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Abstract 

Reinforced masonry shells were widely used in the past by Eladio Dieste. In order to 
develop a modern competitive technology for the building industry, a prefabrication 
process to build such structures has been investigated and the necessary tests to 
characterize the constitutive materials have been carried out. Here, an experimental 
program of bending tests in reinforced masonry panels is detailed. The panels were 
made of a concrete topping layer reinforced with welded wire mesh, ceramic facing 
bricks and reinforced concrete joints. The panels were tested for both positive and 
negative bending moments. A numerical approach was developed to predict the 
deformational and the load bearing capacity of such structures. 
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1 Introduction 
The research presented here is part of a European project based on shell buildings 
executed by Eladio Dieste, Junta de Andalucia (1996). This Uruguayan engineer 
designed a significant number of curved masonry shells for roofs and walls. Such 
buildings were built mainly in South America since 1950. Dieste’s shells were 
composed of ceramic bricks in stack bond, so that orthogonal reinforcement could be 
introduced. The reinforced joints and the topping were made of mortar. The technology 
was low-cost, aesthetically appealing and structurally efficient, as it allows taking 
advantage of the properties of each material component. 

One of the advantages of the system adopted by Dieste was that the same mould 
could be used several times in a repetitive pattern. However, in order to become an 
attractive building system for the today developed countries, a prefabricated process 
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has to be implemented. Nowadays, fastness, moderate workmanship demands and an 
economical molding system are key desired characteristics of the building industry. 
Thus, the aim of the current project is to contribute for the European construction 
sector by providing a cheap, efficient, ecological, secure, simple and industrialized 
mean to construct thin shell roofs with high quality. The developed system has to be 
attractive from the technical and economical points of view.  

One possible strategy for the development of the system is to adopt prefabrication. The 
prefabricated model is composed by a layer of ceramic bricks, bonded by concrete 
joints of 25 mm thickness and covered by a concrete layer of 30 mm thickness. The 
concrete joints form a grid reinforced with steel bars. The concrete layer is reinforced 
with welded wire mesh positioned near the brick-concrete layer interface. To test the 
feasibility of the technique, a shell was built at the laboratory of Minho University, 
following a catenary directrix (see Figure 1a), according Oliveira et al (2003a). 

Assessing the mechanical behavior of representative elements of the entire shell will 
help to understand its structural behavior. For this purpose, four point bending tests 
were carried out according to EN 1052-2 (2000). The building process of the 
specimens followed the same procedures applied in the entire shell (Figure 1b). Here, 
the obtained experimental results are presented and discussed. A simple numerical 
model was also developed to simulate the behavior of this type of elements. 
 

(a) (b) 

Figure 1 Model of the entire shell (a); detail of the specimen to be tested before the 
concrete casting (b) 

2 Characterization of the specimens and test set-up 

2.1 Materials 
The adopted concrete was made with 300 Kg/m3 of cement 42.5 R, 279 Kg/m3 of sand 
0.6-5 mm, 655 Kg/m3 of sand 0.3-0.6 mm and 806 Kg/m3 of gravel 5-10 mm. 
Rebuilt®1000 superplasticizer was used in a content of 2.5% of the cement quantity. 
The water/cement ratio was 0.55. Due to the fact that masonry joints were narrow, the 
joints were reinforced and the shell was curved, concrete was designed to fill the joints 
without segregation or slipping. The designed concrete had a slump of 210 mm. 

The concrete strength is given in Table 1 for the different panel series, where fcm is the 
average compression strength and ffctm,fl is the average flexural tensile strength. The 
average uniaxial tensile strength, ffctm,ax, was estimated according to CEB-FIP (1993). 
Each value of Table 1 is the average of, at least, three tests. 

The brick average dimensions were 215 mm length, 100 mm width and 65 mm height 
(see Figure 2), with square holes of 25 mm edge. Polystyrene pieces were introduced 
in the ends of the brick holes to avoid excessive concrete penetration. The 
compressive strength in X and Y directions were 71.8 N/mm2 and 31.8 N/mm2, 
respectively, according Lourenço et al (2004). The compressive tests were carried out 
according to EN 772-1 (2000). The values of tensile strength for the X and Y directions 
were 3.50 N/mm2 and 1.76 N/mm2, respectively, according to Almeida et al (2002). 



