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Abstract

In this paper we propose a version of
Newton method for finding zeros of
a quaternion function of a quaternion
variable, based on the concept of quater-
nion radial derivative. Several numeri-
cal examples involving elementary func-
tions are presented.

1 Introduction

Since 1928 R. Fueter, one of the founders of quaternion analysis ([1, 2]), tried to
develop a function theory to generalize the theory of holomorphic functions of
one complex variable, by considering quaternion valued functions of a quater-
nion variable. Nowadays, this well known and developed theory is recognized
as a powerful tool for modeling and solving problems in both theoretical and
applied mathematics. For a survey on quaternion analysis and a list of refer-
ences we refer to the book [3]; a historical perspective of the subject and several
applications can be found in [4].

In this work we revisit the classical Newton method for finding roots (or
zeros) of a complex function and propose a quaternion analogue, based on the
concept and properties of quaternion radially holomorphic functions. We show
that for a certain class of functions (including simple polynomials and other
elementary functions) this method produces the same sequence as the classical
Newton method for vector valued functions. In this way, we can obtain, with
less computational effort, local quadratic convergence for a class of quaternion
functions.
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http://dx.doi.org/10.1016/j.amc.2014.03.050
http://www.journals.elsevier.com/


This idea was already considered by Janovská and Opfer in [5], where the
authors formally adapted, for the first time, Newton method for finding roots of
Hamilton quaternions, by considering the quaternion equation xn−a = 0. More
recently, Kalantari in [6], using algebraic-combinatorial arguments, proposed a
Newton method for finding roots of special quaternion polynomials. Working
in the framework of quaternion analysis, we can provide a motivation for the
techniques used in those works and simultaneously extend the applicability of
the method.

The paper is organized as follows. In Section 2 we introduce the basic
notations and the results that are needed for our work in Section 3.

Section 3 contains the main results of the paper. Here, by making use of the
theory given in Section 2, and after establishing new properties on the radial
derivative of a special class of functions, we propose a Newton method in the
framework of quaternion analysis.

Finally, in Section 4 several numerical examples illustrating the applicability
of the aforementioned methods are presented.

2 Quaternion Analysis

We start by first recalling some basic results concerning Hamilton quaternion
algebra H, which can be found in classic books on this subject. For results
concerning quaternion analysis we refer to [7, 8, 3].

Let {1, i, j,k} be an orthonormal basis of the Euclidean vector space R4 with
a product given according to the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k.

This non-commutative product generates the well known algebra of real
quaternions H. The real vector space R4 will be embedded in H by identifying
the element x = (x0, x1, x2, x3) ∈ R4 (or the column vector in R4×1, x =
(x0 x1 x2 x3)T ) with the element x = x0 + x1i + x2j + x3k ∈ H. Throughout
this paper, we will also use the symbol x to represent an element in R4, whenever
we need to distinguish the structure of H from R4.

The real or scalar part of a quaternion x = x0+x1i+x2j+x3k is denoted by
Scx and is equal to x0, the vector part of x is x := x1i+x2j+x3k and therefore
x can be written as x = x0+x. The conjugate of x is x := x0−x1i−x2j−x3k =
x0−x. The mapping x 7→ x is called conjugation and has the property xy = y x,
for all x, y ∈ H. The norm |x| of x is defined by |x|2 = xx = xx and coincides
with the corresponding Euclidean norm of x, as a vector in R4. It follows that
|xy| = |x||y| and each non-zero x ∈ H has an inverse given by x−1 = x

|x|2 .

Moreover, |x|−1 = |x−1|.
In this work we are going to consider also the representation of the quaternion

x = x0 + x1i + x2j + x3k by means of the real matrix in R4×4

Lx :=


x0 −x1 −x2 −x3
x1 x0 −x3 x2
x2 x3 x0 −x1
x3 −x2 x1 x0

 . (1)
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This representation is called matrix left representation of x and can be associated
with the product of quaternions

xy = (x0 + x1i + x2j + x3k)(y0 + y1i + y2j + y3k)

= (x0y0 − x1y1 − x2y2 − x3y3) + (x1y0 + x0y1 − x3y2 + x2y3)i

= (x2y0 + x3y1 + x0y2 − x1y3)j + (x3y0 − x2y1 + x1y2 + x0y3)k, (2)

through the identification

z = xy −→ z = Lxy, (3)

where y is the (column) vector in R4 corresponding to the quaternion y.
Any arbitrary nonreal quaternion x can also be written in the so-called

complex-like form
x = x0 + ω(x)|x| , (4)

where
ω(x) :=

x

|x|

belongs to the unit sphere in R3. Since ω(x) = ω(x) = −ω(x), it follows
immediately that ω(x)2 = −ω(x)ω(x) = −|ω(x)|2 = −1. In other words, we
can consider that ω behaves like the imaginary unit and therefore the complex-
like form (4) is similar to the complex form a + ib. We use the convention
ω(x) := 0, for real quaternions x. The following properties play an important
role in the present work.

