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Abstract 

The nature of the constitutive contact force law utilized to describe contact-impact events in 
solid contact interfaces plays a key role in predicting the response of multibody mechanical 
systems and in the simulation of engineering applications. The goal of this work is to present 
a comparative study on the most relevant existing viscoelastic contact force models. In the 
sequel of this process, their fundamental characteristics are examined and their performances 
evaluated. Models developed based on the Hertz contact theory and augmented with a 
damping term to accommodate the dissipation of energy during the impact process, which 
typically is a function of the coefficient of restitution between the contacting solids, are 
considered in this study. In particular, the identified contact force models are compared in the 
present study for simple solid impact problems with the sole purpose of comparing the 
performance of the various models and examining the corresponding system behavior. The 
outcomes indicate that the prediction of the dynamic behavior of contacting solids strongly 
depends on the selection of the contact force model. 
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1. Introduction 
 

The field of multibody systems dynamics has its roots in the classical methods of 
analytical dynamics and it develops to meet the growing demands in modeling, simulation and 
analysis of complex and advanced mechanical systems in military, industry, and engineering 
applications [1-4].  Multibody dynamics can be understood as the study of systems with 
multiple bodies whose interactions are affected by the application of external forces and by the 
presence of kinematic constraints [5-7]. In other words, a multibody system can be described as 
a collection of bodies acted upon by external forces and interconnected by kinematic pairs of 
different types that constrain their relative motion. The external actions applied on the system 
components may include gravitational and inertial forces, concentrated forces and state-
dependent forces in which contact-impact forces are included. In particular, contact-impact 
                                                
∗ Corresponding author, Tel: + 351 253510220, Fax: +351 253516007, E-mail: pflores@dem.uminho.pt 



 2 

events occur very often in multibody systems [8-10]. As a result of an impact, the state of a 
system can change quite rapidly, resulting in discontinuities in the system velocities. Other 
effects related to the contact-impact phenomena are the vibration and load propagation to the 
system components and wear at the contact zone. Overall, the knowledge of the peak forces 
developed during the impact process is crucial for the dynamic analysis of mechanical systems 
and has consequences in the design process [11-13]. The subject of contact mechanics and its 
applications has received a great deal of attention over the last few decades, and still remains an 
active field of research and development [14-20]. There is no doubt that contact-impact events 
are ubiquitous in engineering and research activities, such as in railway dynamics [21-23], 
crashworthiness [24-26], robotics [27-29], biomechanics [30-32], mechanisms [33-35], and 
sound waves [36], to mention a few. 
 The establishment of a general criterion to group the different methods to deal with 
contact-impact events is not unanimous and simple. A general and broad embracing rule is to 
group them into contact force based methods (continuous methods) and the approaches based 
on the geometric constraints (piecewise methods) [37-39]. In a simple manner, three main 
features distinguish these two methods: (i) the location of the contact points, (ii) the relative 
penetration or indentation between contacting bodies, and (iii) the contact forces. In the contact 
force based methods, commonly referred to as penalty approaches, the location of the contact 
points does not coincide in both contacting bodies. With these methods a large number of 
potential contact points exist, in general, being the actual contact points those associated with 
the maximum indentation [40]. In turn, in the methods based on the geometric constraints, the 
contact points on both bodies are necessarily coincident due to the contact constraints imposed 
on the system. In these methods, the relative indentation between the contacting bodies is not 
permitted as bodies are considered to be entirely rigid at the contact zone [41]. In contrast, with 
the penalty approaches, relative indentation of bodies is allowed to occur, a reason for which 
these methods are also usually referred to as elastic approaches [42]. The indentation plays a 
crucial role as it is utilized to evaluate the contact forces according to an appropriate constitutive 
law [43]. The contact forces evaluated in this manner are equivalent to those that would appear 
if the contacting bodies were pressed against each other by an external static force [44]. On the 
other hand, in the geometric constraint methods, the contact forces are determined through the 
Lagrange multipliers associated with the reaction forces incorporated into the contact constraint 
equations [45]. 
 The penalty approaches and their implementation, within the context of multibody 
dynamics with contact-impact, are computationally simple and efficient [46]. In these methods, 
the contact force is expressed as a continuous function of the indentation and indentation 
velocity of the contacting bodies. In this approach, there are no impulses at the instant of 
contact, and hence, there is no need for impulse dynamics calculations and the contact loss can 
easily be determined from the position and velocity data [47]. One of the main drawbacks 
associated with the penalty approach deals with the difficulty to choose the contact parameters 
that contribute to the evaluation of the contact force, such as the stiffness and damping of the 
contacting surfaces and the degree of nonlinearity of the indentation, especially for complex 
scenarios or nonmetallic materials [48, 49]. Another disadvantage of this formulation is that it 
can introduce highly-frequency dynamics into the system, due to the presence of stiff springs in 
compliant surfaces. Tracking the dynamics of such a system requires the integration algorithm 
to take very small steps, and consequently, the speed of simulation will be strongly penalized 
[50]. The normal contact force prevents penetration without any explicit kinematic constraint. In 
general, the stiffness and damping characteristics of the spring-damper elements are computed 
based on the relative indentation, material properties, surface geometries and kinematics of the 
contacting bodies. In the work by Khulief and Shabana [51] the required parameters for 
representing the contact force law were obtained based on the energy balance during the contact 
event. Lankarani and Nikravesh [52] presented two continuous contact force models for which 
the unknown parameters are evaluated analytically. In the first model, the internal damping of 
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bodies represents the energy dissipation at low impact velocities. While in the second model, 
local plasticity of the surfaces in contact becomes the dominant source of energy dissipation. 
Dias and Pereira [53] described the contact law using a continuous force model based on the 
Hertz contact law augmented with a dissipative term that accounts for the effect of structural 
damping in flexible bodies. 
 An alternative technique to treat contact-impact problems in multibody systems is to use 
the Linear Complementarity Problem (LCP) [54]. Many researchers have considered the 
complementarity formulation associated with Moreau’s time-stepping algorithm for contact 
modeling in multibody systems over the last years [55-57]. Assuming that the contacting bodies 
are truly rigid, as opposed to locally deformable bodies, as in the penalty approach, the 
complementarity formulation resolves the contact dynamics problem using unilateral constraints 
to compute contact impulses to prevent indentation from occurring. Thus, at the core of the LCP 
approach is an explicit formulation of the unilateral constraints between contacting bodies [58-
61]. One of the first published works on the complementarity problems is due to Signorini [62], 
who introduced an impenetrability condition in the form of a LCP. Later, Moreau [63] and 
Panagiotopoulos [64] also applied the concept of complementarity to study non-smooth 
dynamic systems. Pfeiffer and Glocker [54] extended the developments of Moreau and 
Panagiotopoulos to multibody dynamics with unilateral constraints, and the complementarity 
condition was considered of paramount importance. Indeed, complementarity approach proved 
to be quite useful to formulate many problems involving discontinuities [65-67]. 

