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Abstract

This paper describes the design of a multi-part mirror catadioptric vision system and its use for self-localization and
detection of relevant objects in soccer robots. The mirror and associated algorithms have been used in robots participating in
the middle-size league of RoboCup — The World Cup of Soccer Robots. © 2001 Published by Elsevier Science B.V.
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1. Introduction and state-of-the-art

Omni-directional catadioptric vision systems have
been around for years [1]. Using a suitable combina-
tion of lenses and mirrors, these systems, when as-
sembled on a mobile robot, considerably enlarge the
field of view of the imaging system.
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There are many different ways of assembling a cam-
era on a robot:

e Fixed camera pointing to the front of the robot: In
this case, a typical image that can be seen from the
robot is depicted in Fig. 1. The main disadvantage
of this solution results from the limited amount of
available information, and from the increasing
occurrence of occlusions of the scene background
due to nearby objects.

e Motorized camera: This results from assembling the
camera on a structure linked to a motor. The field
of view is increased by moving the camera up and
down (tilt) and/or left and right (pan). A major prob-
lem is also finding an effective way of coordinating
robot and camera motion.

e More than one camera: More than one camera can
be used, on one hand, to achieve stereo vision and
determine the distance to relevant objects, on the
other hand, to watch different spots around the
robot. This is, however, a costly solution. Further-
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Fig. 1. Image seen by a robot with a camera pointing to its front.

more, reliability is decreased due to the increasing
number of devices and the power consumption can
be considerable.

Fixed camera pointed to one or more mirrors: This
belongs to the class of solutions known as catadiop-
tric vision systems. One important example are the
omni-directional vision systems, based on a camera
pointing upwards to a convex mirror (see Fig. 2(a)).
The main disadvantage of omni-directional cata-
dioptric vision systems is the distortion, on the im-
age, of the shape of relevant objects in the ob-
served scene. Nevertheless, if the information to be

TN

(a)

extracted from the image is only the relative ori-
entation, distortion is irrelevant, since the angles
between radial lines are preserved [2]. Different
mirror profiles can be used, such as conic mirrors,
parabolic mirrors or spherical mirrors, to name a
few, each one with a different type of distortion.
When the mirror profile is precisely known, the im-
age can be unwarped with a suitable transformation,
i.e., the inverse of the transformation performed
by the mirror. Another solution is to design mir-
rors which unwarp the image directly, saving CPU
time [3,4]. Another potential problem is the sup-
port type used for the mirror. The support must be
carefully chosen, since it may introduce further dis-
tortion and/or occlusion (e.g., in Fig. 2a, the image
is partially occluded by the supporting structure of
the mirror and by the camera itself). An example of
image captured by an omni-directional mirror can
be seen in Fig. 2(b).

This paper focusses on the design and use of
omni-directional catadioptric vision systems for soc-
cer robots. In the RoboCup-Soccer competitions, the
field features are mainly distinguishable by their color
(e.g., the field is green with white lines, the goals are
blue and yellow, the ball is orange), hence vision is a
sensor naturally shared by all participant teams.

Fig. 2. (a) Omni-directional catadioptric vision system consisting of a camera and a parabolic mirror; (b) an image taken by a conical-spherical
SEensor.
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In the middle-size league of RoboCup-Soccer, the
teams are composed of fully autonomous robots, with
no global view of the field and most, if not all, pro-
cessing done on board. Among those, an increasing
number of teams is using omni-directional catadiop-
tric vision, so that many different important environ-
ment features can be seen simultaneously whenever
an image frame is acquired. In this paper, we de-
scribe the approach to omni-directional vision in the
middle-size league of RoboCup-Soccer by three such
teams:

e ART team, partially represented here by the Politec-
nico di Milano and the Universita degli Studi di
Milano — Bicocca, Italy;

e Minho, from the University of Minho, Portugal;

e [SocRob, from the Instituto Superior Técnico, Por-
tugal.

Three main topics covered by the paper are the fol-
lowing:

e The design of a multi-part omni-directional mirror.

e Virtual sensors to extract important environment
features from the image.

e Omni-directional vision-based self-localization.

Each of the above groups concentrated on one of
the topics (listed in the same order). This paper aims
at demonstrating that an integration of the work done,
based on the described catadioptric vision system
with a multi-part mirror, is possible. Nevertheless,
the results presented were obtained with mirrors
separately designed by the different groups, each
corresponding to particular parts of the multi-part
mirror.

