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Abstract. This paper presents a time-sensitive scheduler oriented to delay dif-
ferentiation in class-based networks, studying its behaviour from a single node
to an end-to-end perspective. The novel feature of this scheduler is that it tries
to bound the queuing delay per class and, simultaneously, to control the excess
queuing delays in order to avoid class starvation. The study analyses the sched-
uler behaviour for heterogeneous class-load distributions and distinct timescales
proving the robustness of the mechanism. Discussion on its operational feasibility
conditions is carried out and configuration guidelines for its use are provided. In
addition, the paper proposes a new queue selection procedure in order to improve
its performance in high speed networks.

1 Introduction

In class-based networks [1], where scalability and flexibility is achieved relaxing QoS-
guarantees in the network, the integration of time sensitive traffic is difficult mainly due
to the reduced traffic control carried out at the core routers. Thus, the deployment of
scheduling mechanisms providing queuing delay differentiation among traffic classes
plays a relevant role in the integration of real-time traffic in IP networks. In this con-
text, the work presented in [2, 3], focusing on the use of Relative Differentiation, sug-
gests a multiplicative time dependent model used to achieve proportional differentiation
behaviour of a network node. In [4, 5] an overview of different delay differentiation
models including proportional, additive and an hybrid upper-time queuing model are
presented. This hybrid model allows the coexistence of the proportional model with
an unique upper time bounded traffic class. Some different schemas, such as EDD [6],
also try to limit queuing packets delays but they are more suitable for scenarios of strong
per node admission control procedures in order to ensure that the necessary feasibility
conditions [7]. Instead, the mechanism discussed in this paper is more adequate for
scenarios where admission control procedures are more relaxed and operate in network
edges devices. Related to this aspect, [8] proposes a modified EDD schema in order to
differentiate the probability of queuing delay violations under a congested network. In
our opinion, it is also fundamental to differentiate the relative value of such violations,
i.e. under general class congestion ensure that the excess queuing delays of high prior-
ity classes are smaller than the obtained by low priority classes. In this way, the present
work focuses on the hybrid scheduling mechanism proposed in [9], discussing its oper-
ational feasibility conditions and providing its configuration guidelines. Moreover, new



studies for heterogeneous class load distributions and for finer-grain timescales are car-
ried out. This work also extends the study of the scheduler behaviour from a node to an
end-to-end perspective, debating also important implementation issues of the scheduler.
In this paper, Section 2 presents the model definition upon which the hybrid scheduler
is based. Section 3 presents simulation results illustrating the scheduler differentiation
behaviour for (i) a single-node and (ii) end-to-end. Section 4 focuses on implementation
issues of the scheduler. Section 5 presents the conclusions of the work.

2 Hybrid Priority Queuing Model

2.1 Model Construction

This section overviews the development of the hybrid PQ model oriented to handle
multi-class delay differentiation. Therefore, lets consider N traffic classes, Classi with
0 ≤ i ≤ N − 1, where Class0 has the highest priority. The proposed queuing model
has evolved from the Upper Time Limit model [10], where a time boundary Ui is de-
fined for the packet queuing time of class i. However, under congestion1, this time can
be exceeded resulting in an unbounded queuing delay, and consequently, class starva-
tion of lower priority classes may occur. Furthermore, it is common that under a high
delay violation of a class the other classes also become overloaded due to starvation
and, as consequence, all the priority functions assume an infinite value (i.e. a cascade
effect). The proposed model underlying idea is to allow congested classes to be dif-
ferentiated avoiding the priority function to assume an infinity value in that region. To
achieve this, the excess queuing delay, i.e. the difference between the total2 and upper
time delay ((t − t0i

) − Ui) is multiplied by a scale parameter Ci. The resulting hybrid
priority queuing model is then configured with two distinct sets of parameters: Upper
time differentiation parameters (U0, ..., UN−1) and Congestion differentiation param-
eters (C0, ..., CN−1). The final priority function is given by (1) [9], with δt = t − t0i

and 0 ≤ i ≤ N − 1. Based on Eq. (1), the scheduler selects the traffic class with the
higher priority value, pi(t), and forwards the heading packet from such class. Using this
mechanism, the total delay3, di, affecting Classi can be divided in two components:
one induced by priority function when it assumes negative values, i.e. t < t0i