Efficiently evolution of the contact-impact forces resulting from collisions in multibody 
systems requires that special attention be given to the numerical description of the constitutive 
laws used. Information on the impact velocities, material properties of the colliding bodies, and 
geometric characteristics of the contacting surfaces must be included into the contact force 
model. These characteristics are observed using a continuous contact force model, in which the 
local deformations and contact forces are considered as continuous functions. In dynamic 
simulations, it is quite important to find the precise instant of transition between the different 
states, namely the transition between non-contact and contact situations. If the initial contact 
instant is not detected properly, the initial contact force may become abnormally large due to an 
artificially large initial indentation between the contacting bodies. This numerical abnormality 
leads to an artificial increase in the system energy and, eventually, to the stall of the integration 
process when variable time step integration algorithms are utilized. To avoid this problem a 
close monitoring of the numerical procedure that systematically detects and analyzes all initial 
contact situations in an efficient manner is required. Otherwise, integration errors may buildup 
leading to meaningless results. In fact, most of the time consumed in modeling contact 
problems is spent on the contact detection task. This is crucial in multiple impact scenarios, 
such as railway multibody models and biomechanical contact situations. The dynamic study 
of this type of multibody systems may include hundreds of function evaluations of the 
candidate contact points, demanding fast and efficient methods to compute such interactions. 
Another relevant issue in contact-impact events deals with the development of general 
methodologies that allow for the accurate and efficient modeling and analysis of contact 
between freeform surfaces. A possible strategy consists of generating a preprocessing 
technique to prepare contact surfaces for dynamic contact simulations, keeping in memory 
only the part of the surface geometric information relevant to the actual contact state. 

This paper extends previous authors’ work [39] to present a complete and comparative 
study on several viscoelastic contact force approaches to model and simulate contact-impact 
events. This study begins with a brief overview of the main issues associated with contact 
mechanics, and then proceeds to analyze the fundamental characteristics of the most popular 
viscoelastic contact force models. In this process, the similarities and differences between the 
constitutive laws to evaluate contact forces are investigated. Results obtained from 
computational simulations and experiments of a single steel ball that impacts on cylindrical 
specimens are presented and utilized to discuss the main assumptions and limitations associated 
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with the different contact force models analyzed. The engineering analysis and design 
implications of the obtained results can thus be observed. 
2. General issues in contact mechanics 
 

Undeniably, the classical problem of contact mechanics is quite an old topic in 
engineering applications [68-70]. According to Kozlov and Treshchev [71], the first 
investigation of impact goes back to 1668 and was carried out by Wren and Huygens. Newton 
later referred to the work of Wren in his former book “Mathematical Formulations of Natural 
Philosophy” published in 1687 [72]. Huygens performed studies on completely elastic 
collisions between two point masses and, besides conservations of momentum and kinetic 
energy, recognized the fact that the relative motion between two solids had to be taken into 
account in order to a universally valid law of impact could be formulated. Huygens law 
describing the relative velocities inversion during the elastic impact was extended by Newton 
through the inclusion of the coefficient of restitution in order to accommodate possible energy 
losses during the impact process. 