In the literature, different mirror geometries have
been proposed [5,6] and even in RoboCup-Soccer
middle-size league, some teams already used mirrors
[7-9] with profiles other than the original conical one
[5]. In 1999, the first multi-part mirror designed to
obtain specific properties of the image was presented
at RoboCup [10,11].

Many researchers have used several distinct ap-
proaches to self-localization in either indoor or out-
door environments, and either using natural or artificial
environment landmarks [12]. One currently popular
approach is the so-called Markov localization meth-
ods [13,14].

An increasing number of teams participating in
RoboCup-Soccer middle-size league is approaching
the self-localization problem. The proposed solu-
tions are mainly distinguished by the type of sen-
sors used: laser range finders (LRFs), vision-based
omni-directional sensors and single frontal camera.
The CS-Freiburg and Stuttgart-Cops teams can deter-
mine their position with an accuracy of 1 and Scm,
respectively, using LRFs [15]. However, LRFs re-
quire walls surrounding the soccer field to acquire
the field border lines and, in a sense, correlate them
with the field rectangular shape to determine the
team postures. RoboCup’s Agilo team [16] proposes
a single frontal camera to match a 3D geometric
model of the field with the border lines and goals
line segments in the acquired image. Only a partial
field view is used in this method. Iocchi and Nardi
[17] also use a single frontal camera and match the
lines with a field model using the Hough transform.
Even though similar to the work on vision-based
self-localization described in this paper, their ap-
proach considers lines detected locally (again due to
a partial field view), rather than a global field view,
and requires odometry to remove ambiguities. The
robots of the Tiibingen team use omni-directional vi-
sion for self-localization, but only the distance to the
walls is used [18]. Several teams use a vision-based
omni-directional catadioptric system similar to the
one described here, but only for ball and opposing
robots tracking.

Omni-directional vision-based approaches to
self-localization have been used already outside
RoboCup. One such approach is described in [19],
where the authors use a conic mirror to implement a
catadioptric vision system that extracts radial straight
lines from the surrounding environment, and an ex-
tended Kalman filter to integrate the localization data
so-obtained by triangulation with odometry.

This paper is organized as follows. In Section 2,
the design of the multi-part omni-directional mirror
is described. Applications to robotic soccer based on
omni-directional catadioptric vision systems, which
can use the different parts of the multi-part mirror are
introduced in Sections 3 and 4: virtual sensors that
locate relevant objects/landmarks in the scene and a
self-localization algorithm, respectively. Finally, some
conclusions and a description of envisaged future work
are drawn in Section 5.
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2. Designing a multi-part omni-directional mirror

An accurate design of an omni-directional vision
sensor should enable the robot to observe the parts
of the scene relevant for the specific application. By
analyzing the rules and aims of RoboCup-Soccer
middle-size league, it is possible to define a set of
requirements for such a vision system.

2.1. Inferring requirements for the perception system
Jrom RoboCup rules

An omni-directional perception system should be
able to detect points of interest (direction and distance)
with the accuracy required by the application. The
following requirements and applications have been
identified in the RoboCup domain:

e When the point of interest is in contact or very near
to the robot, a very good accuracy is required for
both direction and distance, in order to properly
control the robot motion. An example is the control
of ball kicking.

e When the point of interest is within a few meters
from the robot, a good accuracy is required for both
direction and distance. It is very useful that the er-
ror affecting distance measurement of scene points
in this range to be independent from the points po-
sition. An example is self-localization, which based
on localization of known points would be eased if
such points are observed with the same accuracy.

e When the point is quite far, a good accuracy is
required for the direction, less accuracy may be
accepted for the distance. An example is moving
to the ball: the directional accuracy is required in
order to be able to head towards it.

e The last requirement deals with the markers, which
allow to distinguish team-mates from opponents.
The perception system should be able to observe
the markers in the range of distances and heights
where they are placed.

In 1999, a mirror was designed [10,11] only par-
tially matching these requirements. The aims were
both to have enough resolution to detect and localize
the ball even when observed at the farthest distance,
and to include in the image the maximum part of the
ball when it is close to the robot body. These require-
ments could not be matched by any of the classical

mirror shapes used till then, and we decided to imple-
ment a two-part mirror. The first part was a conical
mirror and the second one a spherical apex, sharing a
common tangent at the intersection points. The spher-
ical part projected scene points at the ground level up
to 1.5m from the sensor, thus allowing the angle of
the conical part to be steep enough to observe points
at a distance up to 6 m from the sensor (see Fig. 2(b)).
The sensor, implemented with a large, low-cost mir-
ror (18.5 cm of diameter) and a low cost camera, was
good enough to make it possible the implementation
of successful behaviors [11].