+ Ui,
which we call upper time delay, d◦

i , and other when the function assumes positive val-
ues, which we call congestion delay, d•

i , as expressed by Eq. (2).

pi(t) =

{
δt − Ui

δt
if δt < Ui

(δt − Ui) ∗ Ci if δt ≥ Ui

(1) di = d
◦
i + d

•
i (2)

1 We use the term congestion in a relaxed way as it may reflect heavy load conditions in the
server; heavy load conditions in class i impairing the expected upper time limit or feasibility
problems in the configuration parameters.

2 t0i
is the arrival time of the heading packet of Classi.

3 In the remaining of this paper, di is also used to denote the average queuing delay of Classi

for a given measurement interval.
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Fig. 1. Distinct combinations of configuration parameters.

2.2 Parameter Configuration

Fig. 1 illustrates distinct behaviour of the hybrid queuing model resulting from three
configuration modes, obeying to the fundamental Relative Differentiation rule, i.e. d0 ≤
d1 ≤ ... ≤ dN−1. For each configuration, the relations between the upper time delay
and congestion delay are presented for two generic classes4 i and j with i < j.

Configuration Mode I: In this configuration identical upper time parameters Ui

and Uj are configured for classes i and j, which are then differentiated by congestion
parameters Ci and Cj . This operation mode is appropriated for real-time classes with
the same upper time limit for queuing delay and distinct capabilities to absorb possible
delay violations. The expected behaviour of this model is that under feasible conditions
the specified upper time limits for both classes are achieved, i.e. di = d◦

i = dj = d◦

j <

Ui or < Uj . However, if the server becomes overloaded and the upper time limit delays
of the classes are violated the maximum difference between the queuing delays is given
by Eq. (3) and is tuned in a proportional mode depending on the congestion parameters.

Configuration Mode II: In this configuration the traffic classes are distinct as re-
gards both Ui, Uj and Ci, Cj parameters. This operation mode is appropriate to dif-
ferentiate high delay sensitive applications with low capacity to absorb excess queuing
delays. Again, if the server becomes overloaded and under upper time limits violations,
the delay differentiation is given by Eq. (4).

Configuration Mode III: In this mode classes are only differentiated by Ui, Uj

parameters. This configuration is used to distinguish a class by its maximum queuing
delay limit and, in case of violation, the classes share the same priority behaviour for
the excess queuing delays meaning that they have similar capacities to absorb delay
violations. The delay differentiation achieved by this model is given by Eq. (5).

dj − di ≈ d
•
i ·

(
Ci

Cj

− 1

)

︸ ︷︷ ︸

congestion part

(3) dj − di ≈ Uj − Ui
︸ ︷︷ ︸

upper time part

+ d
•
i ·

(
Ci

Cj

− 1

)

︸ ︷︷ ︸

congestion part

(4)

dj − di = (d◦
j − d

◦
i ) ≈ Uj − Ui

︸ ︷︷ ︸

upper time part

(5)

Parameters Feasibility: It is common to find research work dealing with schedul-
ing mechanisms assuming a set of configuration parameters without explaining or dis-
cussing the criteria and the feasibility problems within the choice of such parameters.
From an administrative perspective and in order to setup realistic configurations on the

4 The queuing model can be applied to more complex scenarios including a larger set of traffic
classes with mixed configuration modes.



network nodes it is crucial to understand some basic aspects of queuing theory. Con-
servation law is the basic law to follow (see Eq.(6)). Its semantics demonstrates that
the average queuing delay of a generic work-conserving queuing discipline cannot be
lower that the queuing delay of the aggregate traffic in a First Come First Serve (FCFS)
mechanism. When dealing with several traffic classes, an additional set of feasibility
conditions is given by Eq. (7) (presented in [11] and also referred in [2]), where Φ rep-
resents a set of 2n − 2 non-empty proper subsets of {1, 2..., n} for a mechanism with n

distinct classes, with λi denoting the arrival rate of Classi, di the class average delay,
`i the server utilisation by Classi and d(

∑

i∈φ λi) the average queuing delay suffered
by the aggregate traffic in a FCFS server.

