Applied Mathematical Sciences, Vol. 8, 2014, no. 44, 2163 - 2179
HIKARI Ltd, www.m-hikari.com
http://dx.doi.org/10.12988 /ams.2014.4143

Multiple Solutions of Mixed Variable Optimization
by Multistart Hooke and Jeeves Filter Method
M. Fernanda P. Costa

Department of Mathematics and Applications, University of Minho, Portugal
Centre of Mathematics, University of Minho

Florbela P. Fernandes

Department of Mathematics, Polytechnic Institute of Braganca, Portugal
Centre of Mathematics, University of Minho

Edite M.G.P. Fernandes and Ana Maria A.C. Rocha
Algoritmi Research Centre, University of Minho, Portugal

Copyright (© 2014 M. Fernanda P. Costa et al. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

In this study, we propose a multistart method based on an extended
version of the Hooke and Jeeves (HJ) algorithm for computing mul-
tiple solutions of mixed variable optimization problems. The inequal-
ity and equality constraints of the problem are handled by a filter set
methodology. The basic ideas present in the HJ algorithm, namely the
exploratory and pattern moves, are extended to consider two objective
functions and to handle continuous and integer variables simultaneously.
This proposal is integrated into a multistart method as a local search
procedure that is repeatedly invoked to converge to different global and
non-global optimal solutions starting from randomly generated points.
To avoid repeated convergence to previously computed solutions, the
concept of region of attraction of an optimizer is implemented. The
performance of the new method is tested on benchmark problems. Its
effectiveness is emphasized by a comparison with a well-known solver.
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1 Introduction

This paper presents a multistart method based on a derivative-free local search
procedure, the Hooke and Jeeves method [8], to locate multiple solutions of
nonlinear constrained mixed variable optimization (MVO) problems. This type
of problem contains both continuous and integer decision variables and we use
the following mathematical form

min  f(z,y)
subject to  gi(z,y) <0,i=1,...,m (1)
hi(z,y) =0, j=1,....p
lo <@ <ug, ly <y<uy

where z,l;,u, € R™, y,l,,u, € Z™ (in particular y € {0,1}"), n, is the
number of continuous variables, n, is the number of integer variables, [, and
l, are the vectors of the lower bounds for the continuous and discrete variables
respectively, and u, and u, are the vectors of the corresponding upper bounds.
We will use n to represent the total number of variables of the problem. We
do not assume that the functions f, g;;¢ = 1,...,m and h;,j = 1,...,p are
convex and thus many global and local (non-global) solutions may exist. It
is not an easy task to compute just one solution of the MVO problem, to
compute multiple solutions (global and local) in an MVO context is therefore
one of the most complex optimization problems.

When addressing the issue of computing just one global optimal solution
of an MVO problem, stochastic and deterministic methods are available. The
stochastic methods to compute global solutions are nowadays common and
easy to implement. Their convergence properties do not depend on the struc-
ture of the problem at hand. Studies about the convergence properties of
stochastic methods are capable of guaranteeing, in the limit, convergence to
a global solution with probability one. One of the most used stochastic algo-
rithms is the so called multistart. It is very popular since it can be used in
a wide range of applications and it is easy to implement. Genetic and evolu-
tionary algorithms for computing a global optimum of problems like (1) are
presented in [7, 11]. Known swarm intelligence based optimization algorithms,
such as ant colony optimization, have been used to solve MVO problems [14].
Heuristics are also common. For example, in [15], an effective exhaustive enu-
meration method where only a portion of all candidate suboptimal solutions
realized during the search are examined and poor points are discarded in favor
of more promising ones, is proposed.
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The most common deterministic approaches to compute a global solution
of MVO problems are branch and bound techniques, outer approximation,
general Benders decomposition and extended cutting plane methods. The
main advantage of these approaches is that they may guarantee to find the
global optimum, although they also require large amounts of computational
time. In general, the complexity rises exponentially with the dimension of the
problem.

Recent derivative-free methods for locating a local minimizer of MVO prob-
lems are presented in [1, 12]. In the first paper, the generalized pattern search
algorithm for linearly constrained (continuous) optimization was extended to
mixed variable problems and the constraints are treated by the extreme bar-
rier approach. In the second paper, a minimization of a penalty function dis-
tributed along all the variables is performed. Continuous and discrete search
procedures, as well as a penalty parameter updating rule are the most relevant
issues of the therein presented method.