Since then, all requirements have been taken into
account and the perception system was redesigned. We
decided to develop a new design methodology to im-
plement a new set of mirrors based on a comprehen-
sive analysis of the above requirements and satisfying
them through an accurate control of the distribution of
the image resolution [4].

2.2. Isometric mirror part

Vision systems measure the distance between image
points in order to estimate the distance between scene
points. The relationship between image and scene dis-
tances for omni-directional system based on conven-
tional conical mirrors is not linear. Such non-linearity
turns into a distortion at the image level (see the outer
part of Fig. 2(b)). This distortion grows quickly with
the distance from the object to the observer. On one
hand, it is quite obvious that the nominal value of
the estimates can be easily corrected given the profile
function of the mirror. On the other hand, the accuracy
of these measurements is corrupted by the joint effect
of such distortion and image sampling, without any
possibility to compensate for it. The accuracy degra-
dation implied by conventional mirrors conflicts with
the requirement of a reasonably limited amount of in-
accuracy for any distance measured in the intermedi-
ate range. Therefore, one of the objectives of this work
was to develop an optical compensation of the above
described distortion, working directly on the mirror
profile in such a way that the absolute localization er-
ror remains limited with respect to the object distance.
In other words, the driving idea was to control the dis-
tribution of the image resolution on a pixel basis, in
order to get the desired accuracy. The analytical set-up
for this optical compensation turned out to be very



P. Lima et al./Robotics and Autonomous Systems 36 (2001) 87-102 91

similar to previous work [3] (also see [20]), where
the aim was to exploit reflective surfaces as computa-
tional sensors. This optical compensation results in a
constant absolute error in the distance measurement.
The transformation between two 2D Euclidean spaces
(ground and sensor) performed by such camera—mirror
system, keeps angles unchanged and changes lengths
by a constant factor. This transformation, being linear,
does not change the metric tensor, neglecting the con-
stant. Therefore, we call this kind of mirror isometric
because of its capabilities to keep the scene metric,
property that does not hold for conventional mirrors.

An even more relevant point driving our design con-
cerns the detection of image features. The proposed
design has the effect of keeping constant the image
size of the scene features at the ground level, inside
the covered range of distances. This makes less likely
a detection failure when the feature is far from the
observer.

The design problem is modeled by the following
differential equation (1), which can be inferred by
applying the laws of linear optics (see Fig. 3):

X 2y’
vy iioyr _ar-x?
1_5 2y X(Y+H)’
Y1-Y?
Y(0) = Yo, Y'(0) =0, )]

where Y = dY/dX, n = kA, A is the focal length,

k is the proportionality constant from X to x, H is
the pin-hole height from the ground. Differently from
[3,20], we developed a geometrical integration of
Eq. (1). Our approach is based on a local first-order
approximation of the profile, at each point the mir-
ror has been approximated by its tangent space. The
resulting profile looks quite similar to the one ob-
tained in [3]. It is convex into its first half, i.e., the
part that goes from the axis of symmetry towards the
outside of the mirror; then it has an inflection point
and finally it gets slightly concave. Establishing point
by point the relationship between the mirror profile
and the scene is one way to control the distribution
of the image resolution. Establishing the amount of
image resolution devoted to a single part is an an-
other way to control the distribution of the image
resolution.

2.3. Constant curvature mirror part

It would be desirable if the above described design
approach could cover the whole range of distances
required for the RoboCup purposes, but the use of con-
ventional low-cost color cameras does not allow a re-
liable detection of relevant features in the whole range
of distances. Thus, we have designed a second mirror
part that satisfies jointly two requirements of the previ-
ously mentioned ones. The first of such requirements
is the covering of the farthest range of distances. The
second is the markers detection and localization. These

Y A Y(X)

Po P1 P, 2 P3

—— t
L
Pin-hole

A
Sensor H
X X3X2X)
X] X2 X3 X

Fig. 3. Sketch for inferring the differential equation generating the isometric part of the mirror ((x;4+1 — x;) = k(X;+1 — X;) Vi).
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Fig. 4. (a) Sketch for the design of the constant curvature part of the mirror; (b) sketch for the design of the planar part of the mirror.

two requirements do not imply an accuracy as high
as for the other ones. Another aspect of the design of
this part is to preserve the continuity between the two
portions of the image in order to ease the association
of the robot body to its marker, when they are across
the two parts. Such image continuity can be guaran-
teed by imposing the continuity of the tangent at the
junction between the isometric and the new part of the
mirror (point A in Fig. 4(a)). Another condition comes
from fixing point B = (X, Yp) and setting the height
Hax, so that it can be observed at a distance dpax. This
constraint gives the tangent to the profile in point B

Hiax — YB Xb
tan() = —, tan(f) = —,
dmax - XB 'B A
9 —
tan(y) = tan <'B+Tn) , (2)

where A is the focal length.

