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Abstract  

Although still innovative and not largely disseminated, Computational Thinking is being considered 

as a critical skill for students in the 21st century. It involves many skills, but programming abilities 

seem to be a core aspect since they foster the development of a new way of thinking that is key to the 

solution of problems that require a combination of human mental power and computing power 

capacity. This paper presents an exploratory study developed to select psychological assessment tests 

that can be used to identify and measure Computational Thinking cognitive processes, associated to 

the programming component, so that strategies can be developed to promote it. After the literature 

review, we identified four central cognitive processes implied in programming, therefore important to 

Computational Thinking, and accordingly selected a set of four tests that were administered to a 

sample of 12 introductory programming students. Our results suggest that spatial reasoning and 

general intelligence are crucial dimensions for introductory programming, being also correlated to the 

students’ academic success in this area. However, arithmetic reasoning and attention to detail tests did 

not correlate. Based on these results, directions for future research have been defined in order to 

effectively identify and develop the core cognitive processes of programming, ergo, to help develop 

Computational Thinking. 

1. Introduction 

Computing pervades everyday life (Bundy, 2007) and drives innovation necessary to sustain 

economic competitiveness in a globalized environment (White, 2010). Moreover, a growing number 

of researchers believe information processing occurs naturally in nature and that computation is 

needed to understand and, eventually, control such processing (Denning, 2009; Furber, 2012). In this 

sense, “Computational Thinking” is considered a critical skill for students in the 21
st
 century, and one 

of the four primary skills, along with reading, writing and arithmetic (CSTB, 2010; Qualls & Sherrell, 

2010). 

Computational Thinking (CT) can be defined as the ability to interpret the world as algorithmically 

controlled conversions of inputs to outputs (Denning, 2009).  Cuny, Snyder and Wing have defined 

this construct as the “(…) thought processes involved in formulating problems and their solutions so 

that the solutions are represented in a form that can be effectively carried out by an information-

processing agent" (n.d. as cited in Wing, 2011, p. 1). In other words, CT involves learning to think 

about, represent and solve problems that require a combination of human cognitive power and 

computing capacity (CSTB, 2010). 
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The main reason for the increasing interest in CT is the understanding that scientists will need to be 

computationally literate, and in the future, it will not be possible to do science without such literacy 

(Emmott, 2006). Computation is key to the solution of problems in all areas of expertise, and rather 

than playing merely a supporting role, computer science not only has introduced new, important ways 

to view and understand the world in which we live, but is transforming all other disciplines. This way, 

students that do not know how to reason computationally are highly undermined in their abilities as 

problem solvers (Emmott, 2006). Several skills and cognitive functions have been associated to CT, 

many of them related to problem solving. Moreover, this construct includes the ability to think 

logically, algorithmically and recursively, as well as creativity, ability to explain and ability to work 

in teams (CS4FN, n.d.). As to specific CT techniques employed by students, these include: problem 

decomposition, pattern recognition, pattern generalization to define abstractions or models, algorithm 

design, and data analysis and visualization, i.e., being able to collect, analyze and represent data in 

meaningful ways (Google, n.d.).  

What is now being defined as CT has received, over time, other designations, such as “Algorithmic 

Reasoning”, “Algorithmic Thinking” or even “Process Thinking”, all closely related to Computer 

Programming. Thus, the development of CT has much in common with learning to program. During a 

workshop on “The Scope and Nature of Computational Thinking” (CSTB, 2010), several researchers 

highlighted the importance of programming within CT. However, teaching algorithms and computer 

programming presents challenges that persist to this day. Learning to program is a particularly 

difficult task, involving diverse knowledge and skills (Robins, Rountree & Rountree, 2003; Jenkins, 

2002). Introductory programming, more specifically, is a highly complex activity, involving sub-tasks 

related to different knowledge domains and a variety of cognitive processes (Pea & Kurland, 1984). 

Here, a set of skills are valued: reading comprehension; critical thinking and systemic thinking; 

cognitive meta-components identification; planning and problem solving; creativity and intellectual 

curiosity; mathematical skills and conditional reasoning; procedural thinking and temporal reasoning; 

analytical and quantitative reasoning; as well as analogical, syllogistic and combinatorial reasoning. 

