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With an overall budget of around 70,000 million € for the next seven years (2014–2020) the EU Frame-
work Programme for research and Innovation-Horizon 2020 constitutes the most important financial
instrument for research and innovation in the world. Sustainable development is of paramount signifi-
cance for Horizon 2020 through climate action and resource efficiency, which will represent at least
60% of the overall budget. This sustainability focus could have a strong impact on the future of the Euro-
pean construction industry and also being an opportunity for the development and commercialization of
eco-efficient construction and building materials. This article addresses the case of materials for energy
efficiency and materials capable of reusing a high waste content. Nanotech energy efficiency related
building materials has the potential to become a hot research area being promoted and funded as a
Key Enabling Technology-KET.
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1. Introduction

The program Horizon 2020 is part of the Europe 2020 strategy
to promote smart, sustainable and inclusive growth [1]. The Hori-
zon 2020 was originally designed by the European Commission in
November of 2011 [2] with a € 80,000 million overall budget.
However, a ‘‘trilogue’’ agreement was reached only in 25 of June
of 2013 (including a cut of € 10,000 million) by the representa-
tives of the Council, the Commission and the Parliament. Horizon
2020 constitutes the most important financial instrument for re-
search and innovation in the world and is expected that to jump
start the creation of up to 50,000 new jobs in research and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.conbuildmat.2013.10.058&domain=pdf
http://dx.doi.org/10.1016/j.conbuildmat.2013.10.058
mailto:torgal@civil.uminho.pt
mailto:f.pachecotorgal@gmail.com
http://dx.doi.org/10.1016/j.conbuildmat.2013.10.058
http://www.sciencedirect.com/science/journal/09500618
http://www.elsevier.com/locate/conbuildmat


Fig. 2. Percentage division under the initial budget proposal of Horizon 2020.
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innovation. However, it is important to mention that even though
this program attributes more 14,400 million € than the previous
Seventh Framework Programme (FP7), the first and second years
of Horizon 2020 will have a lower budget than the last year
of FP7 (Fig. 1). Horizon 2020 will consist of three main parts, or
pillars:

(1) Excellent science. This will support the best ideas and the
most talented and creative individuals. It will provide access
to world-class research infrastructures (including e-infra-
structures) allowing Europe to attract the best researchers
in the world. This area includes the European Research
Council–ERC with a 17% share of the overall budget, emerg-
ing technologies, Marie Curie actions and research infra-
structures. It is important to mention that the bet on
excellent science is a consequence of the 1994 debate on
the ‘‘European paradox’’ [4,5] related to the fact that for
many years the high scientific production in Europe was
unable to bring innovation, growth and jobs.

(2) Industrial leadership. This part is aimed at maximizing the
growth potential of European SMÉs so they may become
world leading companies. It will provide major investments
in industrial technologies, innovation in SMEs and access to
risk finance. It also includes leadership in Key Enabling
Technologies (KETs).

(3) Societal challenges. This pillar addresses major concerns
shared by citizens in Europe and elsewhere covering the
following challenges:

� Health, demographic change and wellbeing.
� Food security, sustainable agriculture, marine and maritime

research.
� Bio-economy.
� Secure, clean and efficient energy.
� Smart, green and integrated transport.
� Climate action, resource efficiency and raw materials.
� Inclusive, innovative and secure societies.

The overall budget of Horizon 2020 also includes the funding of
the European Institute of technology (EIT). The EIT budget will in-
crease from 309 million € (0.6% of FP7) to 2500 million € represent-
ing around 3.3% of Horizon 2020. The funding of the Joint Centre of
Research (JCR) and the EUROATOM is also included. Fig. 2 shows
the percentage division under the initial budget proposal. How-
ever, the 2013 June ‘‘trilogue’’agreement reduced the societal chal-
lenges percentage to 38% and increased the excellent science
percentage to 37%. Meanwhile, KETs are to receive € 6663 million.
Horizon 2020 dedicates a special attention to sustainable develop-
ment, trough climate action and resource efficiency that will repre-
sent at least 60% of the overall budget. It is expected that around
Fig. 1. Annual funding comparison be
35% of the Horizon 2020 budget will be climate related
expenditure.

2. The future of the construction industry under the Horizon
2020

This is a major European industry, representing 9.1% of the EU-
27 GDP, 30.2% of the EU-27 industrial employment and having a €

82,300 million annual turnover [6]. Unfortunately this industry
tends to lag behind other industries in terms of taking advantage
of new technologies and innovative practices [7]. Hopefully the
sustainability concerns of Horizon 2020 (resource efficiency and
climate action) will have a strong impact on the future of the Euro-
pean construction industry. Indeed, the influence of resource effi-
ciency on building sector is clearly expressed by the milestone
below included in the COM 571 [8]:

‘‘By 2020 the renovation and construction of buildings and infra-
structure will be made to high resource efficiency levels. The Life-
cycle approach will be widely applied; all new buildings will be
nearly zero-energy and highly material efficient and policies for
renovating the existing building stock will be in place so that it is
cost-efficiently refurbished at a rate of 2% per year. 70% of non-
hazardous construction and demolition waste will be recycled’’.