Because there is no other constraint, this portion
of the mirror can be designed, e.g., by imposing a
constant variation of the tangent between the two
endpoints. Hence, the name ‘“constant curvature”
given to this part of the mirror. The mirror will cover
completely the highest part of the scene (Zone B).
On the other hand, when the robots are quite near,
they will be observed by the first part of the mirror
(Zone A).

2.4. Planar mirror part

The so far designed mirror does not satisfy the re-
quirement concerning the nearer range of distances.
Due to the robot occlusion (see Fig. 4b), it is not pos-
sible to observe the scene immediately close to the
robot. The relatively small image of a feature, when
very near and imaged in the isometric part, results in a
less than required accuracy, while the highest should
be obtained in the very close range. To satisfy the re-
quirement, a third part of the mirror has been intro-
duced. This part should be the outmost to suffer the
least occlusion from the robot body. The simplest so-
lution to this design problem is a planar mirror lying
on a plane perpendicular to the rotational axis. The
height of this part has to be as low as possible, with
respect to the camera, in order to give the largest im-
ages of the features. At the same time, this part should
not be on the line sight of others. Hence, the choice
has been to have a planar mirror at the same height
of the last point of the constant curvature part of the
mirror (point B). The point C is set as follows:
L = )ﬁ’ Yo =Yg, 3)
Yc — A — Hgensor A
where Hgensor 1S the height of sensor plane and A is
the focal length. The ball image produced by this part
is large enough to allow a reliable detection and an
accurate localization.
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(b)

Fig. 5. (a) Profile of the overall mirror; (b) the last mirror prototype.

2.5. The resulting mirror

The mirror profile resulting from the above de-
scribed design is shown in Fig. 5(a). It enables the
system to observe up to 6 m far away without im-
age distortion at the ground level; thanks to the con-
stant curvature part it can observe up to the maximum
height, 0.6 m, at the maximum distance in the ground
(11.2m). Its outer part allows the observation of ob-
jects from 0.39 to 0.51 m. The last prototype of the
mirror is depicted in Fig. 5(b), an image obtained by
this mirror and a very low-cost camera is shown in
Fig. 6. You may notice that such image have been col-
lected after a rough mechanical set-up. This activity
should have aligned optical and mirror axis, put the
mirror at the designed distance from the pin-hole, etc.
It is extremely likely that some defect is still present
on the image.

3. Virtual image sensors for robotic soccer

Many visual features are important in the RoboCup-
Soccer domain. A set of virtual image sensors® was
designed to extract a crucial subset of those features for
middle-size league robots, and handle the necessary
actions, namely:

3> A virtual image sensor extracts features from a (sub)image,
such as the centroid or whether an object is present or not. Dif-
ferent virtual sensors operate over the image provided by just one
transducer: the CCD camera plus the video acquisition board.

other robots and walls, for obstacle avoidance;
goals;

far ball, to move towards it;

near ball, to kick it;

catadioptric system calibration.

contact

in the - R
isometric = I~ robot

part

4 ,

constant curvature part (beyond the isometric part) /

Fig. 6. Image taken with the robot near to the center of the ground
(Melbourne, 31 August 2000, field B of the initial tournament).
Notice the effect of the isometric optical compensation, which lasts
up to 6m; in the constant curvature part it is possible to detect a
goal and the marker. However, their distances from the observer,
thanks to the continuity with the first part, can be measured at
the ground contact point with the limited error provided by the
isometric design. Notice also the dimension of the farther ball,
which is even larger than that when nearby because of the isometric
property holding at the floor level only. There was no marker on
the robot besides the farther ball.
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Those virtual sensors can be used with any cata-
dioptric vision system, particularly the one described
in the precedent section. This section goes through
their implementation details for a parabolic mirror that
was built to test only the virtual sensors.

3.1. The importance of colors

After capturing an image, what can be done with it
in order to instruct a robot to play soccer? An impor-
tant step is the reliable extraction of visual features
from the image, corresponding to relevant objects on
the field.

