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Abstract

We study existence of solution of stationary quasivariational in-
equalities with gradient constraint and nonhomogeneous boundary
condition of Neumann or Dirichlet type. Through two different ap-
proaches, one making use of a fixed point theorem and the other
using a process of regularization and penalization, we obtain dif-
ferent sufficient conditions for the existence of solution.

1 Introduction and main results

If we want to solve the well known problem of finding u ∈ H1
0 (Ω) such that

min{−∆u− f, u− ψ} = 0 a.e. in Ω,

for a given ψ, the easiest approach is to solve the variational inequality: to find u ∈ Kψ = {v ∈ H1
0 (Ω) : v ≥

ψ a.e. in Ω} such that ∫
Ω

∇u · ∇(v − u) ≥
∫

Ω

f(v − u), ∀v ∈ Kψ. (1)

Existence of solution for stationary variational inequalities like the considered above is immediate (see [6]).
Quasivariational inequalities are similar, but implicit, problems where the convex set depends on the solution.
For instance, we consider the problem (1), with Kψ substituted by KF (u), for a given function F ∈ C(R).
The proof of existence of solution is no more a trivial problem and different approaches can be used, such as
a fixed point argument or approximation of the quasivariational inequality by a family of penalized equations,
for which existence is known, using a priori estimates to pass to the limit.

Here we are interested in variational and quasivariational inequalities with gradient constraint, whose convex
sets are of the following type:

Kϕ = {v ∈W 1,p(Ω) : |∇v| ≤ ϕ, a.e. in Ω}, (2)
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2 Stationary QVIs with gradient constraint and nonhomogeneous BC

or
Kϕ = {v ∈W 1,p(Ω) : |∇v| ≤ ϕ, a.e. in Ω, v|∂Ω = g}, (3)

for ϕ ≥ 0 in the variational case and ϕ = F (u), in the quasivariational case, where F ∈ C(R) and g ∈ C (∂Ω).
The first model of this type was the elastoplastic torsion problem, a stationary variational inequality with

gradient constraint 1 and homogeneous Dirichlet boundary condition ([18], [3] or [4]). Sand piles and river
networks ([13] or [15]) or electromagnetic problems ([14], [17], [2], [10] or [11]) can be modeled by variational
or quasivariational inequalities with gradient or curl constraint. As far as the authors know, the first work
in quasivariational inequalities with gradient constraint and nonhomogeneous boundary condition is [1]. This
work generalizes the existence results for quasivariational inequalities presented in that paper, improving the
growth condition imposed on F (details will be given later). We also present another situation where no
growth condition is imposed on F , assuming that the operator considered is a(x,u) = a(x)|u|p−2u and
assuming a little more on the regularity of the data. We notice that, assuming nonhomegeneous conditions
on the boundary introduces additional difficulties when seeking for solutions of quasivariational inequalities.
The proof of existence of solution may be done either using a fixed point theorem or by approximating the
quasivariational inequality by a family of equations. In both cases, given a function in a certain convex set
(depending on the constraint of the gradient and on the boundary condition), we need to find out a function in
another convex set and estimate their distance. This procedure, not easy even when null boundary conditions
are considered in both convex sets, becomes harder when the boundary conditions change, situation scarcely
considered in the literature.

In this paper, we consider Ω a bounded open subset of RN with smooth boundary. Given 1 < p < ∞,
let a : Ω× RN −→ RN be a Carathéodory function satisfying the structural conditions (4a), (4b) and (4c) or
(4c’)

a(x,u) · u ≥ a∗|u|p, (4a)

|a(x,u)| ≤ a∗|u|p−1, (4b)(
a(x,u)− a(x,v)

)
· (u− v

)
> 0, if u 6= v, (4c)(

a(x,u)− a(x,v)
)
· (u− v

)
≥

{
a∗|u− v|p if p ≥ 2,
a∗
(
|u|+ |v|

)p−2|u− v|2 if p < 2,
(4c’)

for given constants 0 < a∗ < a∗, for all u, v ∈ RN and a.e. x ∈ Ω.
Let q be the critical Sobolev exponent of p, if p 6= N , i.e.,

q =
Np

N − p
if 1 < p < N, q =∞ if p > N,

and q > 1, if p = N . Observe that, given v ∈W 1,p(Ω), we have the following inequality

‖v‖Lq(Ω) ≤ Cq‖v‖W 1,p(Ω), (5)

being Cq > 0.
Let r be the critical Sobolev exponent of p for the trace embedding, if p 6= N , i.e.,

r =
(N − 1)p
N − p

if 1 < p < N, r =∞ if p > N,

and r > 1, if p = N . Then, given v ∈W 1,p(Ω), there exists Cr > 0 such that

‖v‖Lr(∂Ω) ≤ Cr‖v‖W 1,p(Ω). (6)

Given
F ∈ C (R; R+), f ∈ Lq

′
(Ω), g ∈ Lr

′
(∂Ω), c ∈ L∞(Ω), c ≥ c∗, (7)

where c∗ is a nonnegative constant, consider the following quasivariational inequality with Neumann type
boundary condition: to find u ∈ KF (u) such that∫

Ω

a(x,∇u) · ∇(v − u) +
∫

Ω

c |u|p−2u(v − u) ≥
∫

Ω

f(v − u) +
∫
∂Ω

g(v − u), ∀v ∈ KF (u), (8)
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where KF (u) is defined in (2).
The following two theorems give sufficient conditions for existence of solution of the above quasivariational

inequality.