Our exploratory study is part of a wider project aiming the conceptualization, assessment and 

promotion of CT. One of its primary purposes it to identify the skills associated to programming, 

ergo, central in CT – in fact, one of the assumptions of our study is that this construct and 

programming are closely related, so many of the cognitive processes used in one are also associated to 

the other. With this in mind, we selected a set of cognitive tests that could be used as assessment tools 

in signalling the cognitive processes associated to CT, and which we will call “computational thinking 

skills”. More specifically, we focused on psychological tests assessing different cognitive functions 

such as reasoning, numeric, spatial and attention skills. These four cognitive tests were applied to a 

sample of introductory programming students, in order to identify those skills that seem to be more 

relevant in programming. The rationale behind the choice of programming students to constitute the 

sample of our study is that novice programmers have to develop computational thinking skills to 

succeed, and this usually happens only when they begin their college education.  

2. Computer programming and cognitive processes  

One of the main cognitive variables considered in relation to programming refers to schemas or 

mental models (Cañas, Bajo, & Gonzalvo, 1994; Pennington, 1987; Soloway & Ehrlich, 1984; 

Wiedenbeck, LaBelle, & Kain, 2004). The importance attached to mental models seems to be 

associated to conceptual clarity. In this sense, it is believed that the existence of appropriate mental 

models is crucial in designing programs that are a direct representation of the first. In "Programming 

as theory building", Naur (1985) discusses the need for the programmer to have a "theory" about how 

the program clearly solves the problem in hands, as opposed to programming as a production process. 

This deep understanding of the problem and of the solution allows the programmer to not only 

implement the solution, but to be able to support what he is doing with explanations, justifications and 

answers to queries about it. The quality of the program is thus directly determined by the quality of 

the theory built by the programmer.  
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Mental models have been studied in relation to different aspects of programming and used in diverse 

ways to evaluate student’s computing ability. Several authors analyzed the mental model of students 

regarding computer operation (Mayer, 1989; Perkins, Schwartz, & Simmons, 1988). For instance, 

Mayer (1989) claims that students without a fit mental model of how the computer processes variables 

and data in memory present greater difficulty in understanding programming language commands. 

Dehnadi (2006) suggests that students who succeed in programming courses are those that use a 

certain mental model, independently of its specificities, for the allocation and manipulation of 

variables in a consistent manner. 

Authors have also been concerned with the differences between experts and novices regarding their 

mental models. According to Cañas et al. (1994), people have different mental representations of 

computer programs: these can be based on syntactic or semantic aspects, and the mental 

representations that are centered on semantic aspects are closer to experts’ mental models. Ackermann 

and Stelovsky (1987) state that while novices perceive programs as sequences of commands, experts 

tend to group commands in schemes that represent given functionalities. To analyze the representation 

or mental model of a subject, tasks such as recall, categorization by similarity or association can be 

used, and seem to be sensitive to changes that occur in mental representation as students learn to 

program. Curiously enough, and contrarily to prior expectations, the students' mental model is not 

affected by previous programming experience; however, developing mental models leads to greater 

self-efficacy and better results (Wiedenbeck et al., 2004).  

Despite several studies, or perhaps as a result of them, perception remains that programming is 

problem solving. Programmers learn to program by building programs, hence, by problem solving. 

Moreover, its main objective is to implement programs that solve computational problems. In fact, the 

resolution of problems is an important part of their work; however, in addition to restrictions that are 

normally found in problem solving, programming requires that these solutions are computationally 

executable. This imposes additional restrictions on the problems that must be implemented by general, 

effective and finite algorithms. 

Once the solution to a problem has been found, the path can be reused to solve similar problems. 

Through multiple episodes of analog problem solving, individuals can induce abstract schematic 

representations of problems and their solutions, which can be retrieved and applied as solution plans 

when structurally similar problems are presented (Gick & Holyoak, 1980, 1983). So a schema can be 

defined as a cognitive structure that allows a problem solver to recognize a particular class of 

problems as belonging to a given state that normally requires particular moves or strategies. In other 

words, they create mental models. 

Perhaps because of this relationship between programming and problem solving, evaluations of 

programming skills have been historically based on tests related to intelligence and deductive logic. In 

the early ages of computer programming, tests began to be developed in order to identify those who 

had “aptitude” for programming, a measure of the applicant’s natural ability to understand and learn 

new things and perform new tasks.  It was understood that the ability to program was innate and that 

not all could be programmers. For economic reasons, it was then necessary to identify those 

individuals who would succeed in learning programming. In the 60’s, these aptitude tests were used 

by 68% of computer companies surveyed in the U.S.A. and 73% in Canada  (Dickman & Lockwood, 

1966 as cited in Robins, 2010). Many of these tests continue to be used by companies to select 

developers, but less intensely and as part of a broader process of selection.  

