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Abstract. It is evident, that the properties of monogenic polynomials in (n + 1)−real variables significantly depend on
the generators e1,e2, . . . ,en of the underlying 2n-dimensional Clifford algebra Cℓ0,n over R and their interactions under
multiplication. The case of n = 3 is studied through the consideration of Pascal’s tetrahedron with hypercomplex entries
as special case of the general Pascal simplex for arbitrary n, which represents a useful geometric arrangement of all possible
products. The different layers Lk of Pascal’s tetrahedron (or pyramid) are built by ordered symmetric products contained in
the trinomial expansion of (e1 + e2 + e3)

k, k = 0,1, . . . .
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1. INTRODUCTION

The following formulae (2) and (3) are examples of the role that complex (imaginary) entries can play when used in
powers of binomials. Since we have

(1+ i)4l+1 = (1+ i)4l(1+ i) = (2i)2l(1+ i) = (−4)l(1+ i) l = 1,2, . . . , (1)

the binomial expansion of the left side of (1) implies immediately the validity of two binomial identities(
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after separation of the real and imaginary part.
Working in hypercomplex analysis with n different non-commutative imaginary units, the following general question

seems natural: What is changing in the ordinary n-dimensional arrangement of multinomial coefficients (Pascal’s
simplex) if the real entries are substituted by n imaginary units e1,e2, . . . ,en?

The fact that the structure of the layer in Pascal’s simplex rules the composition of a special set of Appell
polynomials in terms of hypercomplex variables was already mentioned in the paper [1]. Due to the relevance of
the answer for applications in Clifford analysis, we consider the set {e1,e2, . . . ,en} as being an orthonormal basis of
the Euclidean vector space Rn with a non-commutative product according to the multiplication rules

ekel + elek =−2δkl , k, l = 1, . . . ,n, (4)

where δkl is the Kronecker symbol. Then the set {eA : A ⊆ {1, . . . ,n}} with eA = eh1eh2 . . .ehr , 1 ≤ h1 < · · · <
hr ≤ n, e /0 = e0 = 1, forms a basis of the 2n-dimensional Clifford algebra Cℓ0,n over R. We embed Rn+1 in Cℓ0,n
by identifying (x0,x1, . . . ,xn) ∈ Rn+1 with x = x0 + x ∈ A := spanR{1,e1, . . . ,en} ⊂ Cℓ0,n. Here x0 = Sc(x) and
x = Vec(x) = e1x1 + · · ·+ enxn are the so-called scalar resp. vector part of the paravector x ∈ A . The conjugate of
x is given by x̄ = x0 −x and its norm by |x|= (xx̄)

1
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1
2 . Obviously, we can identify the case n = 1

with the complex algebra case by i := e1.



2. PASCAL’S TETRAHEDRON WITH HYPERCOMPLEX ENTRIES

As mentioned in the beginning, the consideration of an arbitrary value of n leads to an arrangement of multinomial
coefficients following the multinomial expansion theorem. But essential and non trivial effects of the non-commutative
multiplication can already be seen in the case of n = 3. The corresponding 3-simplex is the Pascal’s tetrahedron (see
[2]) with hypercomplex entries. The different layers Lk of it are built by the elements of the trinomial expansion of
(e1 +e2 +e3)

k, k = 0,1, . . . . As example, let us consider the case k = 3, i.e. the construction of the third layer L3. By
taking into account non-commutativity the expansion can explicitly be written in the following order:
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1
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+ e3
2 +(e2e2e3 + e2e3e2 + e3e2e2)+(e2e3e3 + e3e2e3 + e3e3e2)+ e3

3. (5)

This expansion corresponds to the case k = 3 in Pascal’s tetrahedron for real entries, given in the general form (cf.
[2])
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ak−mbm−scs, a,b,c ∈ R. (6)

The corresponding layer L3 written in ordered rows as arrangement of the different monomials corresponding to the
increasing row-index m1 has the form2:
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The differences between (e1 + e2 + e3)
3 and (a+ b+ c)3 are obvious and due to the non-commutativity of the

hypercomplex imaginary units we cannot obtain (5) by substituting a = e1, b = e2, c = e3 in (6). Nevertheless, it exists
a way to describe the trinomial expansion of (e1 + e2 + e3)

k formally in the same way as that of (a+b+ c)3. To do so
one has to use the following (cf. [3])