Theorem 1.1 Assume (4a), (4b), (4c’) and (7), with c∗ > 0. If p ≤ N suppose, in addition, that there exist
positive constants c0 and c1 such that

F (s) ≤ c0 + c1|s|α, ∀s ∈ R,

being α ≥ 0 if p = N and 0 ≤ α < N
N−p if p < N .

Then the quasivariational inequality (8) has a solution.

Remark 1.2 We point out that the condition 0 ≤ α < p
N−p when p < N assumed in [1] is here improved to

0 ≤ α < N
N−p .

The following theorem states existence of solution for problem (8) with homogeneous Neumann boundary
condition, imposing no growth condition on F but assuming the strict positivity of F , the boundedness of f
and a restriction on the operator a.

Theorem 1.3 Assume that a(x,u) = a(x)|u|p−2u with 0 < a∗ ≤ a ≤ a∗. Assume, in addition, that
f ∈ L∞(Ω), g ≡ 0, c ∈ L∞(Ω), with c ≥ c∗, and F ∈ C (R; R+), with F ≥ F∗, where c∗ and F∗ are positive
constants.

Then the quasivariational inequality (8) has a solution.

Consider the quasivariational inequality with Dirichlet type boundary condition: to find u ∈ KF (u) such
that ∫

Ω

a(x,∇u) · ∇(v − u) +
∫

Ω

c |u|p−2u(v − u) ≥
∫

Ω

f(v − u), ∀v ∈ KF (u), (9)

where KF (u) is defined in (3).
We present two theorems which give sufficient conditions for the existence of solution of the above quasi-

variational inequality.

Theorem 1.4 Consider the assumptions of Theorem 1.1, with c∗ ≥ 0 and F ≥ F∗ > 0, where c∗ and F∗ are
constants. Assume, in addition, that there exists k ∈ [0, 1) such that

|g(x)− g(y)| ≤ kF∗d̄(x, y) for x, y ∈ ∂Ω, (10)

where d̄ is the geodesic distance in Ω.
Then the quasivariational inequality (9) has a solution.

We observe that the above theorem generalizes a result of [7], where Dirichlet homogeneous boundary
condition was considered as well as a more restrictive growth assumption on F , for 1 < p ≤ N .

Theorem 1.5 Assume that a(x,u) = a(x)|u|p−2u with 0 < a∗ ≤ a ≤ a∗. Assume in addition, that (10) is
verified for some k < a∗

a∗ , f ∈ L∞(Ω), c ∈ L∞(Ω), with c ≥ c∗, F ∈ C (R; R+), with F ≥ F∗, where c∗, F∗
are constants, c∗ ≥ 0 and F∗ > 0.

Then the quasivariational inequality (9) has a solution.

2 The case with Neumann boundary condition

In this section we consider the quasivariational inequality with Neumann boundary condition. The proof
of Theorem 1.1 uses a fixed point theorem and the proof of Theorem 1.3 is done by approximating the
quasivariational inequality by a family of penalized and regularized equations.

Given ϕ ∈ L∞(Ω), ϕ ≥ 0, we consider the variational inequality: to find u ∈ Kϕ such that∫
Ω

a(x,∇u) · ∇(v − u) +
∫

Ω

c |u|p−2u(v − u) ≥
∫

Ω

f(v − u) +
∫
∂Ω

g(v − u), ∀v ∈ Kϕ, (11)

where Kϕ is defined in (2). In this section we assume (4a), (4b), (4c) and (7) with c∗ > 0. Under these
assumptions, this problem has a unique solution (see [8, Theorem 8.2]).



4 Stationary QVIs with gradient constraint and nonhomogeneous BC

Proposition 2.1 Let u be the solution of problem (11). Then

‖u‖W 1,p(Ω) ≤M
(
‖f‖Lq′ (Ω) + ‖g‖Lr′ (∂Ω)

) 1
p−1 .

where M =
(

max{Cq,Cr}
min{a∗,c∗}

) 1
p−1

, for Cq and Cr defined in (5) and in (6).

