cells and G. 

vaginalis augmentation easily detected in UM235 sample. 

 Based on the results, an experimental specificity of 94.2% (95% CI, 83.1 to 

98.5%) and sensitivity of 66.7% (95% CI, 49.7 to 80.4%) were obtained for the BV 

diagnosis by our PNA-FISH method (Table 3.2). As shown in Table 3.2, when compared 

with the standard Gram staining, PNA-FISH method was able to determine normal flora 

in 49 from a total of 52 healthy cases and capable to categorize 26 from a total of 39 BV 

cases. This results in an accuracy of BV diagnosis by our novel PNA-FISH method of 

82.4% (95% CI, 72.2 to 88.8%), evidencing a PLR of 11.56 and a NLR of 0.35. 

Table 3.2 Comparison between PNA-FISH method versus Gram staining using Nugent score 
criteria for BV diagnosis. 

PNA-FISH results 
Gram results 

BV+ BV - Total 

BV + 26 3 29 

BV - 13 49 62 

Total 39 52 91 

Statistical analysis of PNA-FISH method 

Statistical parameters Estimated value Lower limit Upper limit 

Sensitivity 66.7% 49.7% 80.4% 

Specificity 94.2% 83.1% 98.5% 

Accuracy 82.4% 72.2% 88.8% 

Positive likelihood 11.56 3.77 35.44 

Negative likelihood 0.35 0.23 0.55 
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3.4 Discussion 

 Conventional laboratory BV diagnosis accuracy is highly dependent on the training 

and experience of the technician due to the unspecific staining of the Gram method (23). As 

we shown here, FISH methodology arises as an alternative technique for BV diagnosis. 

Nonetheless, the technique performance depends on several factors (accuracy, specificity, 

sensitivity, PLR, NLR, among others) and implications of false-negative results on laboratory 

analysis requires further consideration (24).  

 The specificity and PLR of PNA-FISH demonstrated a strong association between a 

positive result for BV diagnostic and the probability of the patient having indeed BV. 

Moreover, our experimental specificity (94.2%) revealed to be superior than Nugent’s Gram 

stain system specificity (83%) (25). Therefore, our method was able to correctly identify 

94.2% of those patients previously classified with normal vaginal flora making PNA-FISH a 

trustful method to ensure a healthy diagnosis and avoiding false positive results. However, 

the sensibility and NLR parameters were lower than expected. Despite the experimental 

sensitivity (66.7%) was much lower than the specificity of the Gram stain by Nugent score 

(89%) (25), it was higher than the Amsel criteria sensitivity (60%) determined by Gallo and 

colleagues (26). Nevertheless, it is important to refer that 5 samples of the 13 false negative 

results showed a negative result for G. vaginalis in the PCR procedure (see Table 3.1), thus 

meaning that other bacterial species with similar Gram stain morphology could be at high 

number in the samples leading to an incorrect classification of BV according to Nugent 

criteria. In fact, Verhelst and colleagues presented evidences that infers a lack of accuracy in 

the interpretation of the results in Gram stain by Nugent score in their clinical results (27). 

Forsum and colleagues also found discrepancies in scoring bacterial cell types, when 

pleomorphic lactobacilli and other kinds of bacteria could be regarded as G. vaginalis cells, 

leading to an incorrect BV diagnosis (28, 29). Also, G. vaginalis may vary in size and form 

from round to more elongated where there is no defined border to separate them from the 

lactobacilli morphotypes (28), thus illustrating again problems in the accuracy of the smears 

interpretation. These facts suggest that the sensitivity value is likely to be underestimated, 

since in some false negative results, samples did not seem to contain G. vaginalis as could be 
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seen through PCR analysis. By excluding those 5 samples (more exactly, UM108, UM117, 

UM120, UM132 and UM255), our PNA-FISH method would show a 76.5% (95% CI, 58.4 

to 88.6%) and specificity of 94.7% (95% CI, 84.5 to 98.6%). So, all these results evidenced 

the need for a molecular methodology capable to recognize specifically the bacteria present 

in the swab samples.  

 Overall, despite the cost effective nature of the Nugent score, PNA-FISH appears to 

be an accurate method for detecting BV from vaginal swabs, maintaining similar complexity 

as the previous standard method.  

  

 3.5 Conclusions 

 In summary, in this chapter we described the first PNA-FISH methodology applied 

for BV diagnosis, suggesting a reliable alternative to the Amsel criteria and Gram stain under 

Nugent score. It is also the only alternative that simultaneously allows the specific ribosome 

RNA sequence recognition and spatial visualization of the bacterial balance directly in 

vaginal swabs. This methodology combines the specificity of PNA probes for Lactobacillus 

species and G. vaginalis visualization and the calculation of the microscopic field by Nugent 

score, allowing a trustful evaluation of the bacteria present in vaginal microflora and 

avoiding false diagnostics. 

 Our data showed some problems in the accuracy of the smears interpretation and 

classification by Gram staining under Nugent criteria, thus supporting previous studies (27–

29). However, it is important to mention that our evaluation was performed with only 91 

vaginal swabs and so further studies including a larger number of samples will be required. 

 To conclude, our PNA-FISH methodology arises as a trustful alternative for a correct 

diagnosis of BV. 
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 Abstract 

 Bacterial vaginosis (BV) is the most prevalent vaginal disorder worldwide, being 

its etiology still unknown. Multiple microorganisms have been found in BV patients but 

its virulence potential is not fully understood. Initial adhesion to the vagina epithelium is 

a crucial step for the development of infection. Our goal was to quantify the initial 

adhesion of Gardnerella vaginalis, Atopobium vaginae, Mobiluncus mulieris, Prevotella 

bivia and Fusobacteria nucleatum against Lactobacillus spp. using two in vitro 

competitive and displacement/blockage assays. Our results confirmed previous 

observations that G. vaginalis presented the higher capability of adhesion to human 

epithelial cells. Furthermore, in competition assays, it was the only species that 

outcompeted L. crispatus. While A. vaginae and M. mulieris were also able to adhere in 

high numbers, they were easily outcompeted by L. crispatus. The ability of BV-

associated pathogens to displace a monolayer of L. crispatus and L. iners previously 

adhered to ME-180 cells was also tested. Interestingly, G. vaginalis and P. bivia showed 

increased ability to displace L. crispatus but no significant displacement was observed in 

L. iners. Finally, L. iners was able to enhance G. vaginalis 101 adhesion to ME-180 cells.  

Keywords: Lactobacilli; Gardnerella vaginalis; BV anaerobes; competitive initial 

adhesion; blockage; displacement; epithelial cells. 
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4.1 Introduction  

 Adhesion to host cells or tissues is a necessary early step in the establishment of 

infection (1–3). As previously referred in Chapter I, BV is characterized by a decrease in 

beneficial vaginal bacteria (Lactobacillus spp.) (4–6) and also by an increase in the 

number of anaerobic bacteria, such as Gardnerella vaginalis, Mobiluncus mulieris, 

Atopobium vaginae, Prevotella bivia and Fusobacteria nucleatum (7–9). In 2005, 

Swidsinski and colleagues conducted a study in which vaginal epithelial biopsies from 

healthy subjects and those with BV were analyzed, and found that a multispecies biofilm 

(see Chapter I), predominated by G. vaginalis and A. vaginae adhered to the surface of 

the epithelium in BV (9). They hypothesized that G. vaginalis is the initial colonizing 

species and that its adherence is required before other BV-associated anaerobes are able 

to colonize the vaginal epithelium. G. vaginalis can display resistance to the antimicrobial 

products produced by Lactobacillus spp. including hydrogen peroxide and lactic acid (10, 

11). Therefore, it has been proposed that G. vaginalis might compete with Lactobacillus 

spp. and enable other anaerobes to incorporate and grow within the biofilm (12). 

However, convincing evidence that G. vaginalis is an initial colonizer requires further 

study. Evidence indicates that certain Lactobacillus species are capable of blocking 

adhesion of pathogenic bacteria to the vaginal epithelium, and these have been studied for 

their potential use as probiotics (10, 13–15). The goal of this study was to characterize 

and quantify the initial adhesion of several of the most common BV-associated anaerobes 

in the presence of vaginal lactobacilli to ME-180 cervical epithelial cells. Also, we 

analyzed the ability of these anaerobes to compete for adherence to the cell monolayer 

when added simultaneously with lactobacilli and when added after the lactobacilli 

adhesion.  
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4.2.1 Culture of bacterial strains 
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4.2 Materials and Methods

Culture of bacterial strains 

L. crispatus

grown in Man, Rogosa and Sharpe both (MRS; 
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4.2.3 Competition adhesion assays to ME-180 cells 

 To assess the competition for adhesion, L. crispatus and one of the anaerobic 

species were added at a final cell density of 1×103 CFU/mL to the slide chambers 

containing ME-180 monolayers. Then, the co-cultures were incubated for 30 min at 37 °C 

in anaerobic conditions and 120 rpm. Finally, each chamber was carefully washed twice 

with 300 µL of sterile PBS to remove non-adherent bacteria and was allowed to air-dry 

before FISH hybridization procedure (see section 4.2.5). In each assay, adhesion controls 

were performed simultaneously in each 8 chamber slide with a monolayer of ME-180 

epithelial cells by adding each bacterium individually and maintaining the same 

experimental conditions. 

4.2.4 Displacement and blockage adhesion assays to ME-180 cell lines 

 For displacement and blockage adhesion assays, aliquots of 400 µL of either L. 

crispatus or L. iners were added to the epithelial monolayers in each well of the 8 

chamber slides. Afterwards, the chamber slides were incubated for 4 h at 37 °C, in 

anaerobic conditions and 120 rpm. Non-adherent lactobacilli were removed by washing 

with 300 µL of sterile PBS and subsequently a second adhesion step was performed, 

using one BV-associated anaerobe, for 30 min at 37 °C, in anaerobic conditions and 120 

rpm. Finally, each chamber was carefully washed twice with 300 µL of sterile PBS to 

remove non-adherent bacteria and let to air-dry before FISH hybridization procedure (see 

section 4.2.5). In each assay, adhesion controls were performed simultaneously in each 8 

chamber slide by adding each species individually and maintaining the same experimental 

conditions. 

4.2.5 Fluorescence in situ hybridization (FISH) procedure 

 The 8 chamber slides containing epithelial monolayers and adherent bacteria were 

fixed and hybridized with Lac663 and Gard162 PNA probes, which we optimized in a 

previous study (17, 18) and then stained with 4',6-diamidino-2-phenylindole (DAPI; 

Sigma, Germany). Briefly, the adhered bacteria slides were fixed with 4% 

paraformaldehyde followed by 50% ethanol, for 10 min, at room temperature. After the 

fixation step, the slides were covered with 20 µL of hybridization solution with PNA 

probe (200 nM). Hybridization was performed at 60 ºC for 90 min and for washing (60 ºC 
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for 30 min) and a fresh solution was prepared less than 24 h before use. Finally, the slides 

were allowed to air dry in the dark. An additional DAPI staining step was done at the end 

of the hybridization procedure, by covering each slide with 20 µL of DAPI (2.5 µg/mL, 

Sigma, USA) for 5 min at room temperature in the dark, followed by five washing steps 

with 20 µL of PBS. In each experimental assay, a negative control was performed 

simultaneously with each step previous described, but no probe or DAPI staining were 

added in the hybridization step. 