Proposition 1 If x = x0 + x1i + x2j + x3k and y = y0 + y1i + y2j + y3k are
quaternions, the following statements are equivalent:

(i) xy = yx;

(ii) x1y2 = x2y1 and x1y3 = x3y1 and x2y3 = x3y2;

(iii) ω(x)ω(y) = ω(y)ω(x);

(iv) ω(x) = ±ω(y).

Proof: The equivalence between the first three statements follows at once from
the multiplication rules (cf. (2)). If ω(x) = ±ω(y), clearly ω(x)ω(y) = ∓1 =
ω(y)ω(x) and we conclude that (iv) implies (iii).

Now, we prove that (ii) implies (iv) for the case of nonreal quaternions. If
y is nonreal, we can assume that, for example, y1 6= 0. Using (ii) one can
write x2 = x1

y2
y1

and x3 = x1
y3
y1

and this, in turn, implies that x = x1i +

x2j + x3k = (y1i + y2j + y3k)x1

y1
. This means that |x| = |y| |x1|

|y1| and the result

ω(x) = x
|x| =

y

|y|
x1|y1|
|x1|y1 = ±ω(y) follows. �

Corollary 1 If x and y are quaternions such that ω(x) and ω(y) commute then:

(i) xy = yx;

(ii) xy−1 = y−1x.
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Proof: It is sufficient to note that ω(y−1) = ω(y) = −ω(y) and apply the results
of Proposition 1. �

In what follows, we consider complex-like functions f : Ω ⊂ R4 → H ∼= R4

of the form
f(x) = u(x0, |x|) + ω(x)v(x0, |x|) , (5)

where x 6= 0 and u and v are real valued functions. Continuity, differentiability
or integrability are defined coordinate-wisely.

R. Fueter proposed a generalization of complex analyticity to the quaternion
case ([1, 2]) which leads to close analogues of several important results from clas-
sical complex function theory. In this framework the analogue of holomorphic
functions, usually refer to as monogenic functions, is obtained as the set of null-
solutions of a generalized Cauchy-Riemann system. In addition, Sudbery, in [9],
defined a regular quaternion valued function by the existence of its quaternion
derivative. Unfortunately, contrary to the complex case, neither the canonical
quaternion variable x nor any of its nonnegative integer powers xn are mono-
genic functions and therefore, the quaternion derivative of xn does not exist.
This means, among other things, that based on the concept of monogenicity
one can not generalize Newton method to finding roots of simple quaternion
polynomials, i.e. polynomials with quaternion coefficients located on only one
side of the powers.

In order to introduce a notion of regular function that fits our purpose, we
follow [8, 3, 10] and adopt the following usual definition.

Definition 1 Let f be a complex-like function of the form (5) and let h =
h0 + ω(x)hr ∈ H. Such function f is called radially holomorphic or radially
regular in Ω if

lim
h→0

(f(x+ h)− f(x))h−1

exists. In the case of existence, this limit is called the radial derivative of f at
x and is denoted by f ′(x). (This notation will be justified later).

Defining on the set C 1(Ω,H) the radial operators

∂rad := 1
2 (∂0 − ω(x)∂r), ∂̄rad := 1

2 (∂0 + ω(x)∂r), (6)

where r := |x|, ∂0 := ∂
∂x0

and ∂r := ∂
∂r , one can prove the following essential

results.

Theorem 1 ([10, Corollary 5.2]) If f is a radially holomorphic function,
then

f ′(x) = ∂radf(x).

Theorem 2 ([3, Corollary 11.30]) A function f of the form (5) is radially
holomorphic if and only if

∂̄radf = 0,

which is a Cauchy-Riemann type differential equation{
∂0u = ∂rv,

∂0v = −∂ru.
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We note that when ∂̄radf = 0, the first radial operator in (6) simplifies
to ∂radf = ∂0f and Theorem 1 together with Theorem 2 imply that if f is a
radially holomorphic function, then

f ′(x) = ∂0f(x) = ∂0u(x0, r) + ω(x)∂0v(x0, r), (7)

like in the complex case, which justifies the use of the same notation for the
complex derivative of a complex holomorphic function and the radial deriva-
tive of a quaternion radially holomorphic function. Next straightforward result
supports these ideas.

