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Significance

Natural deep eutectic solvents (NADES) are defined as a mixture of two or more solid or liquid components, which at a
particular composition present a high melting point depression becoming liquids at room temperature. NADES are con-
stituted by natural molecules and fully represent the green chemistry principles. For these reasons, the authors believe
that the submitted manuscript is a highly valuable contribution to the field of green chemistry and chemical engineering.
For the first time, the possibility to use NADES as enhancers of supercritical fluid technology is revealed. © 2014 Amer-
ican Institute of Chemical Engineers AICKE J, 00: 000-000, 2014
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atural deep eutectic solvents (NADES) are consid-
Nered today a new generation solvents. NADES can

be constituted by two or more natural primary
metabolites, namely, amino acids, organic acids, sugars, or
choline derivatives. In this work, we evaluate the possibility
of doping a natural-based polymer, particularly a blend of
starch and poly-¢-carolactone (SPCL) with different NADES
for enhanced processing. The results suggest that NADES
may have a plasticizing effect on the polymer matrix. Sam-
ples of the NADES-doped polymer were foamed in super-
critical carbon dioxide at 200 bar and 40°C for 2 h. Results
have shown that, despite an increase in porosity for all sam-
ples, it is highly depended on the NADES used. An increase
in porosity for up to 52% was observed in the case of poly-
mer doped with choline chloride-sucrose (1:1). This work
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developed demonstrated the high potential of NADES as
enhancers of the supercritical fluid foaming.

NADES have been reported to be the next generation of
green solvents with the ability to replace ionic liquids (IL’s)
in some applications. For more than two decades, ionic
liquids have been seen as green solvents for the future.
Nonetheless, their applicability at large scales is still hin-
dered by the lack of ecological and toxicological studies.
Deep eutectic solvents (DES) are by definition a mixture of
two or more organic compounds, which at a particular molar
composition present a significant depression on their melting
point, compared to the individual components. This depres-
sion may lead to the formation of liquid mixtures at room
temperature. When these mixtures are composed by primary
metabolites, such as amino acids, organic acids, choline
derivatives, or sugars, DES are known as NADES.'™

NADES have been reported to have applications in diffe-
rent research fields; however, the number of applications
explored is still scarce due to the poor knowledge on the
fundamental properties of these systems.” Biocatalysis was
one of the first reported applications of DES when Gill and
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Table 1. NADES Prepared and Water Content

NADES
Molar Water Content
Component #1 Component #2 Ratio (wt %)
Glucose CA 1:1 8.2
ChCl Sucrose 1:1 6.4
ChCl CA 1:1 7.7
ChCl Xylose 2:1 7.0
TA Glucose 1:1 7.5
ChCl Xylose 3:1 5.6
ChCl Sucrose 4:1 8.1
CA Sucrose 1:1 6.4

ChCl, choline chloride; CA, citric acid; TA, Tartaric acid.

Vulfson demonstrated that enzymes are able to retain their
activity in eutectic mixtures proving a more suitable media
than conventional organic solvents.° NADES can also have
an important role as green solvents for electrochemistry’ and
extraction.® In the biomedical or pharmaceutical field, the
possibility to prepare drug delivery systems was reported by
Stott et al. who describe the preparation of a bioactive eutec-
tic system based on an anti-inflammatory agent, ibuprofen,
for transdermal drug delivery.9 Other authors report the rheo-
logical behavior of bioactive eutectic mixtures for percutane-
ous delivery.10

In this work, we investigate the possibility of NADES to act
as plasticizing agents enhancing the supercritical foaming of
natural-based polymers. Supercritical fluid technology is an
established technology that has received the generally
regarded as safe status and has opened many possibilities for
processing and development of new materials in a wide range
of applications. In the pharmaceutical and biomedical field,
the number of techniques developed is continuously increasing
as the limitations and drawbacks of conventional existing tech-
nologies can be overcome to some extent.'""'* The preparation
of lightweight porous materials is one example of these deve-
lopments. In the gas foaming, the polymer is exposed to car-
bon dioxide at the saturation pressure and temperature, which
plasticizes the polymer and reduces the glass transition tem-
perature. Upon depressurization, thermodynamic instability
causes supersaturation of the carbon dioxide dissolved in the
polymeric matrix, and hence, nucleation of the cells occurs.
The main requirement of the CO,-foaming process is that CO,
can be dissolved in a sufficient amount in the polymer. This
excludes for instance, the use of polymers which have a very
low affinity for CO,,"*™" as is the case of polymers with high
crystallinity or high glass transition temperatures. This tech-
nique is more commonly applied to amorphous polymers.
These limitations compromise processing of natural-based
polymers using this technique.