4.2.6 Quantification of adhered cells by microscopic visualization 

 Prior to microscopy, one drop of non-fluorescent immersion oil (Merck, 

Germany) was added to the slide within each chamber. Microscopic visualization was 

performed using an EVOSfl fluorescence microscope (AMG, USA) equipped with a CCD 

camera (Sony ICX285AQ color, Japan) and filters capable of detecting the two PNA 

probes (GFP filter: 470 nm excitation and 525 nm emission, sensitive to the Alexa Fluor 

488 molecule attached to the Lac663 probe; and RFP filter: 530 nm excitation and 593 

nm emission, sensitive to the Alexa Fluor 594 molecule attached to the Gard162 probe). 

Also, DAPI staining was detected by an appropriate filter (DAPI filter: 360 nm excitation 

and 447 nm emission) present in the microscope. Finally, 20 images from random regions 

of each glass slide were taken in each filter previously referred at the same field of view. 

All images were acquired by AMG EVOSfl intrinsic software using a total magnification 

of �1000. The lactobacilli and anaerobes adhered cells quantification was evaluated 

through the National Institutes of Health image analysis software ImageJ (version 1.451, 

freely available at: http://rsbweb.nih.gov/ij/). All these assays were repeated three times, 

on separate days, with three fields of view assessed each time. 

4.2.7 Statistical analysis 

 The data was analysed using a two-tailed ANOVA or Student’s t-test with SPSS 

statistical software (version 17.0) and expressed as mean ± standard deviation (SD). The 

p values below 0.05 were considered significant. 
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 4.3 Results 

4.3.1 Competition between L. crispatus and BV anaerobes for adhesion to ME-180 

cells  

 Initially we studied the competition between several BV anaerobes and L. 

crispatus, a species that tends to promote vaginal health and to prevent the growth of 

other species, to determine its effect on initial adhesion in the ME-180 cell line (some 

examples are illustrated in Figure 4.1). 

 

Figure 4.1 Fluorescence microscopy of the initial adhesion competitive assays between L. crispatus 
and anaerobe by 4’,6-diamidino-2-phenylindole (DAPI) and specific PNA probes (Lac663 and 
Gard162) associated with Alexa Fluor 488 and 594 fluorochromes. (a) blue filter; (b) green filter; (c) red 
filter; Lac control, L. crispatus; Gv 101, G. vaginalis 101 & L. crispatus; Av, A. vaginae & L. crispatus; 
Mm, M. mulieris & L. crispatus; Pb, P. bivia & L. crispatus; Fu, F. nucleatum & L. crispatus. 
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4.3.2 Blockage of BV anaerobes adhesion and displacement of lactobacilli in ME-180 

cells  

 In order to simulate the introduction of BV-associated bacteria into a healthy 

vagina colonized by lactobacilli, we first allowed L. crispatus or L. iners to adhere to the 

epithelial monolayers and subsequently we added a BV-associated species to quantify the 

inhibitory effect of the lactobacilli on secondary colonization. L. crispatus inhibited the 

adherence of G. vaginalis 101 by approximately 43% (Table 4.1). Addition of G. 

vaginalis appeared to cause a slight displacement of adherent L. crispatus, but this was 

not found to be statistically significant. L. crispatus also reduced the adherence of A. 

vaginae and M. mulieris by approximately 50%. P. bivia and F. nucleatum appeared to be 

less susceptible to inhibition by L. crispatus. Interestingly, L. iners, which has been 

shown in previous studies to be less protective against BV relative to other vaginal 

lactobacilli (7), had a similar inhibitory effect on the adherence by all the BV-associated 

species except for G. vaginalis (Table 4.2). Indeed the adherence of G. vaginalis 

increased somewhat in the presence of L. iners, although this increase was not statistically 

significant. None of the anaerobes displaced L. iners as can be seen in Table 4.2. 
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 4.4 Discussion  

 BV is characterized by a decrease in the number of normal protective lactobacilli and 

an increase in various anaerobes, but the events leading to this disorder are yet unknown. It is 

well known that vaginal lactobacilli inhibit the growth of BV anaerobes, largely through the 

production of lactic acid and hydrogen peroxide (11). However, as far as we know, the effect 

of lactobacilli on the initial adherence of BV-associated anaerobes, which could be mediated 

through steric hindrance, competition for receptors, or the secretion of soluble factors, has 

not been reported. We first tested the initial adherence of common BV-associated 

microorganisms to a cervical epithelial cell line in the presence of two species of vaginal 

lactobacilli. Previously, using a semi-quantitative approach, we determined that G. vaginalis 

had a greater capacity for adhesion to ME-180 cells as compared to other known BV-

associated bacteria (12). Herein, we confirmed this finding using a quantitative assay to 

determine adherence of G. vaginalis, A. vaginae, M. mulieris, P. bivia and F. nucleatum and 

we determined the effects of L. crispatus, which has been shown to be a highly protective 

vaginal lactobacilli (19), and L. iners, which has been associated with risk for BV, on the 

initial adherence of these anaerobes to epithelial cells (4, 7, 19). 

 As further evidence of its role in BV, G. vaginalis exhibited the greatest capacity for 

adherence to ME-180 cells, and while adherence was inhibited somewhat by L. crispatus, it 

actually increased slightly in the presence of L. iners. The effect of L. crispatus on initial 

adherence to epithelial cells could be related to several factors, such as intra and extracellular 

probiotic metabolites. Although the majority of lactobacilli are able to produce lactic acid 

and hydrogen peroxide (11, 20, 21), the time course of the assays used in this study was too 

short for lactic acid and hydrogen peroxide to build up to bactericidal levels. It is possible 

that sub-inhibitory concentrations of these compounds, or other compounds secreted by L. 

crispatus inhibit adherence.  In sum, inhibition of initial adherence by L. crispatus appears to 

be an additional mechanism by which this vaginal lactobacillus species maintain vaginal 

health.  
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 Confirming our first experiments, G. vaginalis was more able (compared to the other 

BV-associated species) to adhere to ME-180 cells when L. crispatus was first allowed to 

attach to the cells. In addition, P. bivia and F. nucleatum were proportionally less affected by 

L. crispatus early colonization (Table 4.1). Interestingly, adherence of L. iners to the ME-180 

cells did not prevent secondary colonization by G. vaginalis (Table 4.2), but it prevented 

adherence of the other anaerobes as effectively as L. crispatus. Evidence suggests that L. 

iners is not very protective against BV, but the reason for this lack of apparent protection role 

is not clear (19, 22). Our results show that L. iners did not have an antagonistic effect on G. 

vaginalis, which may partially explain its failure to prevent BV. Our data also suggest that L. 

iners was not displaced by G. vaginalis suggesting that the two species may be tolerant to 

one another. These results support the idea that G. vaginalis is an early colonizer in BV, 

which can outcompete most bacteria from the vaginal niche, and afterwards allowing other 

bacteria to co-colonize the human vagina. However, this is a simplified model system and 

lacks many of the bacteria-specific and host-specific factors that would be present in the 

vagina.  

 F. nucleatum adhered poorly in the competitive initial adhesion assays but it was able 

to adhere more efficiently when it was added after the lactobacilli adhered to the ME-180 

cells. This result is in agreement with a study reported by Foster and Konlenbrander (23), 

demonstrating that F. nucleatum is a weak initial adherent bacteria but capable to co-

aggregate with other pre-adhered bacteria. Our study is the first to quantify initial adhesion 

per epithelial cell and clearly demonstrated the greater capacity of G. vaginalis for initial 

adhesion even in the presence of high levels of L. crispatus and L. iners. Also, it appears that 

the species of vaginal lactobacilli play an important role not only in preventing the growth of 

BV-associated anaerobes but also in impairing the adherence of certain species to vaginal 

epithelial cells.  
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 4.5 Conclusions  

 In the current work, it was quantitatively proved that G. vaginalis has indeed the 

greatest capacity from all BV-associated anaerobes tested for initial adhesion to epithelial 

cells. Although L. crispatus and L. iners have different protective competences in the vaginal 

epithelium, G. vaginalis sustained its high initial adhesion ability against both lactobacilli 

species at high levels. This study supports the single pathogenic species hypothesis 

suggesting G. vaginalis as a main candidate for early colonizer in BV that could allow other 

bacteria to grow and colonize vaginal epithelium. 

 Also, it is important to notice that A. vaginae, M. mulieris, P. bivia and F. nucleatum 

exhibited different initial adhesion competences in the presence of both vaginal lactobacilli 

species tested, suggesting that certain lactobacilli species are simultaneously capable to avoid 

initial adhesion and to prevent the growth of BV-associated anaerobes. 
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Initial attachment and biofilm formation of anaerobes 

involved in bacterial vaginosis 
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 Abstract 

 Certain anaerobic bacterial species are predominant in the vaginal flora during 

bacterial vaginosis (BV), being Gardnerella vaginalis the most commonly found. However, 

the exact role of G. vaginalis in BV has not yet been fully elucidated. The main goal of this 

study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for 

intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). 

Theoretically, in order to act as an early colonizer, species would need to be able to adhere to 

the vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, using our 

recently developed Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) 

methodology, we quantified the adherence of G. vaginalis and other BV-associated bacteria 

to an inert surface pre-coated with Lactobacillus crispatus. We found that G. vaginalis had 

the greatest capacity to adhere in the presence of L. crispatus. Additionally, it is well known 

that an early colonizer contributes to the adherence and/or growth of additional species, 

hence using the quantitative Polymerase Chain Reaction (qPCR) technique we next 

quantified the growth of dual species biofilms with G. vaginalis and other BV-associated 

anaerobes. Interestingly, it was found that, regardless of the species, the G. vaginalis growth 

was promoted by the presence of additional species. Conversely, G. vaginalis biofilms 

enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results 

contribute to our understanding of BV biofilm formation and the progression of the disorder.  