Proposition 2 If f and g are radially holomorphic functions of the form

f(x) = u(x0, |x|) + ω(x)v(x0, |x|) and g(x) = u∗(x0, |x|) + ω(x)v∗(x0, |x|),

where u, v, u∗ and v∗ are real valued functions, then

1. f + g is radially holomorphic and (f + g)′(x) = f ′(x) + g′(x);

2. if α ∈ R, then αf is radially holomorphic and (αf)′(x) = αf ′(x);

3. fg is radially holomorphic and (fg)′(x) = f ′(x)g(x) + g′(x)f(x).

Example 1 The following functions are radially holomorphic functions:

• monomials of the form xα, α ∈ R;

• the exponential function ex :=

∞∑
k=0

xk

k!
= ex0(cos r + ω(x) sin r).

In addition, (xα)′ = αxα−1 and (ex)′ = ex.

We point out that usually when α /∈ R, αf can not be written in the complex-
like form (5), since, in general, αf(x) 6= f(x)α. For more details about radially
holomorphic functions as well as other examples, see e.g. [8, 3, 10]. For a recent
survey on elementary functions in the context of quaternion analysis, see [11].

3 Newton method: from C to H
The well known Newton method for finding a zero x∗ of a holomorphic complex
function f of one complex variable, consists on approximating x∗ by means of
the iterative process

P1 : zk+1 = zk −
f(zk)

f ′(zk)
, k = 0, 1, . . . , (8)

with z0 sufficiently close to x∗ and f ′(zk) 6= 0.
Writing f(z) = f(x+ iy) = u(x, y) + iv(x, y), where u and v are real valued

functions and identifying the complex number z = x + iy ∈ C with the vector
z = (x, y) ∈ R2, we can interpret f(z) = 0 as a system of two equations in
two real unknowns, namely f(z) = (u(z), v(z)) = (0, 0) and apply the classical
2D-Newton method

P2 : zk+1 = zk − (Jf(zk))−1f(zk), k = 0, 1, . . . , (9)
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provided that the Jacobian matrix Jf(zk) is nonsingular.
We recall that, if f is holomorphic, due to the Cauchy-Riemann equations,

we can write

Jf =

(
ux −vx
vx ux

)
and Jf−1 =

1

u2x + v2x

(
ux vx
−vx ux

)
,

where ux := ∂u/∂x, uy := ∂u/∂y, etc. Moreover, the determinant of the
Jacobian matrix satisfies

|Jf(x)| = |f ′(x)|2. (10)

Therefore, we can conclude, after simplifications, the well known fact that,
in such cases, the 2D-Newton method (9) is identical to the complex Newton
method (8), i.e. P1 and P2 produce the same sequence.

The problem concerning finding zeros of a quaternion function is, as ex-
pected, more difficult than the root finding problem in the complex plane. In
contrast to the complex case, the zeros of a quaternion function are not nec-
essarily isolated, and its range is not necessarily open (see e.g. [9]). Since the
well known work of Niven [12], several authors gave contributions to this sub-
ject, in particular in connection to the study of zeros of quaternion polynomials
[13, 14, 5, 15, 16, 17] (see also [18, 19] and [6, Section 4] and the references
therein).

In this section, we are going to show that the use of the radial derivative
leads to an iterative process analogue to the usual 4D-Newton process which can
be extended to a class of functions wider than the class of radially holomorphic
functions.

Let f be a radially holomorphic complex-like function f of the form (5), i.e.

f(x) = f(x0 + x) = u(x0, r) + ω(x)v(x0, r),

where r = |x| =
√
x21 + x22 + x23, with radial derivative given by (7), i.e.

f ′(x) = ∂0u(x0, r) + ω(x)∂0v(x0, r).

Consider an iterative process of the form

P1 : zk+1 = zk − f(zk)(f ′(zk))−1, k = 0, 1, . . . ,

z0 = c,

where c ∈ H and f ′(zk) 6= 0, for all k = 0, 1, . . . . Observe that due to the
structure of f , this process produces exactly the same sequence as

P2 : z̃k+1 = z̃k − (f ′(z̃k))−1f(z̃k), k = 0, 1, . . . ,

z̃0 = c,

with f ′(z̃k) 6= 0, since the use of Proposition 1 and Corollary 1 allows to con-
clude that f and (f ′)−1 commute. Our objective now is to compare these two
equivalent processes with the classical Newton method for vector valued func-
tions

P3 : zk+1 = zk − (Jf(zk))−1f(zk), k = 0, 1, . . . ,

z0 = c,
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where c ∈ R4 is the vector corresponding to the quaternion c in processes P1

and P2, f is the vector valued function associated with the quaternion valued
function f , i.e.

f(x) = f(x0, x1, x2, x3) =
(
u(x0, r),

x1
r
v(x0, r),

x2
r
v(x0, r),

x3
r
v(x0, r)

)
(11)

and Jf(zk) is the Jacobian matrix of f at zk which we assume is nonsingular.

