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Abstract 

Hybrid Composite Plates (HCPs) made of a Strain Hardening Cementitious Composite 

(SHCC) and reinforced with Carbon Fiber Reinforced Polymer (CFRP) materials are 

developed by taking the synergetic advantages of SHCC and CFRP for the retrofitting of 

reinforced concrete (RC) structures. Thanks to the high ductile character of SHCC, this 

prefabricated plate can be attached to the substrate using a combination of adhesive and 

chemical anchors to assure an effective transference of forces between these elements, leading 

to a high mobilization of the tensile capacity of the CFRP. This paper reports the most 

relevant results of a series of experimental tests performed to assess the effectiveness of this 

innovative technique for the repair/strengthening of RC elements. Enhancements obtained in 

both shear and flexural capacity of strengthened RC beams, in shear capacity of a repaired RC 

beam, as well as in the repair of a severely damaged interior RC beam-column joint, have 

demonstrated the high effectiveness of this technique. 

  

1. INTRODUCTION 

The deterioration or deficient functioning of reinforced concrete (RC) structures can be 

caused by ageing effects on its intervening materials, design and/or construction inaccuracies 

or abnormal loading conditions not considered in the design phase or of unexpected intensity 

like those from seismic events. To restore, or even to increase the aimed working performance 

for this type of structures, fiber reinforced polymer (FRP) systems have been used with 

appreciable success during the last 25 years, mainly due to the well-known advantages of 

these materials (e.g., lightness and high tensile strength) and the associated strengthening 

techniques (easy and fast application, small interference on the dimensions of the structure to 

be retrofitted). However, FRP systems are susceptible to vandalism acts, and their properties 

can be negatively affected by high temperatures and some environmental conditions [1]. 

Furthermore, the strengthening effectiveness of FRP-based techniques also depends on the 

quality of the concrete substrate. Recently Esmaeeli et al. [2] demonstrated the efficacy of an 
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innovative technique based on the use of Hybrid Composite Plates (HCP) for the retrofitting 

of short-span shear critical RC beams. This thin panel was composed of strain hardening 

cement composite (SHCC) reinforced with carbon fiber reinforced polymer (CFRP) sheet that 

was bonded to its inner face. This face of the HCP was then bonded to the lateral surfaces of 

the retrofitted beams by using an epoxy adhesive. Apart the favorable contribution of the 

SHCC for a more effective mobilization of the tensile capacity of the CFRP sheet, due to its 

strain hardening character, the SHCC also assures protection to the CFRP against high 

temperatures, environmental aggressiveness conditions and vandalism acts. Moreover, the 

SHCC contributed to the main load transfer mechanism, inclined compressive struts, in these 

short-span beams. 

A new version of a HCP is proposed in the present work where the CFRP sheet is replaced 

by CFRP laminates that are introduced into thin grooves open on the SHCC layer and bonded 

with epoxy adhesive. CFRP laminates used to produce this system have a section of 10×1.4 

mm2. Due to a high sectional aspect ratio of these CFRP laminates, their high tensile capacity 

can be mobilized to the surrounding SHCC more efficient through the interface bond. This 

new hybrid prefabricated panel, herein designated as HCP(L), was used to explore its 

potentialities for the shear and flexural strengthening of RC beams, for the repair of a RC 

beam failed in shear and finally, the repair of a severely damaged interior RC beam-column 

joint. The main results of these experimental tests are presented and discussed. 

2. MATERIAL PROPERTIES 

In the following sections of this paper, unless specifically indicated, material properties are 

those herein reported. The self-compacting SHCC used to produce HCP(L) is a cement based 

mortar reinforced with 2% in volume of 8mm PVA fibers . The average tensile stress at crack 

initiation and the average tensile strength of the SHCC was 2.43 MPa and 3.35 MPa, 

respectively, with a tensile strain capacity higher than 1.3%. Details on mix development and 

tensile characteristics of the SHCC can be found in [3]. S&P 220 epoxy resin used to bond 

CFRP laminates into the grooves open on the SHCC and also to bond HCP(L) to the substrate, 

had an average tensile strength of 18 MPa with an average modulus of elasticity of 6.8 GPa 

measured on seven days cured of six dumbbell-shaped specimens. Average values of 2689 

MPa, 1.6% and 165 GPa were obtained for the tensile strength, strain at rupture and modulus 

of elasticity of CFRP laminates (cross section of 1.4×10 mm2), respectively. 