Proof Considering v = 0 in the variational inequality (11) we obtain,∫
Ω

a(x,∇u) · ∇u+
∫

Ω

c |u|p ≤
∫

Ω

fu+
∫
∂Ω

gu

≤ ‖f‖Lq′ (Ω)‖u‖Lq(Ω) + ‖g‖Lr′ (∂Ω)‖u‖Lr(∂Ω)

≤ C
(
‖f‖Lq′ (Ω) + ‖g‖Lr′ (∂Ω)

)
‖u‖W 1,p(Ω),

where C = max{Cq, Cr}. But, as

min{a∗, c∗}‖u‖pW 1,p(Ω) ≤ a∗‖∇u‖
p
Lp(Ω) + c∗‖u‖pLp(Ω) ≤

∫
Ω

a(x,∇u) · ∇(u) +
∫

Ω

c |u|p,

the conclusion follows. �

We present now a continuous dependence result on the gradient constraints that will be necessary to apply
later a fixed point theorem. A more general result can be found in [1], where the dependence on f and g is
also considered.

Proposition 2.2 For ϕ,ψ ∈ L∞(Ω) with a positive lower bound η and a verifying (4a), (4b) and (4c’), the
solutions uϕ and uψ of problem (11) satisfy

‖uϕ − uψ‖max{p, 2}
W 1,p(Ω) ≤ C‖ϕ− ψ‖L∞(Ω),

where C = C(η) is a positive constant.

Proof Letting A(u, v) =
∫

Ω

a(x,∇u) · ∇v +
∫

Ω

c |u|p−2uv, then, for λ ∈ R,

A(u, u− v)−A(v, u− v) = A(u, u− λv) +A(v, v − λu) + (λ− 1) [A(u, v) +A(v, u)] . (12)

Recall that η is a positive lower bound of ϕ and ψ and set λ = η
η+‖ϕ−ψ‖∞ . Then, as λuψ ∈ Kϕ and

λuϕ ∈ Kψ, using λuϕ as test function in (11) with convex set Kψ and λuψ as test function in (11) with
convex set Kϕ we have,

A(uϕ, uϕ − λuψ) +A(uψ, uψ − λuϕ) ≤ (1− λ)
(∫

Ω

f(uϕ + uψ) +
∫
∂Ω

g(uϕ + uψ)
)

≤ (1− λ)C
(
‖f‖Lq′ (Ω) + ‖g‖Lr′ (∂Ω)

)(
‖uϕ‖W 1,p(Ω) + ‖uψ‖W 1,p(Ω)

)
≤ D

η
‖ϕ− ψ‖L∞(Ω),

where C = max{Cq, Cr} and D = D(‖f‖Lq′ (Ω), ‖g‖Lr′ (∂Ω)) is a positive constant. The last inequality is true
by Proposition 2.1 and because

1− λ =
‖ϕ− ψ‖L∞(Ω)

η + ‖ϕ− ψ‖L∞(Ω)
≤
‖ϕ− ψ‖L∞(Ω)

η
.

On the other hand, recalling the constant M defined in Proposition 2.1,∣∣A(uϕ, uψ)
∣∣ ≤ a∗ ∫

Ω

|∇uϕ|p−1|∇uψ|+ ‖c‖L∞(Ω)

∫
Ω

|uϕ|p−1|uψ|

≤ a∗‖∇uϕ‖p−1
Lp(Ω)‖∇uψ‖Lp(Ω) + ‖c‖L∞(Ω)‖uϕ‖p−1

Lp(Ω)‖uψ‖Lp(Ω)

≤ (a∗ + ‖c‖L∞(Ω)) ‖uϕ‖p−1
W 1,p(Ω)‖uψ‖W 1,p(Ω)

≤ (a∗ + ‖c‖L∞(Ω))Mp
(
‖f‖Lq′ (Ω) + ‖g‖Lr′ (∂Ω)

)p′
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and, analogously, ∣∣A(uψ, uϕ)
∣∣ ≤ (a∗ + ‖c‖L∞(Ω))Mp

(
‖f‖Lq′ (Ω) + ‖g‖Lr′ (∂Ω)

)p′
.

So, using (12), there exists C = C(‖f‖Lq′ (Ω), ‖g‖Lr′ (∂Ω), η) > 0 such that

A(uϕ, uϕ − uψ)−A(uψ, uϕ − uψ) ≤ C‖ϕ− ψ‖L∞(Ω).

On the other hand, by (4c’)

A(uϕ, uϕ − uψ)−A(uψ, uϕ − uψ) ≥ min{a∗, c∗}‖uϕ − uψ‖pW 1,p(Ω) if p ≥ 2.

Using the reverse Hölder inequality in the case p < 2, we get

A(uϕ, uϕ − uψ)−A(uψ, uϕ − uψ)

≥ a∗‖|∇uϕ|+ |∇uψ|‖p−2
Lp(Ω)‖∇uϕ −∇uψ‖

2
Lp(Ω) + c∗‖|uϕ|+ |uψ|‖p−2

Lp(Ω)‖uϕ − uψ‖
2
Lp(Ω)

and then, by Proposition 2.1, the conclusion follows also in this case. �

The following proposition will be used in the proof of Theorem 1.1.

Proposition 2.3 Let N ∈ N, p > 1, s > N , N
N−1 < α and α < N

N−p if p < N . Consider the sequence (sn)n
defined by

s1 = s and sn+1 =
αNsn
N + αsn

.

Then there exists n ∈ N such that 1 < sn ≤ p.