Next results reveal new important and interesting relationships between the
radial derivative of a function f and the derivative of f .

Proposition 3 Let f be the vector valued function (11) associated with a radi-
ally holomorphic complex-like function f of the form (5). The Jacobian deter-
minant of f is related to the derivative of f by means of

|Jf(x)| = |f ′(x)|2 v(x0, r)
2

r2
. (12)

Proof: The Jacobian matrix of f can be written as

Jf(x) =


A −B(x1) −B(x2) −B(x3)

B(x1) D(x1, x2, x3) C(x1, x2) C(x1, x3)

B(x2) C(x1, x2) D(x2, x3, x1) C(x2, x3)

B(x3) C(x1, x3) C(x2, x3) D(x3, x1, x2)

 ,

where

A = ∂0u(x0, r);

B(x) =
x

r
∂0v(x0, r);

C(x, y) =
xy

r2
∂0u(x0, r)−

xy

r3
v(x0, r);

D(x, y, z) =
x2

r2
∂0u(x0, r) +

y2 + z2

r3
v(x0, r).

The result follows by cumbersome, but straightforward calculations. �

Remark 1 We underline the fact that, when x ∈ H, Jf(x) can be singular
while f ′(x) 6= 0. This situation is quite different from the complex case where
the equations |Jf(x)| = 0 and f ′(x) = 0 are equivalent, for x ∈ C (cf. (10)).

Proposition 4 If f is a radially holomorphic quaternion valued function and
a ∈ H is such that ω(x) commutes with ω(a) then

Jf(x)a = af ′(x) = f ′(x)a. (13)

Proof: If a = a0 + a1i + a2j + a3k, we can use Proposition 3 to write

Jf(x)a =



a0∂0u− a1x1+a2x2+a3x3

r ∂0v

a1(x
2
2+x

2
3)−a2x1x2−a3x1x3

r3 v +
a1x

2
1+a2x1x2+a3x1x3

r2 ∂0u+ a0x1

r ∂0v

a2(x
2
1+x

2
3)−a1x1x2−a3x2x3

r3 v +
a2x

2
2+a1x1x2+a3x2x3

r2 ∂0u+ a0x2

r ∂0v

a3(x
2
2+x

2
1)−a2x3x2−a1x1x3

r3 v +
a3x

2
3+a2x3x2+a1x1x3

r2 ∂0u+ a0x3

r ∂0v


,
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where all functions are considered at (x0, r). Since ω(x) commutes with ω(a),
we have from Proposition 1 that

x1a2 = x2a1, x1a3 = x3a1, x2a3 = x3a3 (14)

and therefore

Jf(x)a =


a0∂0u− a1x1+a2x2+a3x3

r ∂0v

a1∂0u+ a0x1

r ∂0v

a2∂0u+ a0x2

r ∂0v

a3∂0u+ a0x3

r ∂0v

 .

On the other hand, from (1) and (3), we have

af ′(x) =


a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 a1 a0




∂0u
x1

r ∂0v

x2

r ∂0v

x3

r ∂0v



=


a0∂0u− a1x1+a2x2+a3x3

r ∂0v

a1∂0u+ a0x1−a3x2+a2x3

r ∂0v

a2∂0u+ a3x1+a0x2−a1x3

r ∂0v

a3∂0u+ −a2x1+a1x2+a0x3

r ∂0v


and the first part of the result is proved, using (14). The second part of (13)
comes once more from Proposition 1. �

We can also establish the link between the Jacobian matrix and the corre-
sponding determinant of the quaternion functions f and αf + β, α, β ∈ H.