3. STRESS TRANSFER MECHANISM IN HCP(L) 

Figure 1 shows the structure of two different types of HCP(L): (i) with only one layer of 

CFRP laminates; and (ii) with two layers of CFRP laminates. Basically, in a HCP(L) system 

the SHCC acts as a medium able to mobilize the high tensile capacity of the CFRP laminates 

and transfer effectively the stresses between the substrate and the HCP(L) by using 

anchors/adhesive or a combination of them. The high tensile strain capacity of SHCC 

proportionates a strain compatibility with CFRP laminate up to its rupture. This property of 

SHCC, together with its high post-cracking resistance up to quite high tensile strain, which is 

followed by the formation of diffused crack patterns allows the use of anchors for the 

installation of the HCP(L) without the occurrence of its premature failure at the bearing zones. 
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To assess the potential retrofitting capacity of this prefabricated panel, pullout tests on 

HCP(L) attached to RC blocks were executed. These RC blocks were fixed to a steel frame at 

their bottom face by constraining their longitudinal steel bars. Three sets of specimens were 

tested, by differing on their attaching configuration to the RC block. Details of these 

specimens along with the idealized test setups are shown in Figure 2. 

 

Figure 1 : Structure of HCP(L), (a) one layer of CFRP and (b) two layers of CFRP 

 

Figure 2 : Idealized test setup and details of the specimens for the pull tests (“Lb” is the 

bonded length of CFRP laminate into the groove of SHCC and “a” is the unbonded part; 𝑓𝑐
′ = 

38.2 MPa). 

According to the results of these tests, an average shear strength of 2.39 MPa was obtained 

for the panel/substrate interface, with the occurrence of an inter-laminar shear failure in 

SHCC plate (Error! Reference source not found.a and Figure 3a). This mode of failure was 

expected due to the absence of coarse aggregate in SHCC, the low content of fibers oriented 

out of the casting plane, the high shear resistance of adhesive material, and the moderate shear 

strength of substrate concrete. 

According to these experiments a bond length (Lb) of 90 mm for the CFRP/SHCC is 

sufficient to fully mobilize the tensile capacity of a CFRP laminate with a cross section area 

of 1.4×10 mm2 (Error! Reference source not found.b and Figure 3b). When HCP(L) was 
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supported on two anchors of 10 mm in diameter, installed in a distance of 90 mm and 120 mm 

from the bottom edge of HCP(L) (Seb in Error! Reference source not found.c),  tensile loads 

of 15 kN and 23.7 kN were mobilized, respectively. The HCP(L) failed with diagonal-tension 

cracks (Error! Reference source not found.c and Figure 3c). 

        

Figure 3 : Failure mechanism of HCP(L) under pullout tests, (a) inter-laminar shear failure 

inside SHCC (cohesive failure), (b) rupture of CFRP laminate, (c) diagonal-tension failure of 

compressive strut for HCP(L) (Seb= 90mm), (d) major strain distribution analyzed using digital 

image correlation in a window of interest showed in side image (rotated 90 degrees) and the 

role of fibers in bridging cracks formed in compressive struts 

Figure 3d shows the major strain field in the SHCC, at a load level of 94% of HCP(L) peak 

pullout load, obtained by Digital Image Correlation (DIC) analysis in a window of interest 

according to Error! Reference source not found.c and Figure 3c (Seb= 90mm). According to 

this analysis, the presence of the chemical anchors promotes the formation of inclined 

compressive struts during the pullout process of the CFRP laminate. These compressive 

struts, of fish spine configuration, transfer the tensile force from the laminate to the anchors. 