One of the reasons for the success of classical impact theory is that it uses simple 
coefficients, namely the coefficient of restitution, to represent all the complex behavior that 
occurs at the contact-impact interface [73]. In fact, the contact mechanics approach offers the 
possibility of treating the contact region as a spring-damper system, making it possible to treat a 
contact-impact event as a continuous time dynamic phenomenon [74]. The mathematical 
description of the relation between force, indentation and time derivatives is referred to as 
constitutive equation of the material. Thus, in many engineering applications, the determination 
of the force-indentation relation and the coefficient of restitution are of paramount importance 
[75]. In particular, dynamic simulation of multibody systems requires reliable and accurate 
models to evaluate the contact forces at the contact-impact interfaces, as these have a strong 
influence on the simulation results. In dynamic simulations, contact forces are calculated from 
the indentation (pseudo-penetration) and indentation velocity during contact, which are 
determined at every time step from the state of the system. With the variation of the contact 
force during the contact period, the dynamic response of a system is obtained by updating 
these forces into the system’s equations of motion. Since the equations of motion are 
integrated over the contact period, this approach results in a rather accurate system response 
even if changes in the system’s configuration occur [76]. 
 Among the possible contact scenarios that can be defined for the collision between 
two bodies that belong to a multibody system, the one-dimensional direct central contact 
between two solid spheres is considered here, due to its simplicity and straightforwardness, as 
the golden standard for this type of simulations and the ideal setting for the type of 
comparisons envisaged hereafter. When the spheres contact each other, deformation takes 
place in the local contact area resulting in a contact force. Two different phases can be 
distinguished during the contact process, namely the “compression”, approaching or loading 
period and the “restitution”, separating or unloading period [77]. The first phase starts when 
the two spheres come in contact and ends when the maximum deformation is reached. During 
this phase, the relative velocity of the contact points on the two bodies in the normal contact 
direction is gradually reduced to zero. The end of the compression phase is referred to as the 
instant of maximum compression or maximum approach, which corresponds to the maximum 
normal contact force if no dissipation of energy is considered. In turn, the restitution phase 
starts at this instant of time and ends when the two spheres separate from each other. During 
this phase, the bodies move away from one another while remaining in contact. In other 
words, during the compression phase the kinetic energy of relative motion is transformed into 
internal energy of deformation by the contact force, whilst during the subsequent phase of 
restitution, the elastic part of the internal energy is released. Elastic strain energy stored during 
compression generates the force that drives bodies apart during the restitution phase [78]. 
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Depending on both the material properties of the contacting bodies and impact velocity, 
three main mechanisms may govern an impact event. An impact is said to be “elastic” or 
conservative when the indentation is completely reversible and independent of the indentation 
velocity and any consolidation time. In the case of a “viscoelastic” contact, the indentation is 
reversible, but the indentation itself shows a dependence on the indentation rate and a possible 
consolidation time. Finally, a “plastic” contact leaves an involved part permanently deformed. 
The deformation of a body in this case is independent of the indentation rate [79-81]. In the 
present study, only the two first mechanisms are considered, and the issue of plastic 
deformation is considered out of the scope of this work. The interested reader should refer the 
works by Yigit et al. [82], Thornton [83], Vu-Quoc et al. [84], and Wu et al. [85], for further 
details. 

One of the most complex issues of modeling a contact-impact event is the process of 
energy dissipation. If an elastic body is subjected to cyclic load, the energy loss in the material 
causes a hysteresis loop in the force-indentation diagram [86]. The identification of damping 
parameters is often a complicated task as the dissipated energy within a mechanical system 
depends on the configuration of bodies, structural design and internal contact [87]. In the 
context of multibody dynamics, the total energy dissipation is, in general, controlled by the 
coefficient of restitution [88-90]. As stated by Seifried et al. [91], the coefficient of restitution is 
a joined term based on different processes of kinetic energy loss such as viscoelastic material 
behavior, heat generation, and wave propagation in the contacting bodies [92]. The coefficient 
of restitution is a dimensionless and statistical parameter that varies between 0 and 1, where 0 
corresponds to a totally inelastic impact and 1 to a perfectly elastic impact [93]. The coefficient 
of restitution is not an intrinsic material property. It depends on the materials of the contacting 
bodies, their surface geometry, impact velocity and temperature. The major advantage of the 
coefficient of restitution concept is its simplicity. The simple algebraic relation between 
velocities before and after impact makes it easy to determine the velocities after impact. 
Determining its value accurately requires experimental work in general [94]. 

 
 

3. Comparative study of dissipative contact force models 
 
The contact process between two solid spherical bodies can be represented as a spring 

and a damper, as illustrated in Fig. 1. In the most general form, the contact force can be written 
in terms of its elastic (conservative) and viscous (dissipative) components as follows [39] 

 δχδδ mnKf +=  (1)  

where K represented the generalized contact stiffness, χ denotes the hysteresis damping factor, δ 
the relative indentation of the contacting spheres, and δ  the indentation velocity. Such a power 
relation is said to be Hookeian (when n=1) or Hertzian (when n=3/2); it can present a 
discontinuity on initial contact (when m=0) or it can have the damping term weighted by the 
elastic force (when m=n). Oden and Martins [95] discussed the energy loss obtained with this 
contact force approach. Over the last few decades, several different authors have determined the 
values of m and χ based both on theoretical and experimental approaches, being the Hunt and 
Crossley work one of the most relevant in this field [96]. 
 
 

(j)
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Fig. 1 Representation of the normal contact action between two solid spherical bodies. 
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In order to ensure that the energy dissipated during the contact process is consistent with 

the energy loss subsumed in the coefficient of restitution, several researchers have proposed 
approximated and exact relations for χ and the coefficient of restitution. The Hunt and Crossley 
contact force model is considered by many researchers to be the most significant progress of 
compliant contact force modeling, due to its ability to overcome the weaknesses of the purely 
elastic approaches, great simplicity and easiness of its implementation in any general code [97-
99]. Much of the research based on the Hunt and Crossley nonlinear force contact model has 
revolved around the issue of how to determine the hysteresis damping factor, χ, and more 
particularly, on how it can be expressed as a function of the coefficient of restitution. The 
resulting methods developed to evaluate the hysteresis damping factor can be categorized into 
two main groups [16]. The first category is described as the energy-based approaches, in which 
the work-energy principle is considered to obtain the expression for the hysteresis damping 
factor. The models proposed by Hunt and Crossley [96], Lankarani and Nikravesh [100], and 
Flores et al. [101] are examples of the energy-based formulation. In the second category, the 
equations of motion are addressed directly and include an approximate solution, such as the 
Herbert and McWhannell approach [102], as well as the exact solution [103]. From the practical 
point of view, the different models to derive the hysteresis damping factor may result in 
significant differences in the impact response. 