Table 1 Tested concrete properties (bending 
and compression tests) 

 

Specimens ffctm,fl 
(N/mm2) 

ffctm,ax 
(N/mm2)

fcm 
(N/mm2)

Average FLs-A 3.98 1.59 35.60 

Average FLs-B 4.24 1.69 42.19 

Average FLIs-A 5.04 2.02 36.75 

Average FLIs-B 4.46 1.78 38.39 

     
 

Figure 2 Brick dimensions (mm) 

 
 
The reinforcement in the parallel (longitudinal reinforcement) and in the orthogonal 
(transversal reinforcement) direction of the brick holes was made of steel bars of 8 mm 
and 6 mm diameter, respectively. In the concrete topping, immediately above the brick 
units, a welded wire mesh of bars of 3 mm diameter, spaced at 75 mm, was placed. 
The bars were tested according to EN 10002-1 (1990). Table 2 includes the main data 
obtained from these tests. Figure 3 illustrates the steel bars distribution in the panels. 

Table 2 Characterization of steel bars (strength values in N/mm2) 

 Steel bars Wire mesh 
 φ 8mm C.V.% φ 6mm C.V.% φ 3mm C.V.% 

Yield stress at 0.2% 524 4.5 668 8.7 545 4.69 

Tensile strength 614 2.5 698 9.5 824 5.92 

2.2 Specimens (panels) 
The panels were divided in four series of four panels each: 

Series FL-A: panels tested with the concrete topping turned upwards and the line 
loads applied directly on concrete topping, in the direction of the brick holes (Figure 
3a); 

Series FL-B: panels tested with the concrete topping turned upwards and the line 
loads applied directly on concrete topping, perpendicular to the direction of the brick 
holes (Figure 3b); 

Series FLI-A: panels similar to the series FL-A, but tested with the concrete topping 
turned downwards; 

Series FLI-B: panels similar to the series FL-B, but tested with the concrete topping 
turned downwards. 

The dimensions of the panels of series FL-A were 975 mm of length, 455 mm of width 
and 95 mm of thickness. For panels of series FL-B these dimensions were, 
respectively, 935 mm, 375 mm and 95 mm. The differences in the in-plane dimensions 
of panels of series FL-A and FL-B are due to the brick in-plane distinct dimensions, 
resulting the two possible brick arrangements schematically represented in Figure 3. 
The force was applied by two line loads in the panel's width, at a distance of 187.5 mm 
from the middle of the panel. The external supports were placed at a distance of 
437.5 mm (FL-A) and 420 mm (FL-B) from the panel center (see Figure 3). 

2.3 Test set-up 
The design of concrete/masonry based shell structures can be conditioned by the 
flexural strength. Moreover, due to brick shape, bond and reinforcement arrangement, 
the stiffness and the strength in the shell orthotropic directions can be distinct. 
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Therefore, assessing the bending behavior in the two shell orthotropic directions is a 
key issue. Figure 4 shows the test set up of the panels of series FL-A and FL-B. The 
panels of series FLI-A and FLI-B have the same test set up of series FL-A and FL-B, 
respectively, but those panels were tested with the concrete layer downwards. 
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Figure 3 Panels of series FL-A(a) and FL-B (b) 

 

  
(a) (b) 

Figure 4 Test set up for panels of series FL-A(a) and series FL-B(b) 

The applied load was measured from a load cell of 200 kN bearing capacity, 0.1% 
tolerance and sensitivity, attached to a servo-hydraulic actuator of 500 kN maximum 
bearing capacity. In selected panels, the strain variation of some steel bars that 
reinforce the concrete joints was registered using strain gauges. The tests were carried 
out under displacement control, at a displacement rate of 0.015 mm/s, using the 
displacement transducer placed at panel mid span for this purpose, see Oliveira et al 
(2003b) for details. 