Concerning climate action, it can be anticipated that it will
determine the future actions on the construction sector. In fact,
current and future infrastructures will need to be adapted to nat-
ural disasters including floods, windstorms, droughts, fires, heat
and cold waves, sea level rise and even landslides. Fig. 3 shows
some of the impacts of climate change and the threats they pose
in the coming decades. The rapid increase of river floods and
excessive hot days for the next decades is very worrying. That
is why the words of the European Commissioner for Climate
Action, Connie Hedegaard, on the launch of the EU Strategy on
tween FP7 and Horizon 2020 [3].
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Adaptation to Climate Change in Brussels, in 29 April of 2013
make a lot of sense: ‘‘Investing now in adaptation will save lives
and much greater costs later!’’. This means that the overall objec-
tive of the EU strategy on adaptation to climate change is to con-
tribute to a more climate-resilient Europe. According to the COM
216 [10] ‘‘the minimum cost of not adapting to climate change in the
EU is estimated to range from € 100 billion a year in 2020 to €

250 billion in 2050’’. The social cost of climate change can also
be significant. Taking no further adaptation measures could mean
an additional 26,000 deaths/year from heat waves (and their syn-
ergic effects with air pollution) by the 2020s, rising to 89,000
Fig. 3. Projected impacts of climate change and associated threats: above prediction for
nights and hot days [9].
deaths/year by the 2050s and 127,000 deaths/year by the
2080s. It is worth to mention that the consequences due to heat
waves prediction do not take into account the effect associated
with heat islands in urban environments, where 70% of the Euro-
pean population lives. This means this aspect in particular de-
serves an appropriate response. The future of the European
construction industry under Horizon 2020 will therefore involve
the adaptation of current and future infrastructure towards cli-
mate-resilience. The document SWD 137 [11] details some mea-
sures for adapting several infrastructure types to climate
change. Concerning the construction sector they are as follows:
river flood; below prediction for the increase in the number of combined tropical
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(1) Extreme precipitation, which can be expected European
wide, e.g. leading to water intrusion, damage to foundations
and basements, destruction of buildings and infrastructure,
overflowing sewers, land- and mud-slides, flooding, etc.

(2) Extreme summer heat events, especially but not only in
South Europe, e.g. leading to material fatigue and acceler-
ated aging, decreased comfort and potentially severe health
implications, high energy use for cooling, et cetera.

(3) Exposure of constructions to heavy snowfall.
(4) Rising sea levels that increase the risk of flooding. In addi-

tion, soil subsidence risks 25 are likely to increase, depend-
ing on the stability of building structures and their
foundations.

Giordano [12] points out that many existing and planned infra-
structures (Table 1) will still be in use by 2030 or 2050 when cli-
mate change might have far more substantial impacts than
today. Besides, since vulnerability to natural disasters is one of
the world biggest problems [13] and as, according to OECD [14],
global infrastructure needs are huge, and also being that improving
the world’s infrastructure will require an estimated USD 2 trillion/
year (other authors [15] mention 6, 7 trillion/year) this means that
the European construction industry can use Horizon opportunities
in order to become world competitive in the climate-resilient area.
It is worth to mention that the opportunities for adapting
infrastructures to the impact of climate change are already being
pursued by the UK [16] as the Secretary of State for Environment,
Food and Rural Affairs, recognizes ‘‘UK leading infrastructure opera-
tors. . .can capitalise on global adaptation. . .to gain a competitive edge
in. . .world markets’’. This, of course, is based on the assumption that
enough civil engineers exist, and more importantly, they have the
appropriate skills. Unfortunately it seems that this is hardly the
case because in the last decade several authors reported a severe
reduction on undergraduate applications to civil engineering
[17–19]. Hopefully academia will help the construction industry
on this matter by seizing Horizon 2020 opportunities and climate
resilience infrastructure needs to refresh and update civil engi-
neering courses in order to tackle the reduction in the enrollment
ratio in this sector.
3. Eco-efficient construction and building materials research

Under the sustainable development concerns of Horizon 2020
some construction and building materials research lines will merit
a special attention. These areas include the following:
Table 1
Long lived infrastructure and their vulnerability to climate change [12].

Sectors Time scale (years) Exposure

Economic and social buildings >20 +
(e.g. factories, schools, hospitals)
Water infrastructures (e.g. dams, 20–300 +++
reservoirs, distribution networks)
Land-use planning (e.g. in flood >100 +++
plain or coastal areas)
Coastline and flood defenses >50 +++
(e.g. dikes, sea walls)
Buildings (e.g. insulation, windows) 30–150 ++
Transportation infrastructure 30–200 +
(e.g. port, bridges, roads,
railways, train stations)
Urban forms (e.g. urban >100 +
density, parks)
Energy production and 20–70 +
transportation (e.g. power
plants, cooling system,
distribution network)
3.1. Materials for energy efficiency