In this paper, we address the issue of locating multiple solutions of MVO
problems by using a multistart paradigm and extending the Hooke and Jeeves
(HJ) method to inequality and equality constrained problems and integer vari-
ables. The HJ method, developed for unconstrained optimization, uses ex-
ploratory and pattern moves to locally search for a point that improves the
objective function value relative to a central point of the search [8, 9]. When
the variables of the problem must satisfy a set of bound or/and inequality
and equality constraints, the basic HJ algorithm should be extended to ensure
that only feasible points are considered as potential solutions. The extension
herein presented uses a reformulation of problem (1) as a bound constrained
bi-objective optimization problem and includes a filter methodology [2, 3, 5]
to assess objective and constraint violation functions to promote convergence
to feasible and optimal solutions. Furthermore, discrete values for the inte-
ger variables are ensured by using a specific pattern of points spread over the
search space. The multistart HJ filter method presented in this study is an
extension of the work proposed in [4], in the sense that multiple solutions have
now to be located in a single run of the algorithm targeting both global and lo-
cal minimizers. A multistart method is a suitable stochastic strategy to locate
multiple solutions. Since some solutions may be computed more than once,
the concept of region of attraction is integrated into the algorithm to avoid
repeated convergence to previously computed solutions.

The remaining part of this paper is organized as follows. In Section 2 we
present the multistart method and in Section 3 we list our strategy for consid-
ering integer variables and for using the filter methodology within the HJ local
search. We report in Section 4 the results of the numerical experiments carried
out with a benchmark set of MVO problems, as well as some comparisons with
another multistart based method. Finally, we conclude the paper in Section 5.
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2 Multistart method

This section presents the main ideas of a multistart method that uses the
concept of region of attraction to avoid repeated convergence to previously
computed solutions. This is the most popular stochastic method when mul-
tiple solutions are required. To compute multiple solutions, the simplest idea
is to repeatedly call/invoke a local search procedure starting each time from a
different randomly selected point, so that hopefully different optimal solutions
will be found. However, the same solutions may be computed over and over
again. Convergence to previously computed solutions can be avoided by imple-
menting a clustering technique which aims to define prohibited regions based
on the closeness to the previously computed solutions [16, 17, 18]. Each time
a point is randomly selected from these prohibited regions, it will be discarded
since the implementation of the local search procedure will eventually produce
one of the previously computed solutions. This way the number of calls to the
local search procedure is reduced. The ultimate goal of a multistart algorithm
is to invoke the local search procedure as many times as the number of optimal
solutions of problem (1).

Our implementation of a multistart method for MVO problems defines the
randomly selected starting points as follows:

i = ()i + M(ug)s — (o)) fori=1,...,n,
yi =Uy);+T forj=1,...,n,

(2)

where the notation (I); stands for the component i of the vector [,, A is
a random value uniformly distributed in [0,1] and 7; is a number randomly
selected from the set {0,1,...,((uy); — (1,);)}. In what follows, we will use
the following notation: X = (z,y)? to represent the vector of the n variables,
L= (l;,1,)" and U = (ug, u,)" to represent the vectors of the bounds on the
variables.

The region of attraction of a minimizer, X* = (z*, y*)T, associated with a
local search procedure L, is defined as:

A={X €[L,U] : L(X) = X"}, (3)

where L(X) produces the minimizer X* after invoking the local search pro-
cedure L starting at the point X. This means that if a point X is randomly
selected from the set [L, U] and belongs to the region of attraction A of the
minimizer X*, then this minimizer would be obtained when L is invoked start-
ing from that X. Thus, the main idea is to invoke the local search procedure
only when the randomly selected point does not belong to any of the regions
of attraction of already computed minimizers or, equivalently, to the union
of those regions of attraction, since they do not overlap. However, it is not
an easy task to compute the region of attraction A of a minimizer X*. An
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alternative process consists of estimating the probability, p, that a sampled
point will not belong to the union of the regions of attraction of the previously
computed minimizers. This is estimated by the probability that the sampled
point will not belong to the region of attraction of the nearest to X minimizer,
herein denoted by X! (where o is used to denote the index of this particular
minimizer), i.e.,

S
p=Prob[X ¢ Uj_ A;] = [ [ ProblX ¢ Aij] ~ Prob[X ¢ A,

i=1
where s is the number of the already computed minimizers and A, is the region
of attraction of the minimizer X (see details in [18]). In practice, the value
of p is approximated by Prob[X ¢ B(X}, R,)], which is the probability that
the sampled point does not belong to the sphere centered at the minimizer X
with radius R,. For any ¢, let R; represent the maximum attractive radius of

the minimizer X

b (4)

where Xi(j ) is one of the sampled points that converged to the minimizer X/
after invoking the local search procedure. Given X, let d; = || X — X/|| be
the distance between the point X and the minimizer X'. If d; < R; then
the point X is likely to be inside the region of attraction of X} and the local
search procedure ought not to be invoked since the probability of converging
to the minimizer X is high. However, if the direction from X to X is ascent
then X is likely to be outside the region of attraction of X' and the local
search procedure ought to be invoked, starting from X, since a new minimizer
could be detected with high probability [18]. Thus, the estimated value of the
probability that X ¢ A; is

o L, if & >1,

o 1,if % < 1 but the direction from X to X is ascent,

e 0 < o(X, X (]d{—i,ro < 1,if % < 1 and the direction from X to X} is

descent,
where g is a function that depends on the directional derivative of f along the
direction from X to X7, r; is the number of times the minimizer X; might
have been recovered thus far, and & is a function that:
d;

e tends to 0 as - approaches 0,

e tends to 1 as - approaches 1,
e tends to 0 as 7; increases.