Over the last decades several different constitutive laws for contact-impact events have 
been suggested mostly based on the prominent one proposed by Hertz. Because this model is 
purely elastic in nature, it cannot describe the energy loss during the contact process. Thus, 
other contact force models have been presented that augment the Hertzian law with damping 
terms that accommodate the energy loss. In what follows, the main viscoelastic contact force 
models are presented and after that comparative study is commented. The Hertz law relates 
the contact force with a nonlinear power function of the penetration and it is expressed as 
[104] 

  f = Kδ n  (2)  

where K is a contact stiffness and δ represents the relative pseudo-penetration or indentation. 
According to the Hertzian contact approach, the power exponent n is equal to 3/2 for the case 
where there is a parabolic distribution of contact stresses [68]. For different materials, the 
value of this exponent can be either higher or lower, leading to a convenient contact force 
expression based on experimental data, but that should not be confused with the Hertzian 
contact theory. For two spheres in contact, the contact stiffness is a function of the radii of the 
spheres i and j and the material properties as follows 

 4
3( )

i j

i j i j

R R
K

R Rσ σ
=

+ +
 (3)  

in which the material parameters σi and σj are given by 

 
21 k

k
kE
νσ −

= ,     (k=i, j) (4)  

and the quantities νk and Ek are, respectively the Poisson’s ratio and theYoung’s modulus of 
elasticity associated with each sphere. Hunt and Crossley [96] represented the contact force 
model using the Hertz law together with a nonlinear viscoelastic element as 

  f = Kδ n + D δ  (5)  

where the first term of the right-hand side is referred to as the elastic force and the second 
term accounts for the energy dissipated during the contact process. In Eq. (5), D denotes the 
damping coefficient, which is defined as [96] 
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 nD χδ=  (6)  

in which χ is the so-called “hysteresis damping factor”. In the model of Eq. (5), tension force 
in the contact period is avoided as long as    0 ≤ K ≤ χ δ . 

Over the last decades several  formulations for the hysteresis damping factor have been 
proposed, which are typically functions of the contact stiffness, initial contact velocity and 
coefficient of restitution. Table 1 summarizes some of the most popular expressions for the 
hysteresis damping factor that have been developed independently by different authors. 

 
 

Table 1 Hysteresis damping factors for different viscoelastic models, in Eq. (1). 

Contact force model Constitutive law n m χ 
Hertz [104]   f = Kδ

3
2  3/2 - - 

Anagnostopoulos [105]   f = Kδ + χδ δ  1 1 
  

χ = 2
− lncr

π 2 + (lncr )2
Kmeff  

Ristow [106] 
Shäfer et al. [107] f = Kδ

3
2 + χδ δ  3/2 1 Empirical 

Lee and Herrmann [108] f = Kδ
3
2 +meff χδ

δ  3/2 1 Empirical 

Hunt and Crossley [96] 
Marefka and Orin [27]    f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 

   
χ =

3(1− cr )
2

K
δ (− )  

Herbert and McWhannell [102] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 χ =

6(1− cr )
[(2cr −1)

2 + 3]
K
δ (−)

 

Lee and Wang [109] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 χ =

3(1− cr )
4

K
δ (−)

 

Lankarani and Nikravesh [100] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 

   
χ =

3(1− cr
2 )

4
K
δ (− )  

Gonthier et al. [110] 
Zhang and Sharf [103]    f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 χ ≈

1− cr
2

cr

K
δ (−)

 

Zhiying and Qishao [111]    f = Kδ
3
2 + χδ

3
2 δ  3/2 3/2 χ =

3(1− cr
2 )e2(1−cr )

4
K
δ (−)

 

Flores et al. [101] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 

   
χ =

8(1− cr )
5cr

K
δ (− )  

Gharib and Hurmuzlu [112] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 χ = 1

cr

K
δ (−)

 

Kuwabara and Kono [113] 
Brilliantov et al. [114, 115] f = Kδ

3
2 + χδ

1
2 δ  3/2 1/2 

  
χ = K

3
(3η2 −η1)2

3η2 + 2η1

(1−ν )(1− 2ν )
Eν 2  

Tsuji et al. [116] 
   f = Kδ

3
2 + χδ

1
4 δ  3/2 1/4 χ =α Kmeff  

Jankowski [117] 
   

f = Kδ
3
2 + χδ δ , ( δ > 0)

f = Kδ
3
2 , ( δ < 0)

 

3/2 1 χ = 2 9 5
2

1− cr
2

cr[cr (9π −16) +16]
Kδ

1
2meff

 
Bordbar and Hyppänen [118] 
Schwager and Poschel [119]    f = Kδ

3
2 + χδ 0.65 δ  3/2 0.65 Empirical 

 
From the analysis of Table 1, it can be observed that there are several different 

approaches to accommodate the energy dissipation in contact events by means of the hysteresis 
damping factor. In some cases, the dissipative term is dependent on empirical parameters that 
characterize the contact zone, namely in the models proposed by Kuwabara and Kono [113], 
Tsuji et al. [116], and Bordbar and Hyppänen [118]. Other approaches exhibit discontinuities in 
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the contact force evolution [117], and problems of consistency of units [119]. There are, 
however, a set of models where the hysteresis damping factor is expressed in terms of the local 
contact properties, contact geometry and contact kinematics, making them appropriate for 
multibody dynamics simulations [27, 96, 100-103, 109-112]. 