In Europe buildings are responsible for more than 40% of the en-
ergy consumption and greenhouse gas emissions [20] thus increas-
ing building energy efficiency is crucial for the transformation of
the UE energetic framework [21]. Energy efficiency is the most cost
effective way to reduce emissions, improve competitiveness and
create employment. COM 815 [22] mentions that the Union’s en-
ergy efficiency target of saving 20% of energy by 2020 could cut
consumers’ bills by up to €1000 per household a year and improv-
ing Europe’s industrial competitiveness and creating up to 2 mil-
lion new jobs by 2020. In spite of that the EU recognizes that
‘‘The quality of National Energy Efficiency Action Plans, developed
by Member States since 2008, is disappointing, leaving vast poten-
tial untapped’’ [23]. The European Energy Performance of Buildings
Directive 2002/91/EC (EPBD) has been recast in the form of the
2010/31/ EU by the European Parliament on 19 May 2010 [24].
One of the new aspects of the EPBD is the introduction of the con-
cept of nearly zero-energy building (NZEB). This represents an
ambitious target that must be multidisciplinary approached [25].
Of all the new aspects set out by the new directive this one seems
to be the one with most difficult enforcement by Member states.
The article 9 of the European Directive establishes that, by the
31st of December of 2020, all new constructions have to be nearly
zero-energy buildings; for public buildings, the deadline is even
sooner – the end of 2018. This very ambitious target would be
more easily fulfilled if eco-efficient thermal insulators are to be
used.

3.1.1. Eco-efficient thermal insulators
The use of thermal insulation materials constitutes the most

effective way of reducing heat losses in buildings thus reducing
heat energy needs. These materials have a thermal conductivity
factor, k (W/m K) lower than 0.065 and a thermal resistance higher
than 0.30 (m2 K)/W. Traditional thermal insulation materials in-
clude the following ones:

� Expanded polystyrene.
� Mineral wool.
� Extruded polystyrene.
� Expanded chipboard cork.
� Rigid foam of poly-isocyanurate or polyurethane.

With the exception of expanded cork, which is based on a
renewable and completely recyclable material, all the other insula-
tion materials are associated with negative impacts in terms of
toxicity. Polystyrene, for example contains anti-oxidant additives
and ignition retardants, additionally, its production envolves the
generation of benzene and chlorofluorocarbons. On the other hand,
polyurethane is obtained from isocyanates, which are widely
known for their tragic association with the Bhopal disaster [26].
Besides, it releases toxic fumes when subjected to fire [26,27]. In
recent years some investigations have focused on thermal insula-
tion materials based on natural materials like hemp fibres [28].
Although thermal insulation materials based on flax and hemp fi-
bres show high insulation performance, these fibres are less cost-
effective than glass or mineral fibres [29]. Still natural insulation
materials require low manufacture energy and they can be easily
disposed of at the end of their life cycle by composting or by recov-
ering their calorific value in a furnace [30]. These are all important
advantages that merit their use as insulation materials justifying
recent research efforts on this field [31–33]. Finally, the assess-
ment of the natural based insulation materials life cycle is of spe-
cial interest [34].

The need to reduce energy costs in buildings, meant that the
thickness of thermal insulation materials has grown over the years.
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In fact, in some countries of Northern Europe, it has almost dou-
bled (Fig. 4). The development of high performance thermal insu-
lator materials (with low thickness) has become a technical
challenge that the scientific community has had to deal with. At
first, the solution involved the development of panels containing
rare gases; however it soon became evident that their performance
was surpassed by vacuum insulation panels (VIPs) which provide a
thermal insulation almost ten times that of current thermal insula-
tion materials. VIPs consist of a core material (which is placed in-
side the vacuum panel) of much lower thickness for the same
thermal performance. Although the initial applications used poly-
styrene core, lately they have been replaced by fumed silica sub-
mitted to a compression of up to 200 kg/m3, a procedure that
causes the air pores to a pressure below the atmospheric pressure
[36]. Some disadvantages of VIPs are the fact that they cannot be
cut on-site, its fragility is associated with the risk of being easily
damaged, and also, the fact that its use can be associated to ther-
mal bridging effects [37,38].

3.1.2. Materials for mitigating building cooling needs
Building cooling needs have increased in an exponential trend

in the last two decades going from 6 TJ in 1990 to 160 TJ in 2010
[39]. According to Crawley, ‘‘the impact of climate change will result
in a shift from heating energy to cooling energy for buildings in tem-
perate climates’’ [40]. Other authors mention that depending on
the climate zone cooling loads are likely to increase by 50 to over
90% until the end of the century [41]. Since urban population will
increase in the next decades building cooling needs due to urban
heat island effect will also increase [42]. The synergistic effect be-
tween heat waves and air pollution causes worse outdoor air qual-
ity in the summer and will prevent natural ventilation thus
aggravating cooling needs. Therefore, it is important that new
eco-efficient materials and technologies are developed capable of
mitigating building cooling needs. Recent investigations on this
field include the following:

3.1.2.1. Reflective pavements. These pavements are mainly based on
the use of surfaces presenting a high albedo to solar radiation (al-
bedo is a dimensionless fraction and is measured on a scale from 0
to 1. An albedo of 0 means no reflecting power of a perfectly black
surface, an albedo of 1 means perfect reflection of a perfectly white
surface) combined with a high thermal emissivity [43]. Table 2
presents the description of the existing technological trends on
the field of reflective pavements.
Fig. 4. Evolution of insulation thickness
3.1.2.2. Permeable and water retentive pavements. These pavements
are designed to allow water to drain through into the sublayers
and down into the ground. They may include water holding fillers
to store water so the evaporation can help to decrease surface tem-
perature. These pavements are not meant for high-speed traffic.
Table 3 presents a description of the existing technological trends
on the field of permeable and water retentive pavements. Other
non-conventional permeable pavements include vegetated perme-
able pavements, such as grass pavers and concrete grid pavers, that
use plastic, metal, or concrete lattices for support and allow grass
or other vegetation to grow in the interstices [44].