Here, we use the function ® proposed in [18] for 0 < l% <1,

2
o (%,n) = %exp (—r? (% — 1) >

R, = maX{HXZ-(j) - X/
J




2168 M. Fernanda P. Costa et al.

and compute o(X, X;) using forward differences to estimate de gradient of f
at X, 6 (X),

(X —X)Tof(X)

12X = XQlof XN

We consider the direction from X to X} ascent if (X;—X)T§f(X) > 0. Algo-
rithm 1 displays the main steps of the multistart algorithm. The set A*, empty
at the beginning of the iterative process, contains the computed minimizers
that are different from the previous ones. To check if a computed minimizer,

X*, has been previously identified the following proximity conditions must
hold

o X, X)) =1+

[F(X7) = (XD <97 and 2" — 2] <47 and [ly*" =y =0 (5)

for any [ in the indices set of previously identified minimizers {1,...,s}, and
a small v* > 0. Although this type of methods is simple, they would not be
effective if a bad stopping rule is used. The main goal of a stopping rule is to
make the algorithm to stop when all minimizers have been located with cer-
tainty. Further, it should not require a large number of calls to the local search
procedure to decide that all minimizers have been found. A simple stopping
rule, adopted from [10], uses an estimate of the fraction of uncovered space,

P(s) = igffll)), where s gives the number of (different) computed minimizers
and t represents the number of times the local search procedure has been in-
voked. The multistart algorithm then stops if P(s) < ¢, for a small ¢ > 0.
However, if this condition is not satisfied the algorithm is allowed to run for
K ,.x iterations.

The next section addresses the issue related with the local search proce-
dure, L. It is a derivative-free pattern search type method that is prepared to
handle inequality and equality constraints by means of a filter methodology
[2, 3, 5, 7. The method extends the Hooke and Jeeves approach, as outlined
in [8, 9], for solving a mixed integer constrained optimization problem. The
herein presented study is an extension of the work proposed in [4], in the sense
that multiple optima of problems like (1) are required rather than just a global
optimum. Two crucial tasks are to be carried out: one is related with the defi-
nition of the pattern in the HJ search procedure to take care of continuous and
discrete variables simultaneously, and the other uses the filter methodology to

handle the inequality and equality constraints. In what follows this extension
will be called ‘mixed-HJ-filter’.

3 The ‘mixed-HJ-filter’ method

The local search procedure is an iterative method that is applied to a sampled
point (x,y) and provides a trial point (z*,y™") that is a global or local mini-
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Algorithm 1 Multistart algorithm
Require: L, U, € >0, Kpax, set A*=0,s=1,t=1,k=0;

1: Randomly generate X € [L, U] using (2);

2: Compute X7 =L(X), Ry = || X — X[, set 1 =1, A* = A*U X];
3: repeat

4:  Randomly generate X € [L, U] using (2);

5 Set o=argminj—1, . sd; = [|[ X — X7
6: if d, < R, then
7 if the direction from X to X is ascent then
8 Set p =1;
9: else
10: Compute p = o(X, X})® (%‘;,ro>;
11: end if
12:  else
13: Set p = 1;
14:  end if
15 if rand(0,1) < p then
16: Compute X* = L(X), set t =t + 1;
17: if X* ¢ A* then
18: Set s =s+1, X = X* r, =1, A* = A*UX}, compute R; = || X — X|;
19: else
20: (X* = X € A*) Update R; = max{Ry, || X — X/||}, m=r+1;
21: end if
22:  else
23: Update R, = max{R,, | X — X}||}, 7o =70+ 1;
24:  end if

25:  Set k=k+1;
26: until s(s+1)/((t(t —1)) < eor k > Kpnax

mizer of the problem (1). Using a filter methodology [5], the basic idea is to
reformulate (1) as a bi-objective optimization problem

subject to I, < <u,, [, <y <,

where 0(z,y) = ||g(z,y)+||5+]|h(x,y)]3 is the nonnegative constraint violation
function and v, = max{0,v}. The filter technique incorporates the concept
of nondominance, borrowed from the field of multi-objective optimization, to
build a filter set that is able to accept trial approximations if they improve
the constraint violation or the objective function value. A filter F is a finite
set of points (z,y), corresponding to pairs (6(z,y), f(x,y)), none of which is
dominated by any of the others. A point (z,y) is said to dominate a point
(«',y') if and only if O(x,y) < 0(2',y) and f(z,y) < f(2',y).

The most relevant steps of the ‘mixed-HJ-filter’ algorithm are described in
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the remaining part of this section. At the beginning of the iterative process,
the filter is initialized to F = {(0, f) : 0 > Onax}, where O > 0 is an upper
bound on the acceptable constraint violation.