The first of these tests to succeed was the Programmer Aptitude Test (PAT), developed by IBM in the 

50’s. The test consisted of three parts. First, the subject had to identify the next number in a series. 

Second, they had to identify analogies represented in figures, and in the third part had to do arithmetic 

problems. IBM currently uses the IPATO, an online test developed by IBM to test logical reasoning 

and ability to process information quickly. 

A battery that obtained great success, still used today, is the Aptitude Assessment Battery 

Programming (AABP), developed in 1968 by Jack M. Wolfe . This battery is based on the traits and 

skills identified by Wolfe and simulates daily work tasks, assessing logic reasoning, ability to 
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interpret complex specifications, documentation and annotation skills, problem-solving skills, 

accuracy, attention to detail, speed, concentration and ability to follow instructions accurately. 

The Computer Programmer Aptitude Battery (CPAB) is a battery of tests that determines individual 

aptitude for computer programmer or system analyst. Published by Vangent, Inc., is composed of five 

subtests that assess the subject's ability to understand the vocabulary used in mathematics, 

management and systems engineering literature; reasoning identified by the ability to translate ideas 

and operations in textual notation into mathematical notation; the ability to use abstract reasoning to 

find patterns in given letter series; the numerical ability translated by the ability to quickly estimate 

reasonable answers to calculations; and the ability to analyze problems and find solutions to a logical 

sequence using diagrams. There is a short and a long version. The short contains only those parts 

related to Reasoning and Diagramming that make up the long version, and which have been shown to 

be those that best predict the performance of programmers. Both tests are comparable and can be used 

for retest. 

Another widely used battery is the Berger battery, a set of proficiency and aptitude tests marketed by 

Psychometrics, Inc., Henderson, NV (www.psy-test.com). Apart from tests on several programming 

languages, there is the B-APT for people with no programming experience which aims to identify 

candidates for training. It consists of 30 questions that must be answered in 1h15min and uses a 

hypothetical language that candidates must use to write small programs.  

These tests are mainly used for recruiting programmers, and are more suited to experienced adult 

programmers, where we are interested in identifying core cognitive skills important to programming, 

especially to help those students that have difficulty in learning to program. Furthermore, the 

correlation between the results obtained in testing and the subjects’ programming skills has been 

consistently low (Mayer & Stalnaker, 1968; Pea & Kurland, 1984). Experiments have shown little or 

no relationship between the final ranking of students in programming and their evaluated “aptitude” 

(Davy & Jenkins, 1999; Mazlack, 1980). In his article, Wolfe (1971) discusses the limitations of 

programming aptitude tests, including the use of multiple-choice questions, the undergraduate 

students’ "tricks" in the testing and the inclusion of mathematical issues that reduce the test’s 

effectiveness for commercial programming. 

According to Weinberg (1998), being an area where there are basically no known factors that 

influence the behavior of programmers, much of the psychology of programming research attempts to 

identify what is important to be measured. So the big question is not "how to measure", but "what to 

measure". In this sense, and according to the same author, the use of aptitude tests is much more an 

analysis of tools than of subjects, so we first must define “what to measure”. In this sense, and based 

on the review of literature, we have identified a set of cognitive abilities that seem to be correlated to 

programming success and that we considered in our study. 

3. Materials and Methods 

3.1 Participants 

The study was undertaken with 12 freshmen students from the University of Minho in Portugal: five 

students from the BSc in Informatics Engineering (LEI) course, a 1st Cycle 3 year course that results 

from a transition to the Bologna Process of the old BSc in Informatics and Systems Engineering, and 

seven students from the BSc in Computer Science (LCC) course, a 1st Cycle 3 year course that results 

from a transition to the Bologna Process of the old BSc in Mathematics and Computer Science. Half 

of the participants were female and half male, with ages between 18 and 29 years old (M = 20.6; SD = 

3.55). The participants were selected from two contrasting groups: students with good academic 

results and students with poor academic results.  Both groups were selected by their teachers, based 

on their observations, since tests were applied in the beginning of the course and that grades were not 

yet available. 
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3.2 Instruments 