3.1.2.3. Passive evaporative cooling walls. Evaporative cooling walls
constitute a passive cooling strategy to reduce temperature in ur-
ban surfaces that may involve sprinkling walls or roofs with water.
This requires a water supply, a pump and energy to maintain the
system operating for several hours. Recent investigations use walls
made with innovative porous ceramics with high water soaking-up
ability [45]. Some authors [46,47], however, mention that the hu-
mid output may raise some health related issues.

3.1.2.4. Heat absorbing phase change materials – PCMs. These mate-
rials use chemical bonds to store or release heat hence reducing
energy consumption. Depending on the air temperature PCMs
can change from solid to liquid or liquid to solid, absorbing or
releasing heat during the process. Therefore, they can absorb heat
inside buildings avoiding excessive heating and reducing cooling
needs. Early investigations used immersion processes and macro-
capsules to integrate PCMs. These approaches have different draw-
backs and so PCMs had no big market impact. Recent advances in
the technology of micro-encapsulation changed this situation [48].
PCM’s can be organic, paraffin based or non-paraffin based
(Table 4), they can also be inorganic like salt hydrate and metallics
(Table 5) or even inorganic eutectics when PCḾs are composed by
two or more components which freezes and melts in a congruent
manner (Table 6). There are several ways of using PCMs in con-
struction, including microcapsules, planar or cylindrical elements.
PCM in the microcapsules is wrapped in a polymer coating which
then is mixed to mortars used in walls and ceilings. A list of several
commercial PCMs (Table 7) recommended for building purposes
are presented by Tyagi and Buddhi [49]. Athienitis [50] mentioned
that the use of walls with PCMs allows for a reduction of 4 �C in the
daytime maximum room temperature. Within the frame of the
project MECLIDE (Structural Solutions with Special Materials for
applicable in roofs in Europe [35].



Table 2
Description of the existing technological trends on the field of reflective pavements [43].

No. Description of the
technology to increase
the Albedo

Technological details Type of
pavement

Final albedo
achieved

Thermal benefits

1. Use of white high
reflective paints on the
surface of the pavement

Use of 14 high reflectivity white paints placed
on the surface of concrete tiles

Concrete 0.80–0.90 Reduce of the daily surface temperature of a whitt
concrete pavement under hot summer conditions by
4 K and by 2 K during the night

High reflectivity white paints based on the use
of calcium hydroxide placed on the surface of
concrete tiles

Concrete 0.76 Reduce of the daily surface temperature under hot
summer conditions by 1–5 K and by 1 K during the
night compared to a same color concrete pavemen

2. Use of Infrared reflective
colored paints on the
surface of the pavement

Use of ten infrared reflective paints of different
color placed on the surface of concrete tiles

Concrete 0.27–0.70 Reduce of the daily surface temperature under hot
summer conditions by 2–10 K compared to a same
color concrete pavement

Use of a dark infrared reflective paint placed on
the surface of asphalt together with hollow
ceramic particles on the mass of the pavement

Asphalt 0.46 Reduce of the daily surface temperature by 5 K
compared to a same color concrete

Use of a dark infrared reflective paint placed on
surface of asphalt together with hollow ceramic
particles

Asphalt 0.50 Reduce of the daily surface temperature of the
pavement by 8–15 K and by 2 K during the night
compared to conventional asphalt

Five thin reflective layers of different colors
using infrared reflective pigments for asphaltic
pavements

Asphalt 0.27–0.55 Reduce of the daily surface temperature of the
pavement by 16–24 K and by 2 K during the night.
compared to conventional asphalt

3. Use of heat reflecting
paint to cover
aggregates of the
asphalt

Use of a reflecting paint to cover all aggregates
of the asphalt

Asphalt 0.46–0.57 Reduce of the daily surface temperature of the
pavement by 10.2–18.8 K, compared to conventional
asphalt

Use of a reflecting paint to cover the surface
aggregates of the asphalt

Asphalt 0.25–0.6 Reduce of the daily surface temperature of the
pavement by 6.8–20 K, compared to conventional
asphalt

4. Use of color changing
paints on the surface of
the pavement

Use of eleven thermochromic colors applied on
the surface of concrete pavements

Concrete Colored:
0.51–0.78
Colorless:
0.71–0.81

Reduce of the daily surface temperature of the
pavement by 5.4–10 K, compared to conventional
pavements

5. Use of fly ash and slag as
constituents of the
concrete

When 70% of slag is used as cement
replacement the mix presented an increased
albedo

Concrete 0.58 Not available

Table 3
Description of the existing technological trends on the field of permeable and water retentive pavements [43].