N∑

i=1

`i ∗ di ≥ ` ∗ dFCFS (6)
∑

i∈φ

λi · di ≥

(
∑

i∈φ

λi

)

· d

(
∑

i∈φ

λi

)

, ∀φ ∈ Φ (7)

{df
1 = d1 ±∆1, d

f
2 = d2 ±∆2, ..., d

f
n = dn ±∆n} (8)

As illustrated, Eq. (7) is an evolution of Eq. (6) now applied to all possible com-
binations involving the traffic classes. The previous equation highlights the problems
which may occur in the differentiation node setup: depending on the class traffic loads,
the configuration parameters can become unfeasible, i.e. for a set of target delays, {di},
Eq.(7) and Eq. (6) may be invalid. These problems are common to all differentiation
models that deal with multiple traffic classes. For unfeasible configurations of the dif-
ferentiation mechanism Eq. (7) and Eq. (6) auto-adjust the class delays in order to obtain
a set of valid feasible equations. This means that for a given set of arrival load values
{λi}, the corresponding feasible delays, {df

i } are evaluated and effectively achieved
by the differentiation mechanism. Therefore, deviations from the initial target delays
{di} are expected to occur, and consequently, the obtained values can be expressed by
(8), where ∆i represents the delay deviation of Classi. One of the contributions of the
proposed mechanism is the ability to control such deviations, in fact the Congestion
Differentiation Parameters have the semantic power to establish maximum relations
for the spread of {∆i} values. In other words, they supply an extra control instrument
to bound the spread of the deviations introduced by particular operational conditions of
the differentiation nodes. Despite this improvement in the scheduler behaviour, it is also
useful to have realistic target delays, i.e. values achieved by the differentiation node in
some generic and expectable load conditions, otherwise there is the risk of having the
differentiation mechanism always in congested mode and the deviations (or congestion
delays) permanently above the reference upper time limits (i.e. ∆i � di). For this pur-
pose, it is useful to provide simple heuristics to help, for instance, the administrator,
with acceptable parameter configurations. The idea is not to achieve precise configura-
tion values due to the previously mentioned feasibility problems. In fact, the variability
and characteristics of the traffic arrivals and the service times heterogeneity hinder the
use of queuing models such as M/D/1, M/M/1, M/G/1, G/M/1 to obtain precise values5

for the parameters’ configuration. Despite that, and from the assumption of some valid
range for class loads and service times, each of the mentioned models may constitute

5 The equations of such models provide average values which means that considerable devia-
tions can still be observed.



an acceptable reference for the configuration parameters. For example, if one simplifies
the assumptions of the single-node study of Sec. 3.1 as: Poisson traffic arrivals, deter-
ministic service times (for an average packet size of 500 bytes) for the same overall
load (around 95% in this case) and then apply equation d = `∗S̄

2∗(1−`)
6 then a value of

380µsec is obtained. Using this value and taking into account Eq. (6), a set of reference
delay limits can be obtained. In fact, an indication for the values selected for the Ui

parameters in the single node study was obtained using this heuristic. Note that the use
of M/D/1 model is a very optimistic approach as in practice network traffic has a mixed
nature and the service times are likely non-deterministic. Therefore, it is expected that
higher values are observed which, in this case, is also an objective in order to the total
scheduler working region. Similar reference values can be obtained for specific sce-
narios using other queuing models. Nevertheless, considerable deviations on queuing
delays are always expected and the proposed scheduling mechanism has an important
role in the control of such unfeasible working regions of the scheduler.

2.3 End-to-End Considerations

This section extends the single node conclusions with considerations about the end-to-
end behaviour of the scheduler as applications and users are ultimately interested in
the overall service provided by network. This aspect is studied in section 3.2 where an
end-to-end analysis is carried out. Another important end-to-end issue is the advertise-
ment strategy (if any) of the network capabilities to the users/applications. Assuming a
domain differentiation path, where M network nodes include the proposed scheduler,
estimations of both end-to-end delay, Uadvt,i, and maximum Cadvt,i, for class i and for
a given network path, can be announced as per Eq. (9). These metrics can be manip-
ulated by a QoS-capable routing mechanism [12] or delivered to edge routers to help
controlling the access to the differentiation domain.