3.1 Exploratory moves

Based on the current point (z,y), the search begins with a central point, set as
(Z,y) = (z,y), and defines a sequence of trial approximations along the unit
coordinate vectors e; € R™ with a fixed step size a, € (0, 1]:

T =T+ a,Dej,i=1,....n,, and y" =gLe;, i=n,+1,...,n, (7)

where D € R™*" ig a weighting diagonal matrix. The search for acceptable
trial points follows the rules:
e when searching along each e; to find a trial point that is acceptable by
the filter, the positive direction is tried first;
e cach time a point (z1,y™) falls outside [L, U] the point is projected onto
the search space [L, U],
e if the trial point improves over (Z, 3), reducing 6 or f by a certain amount,
i.e., if one of the conditions

0($+,y+) < (1 _/79> 0(f7g) or f(x+,y+) S (1 _’yf) f(jvg) (8)

holds, for fixed constants 7, v; € (0,1), and is acceptable by the filter,
(xt,y™) is accepted and replaces (Z,7);

e the search goes on along the remaining unit coordinate directions, as
described above;

e if, on the other hand, the trial approximation (xz*,y™") is dominated
by the current filter, the search for a trial point is repeated, according
to (7), but along the negative direction, before passing to the next unit
coordinate direction.

We also note that whenever a point is acceptable, the point is added to the
filter F, and all dominated points are removed from the filter.

When the search along the n coordinate vectors terminates, the most nearly
feasible point (it may be a feasible one) among the accepted trial points is
selected. Let that point be denoted by (z™/,y™/). If (x™/, ¢y # (x,y),
the search is termed successful and the vector (z*/ y"/) — (z,y) defines a
promising direction, known as pattern direction; otherwise the search is called
unsuccessful, and a restoration phase is invoked.

We note that if a sequence of trial points is feasible, the condition (8) guar-
antees that the trial approximation (z*, y™) must satisfy the second condition
in order to be acceptable. This way the optimal solution is guaranteed.
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3.2 Pattern moves

When a successful search occurs, a move along the pattern direction is carried
out. The search along the n unit coordinate vectors, using (7) and the above
described rules, is conducted using (2™, y™/) + ((a™ y™/) — (z,y)) as the
central point. At the end, the most nearly feasible point among the generated
trial points is selected. When a new acceptable (z™/ y™/) is found then it is
accepted as the new iterate, replaces (Z,y), and the pattern move is repeated.

3.3 Restoration phase

When it is not possible to find a non-dominated trial point, a restoration
phase is invoked. In this phase, the most nearly feasible point in the filter,
(x??f ,yj‘,—f”f ), is recuperated and the search along the n coordinate vectors, as
previously described and using (7), is repeated but with (mz}lf ,yé?f ) as the
central point. When a non-dominated trial point is found, it becomes the
central point for the next iteration. Otherwise, the iteration is unsuccessful,
the search returns back to the current (Z,%), the step size «, is reduced, and
a new search consisting of exploratory moves and pattern moves is repeated
taking (z,7) as the central point.

3.4 Termination rule

When «, is reduced within an unsuccessful iteration, it may fall below a suffi-
ciently small positive tolerance, . This is an indication that the first-order
convergence has been attained [9] and the ‘mixed-HJ-filter’ algorithm may
terminate.

4 Numerical Results

This section aims to analyze the performance of the presented multistart
method based on the ‘mixed-HJ-filter’ algorithm (for simplicity, henceforth
denoted by ‘MS+m-HJ-f") when computing multiple solutions of MVO prob-
lems. Seven MVO problems where selected from the literature [6, 7, 13]. The
parameters of the multistart and ‘mixed-HJ-filter’ algorithms are set after an
empirical study as follows: K., = 20, v* = 0.005, € = 0.1, 7 = 7, = 1078,
Omin = 107 and . = 102max{1,0(7,7)}. Each problem was solved 30
independent times.

In this section, we present the full description of the problems, the results
obtained by the proposed algorithm and a comparison with the Multistart
function from MATLAB™ Optimization Toolbox.
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Problem 4.1  (Ezample 1 in [13]) with 2 known solutions (1 global and 1 local)

min —z—vy
subjectto xy —4 <0,
0<z<4, ye{0,...,6}

The proposed ‘MS+m-HJ-f” algorithm found two solutions. The global
solution was found in all the 30 runs and the local in 24. The best global
function value -6.666657 (with a constraint violation of 0.000000e+00) and
minimizer (6.6665758¢e-01, 6) was produced by the ‘mixed-HJ-filter’ algorithm,
in one of the 15 local ‘mixed-HJ-filter’ calls of run 28, after 0.861 seconds (sec),
604 function evaluations (feval) and 44 iterations (iter). On the other hand,
the best value for the local solution, -5.000000 (with a constraint violation of
0.000000e+-00) was attained at the point (4.000000e+00, 1) in one of the 18
local calls of run 20, after 1.273 sec, 369 feval and 31 iter.