Proof Using the inequality N
N−1 < α it is easy to prove, by induction, that sn > 1 for all n ∈ N. On the

other hand (sn)n is a decreasing sequence, because s2 < s1 and, for n > 2,

sn+1 < sn ⇔
αsnN

N + αsn
<

αsn−1N

N + αsn−1
⇔ sn

N + αsn
<

sn−1

N + αsn−1
⇔ sn < sn−1.

So (sn)n is convergent. Using the equality sn+1 = αsnN
N+αsn

, we see that the limit is N(1 − 1
α ). To conclude

we just need to observe that N(1− 1
α ) < p. This is true because if p < N , α < N

N−p . �

We are now able to prove our first result.

Proof of Theorem 1.1 Consider a sequence (pn)n such that p1 = p and, for i ≥ 1, pi is a critical Sobolev
exponent of pi−1. Let s be the first element of this sequence greater than N . Applying repeatedly the Sobolev
type inequality (5) one has

∃C > 0 ∀u ∈W 1,s(Ω) ‖u‖W 1,s(Ω) ≤ C
(
‖u‖Lp(Ω) + ‖∇u‖Ls(Ω)

)
. (13)

Observe that, if ϕ ∈ C (Ω̄) and u ∈ KF (ϕ) then u ∈W 1,s(Ω), as ∇u ∈ L∞(Ω). In particular, the operator
T : C (Ω̄) −→W 1,s(Ω) such that T (ϕ) = uϕ, where uϕ is the solution of problem (11) with KF (ϕ) replacing
Kϕ, is well-defined.

To prove that T is continuous, consider ϕ ∈ C (Ω̄) and let δ > 0 be such that ‖F (ψ)‖C (Ω̄) ≤ ‖F (ϕ)‖C (Ω̄)+
1 if ‖ϕ− ψ‖C (Ω̄) ≤ δ. For those ψ we have,

|∇uϕ −∇uψ|s = |∇uϕ −∇uψ|s−p|∇uϕ −∇uψ|p

≤ (|∇uϕ|+ |∇uψ|)s−p |∇uϕ −∇uψ|p ≤ (F (ϕ) + F (ψ))s−p |∇uϕ −∇uψ|p

≤
(
2‖F (ϕ)‖C (Ω̄) + 1

)s−p|∇uϕ −∇uψ|p
and then, using (13),

‖uϕ − uψ‖W 1,s(Ω) ≤ C
(
‖uϕ − uψ‖Lp(Ω) +

(
2‖F ◦ ϕ‖C (Ω̄) + 1

) s−p
s ‖∇(uϕ − uψ)‖

p
s

Lp(Ω)

)
.
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Noticing that F (ϕ) and F (ψ) has a positive lower bound, as ϕ,ψ ∈ C (Ω̄) and F ∈ C (R; R+), this last
inequality together with the Proposition 2.2, proves that T is continuous.

In order to apply a fixed point theorem we consider

S = i ◦ T : C (Ω̄) −→ C (Ω̄),

where i is the compact inclusion of W 1,s(Ω) in C (Ω̄). If p > N then s = p and Proposition 2.1 shows that T
is bounded and so, as s > N , the image of S is compact and the conclusion follows from the Schauder fixed
point theorem.

If p ≤ N we use the Leray-Schauder fixed point theorem. As i is compact we only need to prove the
boundedness in W 1,s(Ω) of the set

A =
{
ϕ ∈ C (Ω̄) : ϕ = λS(ϕ) for some λ ∈ [0, 1]

}
.

Notice that we can suppose that α > N
N−1 . Consider the sequence defined in Proposition 2.3 starting with

s and let n be such that 1 < sn ≤ p.
If ϕ ∈ A we have

|∇uϕ| ≤ F (ϕ) ≤ c0 + c1|ϕ|α = c0 + c1λ
α|uϕ|α

and then, for i < n, there exist A,D > 0, such that

‖uϕ‖W 1,si−1 (Ω) ≤ A
(
‖uϕ‖Lαsi−1 (Ω) + ‖∇uϕ‖Lsi−1 (Ω)

)
, as α > 1

≤ A
(
‖uϕ‖Lαsi−1 (Ω) + c0|Ω|

1
si−1 + c1λ

α‖uϕ‖αLαsi−1 (Ω)

)
≤ A

(
D‖uϕ‖W 1,si (Ω) + c0|Ω|

1
si−1 + c1λ

αD‖uϕ‖αW 1,si (Ω)

)
as αsi−1 is the critical Sobolev exponent of si.

By consequence, using Proposition 2.1 and since sn ≤ p, we obtain the boundedness of A in W 1,s(Ω). So T
has a fixed point and this fixed point solves the quasivariational inequality. �

The proof of Theorem 1.3 will be done using a family of approximating problems, obtained by regularizing
and penalizing the quasivariational inequality.