Proposition 5 If f and g are quaternion valued functions defined on the set
C 1(Ω,H) such that g(x) = αf(x) + β, α, β ∈ H and α 6= 0, then

Jg(x) = LαJf(x), (15)

where Lα is the matrix left representation (1) of the quaternion α. Therefore

|Jg(x)| = |α|4|Jf(x)|. (16)

Proof: Writing f(x) = f0(x)+f1(x)i+f2(x)j+f3(x)k, α = α0 +α1i+α2j+α3k
and β = β0 + β1i + β2j + β3k and recalling (1) it follows that

g(x) = Lαf(x) + β =


α0f0(x)− α1f1(x)− α2f2(x)− α3f3(x) + β0
α1f0(x) + α0f1(x)− α3f2(x) + α2f3(x) + β1
α2f0(x) + α3f1(x) + α0f2(x)− α1f3(x) + β2
α3f0(x)− α2f1(x) + α1f2(x) + α0f3(x) + β3

 .

Straightforward calculations lead to result (15). Result (16) follows from the
fact that detLα = |α|4. �

We are now in position to prove one of our main results.
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Theorem 3 Let g(x) = αf(x) + β be a function defined on the set C 1(Ω,H)
such that f is a radially holomorphic function in Ω, α, β ∈ H and α 6= 0.
Formulas

zk+1 = P1(zk)
z0 = c

z̃k+1 = P2(z̃k)
z̃0 = c

zk+1 = P3(zk)
z0 = c

(17)

where c ∈ H and Pi, i = 1, 2, 3 are the iterative functions

P1(z) = z − g(z)(αf ′(z))−1, (18)

P2(z) = z − (αf ′(z))−1g(z), (19)

P3(z) = z − (Jg(z))−1g(z) (20)

produce the same sequence (k = 0, 1, . . . ), if ω(c) commutes with ω(α) and ω(β)
and Jf(zk) is nonsingular.

Proof: Observe that under the assumption that ω(c) commutes with ω(α) and
ω(β) we can conclude that α and β commute, as well as ᾱ and β (see Proposi-
tion 1 and Corollary 1). In addition, using the fact that f is a radially holomor-
phic function of the form (5), we can also establish the commutativity between
f(c) and f ′(c), α and f ′(c), f and α and, finally, β and f ′(c). Therefore

z1 = c− (af(c) + β)(af ′(c))−1 = c− 1

|af ′(c)|2
(af(c) + β)(af ′(c))

= c− 1

|af ′(c)|2
(af(c) + β)(f ′(c)α)

= c− 1

|a|2|f ′(c)|2
(
af(c)αf ′(c) + βαf ′(c)

)
= c− f(c)f ′(c)

|f ′(c)|2
− βα

|α2|
f ′(c)

|f ′(c)|2

and

z̃1 = c− (af ′(c))−1(af(c) + β) = c− 1

|af ′(c)|2
(af ′(c))(af(c) + β)

= c− 1

|a|2|f ′(c)|2
(
f ′(c)|α|2f(c) + f ′(c)αβ

)
= c− f(c)f ′(c)

|f ′(c)|2
− βα

|α2|
f ′(c)

|f ′(c)|2
.

This proves that if ω(c) commutes with ω(α) and ω(β), then z1 = z̃1. Moreover,
using similar arguments we can conclude that ω(z1) commutes with ω(α) and
ω(β) and therefore z2 = z̃2. Using induction one can, in fact, prove that

zk = z̃k, k = 1, 2, . . . .

We proceed now by examining formula (20). We point out that, by (16), Jg(xk)
is nonsingular if and only if Jf(xk) is nonsingular. In addition, using Proposi-
tion 5 we obtain

(Jg(c))−1g(c) = (LαJf(c))−1(Lαf(c) + β)

= (Jf(c))−1L−1α (Lαf(c) + β)

= (Jf(c))−1f(c) + (Jf(c))−1L−1α β.
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Since c = c0 + ω(c)|c| commutes with f(c) = u(c0, |c|) + ω(c)v(c0, |c|) and also,
under the assumptions of the theorem, with α and β and therefore with α−1β
(see Proposition 1 and Corollary 1), it follows from Proposition 4 that

(Jg(c))−1g(c) = (f ′(c))−1f(c) + (f ′(c))−1α−1β

= (f ′(c))−1α−1αf(c) + (αf ′(c))−1β

= (αf ′(c))−1(αf(c) + β) = (αf ′(c))−1g(c).

This proves that z1 = z̃1. Repeating the same arguments we can prove by
induction that zk = z̃k, k = 1, 2, . . . , �

When α and β are real numbers, the function g in Theorem 3 is radially
holomorphic (see Proposition 2) and the result reads as follows:

Corollary 2 If f is a radially holomorphic function defined on the set C 1(Ω,H),
then the processes (17) with the iterative functions

P1(z) = z − f(z)(f ′(z))−1, (21)

P2(z) = z − (f ′(z))−1f(z), (22)

P3(z) = z − (Jf(z))−1f(z), (23)

produce the same sequence, for all c ∈ H, if J(f(zk)) is nonsingular.