Problem 4.2  (Ezxample 11 in [13]) with 2 known solutions (1 global and 1 local)

min 35296 + 3529
subjectto 600x; — 50y — x1y + 5000 = 0
60024 + 50y — 15000 = 0
0<xz <34,0<ay <17, y € {100,...,300}

When solving this problem, our algorithm found two optimal solutions, one
global and one local. The global was located in all runs and the local only in
two out of the 30 runs. (In the other runs, the algorithm terminated with
a solution that is far away from the expected optimal value.) The best value
189.2946 (with a constraint violation of 0.000000e+00) for the global minimum
was reached in one of the 5 local calls of the 11th run, after 4.532 sec, 683 feval
and 28 iter of the ‘mixed-HJ-filter’ algorithm. The located minimizer was
(0.000000e+00, 1.666417e+01, 100). On the other hand, the best value for the
local solution 291.7167 (with a violation of 4.551885e-11) was found during
one call of the local procedure (out of 15) of the run 16, after 1771 feval, 66
iter and 7.793 sec. The attained minimizer was (1.544511e+01, 6.831081e+-00,
218).

Problem 4.3  (Example 21 in [13]) with 2 known solutions (1 global and 1 local)

min 296 + y96 + 994 — dyo + 229 + 5y3 — ys

subjectto x1 + 222 —4 <0
y1+ys —4<0
Y2 +ys—6<0
—3rx1+y; — 322 =0
—2y1 +y2 —2y3 =0
4z —ys =0
0<2, <3, 0< a9 <2, y1,y2€{0,...,4}7 y3€{0,1,2},y4€{0,...,6}
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Two optimal solutions, one global and one local, were found in this case.
The global was located in all runs and the local in 22 out of 30 runs. With
a constraint violation of 0.000000e4-00, one of the 21 local calls of run 13
reached the best objective function value for the global solution. To reach
(1.6663651e-01, 4.999978¢-01, 2, 4, 0, 2) with the optimal value of -13.40195,
the local ‘mixed-HJ-filter’ required 6042 feval, 93 iter and 54.012 sec. All
runs that located the local solution were able to find the point (0.000000e+-00,
0.000000e+-00, 0, 4, 2, 0) with the value -4.258899 and a constraint violation
of 0.000000e+00. The most efficient call was observed during run 28 (with 21
calls) and required 1159 feval, 31 iter and 0.930 sec.

Problem 4.4  (Test Problem 4 in [6]) with 3 known solutions (1 global and 2 locals)

min —z1T2x3

subjectto —y1 —y2—y3+1<0
—Ya—Yys—ye+1<0
—yr—ys+1<0
3y1 +y2 +2y3 + 3ys + 2ys +ye + 3yr +2ys —10 <0
x1 + 0.1¥10.2¥20.15¥3 — 1 =0
o + 0.05%40.2¥50.15% — 1 =0
r3 + 0.02Y70.06Y8 —1 =0
0<zy,22,23 <1, y1,92,¥3,---,¥y7,ys € {0, 1}

Three optimal solutions, one global and two locals, were located by the
herein proposed algorithm. In 16 out of 30 runs, a global optimum value
around -0.9435 was reached. The two local solutions around -0.823 and -0.749
were found in 27 and 21 of the 30 runs respectively. Regarding the global
solution, the smallest value for the constraint violation, 7.225589%-10, was
obtained during one of the 21 local calls of run 9, with a function value of
-0.9434929, at the point (9.7002620e-01, 9.924945¢-01, 9.800022¢-01, 0, 1, 1,
1,0, 1, 1, 0), requiring 4808 feval, 70 iter and 5.324 sec. The local ‘mixed-HJ-
filter’ algorithm also required 3766 feval, 50 iter and 3.698 sec, in one of the 21
local calls of run 11 to reach the local minimizer (8.500029¢-01, 9.699951e-01,
9.988027e-01, 0, 0, 1, 0, 1, 1, 1, 1) with a function value of -0.8235114 and
a constraint violation of 3.998892e-11; and 7631 feval, 72 iter and 17.658 sec,
during a call of run 5 to reach the minimum function value -0.7508687 with a
violation of 2.040764e-11 at the point (8.000002e-01, 9.984955e-01, 9.399999¢-
01,0,1,0,1,1, 1,0, 1).

Problem 4.5  (Ezample 13 in [13], f1 in [7]) with 2 known solutions (1 global and 1
local)

min 2z +y
subjectto 1.25 — x? — y <0
z+y—16<0

0<z<16, ye{0,1}
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The ‘MS+m-HJ-f* algorithm identified two solutions, one global and one
local. The global was located in all runs and the local was located only in two
runs. The point (5.00000000e-01, 1), with a best global value of 2.00000000
and a constraint violation of 0.000000e+00, was attained during one of the 9
local calls of run 18, after 0.531 sec, 261 feval and 29 iter of the ‘mixed-HJ-
filter’ algorithm. The best local function value 2.236128 (with a constraint
violation of 0.000000e+00) was reached at (1.118064e+00, 0), during one of
the 12 local calls of run 8, after 0.709 sec, 549 feval and 41 iter.