Keywords: Lactobacillus spp.; Gardnerella vaginalis; BV anaerobes; initial adhesion; 

epithelial cell line; fluorescence in situ hybridization; peptide nucleic acid; quantitative PCR. 
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5.1 Introduction  

 Bacterial vaginosis (BV) is the most common vaginal disorder in women of 

reproductive age but its etiology is still unclear (1). However, BV is characterized by a 

decrease of the number of beneficial vaginal bacteria, such as Lactobacillus cripatus, and by 

an increase of the number of anaerobic bacteria, such as Gardnerella vaginalis, Mobiluncus 

mulieris, Atopobium vaginae, Prevotella bivia and Fusobacteria nucleatum (2–4). BV is 

typically a polymicrobial condition (5, 6). Recently it has been found that multi-species 

microbial biofilms are involved in BV (4). However, the process by which this multi-species 

biofilm is established remains unknown. In general, single-species biofilm formation 

involves two main independent steps: initial adhesion to the surface and biofilm formation 

(7). In contrast, multi-species biofilm formation may be more complex and depend upon 

interactions between the species involved. The most thoroughly studied clinically relevant 

polymicrobial biofilm is the oral biofilm associated with periodontitis (8). During the 

development of these biofilms, early colonizers first adhere to the tooth pellicle providing a 

surface to which intermediate colonizers can adhere, as well as producing better conditions 

for the growth of successive species (9, 10). This community in turn provides an environment 

favorable to the adherence and growth of secondary colonizers. Similar to oral biofilms, it 

has been hypothesized that G. vaginalis is the initial colonizing species in BV and that its 

biofilms are beneficial to the growth, adherence and/or biofilm formation by other BV 

anaerobes, but this has yet to be demonstrated (4).  

 The main goal of our work was to assess the potential of bacterial species commonly 

found in BV as early or late colonizers. We first quantified the initial adhesion of such 

species to an inert surface pre-coated with Lactobacillus crispatus and then compared single-

species or dual-species biofilms formation in order to evaluate the potential symbiotic 

interactions between the BV-associated bacterial species. 
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 5.2 Materials and Methods 

5.2.1 Culture of bacterial strains  

 L. crispatus EX533959VC06 was grown in Man, Rogosa and Sharpe both (MRS; 

Sigma-Aldrich, Germany) at 37 °C under anaerobic conditions (AnaeroGen Atmosphere 

Generation system; Oxoid, United Kingdom) for 24–48 h prior to adhesion assays. Also, G. 

vaginalis 101, Atopobium vaginae FA, Mobiluncus mulieris ATCC 26-9, Prevotella bivia 

ATCC 29303 and Fusobacteria nucleatum 718BVC were grown in supplemented Brain 

Heart Infusion (sBHI; Oxoid, United Kingdom) and incubated at 37 °C under anaerobic 

conditions for 24–48 h prior to adhesion assays. Before the displacement/blockage assays, all 

strains were harvested by centrifugation (4000g, 12 min, at room temperature), washed twice 

with sterile phosphate buffer saline (PBS). The pellet from each bacteria culture was 

resuspended in sterile PBS and its concentration was adjusted to 1 × 109 CFU/mL by optical 

density at 600 nm using a microplate reader (Tecan, Switzerland). 

5.2.2 Early adhesion assays 

 Aliquots of 400 µL of L. crispatus culture media with a concentration of 1 × 109 

CFU/mL were added to each well of a 8 chamber glass slide developed for the adhesion 

assays. Then, the chamber glass slides were incubated for 4h at 37 °C, in anaerobic 

conditions, and 120 rpm. Non-adherent lactobacilli were removed by washing with 400 µL of 

sterile PBS and subsequently a second adhesion step was performed, using one BV-

associated anaerobe (G. vaginalis, A. vaginae, M. mulieris, P. bivia and F. nucleatum) with 

two different concentrations (1 × 103 or 1 × 109 CFU/mL), for 30 min at 37 °C, in anaerobic 

conditions and 120 rpm at the same range of concentrations. Finally, each well of the 

incubated chamber slides was carefully washed twice with 400 µL of sterile PBS to remove 

non-adherent bacteria and let to air-dry before conducting the FISH hybridization procedure. 

Controls were performed simultaneously in each chamber slide by adding each bacterium 

individually and maintaining the same experimental conditions. All these assays were 

performed with duplicate samples and each assay was repeated three independent times. 
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5.2.3 Quantification of the adhered bacteria by Fluorescent in situ hybridization  

 The chamber glass slides containing the adhered bacteria were first fixed and 

hybridized with the Lac663 and Gard162 PNA probes, that we previously developed and 

optimized (11). Briefly, the glass slides were fixed with 4% paraformaldehyde followed by 

50% ethanol. Hybridization was performed at 60 °C for 90 min and then washed with a fresh 

solution. An additional 4’,6-diamidino-2-phenylindole (DAPI; Sigma, Germany) staining 

step was done at the end of the hybridization procedure. Then microscopic visualization was 

performed using an Olympus BX51 (Olympus Portugal SA, Portugal) epifluorescence 

microscope equipped with a CCD camera (DP72; Olympus, Japan). These assays were 

repeated three times and a negative control was performed simultaneously with each step 

previous described. Bacteria cells quantification was performed through the National Institutes 

of Health image analysis software ImageJ (version 1.451) (12). 

5.2.4 Evaluation of the G. vaginalis mixed species biofilm by quantitative-PCR  

 The formation of G. vaginalis mixed biofilms were performed in a chemically 

defined medium (CDM), previously developed by Geshnizgani and Onderdonk (13). An 

initial 100 µL overnight inoculum of G. vaginalis 101 was transferred to 10 mL of fresh 

CDM. Then, 2 mL of this G. vaginalis suspension were transferred to each well of a 6-well 

plate and incubated for 24 h, at 37 °C, in anaerobic conditions. After 24 h, the media was 

changed in each well by fresh CDM media and 50 µL of an overnight culture of a different 

secondary anaerobe was added. Next, the 6-well plates were incubated for another 24 h, at 37 

°C, in anaerobic conditions. Finally, CDM media and planktonic cells were removed from all 

the plates and the DNA was extracted from biofilm samples using a Dneasy blood and tissue 

kit (Qiagen, The Netherlands) according to the manufacturer instructions. All qPCR assays 

were performed using a Taq 2× Master Mix (BioLabs, USA) on an iCycler iQ5 real-time 

detection system (Bio-Rad, USA). Each 25 µL reaction mixture contained 12.5 µL Taq 2× 

Master Mix, 1.0 µL of 10 µM from forward and reverse primers (Table 5.1), 2 µL template 

DNA, 8.5 µL of nuclease-free water. Temperature cycling for all assays was 95 °C for 10 min, 

followed by 40 cycles at 95 °C for 15 s, 54 °C for 30 s and 72 °C for 15 s. Negative controls 
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(no template DNA) were run with every assay to check for contamination. Assay results were 

expressed as threshold cycle number (Ct) of the 16S rRNA gene copies amplification per 

template DNA sample. All these assays were performed with duplicate samples and each 

assay was repeated three independent times. 

Table 5.1 Set of primers used in this study according to the Ribosomal Database Project II 
(RDPII) for quantitative real-time PCR.  

Bacteria 
target qPCR primers DNA 

target 

Accession 
number in 

RDPII 

Localization 
in RDPII 
sequence 

G. vaginalis Fw 5'-CACATTGGGACTGAGATACGG-3' 16S rRNA S002289761 325–345 
G. vaginalis Rv 5'-AGGTACACTCACCCGAAAGC-3' 16S rRNA S002289761 470–490 
M. mulieris Fw 5'-CGTGCTTAACACATGCAAGTCG-3' 16S rRNA S000110434 44–65 
M. mulieris Rv 5'-GCTGGCTTTCACGACAGACG-3' 16S rRNA S000110434 1073–1091 
A. vaginae Fw 5'-TATATCGCATGATGTATATGGG-3' 16S rRNA S000607439 184–205 
A. vaginae Rv 5'-CATTTCACCGCTACACTTGG-3' 16S rRNA S000607439 658–677 
P. bivia Fw 5'-CGCACAGTAAACGATGGATG-3' 16S rRNA S000414458 806–825 
P. bivia Rv 5'-ATGCAGCACCTTCACAGATG-3' 16S rRNA S000414458 1032–1051 
F. nucleatum Fw 5'-ATTTGTAGGAATGCCGATGG-3' 16S rRNA S001577261 694–713 
F. nucleatum Rv 5'-TACTTATCGCGTTTGCTTGG-3' 16S rRNA S001577261 842–861 

Searched through RDPII (last accession, December 2012) with the following data set options: Strain—
Both; Source—Both; Size—> 1200bp; Quality—Both. 

 

5.2.5 Statistical analysis 

 All data were analyzed using a two-tailed ANOVA or Student’s t-test with SPSS 

statistical software (version 17.0) and expressed as mean ± standard deviation (SD). The p 

values below 0.05 were considered significant. 
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 5.3 Results 

5.3.1 Evaluation of the early adhesion potential of BV-associated anaerobes onto a 

surface pre-coated with L. crispatus  

 The early adhesion assays were performed with known BV-associated anaerobes at 

different concentrations (1 × 103 and 1 × 109 CFU/mL) onto an inert surface pre-coated with 

L. crispatus (1 × 109 CFU/mL; Figure 5.1). As shown in Table 5.2, for both concentrations, 

G. vaginalis was the most adherent species when compared to the other BV anaerobes 

(ANOVA Tukey statistical test, p < 0.05), followed by F. nucleatum and P. bivia.  

Table 5.2 Blockage of adherence of bacterial vaginosis (BV)-associated anaerobes to glass by 
adherent L. crispatus. The number of each BV-associated anaerobes that adhered per cm2 of glass 
(± standard deviation) is shown on the left and the percentage of bacteria that adhered when the glass 
was pre-coated with L. crispatus relative to the control (± standard deviation) is shown on the right. 

 
Number of BV anaerobe  

per cm2 
Percentage adherent to  
L. crispatus-coated glass 

High inocula   

G. vaginalis 101  5.71 × 107 (±2.14 × 104) 86.86% c,d,e,f (±14.14) 

A. vaginae FA  6.85 × 106 (±3.38 × 105) 48.74% a,b (±3.36) 

M. mulieris ATCC 26-9  5.76 × 106 (±1.21 × 105) 82.22% a,b (±0.37) 

P. bivia ATCC 29303  1.64 × 107 (±6.29 × 105) 101.67% b (±28.19) 

F. nucleatum 718BVC  2.54 × 107 (±9.41 × 105) 68.83% a,b (±5.60) 

Low inocula   

G. vaginalis 101  6.89 × 106 (±1.26 × 106) 72.33% (±4.36) 

A. vaginae FA 1.47 × 105 (±9.65 × 104) 50.27% a (±3.97) 

M. mulieris ATCC 26-9  1.33 × 106 (±5.05 × 104) 70.15% (±7.80) 

P. bivia ATCC 29303  2.99 × 106 (±1.44 × 105) 84.17% (±1.57) 

F. nucleatum 718BVC  2.68 × 106 (±5.52 × 104) 60.15% a (±0.28) 
High inocula = 1 × 109 CFU/mL, Low inocula = 1 × 103 CFU/mL.  
a p < 0.05 when using t-student statistical analysis (95% confidence interval) for comparison of control and 
bacteria tested in the adhesion assay.  
b p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with  
G. vaginalis strain tested in the adhesion assay.  
c p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with A. 
vaginae strain tested in the adhesion assay.  
d p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with M. 
mulieris strain tested in the adhesion assay.  
e p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with P. bivia 
strain tested in the adhesion assay.  
f p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with F. 
nucleatum strain tested in the adhesion assay. 
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 Although M. mulieris showed the lowest initial adhesion potential, it was able to displace 

L. crispatus more effectively than any of the other anaerobes tested, including G. vaginalis 

(ANOVA Tukey statistical test value, p < 0.05; Table 5.3). Nevertheless, it is important to 

notice that the L. crispatus displacement assays conducted with all the BV-associated 

anaerobes were found to be non-significant as compared to the L. crispatus control (see 

Table 5.3).  