We observe that the equivalence of the processes (21)-(23) does not depend
on the choice of the initial value c, exactly as in the case of the complex New-
ton method (8) and the 2D-Newton method (9). This comes from the fact
that for radially holomorphic functions, f(x) always commutes with x and with
(f ′(x))−1.

Once the equivalence of the process P3 and P1 (and P2) is established, the
local quadratic convergence of the method (18) (and (19)) can be established,
provided that the initial guess c is chosen sufficiently close to the root z∗ of f
(see [20, 21], for the quadratic convergence of the Newton method for systems
of nonlinear equations). This idea of proving the equivalence of the processes
and, as a consequence, of establishing the local quadratic convergence of the
Newton methods goes back to [5], where the authors have considered the roots
of the particular polynomial xn − a. The general form of this idea can now be
stated easily as follows:

Theorem 4 Let g(x) =
∑s
i=0 αigi(x) be a function defined on the set C 1(Ω,H)

such that gi, i = 0, . . . , s are radially holomorphic functions in Ω and αi are
quaternions not simultaneously zero. If z∗ is a root of g such that Jg(z∗) is
nonsingular and Jg is Lipschitz continuous on a neighborhood of z∗, then for
all c ∈ H sufficiently close to z∗, such that ω(c) commutes with all ω(αi), the
Newton processes (17) with the iterative functions

P1(z) = z − g(z)
( s∑
i=0

αif
′
i(z)

)−1
, (24)

P2(z) = z −
( s∑
i=0

αif
′
i(z)

)−1
g(z), (25)

P3(z) = z − (Jg(z))−1g(z), (26)

produce the same sequence, which converges quadratically to z∗.
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4 Numerical Examples

We report now several experiments obtained by the use of the package [22] which
was design with the purpose of endowing the Mathematica standard package
Quaternions with the ability to perform operations on symbolic expressions
involving quaternion valued functions.

All simulations have been performed in Mathematica 9.0 (64-bit) on a com-
puter with Intel Xeon E5607 4C 2.26GHz/1066Mhz/8MB processors and 64GB
of RAM.

In order to illustrate and compare the behavior of the quaternion Newton
methods proposed in this work with the classical 4D-Newton method, we con-
sider a function N(c, i) which gives the number of iterations required for each
process (17) with iterative functions Pi, i = 1, 2, 3 to converge, within a certain
precision, to one of the solutions of the problem under consideration, using c as
initial guess. The stopping criteria used is based on the incremental sizes and
number of iterations, i.e. the iterative process stops whenever it produces an
approximation xk such that |xk − xk−1| < 10−12 or k = 50.

We have considered different initial guesses c, by choosing points in several
special regions Ω := Ω(x, y) ⊂ R4 and plot density plots of N as a function of x
and y.

Example 2 Consider the function g(x) = x2−1− i, where x is a quaternion of
the form x0 + x1i + x2j + x3k. This function can be written as g(x) = f(x)− i,
where f(x) = x2 − 1 is a radially holomorphic function (see Example 1). The
equation g(x) = 0 has two known solutions, namely

r1 =

√
1 +
√

2

2
+

√
1−
√

2

2
i and r2 = −

√
1 +
√

2

2
−

√
1−
√

2

2
i (27)

Moreover, |Jf(x)| = 16x20|x|2 and f ′(x) = 2x. We have considered different
initial guesses c, by choosing points in each of the following regions:

Ω1 = {(x, y, 0, 0) : x, y ∈ [−2, 2]},
Ω2 = {(0, x,−x, y) : x, y ∈ [−2, 2]},
Ω3 = {(0, x, y, y) : x, y ∈ [−2, 2]}.

Concerning the numerical results, we observe the following facts:

− Theorem 3 holds with α = 1 and β = −i, provided that the initial guess c
commutes with i and |Jf(zk)| 6= 0, k = 0, 1, . . . . In other words, if

c = a+ bi, a, b ∈ R (28)

and
Sc zk 6= 0 (29)

then P1(zk) = P2(zk) = P3(zk), k = 1, 2, . . . .