The Kelvin-Voigt linear dissipative force model [68] has an analytic solution that leads 
to a constant coefficient of restitution independently of the initial impact velocity, which is not 
consistent with experiments [120]. Besides of these limitations, this linear model has been 
widely utilized [51, 121-124]. The limitations of a constant coefficient of restitution and a 
constant contact duration can be overcome by considering nonlinear spring damper elements. 
Based on the Hertzian contact theory, several constitutive force laws have been developed 
extending the original approach by Hertz. Most of these modified models lead to differential 
equations of motion with no analytical solution. Ristow [106], Shäfer et al. [107] and Lee and 
Herrmann [108] proposed partly nonlinear models that had similar weakness as the Kelvin-
Voigt approach, because the dissipative force component is still linearly dependent on the 
deformation rate. Kuwabara and Kono [113] proposed a fully nonlinear model. This model was 
independently derived by Brilliantov et al. [114, 115] revealing an hysteresis damping factor as 
a material property obtained from bulk viscosities of the materials involved in the contact. Due 
to the lack of information on the bulk viscosities, the dissipative damping factor was treated as 
an adjustable parameter by Brilliantov et al. [114]. This force model leads to a coefficient of 
restitution that decreases with the increasing of impact velocity, in agreement with experiments 
[120]. Tsuji et al. [116] proposed a Hertzian-type force law including a slightly modified 
dissipative term with a different exponent. This model leads to a constant coefficient of 
restitution.  

Hertz-type contact force models describe a nonlinear relation between the normal 
contact force and local deformation, in terms of the material properties of the contact bodies and 
local contact surface geometries. There are several advantages to the Hertzian contact models. 
First, they precisely take into account the surface geometry, which may be the most important 
factor affecting the contact response. Second, these models can easily incorporate friction 
effects. Their weaknesses are the requirements of a very precise contact detection algorithm, 
uncertainty in the determination of contact parameters, and small integration step sizes during 
simulation. In particular, the identification of the damping parameters is often a complicated 
task as the dissipated energy, within a mechanical system, depends on the configuration of 
materials, structural design and internal contact [125, 126]. Damping, in contact problems, is 
often a joint term, which covers several effects like internal heating, viscoelastic effects, plastic 
deformation and the propagation of elastic waves during impact [91]. 

As it was mentioned above, much of the research based on the Hunt and Crossley model 
revolved around the issue of how to determine the hysteresis damping factor, and more 
precisely, how it can be expressed as function of the coefficient of restitution. The approaches 
available in the literature that consider the evaluation of the damping term can be categorized 
into two main groups.  The first group holds those described as the energy-based approaches, 
such as the Hunt and Crossley [96], and Lankarani and Nikravesh [100]: these models are 
characterized by the application of the work-energy principle in the derivation of the hysteresis 
damping term. The second group that includes methods that directly tackle the equation of 
motion based on Eq. (5) and include the approximate solutions by Herbert and McWhannell 
[102] and Lee and Wang [109], or the exact solution by Zhang and Sharf [103] and Gonthier et 
al. [110]. From the analytical stand point, all approaches for the calculation of the hysteresis 
damping factor appear reasonable. From the practical view point, the different models for the 
hysteresis damping factor may result in significant differences in the impact response [127-
129]. For the sole purpose of analyzing the response of the most relevant contact force models, 
the behavior of the hysteresis damping factor is evaluated for different values of the coefficient 
of restitution. In order to keep this analysis simple, only hysteresis damping factor expressions 
that explicitly depend on the initial impact velocity are utilized. These are, in fact, the most 
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common contact force approaches used for contact modeling and simulation in the context of 
multibody mechanical systems [130-135]. In addition, the ratio between contact stiffness and 
initial impact velocity is considered to be equal to unity. Figure 2 shows the plots of the 
hysteresis damping factor as a function of the coefficient of restitution for different contact 
approaches. 
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Fig. 2 Resulting hysteresis damping factor as function of the coefficient of restitution for different dissipative 

contact force models. 
 
From Fig. 2, it can be observed that all the models considered in the present analysis, 

except the one proposed by Gharib and Hurmuzlu [112], exhibit a similar response when the 
value of the coefficient of restitution is higher than 0.7. In fact, most of the available contact 
force models have been proposed for nearly elastic contacts, not responding adequately for 
reduced values of the coefficient of restitution, as it is observed in the plots of Fig. 2 in the cases 
of Hunt and Crossley [96], Marefka and Orin [27], Herbert and McWhannell [103], Lee and 
Wang [109] and Lankarani and Nikravesh [100]. In particular, the model by Lee and Wang is 
the one that dissipates the least amount of energy during the impact event. In turn, the contact 
force approaches by Gonthier et al. [110], Zhang and Sharf [103], Zhiying and Qishao [111] 
and Flores et al. [101] present a similar behavior for moderate coefficient of restitution values. 
This is true for coefficients of restitution higher than 0.5, as it can be observed in the diagrams 
plotted of Fig. 2. For the case of low values of the coefficient of restitution, the models by 
Gonthier et al. [110], Zhang and Sharf [103], Flores et al. [101] and Gharib and Hurmuzlu [112] 
present a close behavior. For these models, the hysteresis damping factor increases 
asymptotically with the decrease of the coefficient of restitution, meaning that they can perform 
satisfactorily for perfectly inelastic contacts.  