In an attempt to overcome this drawback, the use of plas-
ticizing agents has been reported. These can improve the
foaming ability by either promoting the decrease on glass
and melting point of the polymers or enhancing carbon dio-
xide solubility in the matrix. Plasticizing agents are low
molecular weight compounds that are able to decrease the
intermolecular forces between the polymer chains, improving
the flexibility of the polymer network. Martins et al. have
reported the possibility to use ionic liquids as plasticizing
agents of semicrystalline polymers, namely doping blends of
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starch and poly-lactic acid with 1-butyl-3-methylimidazolium
chloride ([BMIM]CI).16 Sankri et al. report the use of the
same ionic liquid for the preparation of thermoplastic
starch.'” The use of 1-butyl-3-methylimidazolium acetate
([BMIM]ACc) as plasticizing agent for a starch-based polymer
has also been studied in the literature.'®'?

The interest in natural-based polymers comes from the
fact that they are renewable and degradable products, bio-
compatible, nontoxic, and present inherent biological activ-
ity. They are further seen as safe and green alternatives for
traditional plastics, and find applications in areas ranging
from biomedicine and pharmaceutical to areas as distinct as
electronics. Their major drawback is though related to their
low processability.zo

In this work, we evaluate the ability of different NADES
to enhance supercritical carbon dioxide foaming process and
promote the preparation of three-dimensional (3-D) porous
structures. The NADES tested are listed in Table 1. NADES
were prepared following the work reported by Dai et al.'
The two components were dissolved in water in the appro-
priate molar ratio and the water was evaporated under va-
cuum, in a rotary evaporator at 50°C, until a clear viscous
solution was obtained. NADES are highly hygroscopic solu-
tions, and the presence of water has to be controlled as water
may also act as a plasticizing agent. The percentage of water
present in the NADES prepared was determined by Karl-
Fischer titration and the results are presented in Table 1.

SPCL blends dopped with 10 wt % of NADES were pre-
pared by compression moulding using a Moore hydraulic
press (UK) at 80°C and 8 MPa for 15 min. Thermal degrada-
tion at this temperature is unlikely to occur as confirmed by
the thermal degradation analysis, particularly by differential
scanning calorimetry, of the different NADES used (Craveiro
et al., Submitted).

According to the definition of a plasticizer, the plasticizing
ability is characterized among other features by the differences
in the mechanical properties of the blends. We evaluated the
mechanical properties of the different polymer-NADES sys-
tems in the tensile mode, using specimens of 60 mm in length,
1 mm width, and 3 mm thickness. The load was placed
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Figure 1. Mechanical properties of SPCL blends.

Young modulus (E) represented with bars on primary
axis and elongation at break in bullets. CTR is a SPCL
control sample.
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Figure 2. Effect of pressurization and depressurization on foaming process for the polymer (SPCL).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

midway between the supports with a span (L) of 30 mm. The
crosshead speed was 1:5 mm min~ . For each condition, the
specimens were loaded until core break. The results presented
are the average of at least three measurements.