This loading transference process is followed by the formation of diagonal cracks, whose 

opening is arrested by the fiber reinforcement mechanisms that promote the formation of 

several cracks, which contributes for the maintaining of the integrity of this zone up to a high 

loaded end slip. 

4. RETROFITTING OF RC ELEMENTS 

The assessment of the effectiveness of HCP(L) for the retrofitting of RC elements was 

followed by executing a series of experimental tests on some specimens. A summary of these 

experiments and their corresponding results are presented in this section. 

4.1 Shear strengthening of short-span beams 

Three point bending tests were carried out on three small-scale beams (150×150×600 

mm3). All RC beams had similar geometry and steel reinforcement arrangement. No 

transverse steel reinforcement was applied in the loading span (500 mm) of these beams that 

have a shear span ratio less than 2.5 (the ratio of the distance between the loading point and 

the support to the effective depth of the beam’s cross section). This complies with the 

configuration of deep beams where the main load transfer mechanism is assured by the 

formation of compressive struts from the loading point to the supports of the beam. The 

reference beam (CB) did not include any strengthening scheme. The other two beams were 
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strengthened with SHCC plates and HCP(L)s attached to their lateral faces. Details of these 

strengthening schemes along with designations attributed to each of these beams are shown in 

Figure 4. The obtained results in terms of load versus mid-span deflection relationship are 

presented in Figure 5a. In comparison to the maximum load carrying capacity of the reference 

beam (CB), the SHCC plates bonded to the lateral faces of the beam (BS) provided an 

increase of 74%. This increase was 126% in the BH beam where HCP(L)s were used. The CB 

and BS beams presented a diagonal-tension failure of the compressive strut formed between 

the loading point and the left support (Figure 5b and Figure 5c), while the BH beam failed by 

the detachment of the concrete cover of the lateral faces of the beam that was maintained 

bonded to the HCP(L) (Figure 5d). 

 

Figure 4 : Details of short-span beams (𝑓𝑐
′: 38.2 MPa, 𝑓𝑦

∅10: 532 MPa). 

 

  

(b)                                   (c) 

  
(d) 

Figure 5 : Results of three-point bending tests with RC beams (a) load versus mid-span 

deflection, failure of compressive strut in (b) “CB” and  (c) “BS”, and (d) lateral concrete 

cover detachment in “BH” 

4.2 Flexural strengthening of RC beams 

Two RC beams with the same geometry and steel reinforcement arrangement were 

subjected to a four point bending load configuration (Figure 6). The FB_R was the reference 

beam, while the FB_B beams was strengthened using HCP(L). The HCP(L), containing two 

longitudinal CFRP laminates, was attached to this beam’s soffit by means of only chemical 

anchors. 
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Test results of these beams in terms of load versus mid-span deflection are presented in 

Figure 7a. The strengthening technique assured an increment of 66% in terms of maximum 

load carrying capacity and an increase of 23% of the load carrying capacity corresponding to 

the yield initiation of the longitudinal steel bars. Although the strengthening technique did not 

alter the deflection corresponding to the yield initiation of the steel rebars, there was no 

visible crack on the surface of HCP(L) up to 10 mm of deflection, which corresponds to 

serviceability limit state. In fact, macro-cracks formed in the RC beams were transformed in a 

diffuse micro-crack pattern at the corresponding region on the HCP(L). Failure mode and crack 

pattern of each of the beams at the end of their tests are shown in Figure 7b and Figure 7c. 

According to these figures yielding of longitudinal rebars followed by compressive failure of 

concrete was the dominant failure of FB_R. For the case of FB_B, after yielding of 

longitudinal steel a splitting crack in the alignment of the anchors was formed. 

 

Figure 6 : Details of the beams, test setup, and the strengthening scheme (the reference beam 

has the same configuration but without HCP(L); 𝑓𝑐
′: 31.26 MPa,𝑓𝑦

∅10: 529 MPa). 