No. Description of the technology Type of
pavement

Thermal performance

1. Use of water holding fillers made of steel by products
as an additive to porous asphalt

Asphalt The average surface temperature of the water holding pavement was 0.6 K lower than
that of the infiltration porous asphalt bv

2. Use of fine blast-furnace powder in water retentive
asphalt

Asphalt Its surface temperature was 14 K lower that of a dense graded asphalt pavement

3. Use of fine texture pervious mortar as an additive to
pervious concrete

Concrete Data are not available

4. Use of bottom ash and peat moss as additives in
pervious concrete

Concrete It presents almost 18 K lower surface temperature than asphalt after a rainfall, while the
maximum surface temperature difference with the conventional porous pavement was
almost 9 K

5. Use of fly ash with very narrow particle size
distribution in bricks

Ceramic Decrease of the surface temperature by several degrees.

6. Use of industrial wastes as raw material for ceramic
tiles

Ceramic Its surface temperature was almost 10 K lower than that of the dry material and almost
25 K cooler than the surface temperature of conventional asphalt

Table 4
Organic substances suitable for PCM’s [49].

Compound Melting point (�C) Heat of fusion
(kJ/kg)

Butyl stearate 19 140
Paraffin C16–C18 20–22 152
Capric–lauric acid 21 143
Dimethyl sabacate 21 120
Polyglycol E600 22 127.2
Paraffin C13–C24 22–24 189
34% Mistiric acid + 66% capric acid 24 147.7
1-Dodecanol 26 200
Paraffin C18 (45–55%) 28 244
Vynil stearate 27–29 122
Capric acid 32 152.7
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Deferred Air Conditioning of Buildings) some weaknesses of exist-
ing PCM solutions for buildings were identified as well as the inno-
vative integration of PCM in the building structure [51]. Rodriguez-
Urbinas et al. [52] used PCM drywall panels in the retrofitting of a
building with low thermal mass showing that they are feasible for
reducing thermal peaks. Another application for PCMs regarding
the reduction of cooling needs relates to the free cooling of build-
ings. This is emerging passive way of building ventilation espe-
cially in the climatic conditions where the temperature
difference between day and night in summer is at least 15 �C. How-
ever, this technology is still far from a mature state [53,54].

3.1.2.5. Cool roofing materials. These materials are defined as hav-
ing high solar reflectance and high infrared emittance. They can
also be assessed by using the solar reflectance index (SRI). The



Table 5
Inorganic substances suitable for PCM’s [49].

Compound Melting point (�C) Heat of fusion (kJ/kg)

KF�4H2O 18.5 231
Mn(No3)2�6H2O 25.8 125.9
CaCl2�6H2O 29 190.8
LiNO3�3H2O 30 296
Na2SO4�10H2O 32 251

Table 6
Eutectics substances suitable for PCM’s [49].

Compound Melting point
(�C)

Heat of
fusion
(kJ/kg)

66.6% CaCl2�6H2O + 33.3% Mgcl2�6H2O 25 127
48% CaCl2 + 4.3% NaCl + 0.4% KCl + 47.3%

H2O
26.8 188

47% Ca(NO3)2�4H2O + 53% Mg(NO3)2�6H2O 30 136
60% Na(CH3COO)�3H2O + 40% CO(NH2)2 30 200.5

Table 7
Commercial PCM’s [49].

Designation Substance Melting point (�C) Heat of fusion (kJ/kg)