The Young modulus and the elongation at break deter-
mined for the different samples are presented in Figure 1.
For comparison, the results of SPLC dopped with two butyl-
imidazolium ionic liquids, 1-butyl-3-methylimidazolium
acetate ([BMIM]Ac), and 1-butyl-3-methylimidazolium
chloride ([BMIM]CI) studied in a previous work are
presen‘[ed.lg’19

The mechanical response of the SPCL blends studied sug-
gests that the presence of NADES lowers the Young modu-
lus and the elongation at break, providing cues that NADES
may increase chain mobility and promote a plasticizing
effect on the polymer matrix, similarly to what was observed
with ionic liquids. Nonetheless, this effect is not always so

Pressurization

il 2 r

Depressurization

significant as in the case of [BMIM]CI. The increased mobi-
lity of the polymeric chains is a result of the interactions of
polymers with the plasticizing agent and will affect the
mechanical properties of the matrices. The addition of a
plasticizer provides large intermolecular space between the
chains of the polymers reducing the energy required for
polymeric chain movement, therefore decreasing the Young
modulus and the elongation at break.?"*

After compression moulding, the samples were foamed in
the presence of supercritical carbon dioxide. The samples
were loaded in a high pressure vessel, at 40°C and pressuri-
zed with carbon dioxide at 20.0 MPa, for 2 h. The pressura-
tion step takes about 10 min. The system is then

depressurized at a rate of 0.67 MPa/min. Saphire windows
allow the visualization of the foaming process.

Optical images of the foaming process after predetermined
periods  of

time, during the pressurization and

Figure 3. Effect of pressurization and depressurization on foaming process for the system SPCL + TA-glucose (1:1).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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depressurization stages are presented in Figures 2 and 3. Fig-
ure 2 presents the foaming process for the polymer SPLC
alone and Figure 3 presents the different stages of the foam-
ing for the system SPCL + TA-glucose (1:1). As it can be
observed from Figure 2, the SPCL sample after foaming
presents cracks and it is not homogeneously foamed.

Regarding the SPCL + TA-glucose (1:1) sample, the dif-
ferences between the samples can be observed as soon as the
samples are pressurized in the vessel and the extent of foam-
ing is dependent on the nature of the NADES dispersed in
the blend. In the first images, it is clearly visible the diffu-
sion of carbon dioxide into the bulk of the sample, which
also corresponds to a slight change in color and swelling of
the sample. The critical parameters in supercritical CO,
foaming are the concentration of CO, in the polymer and the
rate of CO, depressurization.”> These are closely related to
the solubility of CO, in the polymers, but in this case they
are also probably related with the solubility of carbon dio-
xide in NADES, however, this has not yet been reported.
The rate of depressurization 0P/dt and polymer relaxation is
not independent processes, and may contribute to differences
in the foams obtained. In this work, the depressurization rate
was controlled so that it allows the nucleation of pores and
their growth without coalescence. This is evidenced by the
images on Figure 3, in which during the depressurization
process the matrix does not undergo extensive swelling. It
can be hypothesized that the swelling occurs during the
diffusion of CO, into the matrix at high pressure and
thus dependent of time, temperature, and pressure, while
the 3-D internal structure is created during depressurization
and nucleation, hence mainly dependent on depressurization
rate.

Cross-section of the samples were observed by scanning
electron microscopy (SEM) and were analyzed by microcom-
puted tomography (micro-CT) which allows the determination
of the morphological parameters that characterize the samples.
Figure 4 presents the cross-sections of the SPCL foamed struc-
tures with the different NADES, by SEM and Micro-CT. From
these images, it is possible to visualize that the porosity of
SPCL foamed samples is highly dependent on the NADES
used. In case of polymer blended with ChCl:sucrose (1:1) and
ChCL:CA (1:1), the foamed structures present large open
pores. Micro-CT provides visual information on the three sec-
tions of the matrices. The results obtained show the homoge-
neity of the foamed structures in all three axes. Moreover, the
SEM images revealed the interconnectivity of the pores and a
mean pore size which is in agreement with micro-CT analysis.

The microscopy analysis illustrates the great effect of
NADES on the foaming of semicrystalline natural-based
polymer SPCL. This effect can be quantified in terms of the
morphological parameters, such as porosity, mean pore size,
and interconnectivity of the structures.