It must be pointed out that the contact force models analyzed in this study do only hold 
if viscoelasticity is not the only dissipative process during the contact event. For the cases where 
friction, plastic deformation, brittle failure, fracture, adhesion, among other effects, have to be 
considered, there are more appropriate models to simulate the bodies in contact [136-146]. 

 
 

4. Comparative study using numerical simulations 
In order to better understand what the consequences of using different constitutive laws 

for modeling contact events are, the direct-central impact of two aluminum spheres, illustrated 
in Fig. 1, is considered here as a first application example [68]. The spheres are identical and 
have the same radius of 20 mm and the same mass of 0.092 kg. Both spheres have equal and 
opposite impact velocities of 0.15 m/s. A relative contact stiffness of 5.5×109 N/m3/2 and a 
coefficient of restitution equal 0.7 have been considered for the calculations [39, 42, 52]. The 
comparative behavior of the different contact force models considered is quantified by 
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plotting the contact force versus indentation and the phase portrait. The relative indentation 
and the indentation velocity are the variables used to generate the phase portrait plots. 
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Fig. 3 Force-indentation relation for different contact force models for a direct-central impact of two spheres: (a) 
Hunt and Crossley, Marefka and Orin; (b) Herbert and McWhannell; (c) Lee and Wang; (d) Lankarani and 

Nikravesh; (e) Gonthier et al., Zhang and Sharf; (f) Zhiying and Qishao; (g) Flores et al.; (h) Gharib and Hurmuzlu. 
 
Figure 3 shows the force-indentation relation for different contact force models, namely 

those considered in the previous section. It is clear that the energy dissipated during the contact 
process is associated with the hysteresis loop of the force-indentation diagrams. It can be 
observed that the Lee and Wang model dissipates less amount of energy, visible in the smallest 
area within the hysteresis loop. In fact, the Lee and Wang force model is the most elastic among 
all the presented approaches. In sharp contrast, the model recently proposed by Gharib and 
Hurmuzlu is the most dissipative contact force model. This fact is not surprising in the measure 
that this approach has been characterized to be very inelastic in nature [112]. The behavior of 
the remaining contact force models can be categorized into two main groups. The first group 
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includes the Hunt and Crossley, Marefka and Orin, and Lankarani and Nikravesh models, since 
they exhibit a very similar response in terms of the hysteresis loop. The second group 
incorporates the contact force models by Herbert and McWhannell, Gonthier et al., Zhang and 
Sharf, Zhiying and Qishao, and Flores et al. These force models present a similar hysteresis 
loop for moderate or high values of the coefficient of restitution. It must be highlighted that for 
all the models, the contact force varies in a nonlinear and continuous manner and it stars form 
zero and returns to zero while always remains compressive. 
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Fig. 4 Phase portraits for different contact force models for a direct-central impact of two spheres: (a) Hunt and 
Crossley, Marefka and Orin; (b) Herbert and McWhannell; (c) Lee and Wang; (d) Lankarani and Nikravesh; (e) 

Gonthier et al., Zhang and Sharf; (f) Zhiying and Qishao; (g) Flores et al.; (h) Gharib and Hurmuzlu. 
 
A similar comparison and discussion on the different contact force models can be 

performed by analyzing the plots of Fig. 4 relative to the phase portraits of the direct-central 
impact of two spheres. Figure 4 shows the phase trajectories of the impact process, in which the 
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point that corresponds to null indentation and 0.3 m/s velocity represents the initial instant of 
impact. Then the positive side of the plot denotes the compression phase of the contact that ends 
at point in which the impact velocity is null and the relative indentation reaches its maximum. 
In turn, the negative part of the curves corresponds to the restitution phase of the contact process 
and, for the case of Hertz model, the post-impact velocity is equal to -0.3 m/s. For the 
dissipative force models presented, the amount of energy loss during the impact is related to the 
lower values of the post-impact velocity. Again for the most dissipative approach, the post-
impact velocity presents the lowest value, namely for the Gharib and Hurmuzlu model. Finally, 
the force models proposed by Herbert and McWhannell, Gonthier et al., Zhang and Sharf, 
Zhiying and Qishao, and Flores et al. exhibit a similar behavior with a post-impact velocity 
value equal to -0.2 m/s. 

In what follows, experimental data obtained for a classical ball impact on a massive 
surface are presented and utilized to compare some of the contact force models studied earlier. 
For this purpose, the experimental methodology produced by Zhang and Sharf [16] is 
considered. A schematic representation of the impact scenario is illustrated in Fig. 5, which 
consists of an external impact between a steel ball and a steel cylindrical specimen. The 
cylindrical specimen is considered to be stationary. The diameter and mass of the ball are 
equal to 0.54 kg and 5.08 cm, respectively. In turn, the diameter and thickness of the 
cylindrical specimens are both equal to 5.08 cm. An accelerometer is attached to the steel ball, 
as represented in Fig. 5. 

 

Cylindrical specimen

δR

Steel ball

Iron bulk

Accelerometer

 
Fig. 5 Impact between a steel ball and a cylindrical specimen {Adapted from [16]}. 