To identify basic cognitive skills involved in CT, we used validated cognitive tests. Four tests were 

chosen based on perceived associations of the basic skills assessed by the tests and CT (or 

programming) found in the literature: a general intelligence test, a spatial reasoning test, a 

mathematical reasoning test, and an attention to details test. Very briefly, the intelligence test was 

chosen to verify the general idea that programming ability is innate and closely related to intelligence 

level, mainly from an abstraction and inductive reasoning point of view; the spatial reasoning test was 

proposed to verify the subjects’ ability to “see” the problem and work with it mentally, reasoning with 

figures and patterns; the mathematical reasoning test aimed to evaluate the subjects’ problem solving 

abilities and the role of mathematical knowledge in programming; finally, the attention to details test 

was used to evaluate the subjects’ capacity to identify pertinent details and pattern recognition 

abilities. 

Test D.48 (Pichot, 1949) is a nonverbal test that measures the g factor of subjects based on their 

abstraction capacity, ability to understand relations, reasoning by analogy and ability to solve new 

problems (induction). It is composed of 44 items that must be completed in 25 minutes. Each item 

contains a series of dominos to which a new one must be added taking into account the series’ 

configuration. To discover the missing domino, the subject must apply reasoning, not only attending 

to the number of dots in the domino (discovering, for example, ascending values), but also to the 

configuration (discovering, for example, a particular symmetry) and analogy (discovering what B is to 

A as to discover what D is to C). This test has shown high correlation to academic achievement. 

The Spatial Reasoning test assesses two components associated to spatial factor – the ability to 

recognize and view figures, and the ability to rotate or follow the movements of figures. It is a subtest 

of the Differential Reasoning Tests (Bateria de Provas de Raciocínio, BPR-5), composed of five 

subtests evaluating reasoning (common cognitive processes) with different content items (abstract, 

verbal, numerical, spatial and mechanical). The Spatial Reasoning subtest is composed of 20 items 

containing series of 3D cubes to be completed in 8 minutes. The series are obtained through the 

rotation of the cubes by movements that can be constant (for example, from left to right) or alternate 

(for example, left and up).  By identifying the movements that took place, the subject must choose, 

amongst the alternatives, the cube that represents the next cube in the series, obtained by applying the 

identified movements (Almeida & Primi, 1996 as cited in Almeida, Antunes, Martins, & Primi, 1997). 

The General Aptitude Test Battery (GATB) (U.S. Department of Labor, 1983), consists of 12 

separately timed subtests which make up nine aptitude scores (general learning ability, verbal 

aptitude, numerical aptitude, spatial aptitude, form perception, clerical perception, motor 

coordination, finger dexterity and manual dexterity).  Two subtests from the Portuguese version of 

GATB were used: the arithmetic reasoning subtest and the tool matching subtest. The Arithmetic 

Reasoning subtest assesses the ability to verbally solve expressed arithmetic problems and the ability 

to deal intelligently with numbers. It is a measure of general intelligence and numerical aptitude. The 

problems require basic mathematical skills like addition, subtraction, multiplication or division. The 

test includes operations with whole numbers, rational numbers, ratio and proportion, interest and 

percentage, and measurement. It contains 25 word problems with five alterative answers, to be 

answered within a seven minute time limit. Finally, the Tool Matching subtest assesses the ability to 

understand pertinent details in objects in pictorial or graphic material, as well as the ability to make 

visual comparisons or discrimination of detail. It consists of a series of exercises containing a stimulus 

drawing and four black-and-white drawings of simple shop tools. The four drawings have different 

parts of the tools painted in black and white. The subject must identify which of the four options 

exactly matches the stimulus drawing. There are 49 items, measuring form perception, with a time 

limit of five minutes. 

3.3 Procedures 

Participation was voluntary and in the students’ free time. For this reason, the tests were administered 

in three different sessions to comply with the students’ schedule. Preceding the application of the 

tests, we presented the goals of our study and assured the confidentiality of the individuals’ results. 
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Students received one test at a time, and the instructions were read out loud previously. Since each 

test had a specific time limit, when it was up, the test was collected and another one given. The 

application of the four tests took approximately one hour. The order in which the tests were given to 

the students varied between sessions.  