3 Test results 
3.1 Series FL-A 
In this series a large number of thin cracks occurred in the constant bending zone 
(between the line-loads), mainly at the brick-concrete joint interfaces. In some tests, 
bars of the wire mesh crossing the failure crack were ruptured and holes of the brick 
elements were intersected by the failure crack (see Figure 5). Crushing of the concrete 
topping layer was observed at the structural softening phase. Figure 6 represents the 
relationship between the total load and the panel central deflection for the panels of 
series FL-A. The shape of these curves are similar to the reinforced concrete elements 
failed by bending, i.e., having ductile failure mode. Figure 7 shows a representative 
strain variation in the longitudinal steel bars. The position of the strain gauges (SG) is 
indicated in Figure 8. After steel yielding (at about 2620 µstrains, which is in agreement 
with the results obtained in the bar tensile tests), a sudden increase of strain occurred, 
followed by a continuous decrease of strain with the load increment. This strain 
decrease in the final phase of the test was caused by reinforcement-concrete sliding, 
indicating that there were some difficulties in assuring good bond properties for the 
bars reinforcing the concrete joints of 25 mm width. 
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of series FL-A 
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Figure 7 Relationship between the 
load and the strains at steel bars 

Figure 8 Positions of the strain       
gauges (SG) 

3.2 Series FL-B 
In general, failure crack of panel of series FL-B occurred near the panel mid-span, 
crossing the brick elements (see Figure 9). In these panels the cracks were not initiated 
at concrete joint-brick interfaces since the brick holes were aligned in the longitudinal 



direction and part of the concrete in the transversal joints has penetrated into the brick 
holes. This resulted in some interlocking between bricks and concrete joints, inhibiting 
the crack propagation at these interfaces. The load-deflection relationship of series FL-
B is depicted in Figure 10. 
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Figure 9 Typical failure mode of 

panel of series FL-B 
Figure 10 Load-deflection of panels of 

series FL-B 

3.3 Series FLI-A 
In general, after cracking the concrete layer, the cracks progressed through the brick 
holes (see Figure 11), which was accompanied by a significant reduction of the panel 
stiffness (see Figure 12). Due to insufficient longitudinal reinforcement for assuring 
stabilized cracking, a sudden load drop occurred just after cracking the concrete layer. 
The peak load coincided with the rupture of some wires of the wire mesh, which was 
followed by abrupt load decay. For deflections above 10 mm, the panels had a quasi-
constant residual load bearing capacity. 
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Figure 11 Typical failure mode of 

panel of series FLI-A 
Figure 12 Load-deflection of panels of series 

FLI-A 

3.4 Series FLI-B 
The failure modes (see Figure 13), the crack patterns and the panel deflection of series 
FLI-B were similar to those of series FLI-A. Figure 14 includes the load-central 
deflection relationship of the panels of this series. In a first phase, the panels showed a 
quasi-elastic response. Afterwards, unloading-reloading cycles occurred due to the 
formation of macro-cracks and activation of the wire mesh. 

The average of the force-central deflection relationship of each series of panels is 
represented in Figure 15. Series FLI-A and FLI-B had similar behavior, showing that 
the orthotropic arrangement of bricks and bars reinforcement have marginal influence 
when the loading induces, mainly, compression stresses in these elements. However, 



in series FL-A and FL-B the aforementioned orthotropic arrangements had influence, 
mainly, in the maximum load bearing capacity and stiffness of the panels. In fact, 
despite FL-B has lower longitudinal reinforcement ratio than FL-A series 
(As = 84.8 mm2 in FL-B and As = 100.5 mm2 in series FL-A), series FL-B had larger 
load bearing capacity and stiffness than FL-A. The larger load bearing capacity of the 
former series can be justified by the highest values of the yield and ultimate stress of 
the longitudinal φ6mm bars of the panels of this series. The larger number of concrete 
ribs (joints) in the longitudinal direction of panel series FL-B can justify the larger 
stiffness of these panels (see Figure 3). Moreover, in series FL-B, concrete of the 
transversal joints has filled the ends of the brick holes, providing an interlock between 
bricks and transversal concrete joints, while in series FL-A the transversal concrete 
joints were bonded to the smooth brick surfaces. 
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Figure 13 Typical failure mode of 

panel of series FLI-B 
Figure 14 Load-deflection of panels of series 

FLI-B 
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4 Numerical simulation 
Previous works (Barros and Sena-Cruz 2001, Barros et al 2004) have shown that, 
using a cross-section layered model that takes into account the constitutive laws of the 
intervening materials, the kinematic and the equilibrium conditions, the deformational 
behavior of structural elements failing in bending can be predicted from the 
moment-curvature relation, M-χ, of the representative sections, using the algorithm 
described in Figure 16. 
Due to lack of space, only two of the tested panels (FL-3A and FLI-3A) are simulated to 
assess the performance of the model developed, using Euler-Bernoulli two node beam 
elements. Due to the observed failure modes, two cross sections were assumed as 