RT20 Paraffin 22 172
Climsel23 Salt hydrate 23 148
Climsel24 Salt hydrate 24 216
RT26 Paraffin 25 131
RT25 Paraffin 26 232
STL27 Salt hydrate 27 213
S27 Salt hydrate 27 207
RT30 Paraffin 28 206
RT27 Paraffin 28 179
TH29 Salt hydrate 29 188
Climsel32 Salt hydrate 31 212
RT32 Paraffin 32 130
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SRI has a value of zero (for the standard black surface) and of 100
(for the standard white surface) [55]. The development of coatings
with the objective of increasing solar reflectance of roofing materi-
als is reported by Levison et al. [56]. Other authors [57] mentioned
that the replacement of dark colored materials with materials of
the same color containing near infrared reflecting pigments also
reduces surface temperatures significantly. Synnefa et al. [58] de-
scribes the case of a school building in which the solar reflectance
of the roof has changed from 0.2 to 0.89 after application of a white
elastomeric cool coating. The thermal performance results shows
that the annual cooling energy load was reduced by 40% (although
a 10% heating penalty also has taken place). This is one of the most
common drawbacks for high reflectance cool roofing materials.
That is why the development of dynamic optical characteristics
are an important research line [55].
Fig. 5. Typical cross-section through a green roof [61].
3.1.2.6. Green façades and green roofs. Last but not the least, con-
cerns the case of green façades and roofs. Although not being an
innovative technique (first attempts to quantify energy benefits oc-
curred in the 60 s [59]) the greening of the building envelope by
using vegetation is a growing trend and some countries show a
remarkable acceptation of such ‘‘technology’’. For instance, Ger-
many has almost 100 million m2 of green roofs, and the state of
Singapore intends to target 0.75 ha of green roofs per 1000 inhab-
itants. Green façades can include all vertical greening systems
however some authors [60] use the term ‘‘green façades’’ only
when climbers attached directly to the building surface are used
while prefabricated and prevegetated systems (living wall sys-
tems), attached to walls are termed as ‘‘living wall systems’’. Green
roofs come in two forms, extensive and intensive. The former has
between 50 and 150 mm of growing medium to support plant life.
This fact limits the size of plants that can be used on the roof, thus
limiting the weight of the green roof on the building structure.
Generally foot traffic is not allowed on extensive green roofs. On
the other hand, intensive green roofs generally need from 150 to
1200 mm of growing medium to allow for larger vegetated species
and even trees [61]. Fig. 5 shows the typical cross-section through
a green roof. Extensive green roofs not only are relatively mainte-
nance free and capable of surviving in European climates but they
are also the preferred option for retrofitting onto existing buildings
as the structural capacity of the roof will often not have to be in-
creased. Besides they are especially beneficial for buildings with
poor insulated roofs [62,63]. Both green roofs [64,65] and green
façades [66,67] can contribute to the reduction of building cooling
needs. However, a higher cooling effectiveness takes place with
green roofs. Some studies [68] show that green roofs performance
depend on the water content for a good cooling performance (by
evapotranspiration) being that water from rainfall is not enough
(at least in the South of Europe). Ascione et al. [59] have analyzed
the economical performances of five green roofs for different Euro-
pean climates, stating that green roofs are not advantageous for
well-insulated buildings located in warm climates. These authors
also mention that the amount of required irrigation is a key node
in order to achieve benefits. The use of an artificial water irrigation
system may override the financial benefits of green roofs. However,
it is important to highlight that this analysis forgets the economical
advantages related to the mitigation of urban heat island effects or
even the reduction of urban pollution. Green building envelope is
particularly important because recent investigations show that
there is a strong correlation between the lack of green infrastruc-
tures in the urban environment and the increase of allergy related
health problems [69]. Besides green façades and green roofs merit
a special attention of the EU policy. In May 6 of 2013 the EU
adopted a new strategy for encouraging the use of green infrastruc-
ture [70]. By the end of 2013, the Commission will develop guid-
ance to show how green infrastructure can be integrated into the
implementation of these policies from 2014 to 2020, for several
areas, including adaptation to climate change.
3.1.3. The importance of materials with lower embodied energy
There is a limit beyond which no further reductions on energy

consumption can be achieved within the EPBD framework. There-
fore, the use of building materials with lower embodied energy be-
comes a priority area. The energy embodied in construction and
building materials (embodied energy) covers the energy consumed
during its service life. There are, however, different approaches to
this definition, namely: including the energy consumed from the
extraction of raw materials to the factory gate (cradle to gate),
from extraction to site works (cradle to site) or from extraction
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to the demolition and disposal (cradle to grave). Berge [71] consid-
ers as embodied energy only the energy needed to bring the mate-
rial or product to the factory gate (first case), and the transport
energy and the energy related to the work execution as being both
included in the construction phase of the building. According to
this author, the embodied energy represents 85–95% of the mate-
rial total energy (the remaining 5–15% being related to the con-
struction, maintenance and demolition of the building). As to the
third case, the embodied energy includes all energy consumption
phases from the production at the cradle. As to the transport en-
ergy, it depends on the mode of transport: sea, air, road or rail.
In recent decades the operational energy in buildings (lighting,
heating, cooling, etc.) was accepted as being the major contributor,
while the embodied energy was found to represent only a small
fraction (10–15%). Consequently much effort has been made to-
wards the reduction of operational energy by increasing the energy
efficiency of buildings. However, as operational energy is reduced,
the percentage of the embodied energy in the total energy con-
sumption of the buildings becomes increasingly prevalent. Thor-
mark [72] studied one of the lowest energy consumption
buildings in Sweden (45 kW h/m2) referring that the embodied en-
ergy for a lifetime of 50 years could represent almost 45% of the to-
tal energy. Some authors [73], recognized that energy savings by
means of more efficient thermal insulation (as well as increasing
renewable energy use) is an insufficient approach further suggest-
ing the inclusion of embodied energy as an important parameter
for sustainable construction. Szalay [74] even suggested that the
EPBD Recast could include requirements on embodied energy.
Unfortunately that was not the case. Instead the European strategy
decided to addresses the overall environmental impact of con-
struction and building materials (energy consumption included)
in the new Construction Products Regulation-CPR [75] which is
in effect since 1 July of 2013. Recently Pacheco-Torgal et al. [76]
studied a 97 apartment-type building (27,647 m2) located in Portu-
gal, concerning both embodied energy as well as operational en-
ergy. The results show that the embodied energy in reinforced
concrete (concrete plus steel) represents 70% of the total; there-
fore, high energy reductions can only occur by lowering the energy
in this material. The operational energy was found to signify an
average of 187.2 MJ/m2/yr and the embodied energy accounting
for approx. 2372 MJ/m2 and representing just 25.3% of the former.
If the buildings were in the AA + energy class, this would mean that
the embodied energy could be almost 4 times the operational en-
ergy for a service life of 50 years. A recent review by Cabeza et al.
[77] highlights the research efforts to develop new materials with
less embodied energy.