A raw score was obtained for each test, adding the number of correct items completed by the students. 

Thus, even though other formulas may be used to calculate global factors, as the aptitude scores in the 

GATB, these were not used in our analysis.  

The quantitative analysis was undertaken. The results were correlated to the student’s final exam 

result and final grade in their second semester programming course, and with a performance 

evaluation done by the teacher, that attributed a classification from 1 (min)  to 5 (max) according to 

his perception of the student’s aptitude and facility in learning programming, disregarding the 

student’s effort and motivation. This evaluation was important to identify those students that showed 

good capacity for programming, but had poor academic results due to other factors, such as not doing 

homework assignments and missing the final test, as well as those students that were able to pass the 

class mainly due to their motivation and hard work, despite a blatant lack of skill. 

 4. Results and Discussion 

In Table 1, we present the descriptive data (number of students that took the test, maximum possible 

score in the test, minimum and maximum scores obtained by the students, mean and standard 

deviation), regarding the cognitive tests undertaken by our sample as well as the students’ academic 

achievement. Values have been standardized to maximum score 10 in order to facilitate reading and 

comparison of results. This exploratory study has shown interesting results: tests varied significantly, 

not only when comparing the different test scores for each student, but also when comparing the 

results our sample achieved in each test. This means that no student was consistently good in all tests, 

and in a given test there was a significant variation between the minimum and maximum number of 

correct answers. Furthermore, the students’ academic results also varied: eight students were 

approved in the discipline and three failed, and for one the grades were not available; moreover, one 

of the students was approved after retaking the exam, obtaining a significantly better result (almost 

doubled). 

 

Performance indicators 
 

N 

Maximum possible 

score Min. Max. M SD 

D48 12 44 6.0 9.0 7.27 1.11 

Spatial Reasoning 12 20 2.5 9.0 6.13 1.93 

Arithmetic Reasoning 12 20 1.5 7.5 4.67 1.87 

Matching Tools 12 49 7.0 9.0 7.55 .79 

Final grade 11 20 4.5 8.5 6.18 1.38 

Exam 11 20 2.0 7.8 4.40 1.93 

Teacher evaluation 11 5 5.0 10.0 8.18 1.94 

Table 1. Standardized students’ results according to each cognitive test 

 

In Table 2, the correlation coefficients between psychological tests and two academic achievement 

measures are presented. Analysing the correlation between the students’ evaluation factors, we 

verified a very strong correlation between the grade obtained in the exam and the final grade (r = 

.898, p < .001). The teacher’s evaluation correlated with the exam grade (r = .614, p < .05) but not 

with the final grade (r = .489, n.s.). This could be expected since the exam grade depends less on 

motivation and dedication than the final grade, which takes into account other factors such as home 

assignments and class work. Spearman's rank correlation coefficient was also tested, but did not yield 

better coefficient and significance values.  
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D48 

Spatial 

Reasoning  

Arithmetic 

Reasoning 

Matching 

Tools 

FinalGrade Pearson Correlation .491 .579 .111 .310 

Sig. (2-tailed) .125 .062 .746 .353 

Exam Pearson Correlation .378 .427 -.069 .273 

Sig. (2-tailed) .252 .191 .840 .416 

Table 2.  Correlation between performance indicators and results from cognitive tests (n=11) 

 

As our main objective was to cross cognitive abilities (as measured by the four presented tests) and 

the students’ performance in introductory programming courses, the correlation between the cognitive 

tests and the academic results was undertaken. Due to the small number of subjects, we will consider 

the correlation coefficient to verify the effect size since it gives us a perception of the strength of 

relationship between two variables (Field, 2009) without taking into account the significance – since 

the significance depends on the correlation coefficient and the degrees of freedom, and the latter is 

under the influence of the size of the sample (in our case small), which has an impact on the 

significance.  