− When c ∈ Ω1, (28) is fulfilled and Pki (c) ∈ Ω1, k = 1, 2, . . . . Figure 1(a)
illustrates the behavior of Newton methods, under the assumption (29). When
c is chosen sufficiently close to one of the roots r1 or r2, we observe, as expected,

11



fast convergence. In fact, since Ω1
∼= C, the quaternion methods (18) and (19)

reduce to the complex Newton method (8), once we identify the quaternion
valued function g with the complex valued function x2 − 1− i.
− The situation is rather different when one choose c ∈ Ω2. Here, the equiv-
alence of the processes does not take place, because the assumptions (28)-(29)
are no longer true, which means that the iterative function P3 associated to
the classical 4D-Newton method can not be used at all. On the other hand,
the iterative functions P1 and P2 can be used whenever f ′(xk) = 2xk 6= 0.
Figure 1(b) illustrates this situation. The iteration sequences are different, but
both methods converge, albeit slower than the previous case.

−When c ∈ Ω3, assumption (28) is, in general, not true and therefore the three
methods don’t produce the same iteration sequence. This fact is well reported
in Figure 1(c), where we can also see that the classical 4D-Newton method
converges, in general, faster (less iterations are needed) than the other two.

Example 3 Consider the function g(x) = x3−x2j−x+j, which can be written
as g(x) = g0(x)− g1(x)j, where g0(x) = x3 − x and g1(x) = x2 − 1 are radially
holomorphic functions. The quaternion polynomial g has three distinct roots,
namely

r1 = 1, r2 = −1, r3 = j. (30)

The aim of this example is to analyze the behavior of the iterative functions
(24)-(26), for the case α1 = 1, α2 = −j. Figure 2 contains density plots of the
functions N(c, i) associated to each function Pi (i = 1, 2, 3), when c is chosen
in one of the following regions:

Ω1 = {(x, y, 0, 0) : x, y ∈ [−2, 2]},
Ω2 = {(0, x, y, 0) : x, y ∈ [−2, 2]},
Ω3 = {(x, 0, y, 0) : x, y ∈ [−2, 2]}.

Concerning the numerical results, we point out the following:

− In Ω1 the processes (17) produce different sequences, which converge to one
of the roots (30), but the three methods don’t converge always to the same root.
In fact, starting from c = 1.31 + 2i, process associated to P1 converges to the
root r3, process associated to P2 converges to the root r1 while the third process
converges to the root r2, as Table 1 shows.
− For the sake of better visibility, we also present the basins of attraction of the
roots (30) with respect to the iterative function Pi (see Figure 3). The color code
used is the following: choosing any initial guess c in the region corresponding
to color i, causes the process to converge to the root ri; i = 1, 2, 3.
− It is easy to see that Pi(x) ∈ Ω2, for all x ∈ Ω2 and therefore it is not possible
to obtain convergence to any of the real roots of h. Thus the three methods
produce three different sequences (Corollary 4 does not apply) all converging
to the nonreal root r3 = j, for any choice of c ∈ Ω2.

− In Ω3, Theorem 4 applies and we obtain the same sequence for all the pro-
cesses.

12



(a) N(c, 1) = N(c, 2) = N(c, 3), c ∈ Ω1

(b) N(c, i), c ∈ Ω2 and i = 1, 2 (from the left to the right)

(c) N(c, i), c ∈ Ω3 and i = 1, 2, 3 (from the left to the right)

Figure 1: Newton methods for Example 2
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Table 1: Newton iterations for Example 3, with c = 1.31 + 2i

Iterative function P1

z0 = 1.31 + 2i
z1 = 0.908706241411 + 1.387337773146i + 0.439339998353j− 0.212237448464k
...
z6 = 0.005549336281− 0.004999963424i + 1.005002523097j + 0.008395675752k
...
z9 = 1.k

Iterative function P2

z̃0 = 1.31 + 2i
z̃1 = 0.908706241411 + 1.225324453708i− 0.050277419391j + 0.103775488306k
...
z̃6 = 1.002873960381 + 0.006924303843i + 0.019152349106j + 0.013086632643k
...
z̃9 = 1.