  

 

 

Figure 7 : Results of four-point bending tests (a) load versus mid-span deflection, (b) crushing 

of concrete of the reference beam (FB_R) and (c) splitting crack along the anchors in 

strengthened beam (FB_B). 
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4.3 Repair of shear-damaged RC beam 

A repairing scheme based on attaching HCP(L)s to the lateral faces of a shear-damaged RC 

beam was investigated. The virgin beam (FS_V) was subjected to a three point bending test, 

and after failing in shear was unloaded. Two HCP(L)s were then attached to its lateral faces in 

the damaged region using a combination of epoxy adhesive and through bolts. The repaired 

beam, designated as FS_R, was subjected to the same test configuration adopted in its virgin 

state. Details of the beam, test setup and repairing scheme are shown in Figure 8. The load 

versus loaded-point deflection relationships for the virgin and repaired state are presented in 

Figure 9a. According to this figure the adopted repairing strategy provided an increase of 99% 

in terms of maximum load carrying capacity. This strengthening scheme has contributed for 

the recovering of 62% of the initial stiffness (measured as the slope of the initial linear portion 

of the load-deflection curves) of the beam in its virgin state. Failure modes of both virgin and 

repaired specimens are shown in Figure 9b and Figure 9c.  Lateral concrete cover detachment 

was the governing failure mode for the repaired specimen. 

 

Figure 8 : Details of repaired beam (there was no transverse steel reinforcement in the critical 

shear span of the beam; a combination of epoxy adhessive and through bolts were used to fix 

the HCP(L) reinforced with 3 CFRP laminates; 𝑓𝑐
′ =31.26 MPa, 𝑓𝑦

∅20: 576MPa). 

 

 

 

Figure 9 : Results of three-point bending tests (a) load versus loaded-point deflection, (b) 

shear failure of the virgin specimen (FS_V), (c) lateral concrete cover detachment (FS_R) 

4.4 Repair of severely damaged interior RC beam-column joint 
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elements. The state of the damages in this specimen, before the repair, is illustrated in Figure 

10. The damage in the specimen was due to the experimental test performed using a 

simultaneous constant axial load and cyclic lateral displacement history applied to the top of 

the superior column when it was in virgin state. Pre-seismic oriented code practices were used 

to design this full-scale specimen, therefore only gravity loading considerations were taken 

into account, and the reinforcement was constituted by plain steel bars. The geometry and the 

steel reinforcement arrangement of this specimen are presented in Figure 11. Additional 

details on test setup, loading history, material properties, geometry and steel detailing can be 

found elsewhere [4]. 

For the repairing two prefabricated “Cross” shape HCP(L)s were applied to the front and 

rear faces of this damaged specimen according to the scheme represented in Figure 11. The 

repairing procedures were executed in two steps, with the specimen placed horizontally, the 

first one on the front face and then, after turning the specimen, on the rear face. Before 

installing the HCP(L), the too damaged concrete at corners of the specimen was removed and 

replaced by a grout. The HCP(L) was attached to the relatively roughened surface of substrate 

by using a combination of epoxy adhesive and chemical anchors. 

   

Figure 10 : Level of damage in the prototype before its repairing 

 

Figure 11 : Configuration of the interior beam-column specimen and the repair scheme 
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The repaired specimen was tested using the same test setup and loading pattern used when 

testing it in the virgin state. The hysteresis responses and the corresponding envelope curves 

for the specimen in the repaired and virgin states are presented in Figure 12a. The idealized 

test setup is also shown in this figure. According to these results, the repaired specimen 

presented a superior response with an average increase of 21% in the maximum lateral load 

carrying capacity (considering the push and pull loading directions). When repaired, the 

specimen has dissipated more energy (the areas enclosed inside the hysteretic loops) than 

when in its virgin state. For instance, for a lateral displacement of 120mm (corresponding to a 

drift of 4%) the repaired specimen has dissipated 23% more energy than its virgin state. The 

specimen was failed with diagonal cracking and bulging of the HCP(L) at the joint region 

(Figure 12b). 

 

 

Figure 12 : Results of cyclic tests (a) Hysteretic responses and (b) damage state at the end of 

the test of repaired specimen 
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