Given 0 < ε < 1, consider the family of quasilinear elliptic problems

−∇ ·
(
kε
(
|∇uε|p − F pε (uε)

)
aε(x)

(
|∇uε|2 + ε

) p−2
2 ∇uε + ε∇uε

)
+ c |uε|p−2uε = fε in Ω, (14a)

(
kε
(
|∇uε|p − F pε (uε)

)
aε(x)

(
|∇uε|2 + ε

) p−2
2 ∇uε + ε∇uε

)
· n = 0 on ∂Ω, (14b)

where aε, f
ε and Fε are approximations by convolution of a, f and F , and kε is a smooth nondecreasing

function such that

kε(s) =

{
1 if s ≤ 0,
e
s
ε if ε ≤ s.

(15)

This problem has a unique solution uε ∈ C 2,α(Ω) ∩ C (Ω̄), being the proof a simple adaptation of [5,
Theorem 5.19] for the case with Neumann homogeneous boundary condition.

Before proving Theorem 1.3 we need the following auxiliary result.

Proposition 2.4 Let uε be a solution of problem (14). Then there exist positive constants C1, C2 and Dq,
independent of ε, such that

‖uε‖L∞(Ω) ≤ C1, (16)

‖kε(|∇uε|p − F p(uε))‖L1(Ω) ≤ C2, (17)

∀ 1 < q <∞ ‖∇uε‖Lq(Ω) ≤ Dq. (18)
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Proof Denote, for simplicity, w = |∇uε|p − F pε (uε). Consider γ ∈ R+, to be chosen later. Multiplying
equation (14a) by (uε − γ)+ and integrating over Ω, we get∫

Ω

kε(w) aε(x)
(
|∇uε|2 + ε

) p−2
2 ∇uε · ∇(uε − γ)+

+ ε

∫
Ω

∇uε · ∇(uε − γ)+ +
∫

Ω

c |uε|p−2uε(uε − γ)+ =
∫

Ω

fε(uε − γ)+

and so∫
Ω

kε(w) aε(x)
(
|∇(uε − γ)+|2 + ε

) p−2
2 |∇(uε − γ)+|2

+ ε

∫
Ω

|∇(uε − γ)+|2 +
∫

Ω

c |uε|p−1(uε − γ)+ ≤ ‖fε‖L∞(Ω)

∫
Ω

(uε − γ)+.

Observing that the two first terms of the above inequality are nonegative and choosing γ >
(
‖f‖L∞(Ω)

c∗

) 1
p−1

,

we get

(c∗γp−1 − ‖fε‖L∞(Ω))
∫

Ω

(uε − γ)+ ≤ 0,

and so (uε − γ)+ ≡ 0. Proceeding similarly, we obtain (uε + γ)− ≡ 0, concluding (16).
Multiply now equation (14a) by uε and integrate in Ω. Then∫

Ω

kε(w) aε(x)
(
|∇uε|2 + ε

) p−2
2 |∇uε|2 + ε

∫
Ω

|∇uε|2 +
∫

Ω

c |uε|p =
∫

Ω

fεuε. (19)

Observe that∫
Ω

kε(w) aε(x)
(
|∇uε|2 + ε

) p−2
2 |∇uε|2 =

∫
Ω

kε(w) aε(x)
(
|∇uε|2 + ε

) p
2

− ε
∫

Ω

kε(w) aε(x)
(
|∇uε|2 + ε

) p−2
2 (20)

and it can be easily seen that

ε

∫
Ω

kε(w) aε(x)(|∇uε|2 + ε)
p−2

2 ≤ αε
∫

Ω

kε(w)|∇uε|p + βε

∫
Ω

kε(w), (21)

where αε −→
ε→0

0 and βε −→
ε→0

0.

Noticing that kε(w)F p∗ ≤ kε(w)|∇uε|p + F pε (uε) since kε(w) = 1 if w ≤ 0 and, when w > 0, we have
|∇uε| ≥ Fε(uε) ≥ F∗, we obtain∫

Ω

kε(w) ≤ 1
F p∗

(∫
Ω

kε(w)|∇uε|p +
∫

Ω

F pε (uε)
)
. (22)

As F is continuous and (uε)ε is uniformly bounded in L∞(Ω),
(
F pε (uε)

)
ε

is also uniformly bounded in
L∞(Ω). Using (20) and (21) we obtain, from (19), that(

a∗ − a∗
(
αε −

βε
F p∗

))∫
Ω

kε(w) |∇uε|p ≤ βε
F p∗
‖F pε (uε)‖L∞(Ω) + ‖fε‖L1(Ω)‖uε‖L∞(Ω),

The right hand side of the above inequality is bounded by a positive constant C independent of ε. Choosing
ε sufficiently small such that αε − βε

Fp∗
≤ a∗

2a∗ we get∫
Ω

kε(w)|∇uε|p ≤ 2
a∗
C

and, using this inequality and (22), we immediately obtain (17).
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Denote Aε = {x ∈ Ω : |∇uε(x)|p > F pε (uε(x)) + ε}. Observe that, for q > p,∫
Ω

|∇uε|q =
∫

Ω\Aε
|∇uε|q +

∫
Aε

|∇uε|q

≤ |Ω|‖F pε + ε‖
q
p

L∞(−M,M) + 2
q
p−1
(∫

Aε

(
|∇uε|p − F pε (uε)