Table 5.3 Displacement of adherent L. crispatus by BV-associated anaerobes. Following the 
addition of a BV-associated anaerobe, the number of remaining L. crispatus was counted and 
compared to the L. crispatus control counting (7.36 × 107 ± 9.97 × 104). The percentage (± standard 
deviation) of L. crispatus that remained adherent after addition of each BV anaerobe at high or low 
inocula is shown below. 

 Percentage of L. crispatus remaining after addition of BV anaerobe 

High inocula  

G. vaginalis 101 88.60% b,c (±5.14) 

A. vaginae FA 99.29% a (±7.26) 

M. mulieris ATCC 26-9 76.62% a (±11.93) 

P. bivia ATCC 29303 94.86% (±20.60) 

F. nucleatum 718BVC 97.65% (±7.41) 

Low inocula  

G. vaginalis 101 101.51% b,c (±28.52) 

A. vaginae FA 71.18% a (±12.54) 

M. mulieris ATCC 26-9 68.48% a (±12.79) 

P. bivia ATCC 29303 97.39% (±2.44) 

F. nucleatum 718BVC 98.34% (±9.52) 
High inocula = 1 × 109 CFU/mL, Low inocula = 1 × 103 CFU/mL.  
a p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with G. 
vaginalis strain tested in the adhesion assay.  
b p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with  
A. vaginae strain tested in the adhesion assay.  
c p < 0.05 analysed using ANOVA Tukey statistical test (95% confidence interval) for comparison with M. 
mulieris strain tested in the adhesion assay. 

 

5.3.2 G. vaginalis mediated dual species biofilms  

 In the next experimental step, we analyzed the potential interactions between G. 

vaginalis and other BV anaerobe previously studied in an early-stage G. vaginalis biofilm. 

For that purpose, G. vaginalis biofilms were allowed to develop for 24 h, after which a 

second anaerobe was introduced and co-cultured in the system for an additional 24 h. Then, 
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qPCR analysis was used to determine the number of G. vaginalis and the second species 

within the biofilm. As shown in Table 5.4, G. vaginalis growth was increased by any second 

anaerobe inoculated after the initial 24 h biofilm formation.  

Table 5.4 Results of the qPCR from mixed biofilm formation assays with Gardnerella vaginalis 
101 and a second BV anaerobe. All experiments were performed in triplicate. 

Biofilm 

Single specie biofilm Multi-species biofilm % GV in 
mixed 
biofilm 

GV control  
CT 

2nd anaerobe 
control CT 

GV fold 
increase 

2nd anaerobe 
fold increase 

G. vaginalis (48 h) 
&  

M. mulieris (24 h) 
14.13 (±0.12) 31.99 (±1.09) 3.78 (±1.10) a 0.89 (±0.17)  99.9997 

G. vaginalis (48 h) 
&  

A. vaginae (24 h) 
14.13 (±0.12) 26.38 (±0.33) 3.38 (±0.79) a 1.37 (±0.17)  99.9844 

G. vaginalis (48 h) 
&  

P. bivia (24 h) 
14.13 (±0.12) 24.84 (±0.03) 3.82 (±0.03) a 4.20 (±0.92) a 99.8960 

G. vaginalis (48 h) 
&  

F. nucleatum (24 h) 
14.13 (±0.12) 24.24 (±2.57) 3.39 (±0.28) a 1.63 (±0.44) 99.9236 

GV, G. vaginalis 101; CT, threshold cycle; (± standard deviation), standard deviation from the average values 
from triplicate assays are in parenthesis after the average value.  
a p < 0.05 when using t-student statistical analysis (95% confidence interval) for comparison of control and 
bacteria tested in the biofilm assay. 
 

 Overall the G. vaginalis growth was found to increase around ≈3 fold in the presence 

of all the secondary anaerobe species studied, although the greatest increase was found in the 

presence of P. bivia (3.83-fold increase) and M. mulieris (3.78-fold increase). Interestingly, 

F. nucleatum and P. bivia led to higher numbers when co-cultured with G. vaginalis strains, 

showing ≈2 and ≈4 fold increases (Table 5.4), respectively.  
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 5.4 Discussion 

 In 1983, Spiegel and colleagues postulated that bacterial vaginosis was a 

polymicrobial infection, in which G. vaginalis was the prevalent species (14). However, the 

etiology of BV remains fairly unknown, and it is still unclear which, if any, of the BV-

associated anaerobes are capable of disrupting an established Lactobacillus population and 

initiate colonization on the vaginal epithelium. Several species of lactobacilli may colonize 

the healthy vagina, however each species differs in its probiotic activity due to differences in 

their abilities to endure changes in the environmental conditions, that includes pH variations 

during menstruation or sexual intercourse, as well as due to differences in their abilities to 

produce antimicrobial compounds such as lactic acid, hydrogen peroxide and bacteriocins 

(15). L. crispatus is able to produce several antimicrobial compounds and it is inversely 

associated with BV (16). We therefore chose this species as representative lactobacilli for use 

in our study. Herein, we evaluated the early adhesion of known BV-associated anaerobes at 

different concentrations to an inert surface pre-coated with L. crispatus. As expected, G. 

vaginalis showed greater early adhesion potential than the other BV anaerobes studied. These 

results are in agreement with several previous studies (17–19) supporting evidence that G. 

vaginalis has a significant initial adhesion potential. These results suggest that G. vaginalis 

could be the early colonizer in the progression of BV. Although A. vaginae and M. mulieris 

are often associated with BV (20–22), their capacity to adhere to glass pre-coated with L. 

crispatus was the lowest of all tested anaerobes, thus suggesting that they are not strong 

candidates as early colonizers in BV. Interestingly, M. mulieris displaced L. crispatus more 

effectively than any of the other anaerobes tested. Since this species did not adhere as well as 

the others, this result suggests that it may secrete some soluble factors that displace the 

lactobacilli. However, these in vitro experiments are limited in that the bacteria were allowed 

to adhere to glass rather than vaginal epithelium and adherence to vaginal epithelium is likely 

influenced by a number of host-related and bacteria-specific factors, such as mucus 

production and the involvement of specific receptors on the epithelial surface (1, 3). 
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 Several studies have shown the prevalence of biofilm formation in BV samples, 

pointing G. vaginalis as a main component of these biofilms, leading to the hypothesis that 

G. vaginalis initiates the biofilm formation allowing successive species to adhere and 

proliferate (4, 23). However, this has yet to be determined experimentally. We examined 

whether synergistic or antagonistic interactions would contribute to or prevent growth of BV 

anaerobes within an early-stage G. vaginalis biofilm. Notably, G. vaginalis growth was 

augmented by the incorporation of a second anaerobe after the initial 24 h biofilm formation. 

In fact, initial G. vaginalis biofilm showed a greatest increase with P. bivia and M. mulieris 

addition. Also, it is important to notice that F. nucleatum and P. bivia showed synergistic 

effects on G. vaginalis growth, thus demonstrating the ability of G. vaginalis to establish 

different interactions with others BV-associated anaerobes. This is in agreement with a report 

from Pybus and Onderdonk that demonstrated the symbiotic relationship between G. 

vaginalis and P. bivia (20) and suggesting that symbiotic relationships established between 

G. vaginalis and other anaerobes in BV biofilms could contribute to the progression of BV.  

 Although F. nucleatum has not been extensively studied in BV infection, it plays a 

key role in the establishment of oral biofilms as a bridging species (24). In fact, Foster and 

Kolenbrander (24) demonstrated that F. nucleatum is capable of co-aggregating with 

pathogenic bacteria and of becoming a dominant member of the oral multi-species biofilm 

after several days of incubation although it commonly failed to grow by itself in biofilms. 

Similarly, our results suggest that F. nucleatum is able of joining an initial biofilm and 

eventually establishes a symbiotic relationship with G. vaginalis. Again, our study is limited 

in its complexity and lacks host-specific factors, but it suggests that certain BV-related 

species can cooperate and this may provide some insight regarding the ability of these 

bacterial species to become dominant in an environment normally dominated by lactobacilli. 
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 5.5 Conclusions  

 The results described in this chapter suggest that G. vaginalis may be more suited as 

an early colonizer relative to the other BV-associated anaerobes studied in the initial 

adhesion assay and that it may play a key role in the early establishment of BV biofilms.  

 All anaerobes tested were found to enhance the biofilm formation by G. vaginalis. 

Furthermore, the G. vaginalis biofilms were found to enhance the growth of P. bivia and to a 

minor extent of F. nucleatum. These observations provide some insights on the ability of 

each individual BV-associated anaerobe studied to adhere in the presence of a protective 

layer of lactobacilli, as well as on the ability of G. vaginalis biofilms to thrive in presence of 

other anaerobes. 
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 Abstract 

 Current BV treatment is strictly based in antibiotic therapy. However, an increase in 

antimicrobial resistance has been reported for BV anaerobes, such as G. vaginalis. 

Furthermore, antimicrobial therapy normally reduces the population of the healthy vaginal 

lactobacilli strains. A more appropriate treatment is being sought, aiming to decrease G. 

vaginalis and also to promote the lactobacilli re-colonization in BV patients. An alternative 

therapy for BV is the re-colonization of vagina with lactobacilli species. Our goal was to 

evaluate the probiotic potential of intra- and extracellular biosurfactants from a broad range 

of lactobacilli strains against several G. vaginalis strains. To accomplish our goal, we tested 

several extracts and supernatants from 86 lactobacilli strains (35 from bacteria collection and 

51 isolates from healthy women) through a screening by an agar spot test against 9 G. 

vaginalis strains in order to select the most remarkable probiotic candidates. From the 

selected candidates, we evaluated their ability to inhibit G. vaginalis growth using 

biosurfactants concentrations ranging 40 to 80% (vol/vol) in the culture medium. Our results 

showed that the intracellular biosurfactants were unable to reduce G. vaginalis proliferation. 