 
The basic idea of this experimental apparatus is to simulate a free ball impacting a 

massive and stationary surface [68]. With the approach described by Zhang and Sharf [16], it 
is possible to determine the contact forces for different initial heights of the steel ball and for 
several impact velocities. This model is utilized here to study contacts at low impact 
velocities, that is, less than 0.5 m/s. For each experiment, the steel ball was released from 
different initial positions and the acceleration profile was obtained during the contact process. 
Then the contact force was obtained by applying the Newton’s second law (F=ma) [5]. Table 
2 lists the properties of the contacting parts. Two different materials for the cylindrical 
specimens are considered and designated as C1 and C2 [16]. The yielding contact force, also 
listed in Table 2, represents the value of the contact force at which the material initiates 
plastic deformation. It should be highlighted that a force transducer was not used to directly 
measure the contact force. The reason for this was that the accelerometers are typically much 
smaller and lighter than force transducers, and hence do not add any significant mass to the 
system. Furthermore, filtering has been done on all the experimental signals according to the 
standard SAE J211. All the experimental data were taken from the source [16]. 

 
Table 2 Properties of the contacting bodies utilized in the present work {Adapted from [16]}. 

Contact part Young’s modulus 
[GPa] Poisson’s ratio Contact force of 

yield [N] 
Steel ball 210 0.30 - 
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Specimen C1 213 0.29 6674 
Specimen C2 205 0.29 42 

 

Table 3 Generalized contact stiffness and coefficient of restitution {Adapted from [16]}. 

Contact part Contact stiffness 
[N/m3/2] 

Coefficient of 
restitution 

Specimen C1 (0.094 m/s) 2.46×1010 0.974 
Specimen C1 (0.500 m/s) 2.46×1010 0.955 
Specimen C2 (0.094 m/s) 2.41×1010 0.917 
Specimen C2 (0.500 m/s) 2.41×1010 0.757 

 
The analysis and interpretation of the results obtained from computational simulations 

using the different contact force models described above are presented in the following 
paragraphs. The computational results are compared with the experimental data. The test 
scenario corresponds to the situation described above relative to the impact between a free 
steel ball and a massive solid. Two different initial impact velocities are considered, namely 
0.094 m/s and 0.500 m/s that represent collisions at “low” and “moderate” impact velocities. 
Table 3 presents the contact properties in terms of relative contact stiffness and coefficient of 
restitution, for both impact velocities, and for the cylindrical specimens C1 and C2. Because 
the values of the coefficient of restitution are relatively high, in what follows, the contact 
force model proposed by Gharib and Hurmuzlu has been omitted, since this approach is 
mainly valid for low values of the coefficient of restitution. 

 
Table 4 Global results obtained in terms of maximum contact force and corresponding percentage error. 
 Specimen C1 Specimen C1 Specimen C2 Specimen C2 

Contact force 0.094 m/s 0.500 m/s 0.094 m/s 0.500 m/s 

model Fmax [N] Error [%] Fmax [N] Error [%] Fmax [N] Error [%] Fmax [N] Error [%] 

Experimental [16] 663.0 - 4709.6 - 660.2 - 4364.6 - 
Hertz [104] 662.5 -0.1 4937.8 4.8 657.5 -0.4 4899.9 12.3 
Hunt and Crossley [96], 
Marhefka and Orin [27] 652.7 -1.6 4817.6 2.3 630.6 -4.5 4496.4 3.0 

Herbert and McWhannell [102] 652.4 -1.6 4812.8 2.2 628.9 -4.7 4464.1 2.3 
Lee and Wang [109] 657.4 -0.8 4874.3 3.5 642.6 -2.7 4633.5 6.2 
Lankarani and Nikravesh [100] 652.8 -1.5 4820.0 2.3 631.5 -4.3 4522.3 3.6 
Gonthier et al. [110], Zhang 
and Sharf [103] 649.5 -2.0 4780.2 1.5 622.9 -5.7 4436.0 1.6 

Zhying and Qishao [111] 652.3 -1.6 4810.1 2.1 627.8 -4.9 4444.0 1.8 
Flores et al. [101] 651.8 -1.7 4805.2 2.0 627.2 -5.0 4445.5 1.9 

 
From the computational point of view, the occurrence of contact between the steel ball 

and massive solid is determined by evaluating the relative indentation at any instant of time 
during the numerical solution of the dynamic equations of motion. In the present study, the 
contact detection between bodies is performed by using a time steeping approach [50]. The 
time histories of the contact forces for the different models are plotted in Figs. 6 up to 9. 
These plots are for the impact velocity of 0.094 m/s and 0.5 m/s, and for the two cylindrical 
specimens, respectively. In addition, Table 4 presents the maximum contact force and the 
percentage error for all contact force models, for the two different specimens C1 and C2, and 
for two different impact velocities. It can be observed that for low impact velocities and 
elastic materials, the outcomes do not differ in a significant manner from the Hertz contact 
law. In this case, the percentage error in the maximum contact force reaches 2.0%, as it can be 
observed from Table 4. In contrast, for a soft material and higher impact velocities, the 
dissipative force models exhibit significant deviations from the experimental data, as it is 
shown in the plots of Fig. 7. Moreover, the maximum contact force exhibits large differences 
(6.2% for the Lee and Wang force model), when compared with the experimental data. This 
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fact can be explained by the resulting permanent indentation verified experimentally, and not 
considered in the present force models [100]. In fact, the contact force models utilized are 
valid solely for impact velocities much lower than the propagation speed of elastic waves 
across the bodies, i.e., δ (−) <<10−5 E

ρ . The quantity E
ρ , the wave propagation speed, is the 

larger of two propagation speeds of the elastic deformation waves in the colliding bodies, 
where E is the Young modulus and ρ is the material mass density [147]. Impact at higher 
velocities, significantly exceeding the propagation velocity of the elastic deformation waves, 
is likely to dissipate energy in the form of permanent indentation [42, 48, 52]. 