) q
p +

∫
Aε

F qε (uε)
)

and to conclude the boundedness of ‖∇uε‖Lq(Ω), we only need to control the second term of the right hand
side of the above inequality. As, for all j ∈ N and s > 0 we have es ≥ sj/j!, then, for q

p ∈ N, we get, by the
definition of kε, ∫

Aε

w
q
p ≤ ε

q
p
(
q
p

)
!
∫
Aε

kε(w)

and, by (17), the conclusion follows, first for q such that q
p ∈ N and after for any 1 < q <∞. �

Proof of Theorem 1.3 Let uε be the solution of problem (14). From (16)-(18), we get that there exists
u ∈W 1,q(Ω) such that, at least for a subsequence,

∇uε −⇀
ε→0
∇u weakly in Lq(Ω), for any 1 < q <∞,

uε −→
ε→0

u in C (Ω̄).

Let us prove that u ∈ KF (u). Set

Bε =
{
x ∈ Ω : |∇uε(x)|p − F pε (uε(x)) ≥

√
ε
}
.

Then, as kε is nondecreasing, and using (17)

|Bε| =
∫
Bε

1 ≤
∫
Bε

kε
(
|∇uε(x)|p − F pε (uε(x))

)
kε(
√
ε)

≤ Ce−
1√
ε . (23)

Let ω be any measurable subset of Ω. As

|∇uε|p − F pε (uε)−
√
ε −⇀
ε→0
|∇u|p − F p(u) weakly in L1(Ω),

then ∫
ω

(|∇u|p − F p(u)) = lim
ε→0

∫
ω

(|∇uε|p − F pε (uε)−
√
ε)

≤ lim
ε→0

∫
ω∩Bε

|∇uε|p

= lim
ε→0
|ω ∩Bε|

1
2 ‖∇uε‖pL2p(Ω) = 0, using (23) and (18),

concluding that |∇u| ≤ F (u) a.e. in Ω.
Let us now see that u solves the quasivariational inequality (8). Given v ∈ KF (u) we define γε =

‖F (u) − Fε(uε)‖C (Ω̄) and vε = F∗
F∗+γε

v. Observe that vε ∈ KFε(uε) and vε −→
ε→0

v in W 1,p(Ω). Besides,

denoting again w = |∇uε|p − F pε (uε),

(kε(w)− 1)aε(x)
(
|∇uε|2 + ε

) p−2
2 ∇uε · ∇(vε − uε)

≤ (kε(w)− 1)aε(x)
(
|∇uε|2 + ε

) p−2
2 |∇uε|

(
|∇vε| − |∇uε|

)
≤ 0, (24)

as, when kε(w) > 1 then |∇uε| ≥ Fε(uε) ≥ |∇vε| .
So, multiplying equation (14a) by vε − uε, and using (24), we obtain∫
Ω

aε(x)
(
|∇uε|2 + ε

) p−2
2 ∇uε · ∇(vε − uε) + ε

∫
Ω

∇uε · ∇(vε − uε)

+
∫
c|uε|p−2uε(vε − uε) ≥

∫
Ω

fε(vε − uε).
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Using the strict monotonicity of the p-laplacian operator, we get∫
Ω

aε(x)
(
|∇vε|2 + ε

) p−2
2 ∇vε · ∇(vε − uε) + ε

∫
Ω

∇uε · ∇(vε − uε)

+
∫
c|uε|p−2uε(vε − uε) ≥

∫
Ω

fε(vε − uε)

and, letting ε→ 0 and, as the term

∫
Ω

∇uε · ∇(vε − uε) is bounded, we have∫
Ω

a(x)|∇v|p−2∇v · ∇(v − u) +
∫
c|u|p−2u(v − u) ≥

∫
Ω

f(v − u),

which implies, by applying a kind of Minty’s Lemma, that∫
Ω

a(x)|∇u|p−2∇u · ∇(v − u) +
∫
c|u|p−2u(v − u) ≥

∫
Ω

f(v − u)

which concludes the proof of the theorem. �

3 The case with Dirichlet boundary condition

In this section we consider the quasivariational case with nonhomogeneous Dirichlet boundary condition,
correspondent to the convex sets defined in (3), with ϕ substituted by F (u). As it was already referred,
one main concern is to avoid the emptiness of these sets. So we introduce the assumption (10), based on a
compatibility condition between the boundary condition g, the minimum of the gradient constraint function
F and the geometry of the domain.

Consider the variational inequality: to find u ∈ Kϕ such that∫
Ω

a(x,∇u) · ∇(v − u) +
∫

Ω

c |u|p−2u(v − u) ≥
∫

Ω

f(v − u), ∀v ∈ Kϕ, (25)

where Kϕ is defined in (3).