Nonetheless, the extracellular biosurfactants candidates showed a significant effect on G. 

vaginalis growth and biofilm formation. Overall, from the 86 lactobacilli strains tested, 4 

bacteria collection and 6 clinical isolate lactobacilli strains exhibited a broad probiotic 

activity against all the G. vaginalis strains tested. However, only 2 vaginal isolates and 4 

lactobacilli collection strains were able to inhibit G. vaginalis strains, being their growth of 

11% in some cases, when compared to G. vaginalis control, thus illustrating an efficient 

probiotic activity. Interestingly, although none of these lactobacilli collection strains belong 

to the vaginal microflora, they revealed a much more pronounced activity against G. 

vaginalis as compared to the vaginal isolate lactobacilli tested.  

Keywords: Gardnerella vaginalis; lactobacilli; probiotic activity; extracellular and 

intracellular biosurfactants. 
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6.1 Introduction  

 Bacterial vaginosis (BV) represents a significant health risk in women in reproductive 

age because it predisposes women to abnormal pregnancy, pelvic inflammatory disease and 

an increased risk of sexual transmitted infections (1–3). Despite richness and diversity found 

in BV anaerobes, Gardnerella vaginalis is present in over 90% of the pathologic cases and 

several studies report its potential as the main etiological candidate (4–7). Although 

antibiotics constitute the standard BV treatment, their usage had been associated to an 

increase of BV anaerobes resistance, in particular G. vaginalis, and to a decrease in the 

healthy vaginal microflora, specifically lactobacilli species (8–10). Therefore, other 

treatments are required to avoid these drawbacks associated with antibiotic therapies. An 

alternative approach for BV treatment resides in the usage of probiotics strains or their 

antimicrobial products. Several studies have been conducted in the last decades showing the 

probiotic potential of lactobacilli in preventing vaginal colonization by pathogens, thus 

preventing the development of infections (11–14). The Lactobacillus genus showed different 

probiotic mechanisms including auto-aggregation, co-aggregation with pathogenic 

microorganisms, and adhesion to epithelial cells and/or through some of their metabolites 

(such as lactic acid, hydrogen peroxide, bacteriocins, intra and extracellular biosurfactants) 

that may act as growth inhibitors or anti-adhesive agents (15–18). However, for an efficient 

BV treatment using this approach some requirements have to be met, such as the selection of 

appropriate lactobacilli strain(s) and the effectiveness of the amounts of antimicrobial 

substances they secrete (19–21).  

 Our goal was to select probiotic candidates from a broad range lactobacilli strains and 

to evaluate their intra- and extracellular biosurfactants, as potential probiotic products, 

against several G. vaginalis strains. Therefore, we evaluated 86 lactobacilli strains through a 

screening by an agar spot test against 9 G. vaginalis strains. The most wide-ranging probiotic 

lactobacilli strains have been selected. Afterwards, we tested the probiotic activity of the 

selected lactobacilli biosurfactants against G. vaginalis strains, in concentrations ranging 40 

to 80% (vol/vol) of the culture medium, in order to determine their probiotic efficiency.  
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 6.2 Materials and Methods 

6.2.1 Vaginal sample collection and Gram stain selection 

 A total of 91 samples of vaginal swabs were obtained, after informed consent, as 

approved by the Institutional Review Board (IRB) of University of Minho. The vaginal 

swabs were collected for Gram stain, culture plate’s isolation and PCR procedures, using the 

culture swab transport system (VWR, CE0344, Italy). These swabs were brushed against the 

lateral vaginal wall to collect the vaginal fluid sample, then placed in the culture swab 

transport media and immediately conserved at 4 ºC. First, the set of swabs was used for 

Gram stain procedure as described by Nugent and colleagues (22). Next, the collected swabs 

were immersed in 1 mL of phosphate buffer saline (PBS) and centrifuged at 17,000 g during 

5 min at room temperature. Afterwards, the pellet was resuspended in 2 mL of saline solution 

(0.9% NaCl prepared in distilled water) and finally diluted 1:10 in saline solution or PBS to 

eliminate possible contaminants for lactobacilli isolation and PCR validation, as previously 

described (23). Vaginal swabs evaluation was performed using the Nugent criteria score (22). 

Briefly, vaginal smear was examined under oil immersion objective (1000x magnification) 

and through 10-15 microscopic fields. Initially, each smear was graded as per standardized, 

quantitative, morphological classification developed by Nugent. More specifically, 

composite score was grouped into three categories, scores 0-3 being normal, 4-6 being 

intermediate, and 7-10 being definite BV. Finally, the smears that showed scores between 0-3 

were selected for lactobacilli isolation and PCR validation. Meanwhile, the smears with a 

Nugent score of 4-6 and 7-10 were rejected from our study.    

6.2.2 Lactobacilli isolation and its validation by Polymerase chain reaction 

 All collected samples from vaginal swabs were grown in Columbia Blood Agar 

(CBA; Sigma-Aldrich, Germany) for 24 h at 37 oC under anaerobic conditions and were 

examined for morphological and culture characteristics, following the procedure described 

by Cappuccino and Sherman (24). The colonies that grew showing frequent rods, pair or 

chain forming pattern and Gram positive character, were selected for further PCR validation. 
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Pure colonies of these isolates were finally transferred to de Man, Rogosa and Sharpe agar 

(MRS agar; Sigma-Aldrich, Germany) and CBA plates and were incubated at the same 

conditions previously used. Afterwards, a molecular characterization was performed to 

validate each pure colony selected from culture plates, using PCR detection of Lactobacillus 

spp. The species of this genus were specifically detected by 16S rDNA amplification PCR 

using the forward primer LactoF (5’-TGG AAA CAG RTG CTA ATA CCG-3’) and the 

reverse primer LactoR (5’-GTC CAT TGT GGA AGA TTC CC-3’). This set of primers and 

PCR conditions were previously developed and characterized by our research group (23). A 

total of 51 lactobacilli species were isolated from the collected vaginal swabs for this study.  

6.2.3 Culture of bacterial strains  

 A total of 86 lactobacilli strains were selected in this work (see Table S6.1 and S6.2 

in supplementary material section).  Lactobacilli were grown in 40 mL of MRS culture broth 

and supplemented Brain Heart Infusion (sBHI; Oxoid, United Kingdom), respectively. Each 

bacterial culture was incubated at 37 ºC, except for L. pentosus CECT4023, L. coryniformis 

CECT4129, L. brevis ATCC14869, L. curvatus ATCC25601 and L. plantarum NCIMB8827 

that were grown at 30 ºC, under anaerobic conditions (AnaeroGen Atmosphere Generation 

system; Oxoid, United Kingdom) for 48–72 h prior to lactobacilli biosurfactants extraction. 

Anaerobic conditions were used to minimize the formation of hydrogen peroxide and acetic 

acid as described by Schillinger and Lücke (25). G. vaginalis strains (G. vaginalis AMD, G. 

vaginalis 5-1, G. vaginalis 101 and G. vaginalis isolates SH254B, SH222C2, SH92B1, 

UM23, MM19I and TR1I) were grown in CBA at 37 °C under anaerobic conditions 

(AnaeroGen Atmosphere Generation system; Oxoid, United Kingdom) for 24–48 h prior to 

probiotic screening and activity assays. G. vaginalis isolates were isolated in a previous study 

(26). 

6.2.4 Extraction of intra- and extracellular biosurfactants from lactobacilli strains 

 The extraction of the intra- and extracellular biosurfactants from all lactobacilli 

strains was performed as previously reported by Gudiña et al. (27) with some modifications. 

Briefly, a cell-free solution was obtained by centrifuging 40 mL of lactobacilli culture 

(≈6000 g, 10 min, at 4 ºC), followed by filtration of the supernatant through a 0.45 µm-pore-
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size cellulose acetate filter (Orange Scientific, Belgium). These extracellular biosurfactants 

were stored at -80 ºC until their use in the probiotic screening and activity assays. Next, the 

cells were washed twice in 40 mL of PBS with pH adjusted to 7.0 and harvested again by 

centrifugation at the same conditions. The pellet was resuspended in 5 mL of PBS (pH 7.0) 

and left for 2 h at room temperature and 100 rpm for intracellular biosurfactant release. 

Subsequently, the lactobacilli cells were removed by centrifugation (≈6000 g, 10 min, at 

4 ºC) and the remaining biosurfactant liquid was filtered through a 0.22 µm-pore-size 

cellulose acetate filter (Orange Scientific, Belgium). The collected intracellular 

biosurfactants were stored at -80 ºC until further use for probiotic screening and activity 

assays. 

6.2.5 Probiotic lactobacilli biosurfactants screening by an agar spot test  

 For screening the probiotic potential of the lactobacilli biosurfactants, an agar spot 

test was performed (25), with some modifications . More precisely, 250 µL of overnight 

cultures of each G. vaginalis strain were spread onto CBA plates and incubated for 1 h at 37 

°C to allow the initial inoculum to dry. These overnight cultures were adjusted to an adequate 

absorbance range (between 0.100 and 0.200) by measuring the optical density at 620 nm. 

Then, 50 µL of each intra- and extracellular biosurfactants were spotted into a well 

previously done in the surface of CBA plates and then the plates were incubated for 48 h at 

37 °C under anaerobic conditions. After incubation, the CBA plates were checked for G. 

vaginalis inhibition growth and hemolytic zones around each well. Inhibition was scored 

positive when a clear or hemolytic zone around the well of the biosurfactant tested was 

noticeable. All these assays were performed with duplicate samples and each assay was 

repeated three independent times. 

6.2.6 Evaluation of the probiotic activity of lactobacilli biosurfactants against G. 

vaginalis  

 The evaluation of the probiotic activities against G. vaginalis was based on the 

microdilution method in 96-well culture plates as previously described by Gudiña et al. (28) 

with some modifications. Briefly, 200 µL of sBHI medium with certain percentage of 

biosurfactant (vol/vol) were dispensed into each row of the 96-well microplate, ranging 40 
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and 80% of intra- or extracellular biosurfactant. Subsequently, each couple of columns was 

inoculated with 3 µL of a given overnight G. vaginalis culture in sBHI medium, exhibiting 

an adjusted absorbance at 620 nm between 0.100 and 0.200. Growth control wells did not 

contain biosurfactant and a negative control with a non-probiotic biosurfactant was 

simultaneously performed with sBHI medium at all percentage tested against each G. 

vaginalis strain. The 96-well microplates were incubated for 48 h at 37 °C under anaerobic 

conditions. After 48 h of incubation, the optical density at 620 nm of each well was measured 

using a microplate reader (Tecan, Switzerland).  