Problem 4.6  (Example 15 in [15], f9 in [7], Test Problem 1 in [6]) with 1 global and
1 local as reported in [6]

min 2z1 + 3zs + 1.5y1 + 2y — 0.5y3
subjectto z14+y; —1.6 <0
1.333z22 +y2 —3 <0
Y1 —Y2+y3 <0
224y —1.25=0
I’%'S +1.5y2 —3=0
0<21 <112, 0< 22 <21, y1,Y2,y3 € {0, ].}

The ‘MS+m-HJ-f" algorithm located in 28 runs a global minimum around
7.66718 and in all runs a local around 8.240. However, in 14 of the 30 runs, a
minimum around 8.476 was identified by our algorithm. In one of the 15 local
calls of run 24, the algorithm converged to (1.118035e+00, 1.310370e+-00, 0,
1, 1), yielded the best global value 7.667178, with a constraint violation value
of 4.99375e-12, and required 2054 feval, 63 iter and 4.369 sec. The best value
found for one of the local minima was 8.240262 with a constraint violation value
of 4.178278e-11, at the point (5.000063e-01, 2.080083e+-00, 1, 0, 1), after 2376
feval, 48 iter and 7.230 sec (during one of the 9 local calls of run 18). From the
results, it is possible to conclude that the point (1.118026e+00, 2.080097e+-00,
0, 0, 0) corresponds to the other local minimizer, with a best function value of
8.476343 and a constraint violation of 1.159699e-09, and was produced after
1912 feval, 50 iter and 4.646 sec of a local call (out of 15) of run 13.

Problem 4.7  (Example 14 in [153], f6 in [7], Test Problem 3 in [6]) with 1 global
solution and some local solutions (9 were reported in [13] although one of the reported local
minimizers is the point (0.20, 0.800, 1.908, 1, 1, 0, 1) with function value 4.580, whereas
the reported global is (0.2, 0.8, 1.907878, 1, 1, 0, 1) with a function value of 4.579582.)

min (21 —1)* 4 (z2 = 2)* + (23 = 3)* + (11 — 1)* + (y2 — 2)* + (y3 — 1)* — log(ya + 1)
subjectto z1 4+ a3+ x3+y1 +y2+ys—5<0

22 +a3+2i+y3—55<0

£L'1+y1—12§0

o +1y2—1.8<0

r3+1ys —2.5<0

r1+ys —1.2<0

3 +y3—1.64<0

3+ y3 —4.25<0

3+ y5 —4.64<0

0<21<1.2,0<29<1.8, 0L 23 <2.5, yl,yg,yg,y4€{0,1}
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The proposed ‘MS+m-HJ-f" algorithm located the global minimum around
4.5796 in all runs. Some local minima have been identified: one around 5.807
in 6 runs, other around 5.780 in 4 runs and another around 7.768 in 4 runs. The
best value for the objective function value at the global minimizer (1.999892e-
01, 7.999976e-01, 1.907877e400, 1, 1, 0, 1) was 4.579609 (with no violation)
and was obtained during one local call (out of 9) of run 3. The ‘mixed-HJ-
filter” algorithm required 5486 feval, 76 iter and 28.430 sec. To reach the best
value of the local minimum 5.806857 at (0, 5.010788e-01, 1.498921e+00, 1,
1, 1, 1) the local ‘mixed-HJ-filter’ algorithm required 6039 feval, 81 iter and
25.929 sec (in one of the 21 calls of run 27). To reach the best value 5.780268
at the local minimizer (7.000959e-01, 7.999291e-01, 1.499948e-+00, 0, 1, 1, 0),
2217 feval, 59 iter and 2.904 sec were required in one of the 12 local calls of run
24. Finally, the best value found for the other local minimum was 7.815788
(with no violation) at the point (7.814582e-01, 1.280481e-01, 1.499893e+00, 0,
0, 1, 0) after 3950 feval, 62 iter and 6.565 sec (in one of the 21 local calls of
run 12).

We now include a comparison with the results obtained by the Multistart
function from MATLAB, where we have integrated our ‘mixed-HJ-filter’ al-
gorithm as its local solver. The Multistart function accepts Optimization
Toolbox functions fmincon, fminunc, 1sgnonlin and lsqcurvefit as local
solvers, but none of these are prepared to handle integer variables. For a fair
comparison we set the number of randomly generated starting points in the
Multistart function to the same value used in our ‘MS+m-HJ-f” algorithm,
which was 21 (= Kpax + 1). In the Multistart function, a new minimizer
is identified by checking its objective function value and the vector itself with
those of previously located optimal solutions. We set that tolerance to the
value herein used for ~*.