Definition 1 (Symmetric Product) Let V+,· be a commutative or non-commutative ring, ak ∈V, k = 1, . . . ,n, then the
“×”-product is defined by

a1 ×a2 ×·· ·×an =
1
n! ∑

π(s1,...,sn)

as1as2 . . .asn (7)

where the sum runs over all permutations of all (s1, . . . ,sn).

together with the

Convention: If the factor a j occurs µ j-times in (7), we briefly write

a1 ×·· ·×a1︸ ︷︷ ︸
µ1

×·· ·×an ×·· ·×an︸ ︷︷ ︸
µn

= a1
µ1 ×a2

µ2 ×·· ·×an
µn (8)

and set parentheses if the powers are understood in the ordinary way.

1 The index s is increasing in NW-SE diagonal direction, whereas (m− s) increases in NE-SW diagonal direction. Since
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all elements with the same corresponding index in this three directions are the same (symmetry property).

2 To be exact, Pascal’s tetrahedron includes only the trinomial coefficients
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)
. This is the case if a = b = c = 1.



Consequently, the multinomial theorem for entries of a commutative or non-commutative ring, V is obtained in the
same form as the ordinary multinomial theorem for real entries (cf. [3]).

Theorem 1 (General multinomial theorem) Using the symmetric product (1) together with the convention (8), the
powers of a sum of n different elements a1, . . .an of an arbitrary commutative or non-commutative ring V can be
expanded in the form

(a1 +a2 + · · ·+an)
k = ∑
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where, as usual,
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It follows straightforward that the trinomial expansion (5) can now be rewritten as
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From (4) it follows, for example, that the central element in the layer L3 of Pascal’s tetrahedron is given by(3
2

)(2
1

)
e1 × e2 × e3 = (e1[e2e3 + e3e2]+ e2[e1e3 + e3e1]+ e3[e1e2 + e2e1]) = 0 and the final form of L3 is

−e1

−e2 −e3

−e1 0 −e1

−e2 −e3 −e2 −e3

3. THE COMPLETE CHARACTERIZATION OF PASCAL’S HYPERCOMPLEX
TETRAHEDRON

For the complete characterization of Pascal’s tetrahedron built from hypercomplex entries for arbitrary values of k we
use the fact that (e1 + e2 + e3) is a paravector and therefore (e1 + e2 + e3)

2l = (−1)l(1+1+1)l , l = 0,1,2, . . . . This
means that in the case of even k (k = 2l) the Lk is filled with the multinomial numbers of (1+ 1+ 1)l multiplied
by (−1)l , but the rows, (NE-SW)- resp. (NW-SE)-diagonals with odd indices contain only zeros. For the case of
odd k (k = 2l + 1) we use the fact that (e1 + e2 + e3)

2l+1 = (−1)l(1+ 1+ 1)l(e1 + e2 + e3) which shows (without
any calculation of the concrete value of ek−m

1 × em−s
2 × es

3) that a layer of odd degree contains only real multiples of
the hypercomplex generators e1 or e2 or e3, with the exception of k = 1. Taking this into account we can prove the
following
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Then the entries E(k,m,s) of Pascal’s hypercomplex tetrahedron are given in the following form:

I. If k is even then
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II. If k is odd then

E(k,m,s) =



0, m even, s odd,

(−1)
k−1

2

(
k−1

2
m
2

)(
m
2
s
2

)
e1, m even, s even,

(−1)
k−1

2

(
k−1

2
m−1

2

)(
m−1

2
s−1

2

)
e3, m odd, s odd,

(−1)
k−1

2

(
k−1

2
m−1

2

)(
m−1

2
s
2

)
e2, m odd, s even.

Moreover, following the recurrence properties of Pascal’s tetrahedron with real entries (cf. [2]) it can be shown that
the numbers on every k−th layer are the sum of the three adjacent numbers in the (k− 1)−th layer (the layer above
the k−th layer in the tetrahedron), each one multiplied by e1 or e2 or e3, respectively, i. e. we have

E(k,m,s) = E(k−1,m−1,s−1)e3 +E(k−1,m−1,s)e2 +E(k−1,m,s)e1.

The following pictures try to illustrate Pascal’s tetrahedron as well as the mentioned recurrence relation for the case
k = 4.
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