 The probiotic activities of each biosurfactant tested at different percentages were 

calculated as G. vaginalis growth inhibition compared to their control growth, as followed: 

%	�����ℎ		
ℎ	�	�	�
	 = 	 
��	biosurf��	��
����� × 100 

where ODbiosurf  represents the optical density of the well with a given biosurfactant 

percentage, and ODcontrol  is the optical density of the control well (G. vaginalis growth 

without biosurfactant). All these assays were performed with duplicate samples and each 

assay was repeated two independent times. 

6.2.7 G. vaginalis biofilm formation evaluation by confocal laser scanning microscopy  

 In order to assess the changes on G. vaginalis biofilm formation as the result of 

probiotic activity of the selected biosurfactants, we performed confocal laser scanning 

microscopy (CLSM) analysis of coverslips (Labbox, Spain) with G. vaginalis biofilms grown 

in the presence of extracellular biosurfactants. More exactly, the L. rhamnosus ATCC 7469 

and L. ruminis ATCC 27781 probiotic activities were tested in a 48 h biofilm of G. vaginalis 

101 and SH222C2. Briefly, 2 mL of sBHI broth with 80% (vol/vol) of a particular 

biosurfactant was dispensed into each column of the 6-well microplate, containing a 

coverslip in each well. A volume of 30 µL of a given overnight G. vaginalis culture in sBHI 

broth was added, exhibiting an adjusted absorbance at 620 nm between 0.100 and 0.200. The 

6-well microplates were incubated for 48 h at 37 °C under anaerobic conditions. After 48 h 

of incubation, the coverslip of each well was washed with PBS and used for biofilm 
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evaluation by CLSM. A control was performed by allowing G. vaginalis biofilm formation in 

the absence of biosurfactant.  

 The coverslips containing the G. vaginalis biofilms were first fixed and stained with 

4',6-diamidino-2-phenylindole (DAPI, Sigma, USA), as previously optimized by Almeida et 

al. (29). Briefly, the coverslips were fixed with 100% methanol, then 4% paraformaldehyde 

and followed by 50% ethanol, for 10 min, at room temperature. A DAPI staining step was 

done at the end of the fixation procedure and then it was washed three times with a fresh PBS 

solution. The coverslip images were acquired in an Olympus FluoView FV1000 microscope 

(Olympus Portugal SA), using a 40× water-immersion objective (40/1.2W). Finally, the 

maximum height of G. vaginalis biofilms was determined by evaluation of the z-stacks 

grown, analysing 10 different sections of each coverslip through the FluoView application 

Software package (Olympus, Japan).  

6.2.8 Statistical analysis 

 All data were expressed as mean ± standard deviation (SD) and the maximum height 

of G. vaginalis biofilms data were also analyzed using Student’s t-test with SPSS statistical 

software (version 17.0). The p values below 0.05 were considered significant. 
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 6.3 Results 

6.3.1 Probiotic screening of the lactobacilli biosurfactants against G. vaginalis 

 To select the best lactobacilli candidates for probiotic activity against G. vaginalis, 

we performed an agar spot test to screen the biosurfactants that show a greater number of G. 

vaginalis strains being inhibited and also larger inhibition halos. The selected intra and 

extracellular biosurfactants for probiotic activity analysis are shown in Table 6.1 and 6.2, 

respectively.  

Table 6.1 Probiotic screening results of the intracellular biosurfactants from lactobacilli against 
G. vaginalis strains. The probiotic screening of the lactobacilli intracellular biosurfactants was tested 
in duplicate for each G. vaginalis strain. The number of G. vaginalis inhibited was counted for each 
probiotic screening assay with the symbol X in the respective column number. The table shows the 
qualitative results obtained in probiotic screening assays. 

Lactobacilli intracellular biosurfactants tested Number of G. vaginalis strains inhibited 

Species Code 9 8 7 6 5 4 3 2 1 0 

L. brevis ATCC 14869 L10 
 

X 
        

L. buchneri ATCC 4005 L11 
   

X 
      

L. delbrueckii ATCC 9649 L15 
   

X 
      

L. parabuchneri ATCC 12936 L28 
 

X 
        

L. paracasei CCUG 27320 L29 
 

X 
        

L. rhamnosus ATCC 7469 L32 
  

X 
       

L. ruminis ATCC 27781 L33 
   

X 
      

L. salivarius DEVRIESE94/438 L35 
    

X 
     

Vaginal isolate SH65D1 
   

X 
      

Vaginal isolate SH65K 
   

X 
      

Vaginal isolate SH212E 
 

X 
        

Vaginal isolate SH212H 
  

X 
       

 

Based on the screening results (Table 6.1), 12 intracellular biosurfactants were selected. The 

maximum number of G. vaginalis strains being inhibited was 8 and these biosurfactants were 
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produced by L. brevis ATCC 14869, L. parabuchneri ATCC 12936, L. paracasei CCUG 

27320 and vaginal isolate SH212E.  

 On the other hand, 10 extracellular biosurfactants were selected, as shown in Table 

6.2. Interestingly, the maximum number of G. vaginalis strains inhibited was strictly 

achieved by the selected bacteria collection strains, specifically L. brevis ATCC 14869, L. 

rhamnosus ATCC 7469, L. ruminis ATCC 27781 and L. salivarius DEVRIESE94/438. 

Table 6.2 Probiotic screening results of the extracellular biosurfactants from lactobacilli against 
G. vaginalis strains. The probiotic screening of the lactobacilli extracellular biosurfactants was tested 
in duplicate for each G. vaginalis strain. The number of G. vaginalis inhibited was counted for each 
probiotic screening assay with the symbol X in the respective column number. The table shows the 
qualitative results obtained in probiotic screening assays. 

Lactobacilli extracellular biosurfactants tested Number of G. vaginalis strains inhibited 

Species Code 9 8 7 6 5 4 3 2 1 0 

L. brevis ATCC 14869 L10 X 
         

L. rhamnosus ATCC 7469 L32 X 
         

L. ruminis ATCC 27781 L33 X 
         

L. salivarius 
DEVRIESE94/438 L35 X 

         

Vaginal isolate SH40I 
  

X 
       

Vaginal isolate SH65G 
 

X 
        

Vaginal isolate SH103E 
   

X 
      

Vaginal isolate SH130D 
  

X 
       

Vaginal isolate SH174A 
  

X 
       

Vaginal isolate SH196F 
   

X 
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6.3.2 Probiotic activity of the lactobacilli biosurfactants against G. vaginalis 

 Despite of their activity on the agar test, the selected 12 intracellular 

biosurfactants did not revealed any significant probiotic activity, as determined in the 

microdilution test assays. However, all the 10 extracellular biosurfactants, with 80% (vol/vol) 

in the culture medium, were simultaneously capable to inhibit all G. vaginalis strains studied 

(both from bacteria collection and vaginal isolates), as shown in Figures 6.1 and 6.2, 

respectively. 

 

 

 

 

 

 

 

 

Figure 6.1 Percentage of G. vaginalis strains growth inhibition by the extracellular biosurfactants from 
lactobacilli. The results are the average of duplicate assays for each G. vaginalis strain and error bars represent 
the standard deviation. Control corresponds to G. vaginalis strain grown with sBHI without adding any 
extracellular surfactant. 
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Figure 6.2 Percentage of G. vaginalis strains growth inhibition by the extracellular biosurfactants from 
lactobacilli. The results are the average of duplicate assays for each G. vaginalis strain and error bars represent 
the standard deviation. Control corresponds to G. vaginalis strain grown with sBHI without adding any 
extracellular surfactant. 
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As shown in Figure 6.1, G. vaginalis strains from culture collection were more susceptible to 

extracellular biosurfactants than vaginal isolates, showing a growth range between 15 and 

31%. Only L. brevis ATCC 14869 (L10) and L. ruminis ATCC 27781 (L33) biosurfactants 

were unable to inhibit G. vaginalis 5-1 and 101 strains with the same efficiency. Indeed, 

these G. vaginalis strains were able to growth 59 and 88%, respectively, as compared to the 

negative control (100%).   

 Interestingly, the same extracellular biosurfactants from lactobacilli collection 

exhibited an irregular grade of probiotic activities against G. vaginalis isolates (see Figure 

6.2), such as L. rhamnosus ATCC 7469 (L32) and L. ruminis ATCC 27781 biosurfactants 

against G. vaginalis 101 and SH222C2 strains. However, L. salivarius DEVRIESE94/438 

(L35) were able to inhibit all G. vaginalis isolates between 12 to 43%, except for G. 

vaginalis SH92B1 (89%). In addition, the extracellular biosurfactants from lactobacilli 

isolates revealed lower probiotic activities against G. vaginalis isolates (between 30 and 

74%; see Figure 6.2), except for SH40I and SH103E isolates. These vaginal isolates revealed 

probiotic activities comparable to lactobacilli collection strains, ranging between 27 and 47% 

of growth inhibition (see Figure 6.2).    

6.3.3 G. vaginalis biofilm formation evaluation by confocal laser scanning microscopy 

 In order to evaluate the effect of the extracellular biosurfactants on G. vaginalis 

biofilm formation, the L. rhamnosus ATCC 7469 and L. ruminis ATCC 27781 probiotic 

activities were studied on G. vaginalis 101 and SH222C2 48 h biofilms through CLSM. 

More precisely, the variation of the thickness and structure of these G. vaginalis biofilms was 

analyzed in the presence of each biosurfactant (Figure 6.3).  CLSM images showed that G. 

vaginalis SH222C2 and 101 strains formed a thick biofilm when grown in the absence of 

these two extracellular biosurfactants. However, a significant reduction of the biofilm 

thickness and structure was observed, in particular for G. vaginalis 101 and SH222C2 in the 

presence of the L. rhamnosus ATCC 7469 and L. ruminis ATCC 27781 biosurfactants 

(Figure 6.3 B and F), respectively.  
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To confirm our initial data from CLSM images, we calculated the maximum biofilm depth 

average by evaluation of the z-stacks grown between the first and last layers of G. vaginalis 

biofilm through 10 different sections of each coverslip (Figure 6.4). 

 

 

 

 

 

 

 

 

Figure 6.4 Biofilm maximum depth average obtained by CLSM for a 48h biofilm of G. vaginalis 101 (GV 
101) and SH222C2 growth exposed to 80% of L. rhamnosus ATCC 7469 (L32) and L. ruminis ATCC 
27781 (L33) biosurfactants. Control corresponds to G. vaginalis strain growth on sBHI without any 
extracellular biosurfactant.  
* p < 0.05 when using t-student statistical analysis (95% confidence interval) for comparison of G. vaginalis 
control and G. vaginalis with biosurfactant tested in the biofilm assay. 