The morphological parameters were determined by the
analysis of two-dimensional (2-D) images of the matrices
using CT analyzer software (version 1.5, SkyScan). 2-D
cross-sections of the structure were visualized using Data-
Viewer software (version 1.4.4 64-bit, SkyScan) and the 3-D
reconstructions were built using CTVox software (version
2.3.0 1810, SkyScan). A summary of the results obtained is
presented in Table 2.
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From the results obtained, an increase in porosity up to
52% in the case of polymer dopped with ChCl-sucrose (1:1)
was observed, meaning that NADES have higher potential to

SPCL blends SEM images micro-CT images
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Figure 4. SEM and micro-CT images of materials prepared
after foaming process.
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Table 2. Morphological Parameters [Porosity, Mean Pore
Size, and Interconnectivity (IC)] of SPCL Foamed Samples

SPCL Blends Porosity (%) Mean Pore Size (um) IC (%)
CTR 4.1+09 - -
ChCl-sucrose (1:1) 51.7*+6.0 209 *= 35 595+1.9
ChCl-sucrose (4:1) 8.2=*1.3 129 £49 5.0*=1.0
ChCI-CA (1:1) 428+1.9 350 =21 34.6+49
ChCl-xylose (2:1) 21.5*3.0 243 + 54 13.5+7.3
ChCl-xylose (3:1) 50+ 1.0 1113 3+1.0
Glucose-CA (1:1) 53%09 108 =3 58*+1.8
TA-glucose (1:1) 149*+24 182+3 93+*1.5
CA-sucrose (1:1) 47*1.1 166 = 39 72+35

CTR is a SPCL Control Sample.

promote gas foaming when compared with conventional
ionic liquids already studied such as [BMIM]Ac. The mor-
phology of SPCL structures dopped with 10% of [BMIM]Ac
using different soaking times (30 min up to 3 h) was eva-
luated by Duarte et al.'® which reported, under the same
operating conditions, a maximum of 40% porosity. Con-
versely, the SPCL blend foamed without presence of
NADES, showed low values of porosity.

Another feature which is important to discuss is the possi-
ble plasticizing effect of water on these structures. Concern-
ing the results of water content of the NADES used
(Table 1) and the foaming extension observed (Table 2), it
seems that water does seem to have a great effect as a plasti-
cizing agent. This fact is well demonstrated in the case of
glucose-CA (1:1) which, although having a higher content of
water percentage the extension of foaming on SPCL blend is
low, demonstrating that the in the foaming process the
NADES effect prevail over the effect of water. Li and
coworkers determined the solubility of carbon dioxide in
aqueous DES systems in which the water concentration va-
ried between 20 and 80%. In general, they observed that
high concentrations of water have an antisolvent effect,
decreasing the solubility of carbon dioxide in the mixture.**
This is in agreement with the results obtained in this work,
where the presence of water seemed to be detrimental to the
foaming process.

Few articles report, however, the solubility of carbon dio-
xide in eutectic mixtures. Li and coworkers have determined
the solubility of carbon dioxide in an eutectic mixture of
choline chloride and glycerol, reporting a solubility of car-
bon dioxide in the mixture of approximately 3 mco,/(molco,
kgfl) at 6.0 MPa and 40°C. Their findings also indicate that
the solubility of CO, in DES follows a linear relationship
with pressure, but it is inversely proportional to the tempera-
ture. These trends are typical and have already been reported
to carbon dioxide:ionic liquid systems.””> The systems pre-
sented in our work have so far not been reported in the liter-
ature, but a rough comparison can be made with the systems
prepared with ionic liquids. Our previous work on the prepa-
ration of porous matrices dopped with 1-butyl-3-
methylimidazolium chloride has demonstrated that the extent
of foaming is related with the sorption degree of the poly-
mers which is greatly influenced by the solubility of carbon
dioxide in the ionic liquid.16 In comparison with the systems
prepared with ionic liquids, NADES present major advan-
tages. NADES have potentially lower toxicity than the ILs
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that present higher relevance for biomedical or pharmaceuti-
cal applications. Moreover, in some cases, better results
were obtained for NADES than with ILs.

The results presented in this work demonstrate the possi-
bility to use of a novel generation of green solvents as poly-
mers plasticizing agents for the development of 3-D porous
architectures. The preparation of porous, light weight materi-
als may have applications in a wide variety of scientific
fields. Nonetheless, the major goal of the present work is to
provide cues for future developments, particularly the deve-
lopment of new bioactive materials using active NADES for
tissue engineering and/or drug delivery applications.
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