First, the objects must be recognized. These are the
two goals, the ball, the surrounding walls, the other
robots and their markers. All those objects are recog-
nized by their known colors. Eight different colors are
used:

the ball is red;

the playing field is green;

one goal is blue;

the other goal is yellow;

the surrounding walls are white (including some
letters and symbols in black);

e the robots are predominantly black;

e one team color is magenta;

e the other team color is cyan.

These eight colors correspond precisely to the eight
vertices of the RGB cube [21].

Color segmentation is obviously an important prob-
lem for RoboCup-Soccer playing robots. The image
processing system must not only correctly discrimi-
nate the eight significant colors, but also avoid the
identification of objects external to the game as rel-
evant ones. This is a critical issue since many peo-
ple walks around the playing field wearing colorful
T-shirt, and sometimes other red balls are left nearby
the field.

3.2. Image formats and color segmentation

Different cameras provide images in different for-
mats. The most usual ones are RGB and YUV. Due
to its video characteristics, YUV is the most suitable
color space for color segmentation. Its main advan-
tages can be described as follows:

e the signal is separated (to analyze shape, we do not
need color, but just luminance);

e it is very much light independent;

e it is fast, since no hardware conversion is required;

e lookup tables are 2D, and thus they are easy to
access and require less storage space than “true” 3D
color spaces;

e allows flexible conversions to RGB for display;

e many cameras output their image in the YUV for-
mat.

The main disadvantages are the following:

e it needs to be converted to RGB to be displayed on
a computer screen;

e it is a format most suitable for video rather than for
still images.

3.3. Sensor readings from an image system

Most sensorial information required in RoboCup-
Soccer can be extracted by a vision system. Our ap-
proach was to define image windows where certain
attributes are expected to be found. An example can
be seen in Fig. 7, for a parabolic mirror. Notice that
the image windows must be changed according to the
particular mirror profile used and/or mirror assembly
on the robot. This system starts by applying a filter to
every image pixel. All colors are segmented onto the
eight possible and acceptable options.

Ow >

Fig. 7. Captured image with superimposed defined windows for
virtual sensors.
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The main virtual sensors used in this system are
designated as Obstacle Avoidance, Goal Detection,
Ball Detection, Eminent Kick and Catadioptric Sys-
tem Calibration. We shall now describe each of them
in detail:

e Obstacle Avoidance. The nine squares around the
camera are used as virtual bumpers (window E in
Fig. 7). The amount of black and white inside each
square is calculated, and should it be over a certain
predefined value, an obstacle is detected, forcing
the motion controller to move the robot away from
the obstacle. The “bumpers” are numbered from 1
to 9, starting on the left side. In the image shown,
bumpers 2, 3 and 9 are darker which means they are
flagged showing evidence of an obstacle detected.

e Goal Detection. By finding the maximum value of
blue (window A in Fig. 7) in the image and applying
a threshold, the blue goal can be found. A similar
technique is used for the yellow goal. In order to
avoid noise from outside the field, which could be
confused with the actual blue (yellow) goal, this
maximum must be inside the top three rectangles
on the image (window B in Fig. 7).

e Ball Detection. The maximum value of red (win-
dow C in Fig. 7) represents the ball. The red color
is the easiest to track and the one with least inter-
ference, since the ball has a very unique and bright
color. Due to its motion, the ball can be seen any-
where on the image, and so window C can be lo-
cated.

e Eminent Kick. The robot should not activate the
kicking device when the ball is not ready to be
kicked, to save energy and avoid hurting its op-
ponents. Therefore, the kicking device is activated
only when the ball (red cross represented by let-
ter C in Fig. 7) is inside the red rectangle (letter D
on the same image). This also means that the robot
will kick the ball only when the ball is touching the
robot.

e Catadioptric System Calibration. Should, for
some reason, the mirror and/or the camera compos-
ing the catadioptric vision system be moved from
its position, the robot will not find the relevant
objects in the correct image windows. Therefore,
for easy calibration of the catadioptric system, the
camera lens must be placed inside the square given
by letter F in Fig. 7.

Many other virtual sensors can be created. How-
ever, the number of sensors is critical for system per-
formance and therefore their number must be limited,
otherwise, the number of frames processed per second
will substantially decrease.