Uadvt,i =

M−1∑

m=0

U
m
i ; Cadvt,i = max0≤m≤M−1(C

m
i ) (9)

3 Single Node and End-to-end Performance Evaluation

The proposed scheduler was implemented and tested in the network simulator (NSv2)
following the simulation layout of Fig. 2. The testbed includes Pareto on-off (with α =
1.2.), exponential and isochronous traffic sources which are mapped to classes A, B and
C contending for a common link. Each class contributes evenly to the overall load (in
the long term), and generates mean packet lengths of 500 bytes uniformly distributed
over the interval [250, 750]. Similar queuing resources were allocated for all classes. In
the tests, ClassA has the highest priority as Pareto traffic is the more demanding on
the differentiation algorithm. The study focuses on a single-node (dashed shape in the
figure) and on an end-to-end perspective (along the four differentiation nodes).

6 This formula provides the average queuing delay of the aggregate traffic in the M/D/1 model
with S̄ as the average service time.
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Fig. 3. (a) Delay differentiation for (UA, UB , UC) = (400µs, 400µs, 400µs) and
(CA, CB , CC) = (4, 2, 1) (Conf. I) (b) (UA, UB , UC) = (100µs, 400µs, 600µs) and
(CA, CB , CC) = (4, 2, 1) (Conf. II) (c) (UA, UB , UC) = (100µs, 400µs, 600µs) and
(CA, CB , CC) = (1, 1, 1) (Conf. III).

3.1 Single-node Differentiation

Figs. 3(a)(b)(c) show three differentiation examples obtained using the hybrid scheduler
from a single-node perspective, each one corresponding to a particular configuration
mode. The x-axis represents the server packet transmission times with a plot granularity
of 25ms (625 packet transmission times) and the y-axis represents the average queuing
delays (in microseconds) over such intervals.

As plotted in Figure 3(a) all classes have similar queuing delays in the non-congested
scheduling region (dA, dB , dC ≤ 400µs). However, in the congested regions the sched-
uler switches to proportional differentiation. The proportional relation between the ex-
cess queuing delays may be easily visualised, as excess delays in ClassC are approx-
imately twice the delays in ClassB , which in turn double ClassA delays. This agrees
with the proportional relations defined for CA, CB , CC . showing that this configuration



mode is feasible. Fig. 3(b) plots the differentiation behaviour for configuration mode II.
As the Figure shows, for congested periods there is an excess queuing delay in all con-
gested classes following the proportional differentiation approach. For example, when
the upper time of the highest class is violated (dA > 100µs) the remaining queuing
delay is approximately two times lower than the obtained by ClassB (relative to its
upper time of 400µs). The same applies to relations between ClassA and ClassC and
to ClassB and ClassC . Fig. 3(c) illustrates the differentiation behaviour for configu-
ration mode III. As the Figure shows, for congested periods there is an excess queuing
delay in all congested classes following a fair distribution among classes. For exam-
ple, when the upper time of the highest class is violated (dA > 100µs) the remaining
of the queuing delay is similar to the obtained by ClassB (relative to its upper time of
400µs). The same applies to relations between ClassA and ClassC and to ClassB and
ClassC . In addition, simulation results for different class load distributions and also for
short measurement intervals were also obtained. Due to the impossibility of including
graphic representation for different measurement time scales for all the configurations
and for distinct class load distributions, three rules were defined as the basis for verify-
ing the differentiation correctness of the configuration modes and their applicability to
all simulation scenarios.

– Property 1: Fundamental Differentiation Rule: For a generic time interval [tx, tx+∆t
]

in which all classes a, b, c have packets waiting to be served7, da ≤ db ≤ dc are
the average queuing delays in [tx, tx+∆t

], having Classa the highest priority.
– Property 2: Congested Differentiation Rule: For a generic time interval [tx, tx+∆t

]
in which all classes a, b, c have packets waiting to be served, with upper time limit
violations, d•

a ≤ d•

b ≤ d•

c are the average excess queuing delays in [tx, tx+∆t
],

having Classa the highest priority.
– Property 3: Uncongested Differentiation Rule: For a generic time interval [tx, tx+∆t

]
in which all classes a, b, c have packets waiting to be served, with no upper time
limit violations, d◦

a ≤ d◦

b ≤ d◦

c are the average queuing delays during [tx, tx+∆t
],

having Classa the highest priority.