Table 1: Overall performance of 1 - ‘MS+m-HJ-f" and 2 - Multistart

Problem
4.1 4.2 4.3 4.4 4.5 4.6 4.7
1 Hlcallag 16.5 9.2 20.5 21 8.1 14.7 10.3
N feavg 11513 13109 79892 113846 4199 44819 63971
Tove 33 113 477 221 36 331 435
2 HJcallayg 21 21 21 21 21 21 21

N feavg 15437 31463 82844 115608 11024 64775 130315




Table 2: Global and local optimal solutions of Problems 4.1 — 4.7, for 1 - ‘MS+4+m-HJ-f” and 2 - Multistart
Problem

4.1 4.2 44 4.5 4.6 4.7
1 global SR (%) 100 100 53.3 100 93.3 100
fave -6.66639367 189.29356 -13.401916 -0.94347611  2.0002495 7.66717368 4.57968167
HJ—N feavg 590 1495 4281 458 2205 6398
local SR (%) 80 6.7 90 6.7 100 20
fave -5.00000000  291.7582 -0.82372939 2.236262 8.24025030 5.80807333
HJ—N feayg 519 2122 5605 527 2813 3968
local SR (%) 70 46.7 13.3
fave -0.75059195 8.47635986  5.78054525
HJ—N feayg 6323 1904 3712
local SR (%) 13.3
Jave 7.82312050
HI—N feays 5888
2 global SR (%) 100 100 53.3 100 93.3 100
fave -6.66645687 189.29288 -13.402434 -0.93642209 2.00011607 7.66689366 4.57966552
HJ—N feavg 978 1443 4971 413 2623 6401
local SR (%) 100 6.7 93.3 33.3 86.7 43.3
Javg -5.00000000  285.0729 -0.82377402 2.23620740 8.23806018 5.80810378
HJ—N feayg 637 2343 6393 355 3635 3327
local SR (%) 66.7 46.7 36.7
fave -0.75279172 8.47622132 5.78100359
HJ—N feavg 5250 2338 3922
local SR (%) 0
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Table 1 aims to compare the efficiency of both multistart kind algorithms.
For each problem, the table shows averaged values over the 30 runs: HJcall,q
(average number of local ‘mixed-HJ-filter’ calls), ‘N fe,,, (average overall
number of function evaluations of a run) and ‘T,,," (average overall time of
a run, in seconds) only for our algorithm. For example, when solving Prob-
lem 4.1, the ‘mixed-HJ-filter’ algorithm was invoked on average 16.5 times
per run (out of a maximum of 21 (=Kyax + 1)). The proposed ‘MS+m-HJ-f’
requires on average 11513 function evaluations and 33 seconds per run. On
the other hand, we observe that the Multistart function invokes the local
‘mixed-HJ-filter” procedure in every iteration and is consequently more expen-
sive in terms of function evaluations than ‘MS+4+m-HJ-f’. We may conclude
from the results of Table 1 that the proposed ‘MS+m-HJ-f” behaves favorably
when compared with the Multistart function.

Now, Table 2 reports for each identified optimal (global or local) solution:
‘SR’ (success rate - the percentage of runs that found that particular solution
at least in one call to the local procedure, out of 30), ‘fa, (the average of
the best f values obtained during the runs where the solution was identified)
and ‘HJ—N fea,’ (the average number of function evaluations required by the
‘mixed-HJ-filter’ procedure while converging to those best solutions). Regard-
ing the global solutions, the results show that both algorithms have equal ‘SR’
although the ‘f,,," produced by the Multistart function are slightly better
than those obtained by our algorithm. We remark however that ‘MS+m-HJ-{’
is more effective since those values of ‘SR’ were obtained with less local ‘mixed-
HJ-filter’ calls and fewer function evaluations (recall HJcallyy,, and ‘N feqy,’
respectively). As far as the local minima are concerned, we conclude that:
i) both algorithms found almost the same number of minima (Multistart
function did not find one of the locals in Problem 4.7); ii) ‘MS+m-HJ-f* has a
higher ‘SR’ in 3 out of 11 minima, while Multistart function has a higher ‘SR’
in 5 (and equal ‘SR’ in 3 minima); iii) Multistart function produces slightly
better average function values mostly (at a cost of more ‘mixed-HJ-filter’ calls
and overall function evaluations, see Table 1).

5 Conclusions

We presented a multistart kind algorithm that uses an extended version of the
HJ method, as a local search procedure, for computing multiple solutions of
MVO problems. The multistart algorithm aims to randomly generate points
from the search space and to invoke a local search procedure to converge to
the multiple solutions of the problem. To avoid repeated convergence to an
already identified solution, the algorithm uses the concept of region of attrac-
tion of a minimizer. To be able to handle continuous and discrete variables
simultaneously and the inequality and equality constraints, the extended HJ
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method uses a specific pattern of points spread over the search space and in-
tegrates a filter set methodology by solving a bound constrained bi-objective
optimization problem each time it is invoked.