4. Omni-directional vision-based self-localization

The navigation system is one of the most impor-
tant sub-system of a mobile robot. In many appli-
cations, especially those concerning well-structured
indoor environments, one important feature of the
navigation system concerns the ability of the robot to
self-localize, i.e., to autonomously determine its po-
sition and orientation (posture). Once a robot knows
its posture, it is capable of following a pre-planned
virtual path or of smoothly stabilizing its posture. If
the robot is part of a cooperative multi-robot team,
it can also exchange the posture information with its
team-mates, so that appropriate relational and organi-
zational behaviors are established. In robotic soccer,
these are crucial issues. If a robot knows its posture,
it can move towards a desired posture (e.g., facing
the goal with the ball in between). It can also know
its team-mate postures and prepare a pass, or evaluate
the game state from the team locations [22].

In this section, we describe a self-localization al-
gorithm based on the isometric part of the multi-part
mirror of the catadioptric vision system described in
Section 2. The algorithm determines the posture of a
middle-size league robot, with respect to a given co-
ordinate system, from the observation of natural land-
marks of the soccer field, such as the field lines and
goals, as well as its correlation, in the Hough transform
space, with a geometric field model. Even though the
intersection between the field and the walls is also cur-
rently used, the wall replacement by the correspond-
ing field lines would not change the algorithm. The
algorithm is a particular implementation of a general
method applicable to other well-structured environ-
ments, and was first introduced in [23].

4.1. Method description

Even though the self-localization algorithm was de-
signed motivated by its application to robotic soccer,
it can be described in general terms, and applied to
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other well-structured environments, with the assump-
tion that the robot moves on flat surfaces and straight
lines can be identified and used as descriptive features
of those environments. An important requirement is
that the algorithm should be robust to image noise.
Given an image acquired from the isometric part of the
catadioptric system, the basic steps of the algorithm
are the following:

1. Build a set T of transition pixels, corresponding to
image pixel representatives of environment straight
lines (e.g., intersection between corridor walls and
ground, obtained by an edge detector).

2. For all transition pixels p* € T, compute the Hough
transform [21] using the normal representation of
a line

p = x; cos(¢) + y; sin(@), “)

where (x}, y!) are the image coordinates of p' and
0, ¢ the line parameters.

3. Pick the g straight lines (o1, ¢1), ..., (g, ¢4) cor-
responding to the top g accumulator cells resulting
from the Hough transform described in the previ-
ous step.

4. For all pairs {(p;, ¢;), (ok, ), j.k =1,...,q,
J # k} made out of the ¢ straight lines in the
previous step, compute

Ap = |opj — Pils )
Ap =1|pj — pkl. (6)

Note that a small A¢ denotes almost parallel
straight lines, while Ap the distance between two
parallel lines.

5. Classify, in the [0, 100] range, the A¢s and Aps
determined in the previous step, for its relevance
(function Rel(.)) using a priori knowledge of the
geometric characteristics of the environment (e.g.,
in a building corridor of width d, only A¢ ~ 0,
A¢ =~ 180 and Ap =~ d should get high grades).
For each pair of straight lines, assign a grade in the
[0, 200] range to the pair, by adding up Rel(A¢)
and Rel(Ap).

6. Pick up the most relevant pair of straight lines (i.e.,
the pair of largest Rel(A¢) + Rel(Ap) in the pre-
vious step), and use it to extract some relevant fea-
ture regarding environment localization (e.g., the
orientation 6 of the robot w.r.t. the corridor walls,

represented by the most relevant pair of parallel
straight lines, in the example above).

7. Use the relevant feature from the previous step
to proceed. For instance, assuming 6 in the corri-
dor example is such a feature, it is used to select
columns from the accumulator cells matrix referred
in Step 3. The idea is to correlate a number of ac-
tual straight lines, found in the image, sharing the
same descriptive parameter (e.g., the angle ¢ corre-
sponding to 6) with the expected straight lines ob-
tained from an environment model (e.g., the build-
ing layout). To attain this, up to np values from
the accumulator matrix column corresponding to ¢
are picked up, corresponding up to n straight lines
found in the image. To handle uncertainty in ¢, an
even better solution is to pick up not only one col-
umn but a few columns surrounding the accumu-
lator matrix column corresponding to ¢, using the
top np values from those columns. Concatenate all
these Hough space points in an array and call it jg.

8. Create an array pg similar to 5, but obtained from
a geometric model of the environment. Actually, o4
measures distances of environment straight lines to
the origin of the world reference frame. Correlate
p¢ and Py by shifting one array over the other, and
incrementing a counter for each matching (pg, 5g)
pair. The maximum of the correlation corresponds
to the best match between up to n straight lines in
the image and the n known environment straight
lines. From this result and similar results obtained
for other straight lines non-parallel to them (deter-
mined by the same procedure for different s), the
image coordinates of environment feature points,
whose location in the world reference frame is
known, are determined and used to determine the
robot position w.r.t. that frame, by a suitable trans-
formation from image to world coordinates.