New simulation studies were performed for scenarios with distinct combinations of
class loads such as (CAload, CBload, CC load) = (50%, 25%, 25%), (25%, 50%, 25%),
(25%, 25%, 50%), (40%, 40%, 20%), (60%, 20%, 20%). In all these load scenarios the
results8 verified the three properties defined above. This shows the model ability to
handle distinct class load distributions.

3.2 End-to-End Differentiation

This section analyses the behaviour of the scheduler in a network comprising multiple
differentiation nodes in order to study its end-to-end performance. As for the single

7 This condition was included due to the possibility that for a given interval or subinterval there
is no traffic from a given class in the server which would cause a zero or lower average queuing
delay than the obtained by higher priority classes.

8 All results report to a sampling interval of 40 measurements per second, the same scale used
in the single-node and end-to-end study, i.e. ∆t = 25ms. Different time scales were also used
and similar conclusions are also valid for a more finer-grain sampling interval of ∆t = 2.5ms.
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(CA, CB , CC) = (4, 2, 1) (Configuration II).

node study, congestion of the differentiation nodes along the path is achieved resorting
to cross-traffic. Here the term congestion is used in a medium time scale perspective.
In fact, due to the nature of the traffic sources, e.g. Pareto which has high load variabil-
ity, there are small simulation periods where the nodes are not under heavy load. This
situation was also noticed in the single-node case for time intervals where all classes
had low delays. In the end-to-end analysis of the scheduler, if all nodes were under
permanent congestion, i.e. even over all short time scales, then the conclusions for each
configuration mode were almost similar as the ones presented for the single-node study.
Nevertheless, for specific and maybe more realistic conditions (e.g. only a subset of the
path nodes congested or short-time load oscillations in the server) different results can
be observed. To assess the expectable end-to-end differentiation behaviour, several ex-
amples are presented based on the testbed of Fig. 2, where the end-to-end class queuing
delays were measured (if d?

i represents the end-to-end queuing delay of Classi then
d?

i =
∑M−1

j=0 d
j
i =

∑M−1
j=0 [d◦,j

i + d
•,j
i ]).

Fig. 4 illustrates the differentiation results for configuration mode I with (UA, UB ,-
UC) = (400µs, 400µs, 400µs) and (CA, CB , CC) = (4, 2, 1) for all nodes. If all nodes
are under heavy load, the expected total end-to-end target delay is around 1600µs. Ad-
ditionally, it is expected that for high congestion periods the single node queuing delay
violations follow a proportional spread according to Ci. From the data in Fig. 4, as
for the single node study, this characteristic is also valid at end-to-end. Fig. 5 presents
the differentiation results for configuration II with (UA, UB , UC) = (100µs, 400µs,-
600µs) and (CA, CB , CC) = (4, 2, 1) for all nodes. If all nodes are under heavy load,
the expected total end-to-end target delay is around (400µs, 1600µs, 2400µs). Again,
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Fig. 6. End-to-end delay differentiation for (UA, UB , UC) = (200µs, 400µs, 600µs) and
(CA, CB , CC) = (1, 1, 1) (Configuration III).