As shown in the figure above, the maximum depth average of the G. vaginalis 101 and 

SH222C2 biofilms are in good agreement with the previous evaluations of L. rhamnosus 

ATCC 7469 and L. ruminis ATCC 27781 probiotic activities by microdilution method in 96-

well plates. Although the CLSM analysis evidenced less discrepancy between these 

extracellular biosurfactants against the G. vaginalis strains tested, L. rhamnosus ATCC 7469 

and L. ruminis ATCC 27781 continued to show a more efficient and statistical reduction of 

G. vaginalis 101 and SH222C2 biofilm formation (t-student statistical test value, p < 0.05; 

Figure 6.4), respectively. 

 

  

27.6

8.9

13.8

31.5

26.7

18.7

0

5

10

15

20

25

30

35

40

45

50

Control

GV 101

GV101 &

L32

GV101 &

L33

Control

SH222C2

SH222C2

& L32

SH222C2

& L33

M
a

x
im

u
m

 d
e

p
th

 a
v

e
ra

g
e

, 
µ

m

Extracellular biosurfactants

G. vaginalis 101 and SH222C2

* 

* 

* 



                         Probiotic activity of lactobacilli biosurfactants against Gardnerella vaginalis 

132 

 

 

 6.4 Discussion 

 Due to the recurrent use of antimicrobial treatments against BV and consequently to 

the development of highly resistant bacteria, these currently used therapies have become 

fairly inefficient (17). As a result, an increased interest in the potential use of probiotic 

lactobacilli as alternatives for BV treatment and prevention has been reported (14, 30–32). 

Therefore, our goal was to select probiotic lactobacilli strains and to study their 

biosurfactants activities against a set of clinical G. vaginalis strains. For this purpose, we 

used both vaginal and dairy lactobacilli. Interestingly, the intracellular lactobacilli 

biosurfactants did not show an efficient inhibition on G. vaginalis growth, despite the 

positive results obtained in the screening by an agar spot test. On the other hand, the 

extracellular lactobacilli biosurfactants exhibited efficient probiotic activities against a wide-

ranging G. vaginalis strains. These results are in agreement with a previous study realized by 

Brzozowski et al. (33), in which different activities or properties of the lactobacilli 

metabolites were found in intra- and extracellular extracts. Nonetheless, we cannot exclude 

that the absence of activity in the intracellular fraction could be related with the methodology 

used to recover the intracellular biosurfactants and its eventual low extraction efficiency. In 

fact, Faijes et al. (34) studied five different extraction methodologies to obtain intracellular 

products from L. plantarum species showing that certain intracellular lactobacilli products 

were less concentrated or even absent due to an inefficient extraction procedure (34).  

 On the other hand, all extracellular biosurfactants exhibited probiotic activities 

against the G. vaginalis strains tested; although they possessed different growth inhibition 

efficiencies for each G. vaginalis strain (see Figure 6.2 and 6.3). From the pool of lactobacilli 

studied, we found 6 strains with a higher potential to be used as probiotics, specifically L. 

brevis ATCC 14869, L. rhamnosus ATCC 7469, L. ruminis ATCC 27781, L. salivarius 

DEVRIESE94/438, SH40I and SH103E isolates. Although the lactobacilli strains from the 

culture collection were previously reported as probiotic species against several uropathogens 

(18, 21, 31, 32, 35–37), to the best of our knowledge none of them was specifically tested 

against a broad range of G. vaginalis strains. There is one report, in which L. brevis and L 
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salivarius species were used as probiotic tablets against a single G. vaginalis strain, being 

considered good probiotic candidates (38). Since there are numerous G. vaginalis strains co-

existing in the vaginal epithelium and their pathogenicity is also different (39), an extensive 

analysis of each lactobacilli probiotic activity against a broad and well-known G. vaginalis 

collection (as in the current study) is useful.   

 Moreover, SH40I and SH103E vaginal isolates were able to match the probiotic 

activity shown by the lactobacilli strains from culture collection and therefore they could be 

also applied for BV prevention or treatment as adjuvants. So, further studies are required to 

identify these lactobacilli strains. It is also important to note that none of the probiotic 

lactobacilli strains from the culture collection was isolated from vaginal microflora, 

suggesting that lactobacilli strains from other sources rather than vaginal epithelium could be 

better BV probiotic candidates, as advised by Mastromarino et al. (38). Finally, CLSM 

analysis confirmed the probiotic effect of L. rhamnosus ATCC 7469 and L. ruminis ATCC 

27781 biosurfactants on G. vaginalis 101 and SH222C2 biofilms, by diminishing the 

maximum thickness and structure of the 48 h biofilm formation when compared to the 

biofilm control. While we only used two strains for the biofilm studies, this suggests that all 

the probiotic lactobacilli could be good candidates in preventing biofilm formation in BV. An 

important pitfall of this study lays on the fact that we did not test the ability of the selected 

probiotics to kill bacteria from a previously formed biofilm. Further studies will be required 

to test this hypothesis, since a prophylactic approach will be limited to risk pregnancies, as it 

would not be feasible to administrate the probiotics to the general female population.  
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 6.5 Conclusions  

 In summary, our study identified 6 lactobacilli strains as good candidates for BV 

prevention or treatment as adjuvants. We characterized their activities against a large group 

of G. vaginalis strains, inferring a clinical significance.  

 In addition, we selected 2 vaginal lactobacilli isolates with similar probiotic activities 

as the ones observed for lactobacilli strains from the culture collection against the tested G. 

vaginalis strains. Finally, CLSM analysis also demonstrated the ability of L. rhamnosus 

ATCC 7469 and L. ruminis ATCC 27781 extracellular biosurfactants to inhibit G. vaginalis 

biofilm formation, suggesting their probiotic potential against BV biofilms.    
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 6.7 Supplementary material 

Table S6.1 Probiotic screening results from intracellular surfactants of our lactobacilli strains 
collection used against G. vaginalis strains.   

Lactobacilli species Code 
Number of G. vaginalis strains inhibited 

9 8 7 6 5 4 3 2 1 0 

L. pentosus CECT 4023 L1                   XX 

L. casei CECT 5275 L2                   XX 

L. rhamnosus CECT 288 L3                   XX 
L. coryniformis subsp torquens 
CECT 4129 L4                   XX 

L. paracasei CECT 227 L5                   XX 

L. acidophilus ATCC 4356 L6                   XX 

L. agilis CCUG 31450 L7       X X         

L. animalis ATCC 35046 L8                 XX 

L. bifermentans ATCC 35409 L9               X   X 

L. brevis ATCC 14869 L10   XX               

L. buchneri ATCC 4005 L11       XX         
L. cellobiosus/L. fermentum ATCC 
11739 L12                   XX 

L. crispatus ATCC 33820 L13                   XX 
L. curvatus subsp curvatus ATCC 
25601 L14         X     X   
L. delbrueckii subsp delbrueckii 
ATCC 9649 L15       XX         
L. delbrueckii subsp lactis ATCC 
12315 L16       X X         

L. fasciminis DSM 20182 L17             X X     

L. fructivorans ATCC 8288 L18                 XX 

L. gallinarum CCUG 31412 L19               X   X 

L. gasseri ATCC 9857 L20               X     

L. graminis DSM 20719 L21     X           X   

L. hamsteri ATCC 43851T L22         X       X   

L. helveticus ATCC 15009 L23               X X   

L. hilgardii NCFB 962 L24               X X   

L. instestinalis ATCC 49335 L25               X   X 

L. johnsonii ATCC 11506 L26             XX     

L. murinus ATCC 35020 L27           X     X   

L. parabuchneri ATCC 12936 L28   XX               
L. paracasei subsp paracasei 
CCUG 27320 L29   XX             

L. plantarum NCIMB8827 L30         X         X 

L. reuteri NCFB2656 L31         X         X 

L. rhamnosus ATCC 7469 L32     XX             
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Table S6.1 Probiotic screening results from intracellular surfactants of our lactobacilli strains collection 
used against G. vaginalis strains. (Continuation) 

Lactobacilli species Code 
Number of G. vaginalis strains inhibited 

9 8 7 6 5 4 3 2 1 0 

L. ruminis ATCC 27781 L33       XX           
L. sakei subsp carnosus CCUG 
8045 L34       X X           

L. salivarius DEVRIESE94/438 L35       XX            

Vaginal isolate SH29A                 XX 

Vaginal isolate SH29B                   XX 

Vaginal isolate SH23J                   XX 

Vaginal isolate SH23D                   XX 

Vaginal isolate SH40B                   XX 

Vaginal isolate SH40I                 XX 

Vaginal isolate SH81L                   XX 

Vaginal isolate SH81B                   XX 

Vaginal isolate SH81E       X           X 

Vaginal isolate SH81H     XX               

Vaginal isolate SH81M               XX     

Vaginal isolate SH85A2                 X X 

Vaginal isolate SH85B       XX             

Vaginal isolate SH85C             XX       

Vaginal isolate SH103E               XX 

Vaginal isolate SH103G1.1                   XX 

Vaginal isolate SH103B     X       X       

Vaginal isolate SH174A             X   X   

Vaginal isolate SH174E1             X X     

Vaginal isolate SH177E                   XX 

Vaginal isolate SH213A2                 XX 

Vaginal isolate SH213D                 XX 

Vaginal isolate SH212H    XX         

Vaginal isolate SH212E   XX         

Vaginal isolate SH65A       X     X       

Vaginal isolate SH65G           X   X     

Vaginal isolate SH65K       XX           

Vaginal isolate SH65D1       XX             

Vaginal isolate SH65B       X     X       

Vaginal isolate SH79S     X       X       

Vaginal isolate SH130A         X X         

Vaginal isolate SH130D     X       X       

Vaginal isolate SH130H         X     X     

Vaginal isolate SH130I1           X X       

Vaginal isolate SH196B       XX             
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Table S6.1 Probiotic screening results from intracellular surfactants of our lactobacilli strains collection 
used against G. vaginalis strains. (Continuation) 

Lactobacilli species Code 
Number of G. vaginalis strains inhibited 

9 8 7 6 5 4 3 2 1 0 

Vaginal isolate SH196F         X         X 

Vaginal isolate SH196N     XX               

Vaginal isolate SH199H       X     X       

Vaginal isolate SH199A     X     X         

Vaginal isolate SH199K X           X       

Vaginal isolate SH218A   X X               

Vaginal isolate SH218B   X   X             

Vaginal isolate SH218M       X         X   

Vaginal isolate MM13K3.3 X   X               

Vaginal isolate MM14L1     X X             

Vaginal isolate MM1401.2     X   X           

Vaginal isolate MM15I1 X X                 

Vaginal isolate MM15I2   X         X       

Vaginal isolate MM15Q     X X             

Vaginal isolate MM17H     XX               

Vaginal isolate SH222G2     XX               
The probiotic screening of the lactobacilli intracellular biosurfactants were tested in duplicate for each G. 
vaginalis strain. The number of G. vaginalis inhibited was counted for each probiotic screening assay with the 
symbol X in the respective column number. The table shows the qualitative results obtained in probiotic 
screening assays. 
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Table S6.2 Probiotic screening results from extracellular surfactants of our lactobacilli strains 
collection used against G. vaginalis strains.  