being representative of the panel structural behavior: one at the concrete joint-brick 
interface, and the other crossing the brick units. Figure 17 shows the representative 
cross sections of the panel FL-3A. Panel FLI-4A has identical cross sections, but the 
concrete layer is turned downwards. The cross sections were discretized in layers of 
1 mm thick. The data used in the numerical simulation is in Table 3. Due to shell 
manufacture characteristics, concrete applied in the shell has considerably different 
properties from concrete evaluated in cylinder and prismatic specimens. In the shell 
manufacture, the concrete was cast without any compaction, resulting a concrete with 
high percentage of voids and, consequently, of low compacity and stiffness. To 
simulate a premature microcracking of the concrete layer, a bilinear diagram was used 
to model the pre-peak tensile strength behavior. The concrete properties indicated in 
Table 4 reflect these conditions. The post-cracking behavior of the concrete and bricks 
was simulated by a trilinear softening diagram, defined by the fracture parameters of 
these materials (Barros et al 2004). Tension stiffening was included in a trilinear post-
cracking stress-strain diagram for concrete influenced by reinforcing bars. 
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Figure 16 Numerical approach to simulate the deformational behavior of structural 
elements failing in bending. 

5
23

1725

6φ3mm

8mmφ2 BRICK

CONCRETE LAYER

CONCRETE JOINT

202.5 25 25 202.5

30
65

455
WELDED WIRE MESH

dsg

sbd

S1 - Concrete joint-brick interface 

HOLE
WELDED WIRE MESH

455

65
30

202.52525202.5
CONCRETE JOINT

CONCRETE LAYER

BRICK2φ8mm

3mmφ6

25 17
23

sgd

5

sbd

 
S2 - Crossing brick unites 

Figure 17 Representative cross sections of the panel FL-3A 

As Figure 18 shows that, the simple numerical approach developed fits well the 
observed experimental load-central deflection of the tested panels. 
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Figure 18 Experimental versus numerical load-central deflection of panel: 
FL-3A (a); FLI-4A (b) 

Table 3 Material properties in the numerical simulation 
Panel  FL-3A FLI-4A  

fcm 
(N/mm2) 37.90 36.37 

fctm 
(N/mm2) 2.90 2.10 Concrete 

Ec  
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5 Conclusions 
To assess the flexural behavior of reinforced masonry shells submitted to downwards 
and upwards loadings, four point bending tests on representative panels were carried 
out. In the experimental program the material orthotropy resulting from the possible 
distinct arrangements of bricks and reinforcing bars was taken into account. In panels 
with the concrete layer at top surface, the highest stiffness and maximum load bearing 



capacity occurred in panels with the higher number of longitudinal concrete joints and 
steel bars of larger yield and ultimate stress. In the series of these panels, cracks were 
initiated at the interfaces between bricks and transversal concrete joints. In panels with 
the brick holes in the panel longitudinal direction, some interlock due to concrete 
penetration into the extremities of these holes has assured higher resistance to crack 
propagation in these interfaces, resulting cracks crossing the bricks. Both series of this 
type of panels failed in a bending ductile mode. As concrete was applied without 
external compacting energy, it had low compacity, which resulted in sliding between 
reinforcing bars and surrounding concrete. The panels with the concrete layer at panel 
bottom surface had a load bearing capacity of about half of the one of their counterpart 
panels with the concrete layer at panel top surface. In comparison with these last 
panels, the former ones showed a more fragile failure mode. 
A cross section layer model was used to determine the moment-curvature relationship, 
M-χ, of the representative sections of the tested panels. The M-χ was used to evaluate 
the tangential flexural stiffness, (EI)T during the panel loading process. The tangential 
stiffness matrix of the panel was evaluated from the (EI)T of each element discretizing 
the panel, and using the framework of the matrix displacement method. This simple 
numerical strategy was able to predict, with enough accuracy, the force-deflection 
relationship registered experimentally. 
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