it is expected that for high congestion periods the single node queuing delay viola-
tions follow a proportional spread depending on Ci. From the data in Fig. 5 it is clear
that when all nodes in the path are under heavy load conditions (e.g. x-axis interval
[120, 150]), the spread among the classes’ excess queuing delays is close to the ra-
tio between the corresponding Ci parameters. Despite that, for time intervals where
only a subset of the nodes are under heavy load conditions the gap between the excess
end-to-end queuing delays is much lower than the obtained for full congested peri-
ods, as expected. Fig. 6 presents the differentiation results for configuration mode III
with (UA, UB , UC) = (200µs, 400µs, 600µs) and (CA, CB , CC) = (1, 1, 1) for all
nodes. Assuming again all nodes under heavy load, the expected total end-to-end target
is around (800µs, 1600µs, 2400µs). This configuration leads to an end-to-end differ-
entiation behaviour slightly different from the single node study. As shown in Fig. 6,
during the simulation example, the end-to-end excess queuing delays of the high prior-
ity class are slightly higher than the obtained by the lower priority class9. As pointed
out before, this is caused by a partial congestion state of differentiation nodes. Let’s
consider a limit situation to illustrate such end-to-end behaviour with the assumption
that only two of the four nodes are under heavy load conditions and with the same con-
figuration parameters as in Fig. 6. Additionally, a delay close to zero is considered for
all classes in the non-congested nodes and an excess queuing delay of 210µs for all
classes in the congested nodes. These conditions lead to in an end-to-end queuing delay
of (820µs, 1220µs, 1620µs). Comparing these values with the corresponding end-to-
end target queuing delays, i.e. (800µs, 1600µs, 2400µs), only the high priority class
has its upper time limit violated. Although the example of Fig. 6 assumes all nodes
under long-term heavy load conditions which means that such limit situation is not ap-
plicable for the simulation scenario, the truth is that a similar reasoning can be made
considering natural load oscillation along the transmission path. Configurations I and II
may suffer similar deviations in such conditions but due to the spread of Ci parameters
assumed in these configurations, the end-to-end differentiation behaviour is close to the
single node conclusions for a large set of tested scenarios. For these reasons, config-
urations modes I and II are more appropriate for the required end-to-end delay differ-
entiation under operational conditions other than the permanent congestion of network

9 Note however that for all configurations modes, including III, the fundamental Relative Dif-
ferentiation rule is preserved even in the end-to-end behaviour: d?

0 ≤ d?
1 ≤ ... ≤ d?

N−1.



nodes. Nevertheless, this conclusion does not impair using configuration III for more
specific network scenarios assuming that, as the congestion increases special attention
has to be given to delay differentiation mechanisms, which, in the limit, are operating
at their maximum differentiation capacity. Recall that the adaptive parameterization of
differentiation nodes can be used to improve the end-to-end differentiation capabilities
of the scheduler for other than permanent congestion situations. In fact, network mon-
itoring schemes can be used in order to measure the delay differentiation achieved in
a specific network path and, based on such information, readjust on-the-fly the nodes’
configuration parameters in order to provide a better end-to-end delay differentiation.

4 Implementation Issues

Although based on simple arithmetic operations, the processing time required to com-
pute pi may become a bottleneck when the output capacity of the server increases,
which in turn leads to low CPU time for queue selection procedures. In this context any
improvement in the queue selection procedures will represent an overall gain for the
performance of the models when implemented in a real network. In this work, the influ-
ence of selection procedures is measured using Eq. (10) where γ expresses the service
degradation ratio of the differentiation model, ρ denotes the server utilisation10 and ρ�

denotes the server utilisation taking into account the processing overhead induced by
queue selection procedures. From queuing theory along with Eq. (10), the following

relation is obtained: γ = (λ·(S̄+t�)−λ·S̄

λ·S̄
), where t� represents the amount of time re-

quired to compute the next queue to be served11. As consequence, this relation can be
presented as γ = ( t�

S̄
), i.e. γ is the ratio between the processing time and the service

time. In conclusion, Eq. (11) can also be used to compute γ, for an average packet size
k and an output link capacity Cl.

γ =

(
ρ� − ρ

ρ

)

(10) γ =

(
t�

k
· Cl

)

(11)

Eq. (11) shows that for a fixed output capacity and a specific t� value, γ depends
highly on the packet size. Due to the high capacity of current computational systems,
low values of γ are expected. Nevertheless, even these small deviations can have strong
influence in the system behaviour. In fact, and as explained by queuing theory, for work-
ing regions where ρ > 0.6 even small increases in the server utilisation may lead to
considerable increases in queuing delays and in the number of customers in the system.
For this reason, the overhead induced by queue selection procedures should be reduced.
In order to illustrate the queue selection constraints, a simple example is presented for
a Linux PC with traffic differentiation capabilities and a 2GHz Intel processor. The aim
is to illustrate the overhead induced by the queue selection operations when varying the
output link capacity and the packet length. The value of γ also depends on the number
of traffic classes to differentiate. The example presented in Fig. 7 assumes four traf-
fic classes, packet lengths varying from 256 to 10240 bytes and output link capacities
in the interval [1Mbps, 5Gbps]. As shown, the value of γ is almost irrelevant for an