3.2. Materials capable of reusing a high waste content

The need to recycle at least 70% of non-hazardous construc-
tion and demolition waste by 2020 expressed in COM 571 [8]
was set by the Revised Waste Framework Directive 2008/98/EC
[78] and does not include naturally occurring material defined
in category 170504 (soil and stones not containing dangerous
substances) in the European Waste Catalogue’’. Eurostat esti-
mates the total for Europe to be 970 million tons/year, represent-
ing an average value of almost 2.0 ton/per capita [79]. As the
current average recycling rate of CDW for EU-27 is only 47%
increasing it by 70% in just a decade seems an ambitious goal,
further stressing the need for effective recycling methods [80].
Also important is the need for new and updated standards. For
instance the existent standards on the use of recycled aggregates
on high strength concrete limit its content to no more than 30%
in volume, although investigation results on this field already al-
low for much higher replacing rates [81]. Standardization is,
therefore a crucial step concerning the development of materials
for increasing waste content recycling [82]. The milestone related
to the recycling of other kinds of waste can be found in the
Roadmap to a Resource Efficient Europe [8]:

By 2020, waste is managed as a resource. Waste generated per
capita is in absolute decline. Recycling and re-use of waste are eco-
nomically attractive options for public and private actors due to
widespread separate collection and the development of functional
markets for secondary raw materials. More materials, including
materials having a significant impact on the environment and crit-
ical raw materials, are recycled. Waste legislation is fully imple-
mented. Illegal shipments of waste have been eradicated. Energy
recovery is limited to non recyclable materials, landfilling is virtu-
ally eliminated and high quality recycling is ensured.
Mining and quarrying wastes represent another worrying
waste (more than 700 million tons/year) that can be reused in
construction materials. Mineral waste can be defined as the ‘res-
idues, tailings or other non-valuable material produced after the
extraction and processing of material to form mineral products’
[83]. Not very long ago the failure cases of Aznalcollar mine in
Spain (1998) which affected 2656 ha of Donana Nature Park with
pyrite sludge and Baia Mare mine (2000) in Romania clearly
showed that in a short term and environmentally speaking mine
wastes represent a clear and present danger as important as cli-
mate change [84]. Although some investigations [85–87] re-
vealed a high potential of waste reuse new research efforts on
innovative construction materials capable of immobilizing
wastes with toxic substances are needed. The information
regarding hazardous substances is a crucial aspect in the new
Construction Products Regulation. CPR links this subject to the
(EC) No 1907/2006 (Registration, Evaluation, Authorization and
Restriction of Chemicals – REACH Regulation) [26]. Meanwhile,
a recent COST action termed NORM4 Building materials was ap-
proved in 15 May 2013. NORM4 Building materials intends to
stimulate research on the reuse of industrial residues containing
toxic agents. In the next years waste recycling will be more and
more challenging on the zero waste visionary scenario [88,89].
Further investigation is needed on the field of waste recycling
LCA [90,91]. Nevertheless, the feasibility of waste reusing de-
pends on the high demand of bulk materials like Portland ce-
ment concrete and, since the European consumption of this
material has stagnated (Fig. 6), this does not seem to be a very
hot area. Besides, reusing wastes is not on the core of the Hori-
zon 2020 like, for instance, KETs are. According to the COM 808
[2] KET’s are a key priority of Horizon 2020 in terms of their
contribution for growth and job creation.

4. A KET related to nanotech energy efficiency building
materials

KETs are knowledge and capital-intensive technologies associ-
ated with high research and development (R&D) intensity, rapid
and integrated innovation cycles, high capital expenditure and
highly-skilled employment. Their influence is pervasive, enabling
process, product and service innovation throughout the economy.
They are of systemic relevance, multidisciplinary and trans-secto-
rial, cutting across many technology areas with a trend towards
convergence, technology integration and the potential to induce
structural change’’ [93]. Horizon 2020 [2] mentions six KETs that
were choosen in 2009 by the European Commission: nanotechnol-
ogy, micro-nanoelectronics, advanced materials, photonics, indus-
trial biotechnology and advanced manufacturing systems. The gap
between basic knowledge generation and the subsequent commer-
cialization of this knowledge in marketable products, has been
commonly identified across the KETs and is known in broad terms



Fig. 6. Cement consumption per capita (kg) [92].
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as the ‘‘valley of death’’ issue. The crossing of the ‘‘valley of death’’
in the KETs can therefore be imagined as constructing a European
bridge comprising three following pillars (Fig. 7):

– The technological research pillar based on technological facili-
ties supported by research technology organization.

– The product development pillar based on pilot lines and demon-
strator supported by industria consortia.

– The competitive manufacturing pillar based on globally com-
petitive manufacturing facilities supported by anchor compa-
nies [93].

Nanotech energy efficiency building materials seem to fit on the
KETs definition because they constitute a key area for growth and
job creation. Weinberger et al. [94] compared several environmen-
tal technologies mentioning that the highest market potentials
were measured for technologies in building energy efficiency. Be-
sides a recent report [95] shows that the global market for energy
efficient building will go from 68 billion dollars in 2011 surpassing
100 billion dollars by 2017:
Fig. 7. The 3 Pillar Bridge to cro
Aerogel is a perfect example of a high performance thermal
insulation material and according to Jelle ‘‘may be the most promis-
ing with the highest potential of them all at the moment’’ [96].