Iterative function P3

z0 = (0.31, 2, 0, 0)
z1 = (0.725569466462, 0.897281973274,−2.725798320733,−0.088716357547)
...
z9 = (−0.921970127170, 0.2445632666550,−0.251209684043, 0.463755091394)
...
z15 = (−1., 0., 0., 0.)
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(a) N(c, i), c ∈ Ω1 and i = 1, 2, 3 (from the left to the right)

(b) N(c, i), c ∈ Ω2 and i = 1, 2, 3 (from the left to the right)

(c) N(c, 1) = N(c, 2) = N(c, 3), c ∈ Ω3

Figure 2: Newton methods for Example 3
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(a) Iterative functions Pi: c ∈ Ω1 and i = 1, 2, 3 (from the left to the right)

(b) P1 ≡ P2 ≡ P3: c ∈ Ω3

Figure 3: Basins of attraction of the roots of Example 3 with respect to the
iterative functions Pi
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Table 2: Comparison of the computational efforts between the three versions of
Newton method for Example 3

Ω1 Ω2 Ω3

P1 5.89 1.55 5.86
P2 5.48 1.49 6.57
P3 15.36 8.91 18.16

Figure 4: Representation of some zeros of the function considered in Example 4

− Table 2 shows the CPU time (in minutes) spent by each of the processes
(24)-(26) to produce the images presented in Figure 2.

Example 4 Consider now the radially elementary function

f(x) = exp(x)− x = ex0 cos r − x0 + ω(x)(ex0 sin r − r),

where r = |x| (see Example 1). There are an infinite number of nonisolated
roots r = r0 + r of f , as illustrated in Figure 4 where a plot of r0 versus |r| is
presented.

In this case, we can apply Corollary 2 to conclude that processes correspond-
ing to (21)-(23) are equivalent, provided that Jf(zk) is nonsingular. From (12)
it follows that

|Jf(x)| = 0⇔ f ′(x) = ex − 1 = 0 or v(x0, r) = ex0 sin r − r = 0.

This means that for all pure quaternions x such that |x| = 2kπ, k ∈ Z, the
three processes break down, since f ′(x) = 0, whereas process P3 also terminates
whenever ex0 sin r = r. We illustrate the performance of the three methods by
considering two particular domains:

Ω1 = {(x, y, 0, 0) : x ∈ [−5, 11], y ∈ [−8, 8]},

Ω2 = {(0, x, y, 0) : x, y ∈ [−8, 8]}.

It is visible, from Figure 5 the influence of the points for which Newton methods
break down. These points correspond to the white regions of the figure and
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(a) N(c, i), c ∈ Ω1 and i = 1, 3 (from the left to the right)

(b) N(c, i), c ∈ Ω2 and i = 1, 3 (from the left to the right)

Figure 5: Newton methods for Example 4

we can see that the classical 4D-Newton method, corresponding to the right-
hand side of Figures 5(a) and 5(b), is, as expected, extremely affected by this
phenomenon. The quaternion versions of Newton method constitute, for this
example, an effective alternative to the classical version, not only because they
involve a lower computational cost, but also because they produce a significantly
lower number of points for which the Newton method stops (see also Figure 6,
where the basins of attraction of the roots 0.318132 ± 1.33724i and 2.0622 ±
7.58863i, with respect to the iterative function P1(≡ P2) are presented).

5 Final Remarks

We have shown, by deriving new relations between the quaternion radial deriva-
tive of a radially holomorphic function and the derivative of the associated vector
function, that the quaternion versions of the Newton method for finding roots
of a class of functions are, under certain conditions, equivalent to the classical
Newton method for vector functions. Since these class of functions includes
simples polynomials, Theorem 4 can be seen as a quaternion analysis argument
to justify the results of [5].

The numerical results presented in last section (and some more produced
during this work with the same purpose) indicate that the quaternion Newton
methods involve a lower computational cost than the classical Newton method,

18



Figure 6: Basins of attraction of some roots of Example 4, with respect to the
iterative function P1(≡ P2), for c ∈ Ω1.

since inverting a matrix involves more operations than inverting a quaternion.
Moreover, Proposition 3 shows that

{x ∈ R4 : |Jf(x)| = 0} ⊃ {x ∈ H : f ′(x)) = 0}

and therefore, the quaternion Newton methods produce a significantly lower
number of points for which the method stops, than the classical one. The
numerical experiments also show evidences of local convergence (even quadrat-
ically), in some cases where the assumptions of Theorem 4 are not fulfilled.
Forthcoming work will be on the behavior of the methods in such cases.

References

[1] R. Fueter, Die funktionentheorie der differetialgleichungen ∆u = 0 und
∆∆u = 0 mit vier reellen variablen, Comm. Math. Helv. (7) (1934-35)
307–330.

[2] R. Fueter, Über die analytische Darstellung der regulären Funktionen einer
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[8] K. Gürlebeck, W. Sprößig, Quaternionic and Cliford calculus for physicists
and engineers, John Wiley & Sons, 1997.

[9] A. Sudbery, Quaternionic analysis, Math. Proc. Camb. Phil. Soc. 85 (1979)
199–225.
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