10 ρ = λ · S̄, where λ is the arrival rate and S̄ the average service time.
11 This is a platform-dependent factor.
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tpacket← sizeof(packet)
Cl

< ..sendpacket... >

Sel← AdvPriority([C0, CN−1], t + tpacket)

while (serverbusy) null

Sel← HigherPriority([C0, CSel])

t�

t�

Fig. 8. Advanced transmission time algorithm.

output capacity below 100Mbps, becoming more relevant for capacities in the range
[100Mbps, 1Gbps]. For output capacities above 1Gbps, γ increases steadily assuming
more expressive values. Additionally, and as expected, for a specific output capacity
the service degradation increases as packet size decreases. One of the solutions to im-
prove the scheduler performance is to use proprietary hardware circuits to implement
the queue selection procedures expressed in Eq. (1) to reduce the service degradation.
A more generic and low cost solution can be achieved using the following algorithm:

Advanced Transmission Time Algorithm: The algorithm presented in Fig. 8 is
based on the inspection of specific data fields of the packet selected for transmission.
Using this mechanism it is possible to check the packet length and evaluate the expected
packet transmission time (tpacket). This means that the next queue selection (i.e. after
busy period) should occur t + tpacket. The previous knowledge of this time allows the
selection, during the busy period, of the next class to be served. This is achieved by
round robin the traffic classes, evaluating for each one the corresponding pi(t) value, as
it was computed at t + tpacket. The key point of this strategy is that, a substantial part
of the queue selection procedure is carried out during the busy period (t�) reducing
the time of the selection procedures after the busy period (t�), which is effectively re-
sponsible for service degradation. The last line of the algorithm is only required when
a higher priority class is empty and AdvPriority function is called and meanwhile
a new packet arrives for that class. In such cases, it is necessary to select the highest
priority value for the class interval [Class0, ClassSel

12]. However, as referred before,
the differentiation mechanisms are designed mainly for heavy load conditions, which
means that the probability of having an empty queue during the busy period is very
low. So, a simple notification flag can be used to notify this specific event. This means
that a server using this algorithm, under heavy load conditions and for similar param-
eters’ assumptions as the ones for Fig. 7, will achieve t� ≈ 0, ρ� ≈ ρ and γ ≈ 0%,
i.e. a performance similar to the obtained by the theoretical model13. Recall that the
12 The one selected during the previous busy period.
13 Note that in Fig. 7 most of the service degradation percentages are below 100% meaning that,

on average, the packet transmission time is sufficient to perform the queue selection tasks.



presented algorithm still has complexity O(n). In fact, in the worst case, two complete
loops inspecting the classes heading packets lead to O(T (n)) = O(n)+O(n) = O(n).
However, in this case, the first loop is performed during the busy period meaning that it
does not affect the server utilisation and the second, considering high load conditions, is
unlikely to happen. This means that, for heavy load conditions, a probabilistic analysis
of the part of the algorithm performed after the busy period shows that its complexity
is analogous to O(1) since, in practice, the queue selection decision was already been
performed during the busy period. In our opinion, even if the platform or the assump-
tions vary leading to higher service degradation than in Fig. 7, the use of the presented
algorithm will always be an added value as regards reducing service degradation.

5 Conclusions

This article presents an hybrid queuing model able to provide full delay differentiation
of real-time traffic. Through a simple and flexible configuration, it is possible to control
both the expectable queuing delay and the congestion queuing delay on a traffic class
basis. After illustrating the scheduler behaviour for a single node, the study is extended
focusing on the end-to-end delay differentiation capability. Specific implementation is-
sues are also discussed and an low overhead queue selection algorithm is proposed.
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