Aerogel was was invented by Samual Kistler in 1932 [97] and
further developed by NASA in the 1950s and has been known as
‘‘solid smoke’’ (the lowest density solid known). It is composed
of air above 90% and silica nanoparticles having the lowest thermal
conductivity of any solid (around 0.01 W/mK). Aerogel insulation is
non-flammable, not carcinogenic [98] and does not release toxic
fumes during fire however, current cost of this product is in the
range of 25 €/m2 which is almost 10 times higher when compared
to conventional insulation material for the same thermal resistance
[99]. Since the majority of energy losses in a building occur
through windows the improvements of windows thermal perfor-
mance is crucial for building energy efficiency. Traditional double
glazed windows show a thermal transmittance around U = 3 W/
m2 K and the best commercial solution can go down to U = 1 W/
m2 K. Aeerogel based windows constitute very promising high tech
alternatives. Not only do they have a much lower mass (as much as
10 times lower [100]) but they also show a thermal transmittance
ss the valley of death [93].



Fig. 8. Simulated results of surface temperature on a sunny day (August 5) in the summer of Tokyo [103].
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of around 0.5 W/m2 K. This value can additionally be reduced even
further [101]. The eco-efficiency of aerogel windows still remains
to be proven by life cycle assessment investigations. Investigations
on the field of photo induced super-hydrophilicity show that for
walls with TiO2 coating water can form a very thin film (only
0.1 mm) thus meaning that just 200 ml/min can cover a 5 m2 wall
[102]. Some authors [103], developed a numerical model to simu-
late the thermal improvement of sprinkling water on the TiO2-
coated external building surfaces (Fig. 8) showing that the indoor
air temperature decreased by 2–4 �C and the daily building-cooling
load was reduced by 30–40%, as compared to a building without
water flow. Another high priority research line concerns the envel-
opment of colored and white cool materials incorporating the new
advanced nano-materials [55]. The development of nano-encapsu-
lated phase change materials for façades components is also
important [104] this research line was mentioned by the High level
group on KETs on the nanotechnology report [105]. Also crucial is
switchable glazing technology based materials. This refers to
‘materials and devices that make it possible to construct glazings
whose throughput of visible light and solar energy can be switched
to different levels depending on the application of a low DC voltage
(electrochromics) or on the temperature (thermochromics) or even
by using hydrogen (gasochromics). Electrochromic windows have
shown a 54% energy reduction in electrochromic windows when
compared to standard single glazed windows for a 25 years life cy-
cle [106]. Other authors [107] studied gasochromics windows
reporting a 34% reduction on cooling needs when compared to
standard double glazed windows. Several commercial solutions
are already available on the market (SAGE Electrochromics-USA,
Econtrol Glas, Saint Gobain Sekurit and Gesimat-Germany, Chro-
moGenics AB-Sweden, amongst others) with a service life of
30 years and capable of 100,000 switching cycles. However, it is
expected that in the next years, a higher performance and lower
cost switchable glazing windows will be available [108]. Some
authors [109,110] consider switchable windows a promising
technology on the recent concept of climate adaptive building
shells capable of operating in harmony with Nature. It is important
to stress that market for this products is predicted to increase from
current $ 84 million to $ 700 million by 2020 [111].
5. Conclusions

The program Horizon 2020 is part of the Europe 2020 strategy
to promote smart, sustainable and inclusive growth having a over-
all budget of around 70,000 million € for the next 7 years (2014–
2020). Horizon 2020 will consist of three main pillars. The first is
excellent science, the second is industrial leadership and the third
concerns societal challenges. Horizon 2020 dedicates a special
attention to sustainable development, through climate action and
resource efficiency that will represent at least 60% of the overall
budget. This could have a strong impact on the future of the Euro-
pean construction industry. Climate action will determine the fu-
ture actions on the construction sector because current and
future infrastructure will need to be adapted to natural disasters
including climate change events like floods, windstorms, droughts,
fires, heat and cold waves, sea level rise and even landslides. It is
noteworthy that the European construction industry can benefit
from Horizon opportunities in order to become world competitive
in the climate-resilient area. Under the sustainable development
focus of Horizon 2020 some construction and building materials
research lines will deserve a special attention. This include eco-
efficient thermal insulators, materials for mitigating building cool-
ing needs, materials with reduced embodied energy, materials
capable of reusing a high waste content and nanotech energy effi-
ciency building materials. Development of construction materials
capable of reusing a high waste content is an important research
line in order to fulfill the resource efficient Europe 2020 milestone
related to the management of waste as a resource. Nevertheless,
the feasibility of waste reusing depends on the demand of bulk
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materials like Portland cement concrete and, since its European
consumption has stagnated, this does not seem to be a very hot
area. Green building envelope is particularly important because re-
cent investigations show that there is a strong correlation between
the lack of green infrastructures in the urban environment and the
increase of allergy related health problems. Besides green façades
and green roofs merit a special attention of the EU policy. Nanotech
energy efficiency building materials seem to fit on the KETs defini-
tion because they constitutes a key area for growth and job crea-
tion. It also has the potential to become a hot research area
being promoted under the Key Enabling Technology-KET. Switch-
able nanotech materials merit a special interest because they relate
to a recent concept of climate adaptive building shells capable of
operating in harmony with Nature.
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