Proof of Theorem 1.4 The proof follows the steps of the proof of Theorem 1.1. The main difference consists
in proving the continuity of the operator T : C (Ω̄) −→W 1,p(Ω), where T (ϕ) is the solution of problem (25),
with F (ϕ) in the place of ϕ. We will sketch the proof of the Mosco convergence of KF (ϕn) to KF (ϕ), where
(ϕn)n converges to ϕ in C (Ω̄), from which we immediately deduce the continuity of T (see [12] or [16,
Theorem 4.1]). So, we only need to prove the following two conditions:

∀v ∈ KF (ϕ) ∀n ∈ N ∃ vn ∈ KF (ϕn) : vn −→
n

v in W 1,p(Ω), (26a)

if, for all n ∈ N, vn ∈ KF (ϕn) and vn −⇀
n

v in W 1,p(Ω), then v ∈ KF (ϕ). (26b)

Using the assumption (10) we may extend the function g to Ω̄ (still calling it by g) satisfying the condition
|∇g| = k F∗ (see [9]).

To prove (26a) consider, for given v ∈ KF (ϕ) and, for n ∈ N,

Gn = min{F (ϕn), F (ϕ)}

and vn = bnv + (1− bn)g, where

bn = min
x∈Ω̄

Gn(x)− kF∗
F (ϕ(x))− kF∗

.

So, 0 < bn ≤ 1 and
(
Gn−kF∗
F (ϕ)−kF∗

)
n

converges to 1 in C (Ω̄) and, as Ω̄ is compact, bn −→
n

1. Note that

vn ∈ KF (ϕn) as vn|∂Ω
= g and

|∇vn(x)| ≤ bnF (ϕ(x)) + (1− bn)kF∗ ≤ Gn(x),
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because bn ≤ Gn(x)−kF∗
F (ϕ(x))−kF∗ . We have∫

Ω

|∇(vn − v)|p = (1− bn)p
∫

Ω

|∇(g − v)|p −→
n

0.

To prove (26b), let (vn)n be a sequence in KF (ϕn), converging weakly in W 1,p(Ω) to v. As vn|∂Ω
= g

then v|∂Ω = g. Given any measurable set ω ⊂ Ω,∫
ω

|∇v| ≤ lim inf
n

∫
ω

|∇vn| ≤ lim inf
n

∫
ω

F (ϕn) =
∫
ω

F (ϕ),

so |∇v| ≤ F (ϕ) a.e. in Ω, which means v ∈ KF (ϕ). This concludes the proof of the continuity of T .
We present now an a priori estimate for the W 1,p(Ω) norm of uϕ = T (ϕ), independent of ϕ.

Choosing g as test function in (25) and recalling that f ∈ Lq′(Ω) we have∫
Ω

a(x,∇uϕ) · ∇uϕ +
∫

Ω

c|uϕ|p ≤
∫

Ω

a(x,∇uϕ) · ∇g +
∫

Ω

fuϕ −
∫

Ω

fg +
∫

Ω

c|uϕ|p−2uϕg

≤
∫

Ω

|∇uϕ|p−1a∗kF∗ +
∫

Ω

|uϕ|p−1‖cg‖L∞(Ω) + ‖f‖Lq′ (Ω)‖uϕ‖Lq(Ω) + ‖f‖Lq′ (Ω)‖g‖Lq(Ω).

As ‖uϕ‖Lq(Ω) ≤ Cq‖uϕ‖W 1,p(Ω) we have, for δ > 0,

a∗‖∇uϕ‖pLp(Ω) ≤
δp
′

p′
‖uϕ‖pW 1,p(Ω) +

|Ω|
δpp

(
(a∗kF∗)p + ‖cg‖pL∞(Ω)

)
+
δp

p
‖uϕ‖pW 1,p(Ω) +

Cp
′

q

δp′p′
‖f‖p

′

Lq′ (Ω)
+ ‖f‖Lq′ (Ω)‖g‖Lq(Ω).

Applying the Poincaré inequality to uϕ, we have

‖uϕ‖pW 1,p(Ω) ≤ cp
(
‖∇uϕ‖pLp(Ω) + ‖g‖pLp(∂Ω)

)
.

Choosing δ such that
(
δp
′

p′ + δp

p

)
cp < a∗, we conclude that there exists a positive constant C, depending on

‖f‖Lq′ (Ω) and ‖g‖L∞(Ω), such that ‖∇uϕ‖pLp(Ω) ≤ C. Applying again the Poincaré inequality, there exists

another positive constant C such that
‖uϕ‖pW 1,p(Ω) ≤ C.