Lactobacilli species Code 
Number of G. vaginalis strains inhibited 

9 8 7 6 5 4 3 2 1 0 

L. pentosus CECT 4023 L1             XX       

L. casei CECT 5275 L2           XX         

L. rhamnosus CECT 288 L3       XX             
L. coryniformis subsp torquens 
CECT 4129 L4         XX           

L. paracasei CECT 227 L5       XX             

L. acidophilus ATCC 4356 L6               X     

L. agilis CCUG 31450 L7     XX               

L. animalis ATCC 35046 L8                   XX 

L. bifermentans ATCC 35409 L9           XX         

L. brevis ATCC 14869 L10 X X                 

L. buchneri ATCC 4005 L11       XX             
L. cellobiosus/L. fermentum ATCC 
11739 L12         XX           

L. crispatus ATCC 33820 L13     XX               
L. curvatus subsp curvatus ATCC 
25601 L14       XX             
L. delbrueckii subsp delbrueckii 
ATCC 9649 L15   XX                 
L. delbrueckii subsp lactis ATCC 
12315 L16         XX           

L. fasciminis  DSM 20182 L17         XX           

L. fructivorans ATCC 8288 L18                     

L. gallinarum CCUG 31412 L19       XX             

L. gasseri ATCC 9857 L20   XX                 

L. graminis DSM 20719 L21       XX             

L. hamsteri ATCC 43851T L22     XX               

L. helveticus ATCC 15009 L23     XX               

L. hilgardii NCFB 962 L24       XX             

L. instestinalis ATCC 49335 L25       XX             

L. johnsonii ATCC 11506 L26     XX               

L. murinus ATCC 35020 L27         XX           

L. parabuchneri ATCC 12936 L28               XX     
L. paracasei subsp paracasei 
CCUG 27320 L29 X             X     

L. plantarum NCIMB8827 L30       XX             

L. reuteri NCFB2656 L31         XX           

L. rhamnosus ATCC 7469 L32 XX                   

L. ruminis ATCC 27781 L33 XX                   
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Table S6.2 Probiotic screening results from extracellular surfactants of our lactobacilli strains collection 
used against G. vaginalis strains. (Continuation) 

Lactobacilli species Code 
Number of G. vaginalis strains inhibited 

9 8 7 6 5 4 3 2 1 0 
L. sakei subsp carnosus CCUG 
8045 L34   X X               

L. salivarius DEVRIESE94/438 L35 X X                 

Vaginal isolate SH29A       X     X       

Vaginal isolate SH29B             X       

Vaginal isolate SH23J                 X   

Vaginal isolate SH23D       X             

Vaginal isolate SH40B         X           

Vaginal isolate SH40I     X       X       

Vaginal isolate SH81L           X         

Vaginal isolate SH81B           X         

Vaginal isolate SH81E               X     

Vaginal isolate SH81H               X     

Vaginal isolate SH81M         X           

Vaginal isolate SH85A2             X       

Vaginal isolate SH85B             X       

Vaginal isolate SH85C           X         

Vaginal isolate SH103E       X     X       

Vaginal isolate SH103G1.1             XX       

Vaginal isolate SH103B             XX       

Vaginal isolate SH174A     XX               

Vaginal isolate SH174E1       XX             

Vaginal isolate SH177E         XX           

Vaginal isolate SH213A2         XX           

Vaginal isolate SH213D       XX             

Vaginal isolate SH212H       X   X         

Vaginal isolate SH212E       X     X       

Vaginal isolate SH65A       XX             

Vaginal isolate SH65G   X X               

Vaginal isolate SH65K           XX         

Vaginal isolate SH65D1     X X             

Vaginal isolate SH65B         X       X   

Vaginal isolate SH79S       XX             

Vaginal isolate SH130A             X       

Vaginal isolate SH130D     XX               

Vaginal isolate SH130H         XX           

Vaginal isolate SH130I1         XX           

Vaginal isolate SH196B           XX         

Vaginal isolate SH196F       X       X     
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Table S6.2 Probiotic screening results from extracellular surfactants of our lactobacilli strains collection 
used against G. vaginalis strains. (Continuation) 

Lactobacilli species Code 
Number of G. vaginalis strains inhibited 

9 8 7 6 5 4 3 2 1 0 

Vaginal isolate SH196N             XX       

Vaginal isolate SH199H         XX           

Vaginal isolate SH199A         XX           

Vaginal isolate SH199K         XX           

Vaginal isolate SH218A         XX           

Vaginal isolate SH218B       XX             

Vaginal isolate SH218M           XX         

Vaginal isolate MM13K3.3             XX       

Vaginal isolate MM14L1               XX     

Vaginal isolate MM1401.2           XX         

Vaginal isolate MM15I1       XX             

Vaginal isolate MM15I2       XX             

Vaginal isolate MM15Q           XX         

Vaginal isolate MM17H       XX             

Vaginal isolate SH222G2       XX             
The probiotic screening of the lactobacilli extracellular biosurfactants were tested in duplicate for each G. 
vaginalis strain. The number of G. vaginalis inhibited was counted for each probiotic screening assay with the 
symbol X in the respective column number. The table shows the qualitative results obtained in probiotic 
screening assays. 
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 7.1 Concluding remarks 

 This thesis intended to answer several key points related to the BV etiology, the 

effectiveness of BV diagnostic and the most adequate treatment. Nowadays, BV diagnostic 

methodologies are unable to detect the early stages of BV development and therefore therapy 

is usually applied in the later clinical stages of the infection. The consequences include a 

delay in the healthy recovery of the patient vaginal microflora. Aiming to improve BV 

diagnostic, we developed the first Peptide Nucleic Acid (PNA) Fluorescence In Situ 

Hybridization (FISH) methodology to increase the specificity and sensitivity of the detection 

of Lactobacillus spp. and G. vaginalis strains in vaginal samples. We were able to achieve a 

rapid identification (approximately 3 hours) of these key bacteria involved in BV 

establishment. In this methodology, the specificity and sensitivity of the designed PNA 

probes were found to be over 98.0% for Lactobacillus spp.; and 100% for G. vaginalis.  

Afterwards, we validated this methodology through a prospective study using a collection of 

vaginal samples from Portuguese women. This study allowed the validation of the PNA-

FISH as a BV diagnostic technique, as well as its comparison with the standard BV 

diagnostic method. This methodology showed a sensitivity of 66.7% and a specificity of 

94.2%, thus demonstrating its higher specificity and showing false positive results in BV 

diagnosis commonly obtained by the classical methods.  

 Although G. vaginalis has been postulated to be the main early colonizer in BV, 

studies demonstrating this assumption were scarce. Therefore, using our recently developed 

PNA-FISH methodology, we quantified the initial adhesion of G. vaginalis and other BV-

associated bacteria (A. vaginae, M. mulieris, P. bivia and F. nucleatum) in the presence of 

two vaginal lactobacilli (L. crispatus and L. iners) through competitive and 

displacement/blockage assays into human epithelial cells. Our study proved that G. vaginalis 

has indeed the greatest capacity from all BV-associated anaerobes tested for initial adhesion 

to epithelial cells. Although L. crispatus and L. iners differ greatly in their capacity to protect 

the health of the vagina and its microbiome, G. vaginalis sustained its high initial adhesion 

ability in the presence of both lactobacilli strains.  The results gathered in this study support 
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the idea that G. vaginalis could be an early colonizer in BV, later allowing other bacteria to 

grow and colonize vaginal epithelium. To test this last hypothesis, we next quantified the 

growth of dual species biofilms with G. vaginalis and other BV-associated anaerobes (A. 

vaginae, M. mulieris, P. bivia and F. nucleatum) using the quantitative Polymerase Chain 

Reaction technique. Interestingly, we found that, regardless of the species, G. vaginalis 

biofilm growth was promoted by the presence of additional species (around ≈3 fold increase). 

On the other hand, G. vaginalis biofilms enhanced the growth of P. bivia (≈4 fold increase) 

and to a minor extent of F. nucleatum (≈2 fold increase). Thus, this study contributed to our 

understanding of BV biofilm formation, suggesting G. vaginalis as a key role in the early 

establishment of BV biofilms. 

 Finally, we performed a study to evaluate the probiotic potential of intra- and 

extracellular biosurfactants from lactobacilli strains against several G. vaginalis strains. 

Although the intracellular biosurfactants were unable to reduce G. vaginalis proliferation, the 

extracellular biosurfactants candidates showed a significant effect on G. vaginalis growth and 

biofilm formation. To conclude, through Confocal Laser Scanning Microscopy analysis, we 

confirmed the ability of certain extracellular biosurfactants to reduce G. vaginalis biofilm 

formation, suggesting their probiotic potential against BV biofilms. Accordingly, we were 

able to select 2 vaginal isolates and 4 lactobacilli strains from a culture collection capable to 

inhibit a wide range of G. vaginalis strains, thus illustrating an efficient probiotic activity. 
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 7.2 Future work 

 The results gathered in this thesis provided interesting insights on the role of G. vaginalis 

in BV but also raised some questions that should be addressed in future research work.  

 Initially, when we tested our novel PNA-based methodology for the improved diagnosis 

of BV, we only included 91 vaginal swabs. Further studies including a larger number of samples 

should be conducted, in order to better characterize the difference in accuracy between the 

traditional method of Gram staining and Nugent scoring, compared with our PNA-FISH 

methodology. 

 All BV-associated anaerobes tested were found to enhance biofilm formation by G. 

vaginalis, but we also found that G. vaginalis biofilms enhanced the growth of P. bivia and F. 

nucleatum. However, expression of key genes should be determined to better understand the 

phenotypic shift from planktonic to biofilm, when grown in mono-culture versus multi-species 

culture containing other BV-associated anaerobes. This study would provide new insights into 

the ability of each individual BV-associated anaerobe to interact with G. vaginalis. 

 In our last study, the intracellular lactobacilli biosurfactants did not effectively inhibit G. 

vaginalis growth, despite the positive results obtained in the screening by an agar spot test. These 

negative results could be associated with the methodology used to recover the intracellular 

biosurfactants and its eventual low extraction efficiency. Further study of the intracellular 

lactobacilli biosurfactants and testing of other extraction methodologies to improve the 

efficiency of recovery would be worthwhile and necessary to draw more conclusive remarks 

about their effects on growth of G. vaginalis. 

 Finally, the probiotic products identification of the selected extracellular biosurfactants 

and its molecular characterization should be performed to guarantee the lactobacilli candidates’ 

suitability for an alternative BV treatment. 
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