The correlations between psychological tests and academic classification in the domain of computer 

science point to two distinct patterns of correlation with regard to their effect size. On one hand, the 

D48 test (g factor) and the spatial reasoning test (rotation of figures in space and mental retention of 

these positions to continue the task) showed a large effect when correlated to the students’ academic 

results, as opposed to the attention to detail test and the arithmetic reasoning test, which showed small 

and medium effects respectively. Thus, the students’ computational skills, at the academic learning 

level, seem to require more from their logic-deductive reasoning skills (infer and apply or generalize 

relations) and a holistic or simultaneous organization of the information (spatial organization). Simple 

attention or calculus tasks do not seem to be relevant in differentiating performance in computer 

science students; this possibly means that, being very basic skills, with no inherent significant 

difficulty, all students attain a very similar level of performance, and therefore, they are not relevant 

to the differentiating goal of our study. It should be noted that the lack of correlation concerning the 

Arithmetic Reasoning test supports previous research suggesting that mathematical knowledge is not 

correlated to programming ability. However, the test was composed of word problems, which could 

imply the need for problem solving abilities, and may account for the medium size effect encountered. 

In this sense, further investigation may be needed to verify the correlation of problem solving abilities 

and computational thinking. 

The data obtained in our study agrees with results obtained in other tests. The PISA 2003 test (OECD, 

2003), in addition to items related to the domains of reading, mathematics and scientific literacy, 

included items related to problem-solving that evaluated processes very similar to those necessary in 

programming. According to its results, less than 20% of the students were able to solve difficult 

problems (level 3). In such problems, students should be able to analyze a situation and make 

decisions, handle multiple conditions simultaneously, think about relationships underlying a problem, 

solve it in a systematic way, evaluate their work and communicate results. About half of the students 

were able to answer level 2 questions, which imply good reasoning, being able to confront unfamiliar 

problems and being capable of coping with a certain degree of complexity. Data analysis showed a 

high correlation between problem solving and other areas, especially mathematics. However, the 

performance in solving mathematical problems that involve simple calculations, without further 

inferences, has a low correlation with performance in problem solving. These findings align with the 

evaluation of programming teachers that mathematical knowledge does not determine success in 

programming. They believe that the correlation between mathematics and programming is linked to 

the development of mental processes common to both areas, such as inference. 
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5. Conclusions 

In our study, we aimed to identify the cognitive processes that are central in programming, therefore 

implied in CT, in order to understand which skills students must develop in order to succeed in 

learning introductory programming. By identifying which are these skills, and how they relate to 

academic success, it is viable to apply fitter pedagogic methodologies that will foster this essential 

type of thinking. This matter is most important, given the transversal pertinence of CT for every 

individual, and that the problems faced in teaching computer programming courses pass from the 

computer science realm to a global setting, justifying further study of the cognitive processes 

associated with Programming and CT, as to stimulate and promote it in all levels of education. 

Our exploratory study emphasizes the complexity of CT as a mental process, for which is necessary to 

discriminate the underlying cognitive functions that comprise this construct. To do so, further 

investigation is needed, using a larger sample. In future research, our proposal regarding the cognitive 

processes that are core to CT needs refinement. First, to confirm the correlation between academic 

success in programming, and intelligence and spatial reasoning, other tests may be included, such as 

Raven Progressive Matrices and other spatial tests involving 3D figures from the Differential 

Reasoning Tests. It may also be important to include working memory tests, in light of recent research 

that identifies these executive processes as crucial for intellectual functioning. Second, to confirm the 

lack of correlation between programming and attention to details, a different perception test should 

replace the Tool Matching test, which may not have shown correlation due to the test format and lack 

of face validity. Similarly, the arithmetic reasoning test should be replaced by two distinct tests: one 

that measures problem solving abilities and another that measures math abilities, as to confirm the 

correlation between programming and problem solving that has been verified in related works, as well 

as the lack of correlation with pure mathematical abilities. Nevertheless, selected tests must present a 

higher level of difficulty as the results obtained seem to indicate low degree of student differentiation 

in the tests that were applied, making it impossible to estimate if these cognitive processes are really 

important to explain the academic result differences presented by the introductory programming 

students. Finally, future studies must combine qualitative and quantitative methodologies. For this, a 

larger number of subjects must be considered, always combining two levels of academic achievement 

in introductory programming, or, adopting a logic of expert versus novice, select students with 

different skill levels in this domain. Besides applying the tests, these two groups can be interviewed to 

interpret their performance in the tests. Content analysis of the answers may yield leads that 

approximate the learning that occurs and the different levels of academic performance of these 

students, with the inherent processes of the test items in which they had greater or lesser difficulty in 

solving. This might shed some light in understanding to what extent programming aptitude is “innate” 

and depending on intelligence, or developed, or even in analyzing the students’ schemas and mental 

models, and trying to comprehend how they develop. 
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