As we proved the continuity of the operator T and the above estimate, the conclusion follows as in the
proof of Theorem 1.1. �

The proof of Theorem 1.5 will be done using, as in the proof of Theorem 1.3, a family of approximating
problems, obtained by regularizing and penalizing the quasivariational inequality. For 0 < ε < 1, consider the
approximating family of problems:

−∇ ·
(
kε
(
|∇uε|p − F pε (uε)

)
aε(x)

(
|∇uε|2 + ε

) p−2
2 ∇uε + ε∇uε

)
+ c |uε|p−2uε = fε in Ω, (27a)

uε|∂Ω = gε, (27b)

where aε, g
ε, fε and Fε are approximations by convolution of a, g, f and F , and kε : R → R is a smooth

nondecreasing function as in (15).
This problem has a unique solution uε ∈ C 2,α(Ω) ∩ C (Ω̄) (see [5, Theorem 5.19]).
Consider an extension gε to Ω̄, still denoted by gε, such that |∇gε| = kF∗ in Ω. Notice that such a

function exists because (10) is verified and gε ∈W 1,∞(Ω).

Proposition 3.1 Under the assumptions of Theorem 1.5 there exist positive constants C and Dq, independent
of ε, such that

‖uε‖L∞(Ω) ≤ C, (28)

‖kε(|∇uε|p − F pε (uε))‖L1(Ω) ≤ C, (29)

∀ 1 < q <∞ ‖∇uε‖Lq(Ω) ≤ Dq. (30)
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Proof By the strong maximum principle for quasilinear elliptic equations, the L∞(Ω)-norm of uε depends
only on ‖f‖L∞(Ω) and ‖g‖L∞(∂Ω).

Denote once again |∇uε|p−F pε (uε) by w. Multiplying by uε− gε the equation (27a) and integrating over
Ω we obtain∫

Ω

kε(w)aε(x)(|∇uε|2 + ε)
p−2

2 |∇uε|2 + ε

∫
Ω

|∇uε|2 +
∫

Ω

c|uε|p

=
∫

Ω

kε(w)aε(x)(|∇uε|2 + ε)
p−2

2 ∇uε · ∇gε + ε

∫
Ω

∇uε · ∇gε +
∫

Ω

c|uε|p−2uε gε +
∫

Ω

fε(uε − gε).

We can rewrite the above equality as∫
Ω

kε(w)aε(x)(|∇uε|2 + ε)
p
2 + ε

∫
Ω

|∇uε|2 +
∫

Ω

c|uε|p

= ε

∫
Ω

kε(w)aε(x)(|∇uε|2 + ε)
p−2

2 +
∫

Ω

kε(w)aε(x)(|∇uε|2 + ε)
p−2

2 ∇uε · ∇gε

+ ε

∫
Ω

∇uε · ∇gε +
∫

Ω

c|uε|p−2uε gε +
∫

Ω

fε(uε − gε)

and then, using (28) and (30), there exists a constant C1 > 0, independent of ε, such that

a∗

∫
Ω

kε(w)(|∇uε|2+ε)
p
2 ≤ a∗ε

∫
Ω

kε(w)(|∇uε|2+ε)
p−2

2 +a∗kF∗
∫

Ω

kε(w)(|∇uε|2+ε)
p−2

2 |∇uε|+C1. (31)

Observe that

a∗kF∗

∫
Ω

kε(w)(|∇uε|2 + ε)
p−2

2 |∇uε| ≤ a∗kF∗
∫

Ω

kε(w)(|∇uε|2 + ε)
p−1

2

≤ a∗kF∗
∫

Ω

kε(w)
( |∇uε|2 + ε)

p
2

p′δp′
+
δp

p

)
,

for any δ > 0. Choosing δ = F
1
p′
∗ , we obtain

a∗kF∗

∫
Ω

kε(w)(|∇uε|2 + ε)
p−2

2 |∇uε| ≤ a∗k

p′

∫
Ω

kε(w)(|∇uε|2 + ε)
p
2 +

a∗kF p∗
p

∫
Ω

kε(w). (32)

Inequalities (31) and (21) allow us to obtain(
a∗ −

a∗k

p′
− αε

)∫
Ω

kε(w)|∇uε|p ≤
(a∗kF p∗

p
+ βε

)∫
Ω

kε(w) + C1.

Recalling (22), we obtain(
F p∗ (a∗ − a∗k)− (F p∗αε + βε)

) ∫
Ω

kε(w) ≤
(
a∗ −

a∗k

p′
− αε

)∫
Ω

F pε (uε) + C1.

Observing, as in the proof of Proposition 2.4, that
(
F pε (uε)

)
ε

is uniformly bounded in L∞(Ω) and F p∗αε +
βε −→

ε→0
0, there exists D > 0 such that

F p∗
a∗ − a∗k

2

∫
Ω

kε(w) ≤ D

and the conclusion (29) follows.
The proof of (30) is similar to the case of Neumann boundary condition. �

Remark 3.2 If a∗ = a∗, as in the p-laplacian case, the only restriction on k is 0 < k < 1.

Proof of Theorem 1.5 After the previous proposition, the proof of this theorem is similar to the proof of
Theorem 1.3. Here the constant c∗ may be zero. However, after obtaining the uniform control of ‖∇uε‖Lq(Ω),
the Poincaré inequality implies the uniform boundedness of ‖uε‖W 1,q(Ω). The verification that u|∂Ω = g is a
consequence of the equality uε|∂Ω

= gε and convergence of (uε)ε to u in C (Ω̄). �
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