4.2. Application to robotic soccer

The self-localization of a middle-size league soc-
cer robot, using the method described in the previous
section, takes advantage of the soccer field geometry
and of the different colors used for the field (green),
the surrounding walls and the field lines (white). The
field is a 9m x 4.5 m flat rectangle that can be almost
fully observed by the robot catadioptric system from
most field locations.



P. Lima et al./Robotics and Autonomous Systems 36 (2001) 87-102 97

The self-localization algorithm was implemented
based on the isometric part of the catadioptric system
mirror.

4.3. Geometric field model

The bird’s eye view of the soccer field, shown
schematically in Fig. 9(a), shows six horizontal and
seven vertical straight lines (considering interrupted
lines as only one line). In this work, all horizontal
lines and five of the vertical lines (excluding those
corresponding to the back of the goals) were con-
sidered. Excluded lines were chosen because they
are often occluded by the goalkeeper robots. All the
distances between lines are known from RoboCup
rules. Changes in the dimensions are parameterized
in a table. The model reference frame is located at
the bottom left of the model image.

4.4. Orientation determination

Steps 1-6 of the algorithm described in Section 4.1
are followed to determine the initial robot orientation
estimate (with a £90° or 0/180° uncertainty, to be
solved later). The set T of transition pixels is obtained
by determining the white-to-green and green-to-white
image transitions over 36 circles centered with the
robot, shown in Fig. 8. The number of circles was
determined based on a trade-off between accuracy and
CPU time.

The Hough transform is then applied to the pixels
in T— a variable number from image to image — de-

100 200 300 400 500 600 700

Fig. 8. Image obtained with a preliminary prototype of the isomet-
ric part of the catadioptric system mirror — notice the distortion
on the outer part — showing the 36 circles used to determine
transition pixels.

pending on the number and length of observed lines.
In Step 3, g = 6 is used, based on experimental anal-
ysis of the trade-off between CPU time and accuracy.
The relevance functions for A¢ and Ap, used in Steps
5 and 6, are plotted in Fig. 9(b) and (c). The latter
reflects a priori knowledge of the environment by its
use of the known distance between relevant field lines
that can be observed by the catadioptric system in one
image.

The accumulator cells of the Hough transform in
Step 2 are obtained by incrementing ¢ from 0° to 180°
in 0.5° steps, leading to a line slope resolution in the
image of tan 0.5°. p is incremented from 125 to 968
in steps of 1 pixel, corresponding to an actual field
resolution of 6.95mm. ¢ The £90° or 180° ambiguity
referred above results from the absence of information
on which field lines lead to the most relevant pair. This
information is obtained in Steps 7 and 8.

4.5. Position determination

The final step in the self-localization process con-
sists of determining the robot position coordinates in
the soccer field. This is done together with the dis-
ambiguation of the relevant feature 6 determined in
Steps 1-6 of the self-localization method, by creating
not only the pg and pg arrays referred in Steps 7 and
8, but also their “orthogonal” arrays pp1.90 and Pg-90.
The correlation in Step 8 is made between all four pos-
sible pairs (0p+90, Pp+90)> (090, Pp)> (0g» Pp+90)
and (pg, Pp) with n = 6 (the maximum number of
field lines that can be found in the image). The max-
imum of the four correlation maxima occurs for the
array pair representing the best match between image
and actual field lines. The array immediately identifies
whether 6 +90° or 6 = 0° v 180° is the robot orienta-
tion. A companion array pair exists for each best pair.
The two pairs uniquely identify two (approximately)
orthogonal field lines, by checking the array positions
where the maximum occurred (vertical field lines are
numbered 1, ... ,5 from left to right and horizontal
lines are numbered 1, ... , 6 from top to bottom). The
intersection of the two lines is a reference point, whose
coordinates are known in the world reference frame,
from the field model.

6 The relation between p values and the actual field resolution is
given by the scale factor k between field and image coordinates
(see Section 2.2).
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Fig. 9. (a) Soccer field model as seen in a bird’s eye view image (coordinates in pixels). Also shown are the relevance functions for (b)

A¢ and (c) Ap.