The new algorithm has been tested with benchmark problems and com-
pared with the Multistart function from MATLAB, where we have integrated
our ‘mixed-HJ-filter’” algorithm as the local solver in the Multistart function.
From the comparison, we conclude that the herein presented multistart kind
algorithm, based on the ‘mixed-HJ-filter’ algorithm, behaves rather well and
is more effective, in the sense that it is able to identify the same number of
solutions using on average less local ‘mixed-HJ-filter’ calls and fewer function
evaluations than the other solver in comparison.

ACKNOWLEDGEMENTS. This work has been supported by FCT (Fun-
dagdo para a Céncia e Tecnologia, Portugal) in the scope of the projects:
PEst-OE/MAT/UI0013/2014 and PEst-OE/EEI/U10319/2014.

References

[1] M.A. Abramson, C. Audet, J.W. Chrissis and J.G. Walston, Mesh adap-
tive direct search algorithms for mixed variable optimization, Optimiza-
tion Letters, 3 (2009), 35-47.

[2] M.A. Abramson, C. Audet and J.E. Dennis, Jr., Filter pattern search
algorithms for mixed variable constrained optimization problems. Pacific
Journal of Optimization, 3(3) (2007) 477-500.

[3] C. Audet and J.E. Dennis Jr., A pattern search filter method for nonlinear
programming without derivatives, SIAM Journal on Optimization, 14(4)
(2004) 980-1010.

[4] F.P. Fernandes, M.F.P. Costa, E.M.G.P. Fernandes and A.M.A.C. Rocha,
Multistart Hooke and Jeeves filter method for mixed variable optimiza-
tion, International Conference of Numerical Analysis and Applied Math-
ematics 2013, T.E. Simos, G. Psihoyios and Ch. Tsitouras (Eds.), AIP
Conf. Proc. Vol. 1558 (2013) 614-617.

[5] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty
function, Mathematical Programming, 91 (2001), 239-269.

[6] C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z.H. Gumus,
S.T. Harding, J.L. Klepeis, C.A. Meyer and C.A. Schweiger, Handbook

of Test Problems in Local and Global Optimization, Kluwer Academic
Publishers, Dordrecht, the Netherlands, 1999.



Mixed variable optimization by multistart Hooke and Jeeves filter 2179

[7]

[10]

[11]

[12]

[13]

[14]

A. Hedar and A. Fahim, Filter-based genetic algorithm for mixed variable
programming, Numerical Algebra, Control and Optimization, 1(1) (2011),
99-116.

R. Hooke and T.A. Jeeves, Direct search solution of numerical and statis-
tical problems, Journal on Associated Computation, 8 (1961), 212-229.

T.G. Kolda, R.M. Lewis and V. Torczon, Optimization by direct search:
new perspectives on some classical and modern methods, SIAM Review,
45 (2003), 385-482.

LLE. Lagaris and I.G. Tsoulos, Stopping rules for box-constrained stochas-
tic global optimization, Applied Mathematics and Computation, 197
(2008), 622-632.

Y.C. Lin and K.S. Hwang, A mixed-coding scheme of evolutionary algo-
rithms to solve mixed-integer nonlinear programming problems, Comput-
ers and Mathematics with Applications, 47 (2004), 1295-1307.

G. Liuzzi, S. Lucidi and F. Rinaldi, Derivative-free methods for con-
strained mixed-integer optimization, Report R. 11-11, Istituto di Analisi
dei Sistemi ed Informatica “Antonio Ruberti”, CNR, Italy (2011).

H.S. Ryoo and N.V. Sahinidis, Global optimization of nonconvex NLPs
and MINLPs with applications in process design, Computers and Chem-
ical Engineering, 19(5) (1995), 551-566.

M. Schliiter, J.A. Egea and J.R. Banga, Extended ant colony optimiza-
tion for non-convex mixed integer nonlinear programming, Computers and
Operations Research, 36 (2009), 2217-2229.

V.K. Srivastava and A. Fahim, An optimization method for solving mixed
discrete-continuous programming problems, Computers and Mathematics
with Applications, 53 (2007), 1481-1491.

[.G. Tsoulos and I.E. Lagaris, MinFinder: Locating all the local minima
of a function, Computer Physics Communications, 174 (2006), 166-179.

I.G. Tsoulos and A. Stavrakoudis, On locating all roots of systems of non-
linear equations inside bounded domain using global optimization meth-
ods, Nonlinear Analysis: Real World Applications, 11 (2010), 2465-2471.

C. Voglis and L.E. Lagaris, Towards “Ideal Multistart”. A stochastic ap-
proach for locating the minima of a continuous function inside a bounded
domain, Applied Mathematics and Computation, 213 (2009), 1404-1415.

Received: January 17, 2014