The explanation above is summarized in the fol-
lowing table (the best and companion pairs positions
can be exchanged)

Best pair Companion pair 0
(Pg, Pg) (P$+90, Pp+90) ¢ £90°
(05 Pp+90) (Pp+90, Pg) ¢V ¢ £180°

The robot position is computed from a rotation of
0 (one of the possible values is used, with no special
criterion), followed by a translation that expresses the
center of the image (i.e., the robot position in image
coordinates) in the model reference frame, and another
translation plus a scale factor f to express it in world
coordinates. The world reference frame is located in
the middle of the soccer field, with the x-axis point-
ing towards the blue goal and the y-axis is such that a
3D coordinate frame would have z-axis pointing up-
wards. The orientation 6 is measured from x to the
straight line passing through the robot center and the
center of the robot front. The scale factor f depends
on the geometry of the catadioptric system and can be
calibrated experimentally. This transformation can be
expressed by the following equation, using homoge-
neous coordinates:

xf cosf sinf xff 4 xref x;
¥ |=| —sinf coso yrf 4 yref Vi
1 0 0 1 1
450
—| 225 | 1, ™
0

where the subscripts i, m and f stand for the image,
field model and actual field reference frames, and the
superscripts ref and r stand for the reference point and
the robot, respectively.

A further validation and disambiguation of the robot
posture is required, since, when only two parallel lines
are used to determine the position, and due to field
symmetry, the robot side of the field is unknown, as
well as its orientation. To solve this problem, two tests
are made. First, the algorithm checks whether the robot
position is not outside the field. The second test con-
sists of using the current estimated posture to seek the
nearest goal in the image.

This is achieved by selecting m points located inside
one of the goals (blue or yellow) in the actual field
and applying to each of those points of the coordinates
(x;"’, yfg) the inverse transform of (7).

Should the majority of the corresponding pixels in
the image have the same color of the field pixels, 8 =
0° and the estimated position is validated. Should they
have the color of the opposing goal, # = 180° and
the symmetrical coordinates of the current position
estimated must be used for the robot position. When
the majority of image pixels is green, the top maximum
of the correlation process is removed and the whole
process re-started using the second maximum, and if
needed, the third one and so on until the actual posture
is determined.

4.6. Experimental results

The described self-localization algorithm has been
implemented in C. The method was applied to a set of
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Fig. 10. Position error histogram.

90 images obtained by a catadioptric system mounted
on a Super Scout II robot. The images were taken
at different field spots with several images taken at
each spot, and were processed in about 0.5s each in
a Pentium 233 MHz with 64 MB of RAM, the Super
Scout II on board computer. The results from the 90
experiments give an average accuracy g of 3.2mm
for the x-coordinate, — 18 mm for the y-coordinate and
0.22° for 0, with standard deviations of 100, 92 mm
and 1.8°, respectively.

In Fig. 10, the histogram of the accuracy, for the
x- and y- coordinates, is shown, as well as an ad-
justed Gaussian function. The rectangle on the plot
contains all the accuracies within one standard devia-
tion from p, i.e., 68.2% of the postures obtained have

700

an accuracy of less than or equal to 10cm in x and
9cmin y.

The accuracy was determined as the difference be-
tween the estimated values and the ones measured on
the field, using pre-defined spots whose location is
well known (e.g., the corner of the goal area). The pre-
cision (i.e., the difference between the measured value
and the measurements average value for the same
location) results are similar, and visual inspection
made the average values seem trustable.

Fig. 11 shows an example of an image to be pro-
cessed. The lines represented are the possible lines of
the field. In this case, the best pair was (pg, Pp-+90) and
posture was estimated with an error of Ax = +1cm,
Ay = +1cm and A6 = +1°. Note that, in this test,

-200
-400

-300 -200 -100 o 100 300 400

Fig. 11. Test image results.
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the robot is close to one of the field walls making
harder the posture determination process, because the
other wall is not seen, and a relevant parallel line can-
not be found by the algorithm.

5. Conclusions

This paper has shown the potential of omni-
directional catadioptric systems for comprehensive
solutions for mobile robots moving within structured
environments, ranging from the extraction of relevant
image features to self-localization. Moreover, this
paper introduces the design of a multi-part mirror
which can be used, by controlling the distribution
of image resolution onto the scene, to tackle all the
requirements with the same device.

Further steps towards a more refined usage of the
information provided by omni-directional vision sys-
tems, as described here, include:

e Endowing many team-mates with such a system, so
that they can share information on all team-mate
postures through communications, enabling the dis-
play of teamwork behaviors.

e Sharing also the information on the position of other
relevant objects (e.g., the ball, the opponent robots),
observed by each self-localized robot, so that a more
accurate world model can be built and shared by all
team-mates.
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