 
 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 

Time [ms] 

Hertz [104] 
Experimental data [16] 

 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 
Time [ms] 

Hunt and Crossley [96], 
Marhefka and Orin [27] 
Experimental data [16] 

 
(a) (b) 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 

Time [ms] 

Hebert and McWhannell [102] 
Experimental data [16] 

 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 

Time [ms] 

Lee and Wang [109] 

Experimental data [16] 

 
(c) (d) 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 

Time [ms] 

Lankarani and Nikravesh [100] 

Experimental data [16] 

 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 

Time [ms] 

Gonthier et al. [110], Zhang 
and Sharf [103] 

Experimental data [16] 

 
(e) (f) 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 

Time [ms] 

Zhiying and Qishao [111] 

Experimental data [16] 

 

0 

150 

300 

450 

600 

750 

0.00 0.07 0.14 0.21 0.28 0.35 

C
on

ta
ct

 fo
rc

e 
[N

] 

Time [ms] 

Flores et al. [101] 

Experimental data [16] 

 
(g) (h) 

Fig. 6 Comparison of the contact force time histories for specimen C1, impact velocity of 0.094 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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(g) (h) 

Fig. 7 Comparison of the contact force time histories for specimen C2, impact velocity of 0.094 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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(g) (h) 

Fig. 8 Comparison of the contact force time histories for specimen C1, impact velocity of 0.5 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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(g) (h) 

Fig. 9 Comparison of the contact force time histories for specimen C2, impact velocity of 0.5 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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5. Concluding remarks 
 

The goal of the present work was to present a thorough examination of the main 
features of several different penalty-force based approaches frequently utilized in the context 
of multibody system dynamics to model and analyze contact-impact events. Special emphasis 
was given to the dynamic response of dissipative approaches, all based on internal damping. 
The similarities and differences were observed by considering simple application examples, 
namely the impact between two spheres and the impact of a steel ball with different 
cylindrical specimens. The outputs were compared with the analytical solution for a classical 
contact problem of a ball impacting on a massive solid. The results showed that for “low” to 
“medium” values of the coefficient of restitution, some of the approaches such as Gonthier et 
al., Flores et al., and Zhiying and Qishao do a better job on predicting the nature of energy-
dissipation in impact. For larger coefficients of restitution, closer to unity, almost all 
dissipative contact force models predict similar responses. Furthermore, computational results 
were compared with experimental ones for a simple test case. It was observed that the force 
magnitude errors are all small for the computational models compared with the experimental 
data, which indicates that all the models behave well in the prediction of the contact forces, 
except at higher impact velocities for the original Hertzian contact model. Consequently, the 
contact models with hysteresis damping factor perform reasonably well for small impact 
velocities much lower than the propagation of the elastic waves in the two solids in contact (in 
the case of steel ball relative impact speed of 0.09 m/s). The recommendation from this study 
is that the modeling and simulation of multibody impact problems can be performed 
considering any of the dissipative contact force models presented when the value of the 
coefficient of restitution is greater than 0.7. For more plastic impact (“low” to “medium” 
values of the coefficient of restitution), specific models should be utilized, namely those that 
account for more energy dissipation during the impact process. Also, at impact speeds 
comparable to the speed of propagation of the stress waves of the two solids in contact, the 
dissipative approach adopted in this work needs to be replaced by other that models energy 
dissipation in terms of the local plasticity of the contact zones.  
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Figures and Tables captions 
 

Fig. 1 Representation of the normal contact action between two solid spherical bodies. 
 
Fig. 2 Resulting hysteresis damping factor as function of the coefficient of restitution for different dissipative 
contact force models. 
 

Fig. 3 Force-indentation relation for different contact force models for a direct-central impact of two spheres: (a) 
Hunt and Crossley, Marefka and Orin; (b) Herbert and McWhannell; (c) Lee and Wang; (d) Lankarani and 
Nikravesh; (e) Gonthier et al., Zhang and Sharf; (f) Zhiying and Qishao; (g) Flores et al.; (h) Gharib and 
Hurmuzlu. 
 

Fig. 4 Phase portraits for different contact force models for a direct-central impact of two spheres: (a) Hunt and 
Crossley, Marefka and Orin; (b) Herbert and McWhannell; (c) Lee and Wang; (d) Lankarani and Nikravesh; (e) 
Gonthier et al., Zhang and Sharf; (f) Zhiying and Qishao; (g) Flores et al.; (h) Gharib and Hurmuzlu. 

 
Fig. 5 Impact between a steel ball and a cylindrical specimen {Adapted from [16]}. 
 

Fig. 6 Comparison of the contact force time histories for specimen C1, impact velocity of 0.094 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 
McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
 

Fig. 7 Comparison of the contact force time histories for specimen C2, impact velocity of 0.094 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 
McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
 

Fig. 8 Comparison of the contact force time histories for specimen C1, impact velocity of 0.5 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 
McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
 

Fig. 9 Comparison of the contact force time histories for specimen C2, impact velocity of 0.5 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 
McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
 
 
 
Table 1 Hysteresis damping factors for different viscoelastic models, in Eq. (1). 
 

Table 2 Properties of the contacting bodies utilized in the present work {Adapted from [16]}. 

 

Table 3 Generalized contact stiffness and coefficient of restitution {Adapted from [16]}. 
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Fig. 3 Force-indentation relation for different contact force models for a direct-central impact of two spheres: (a) 
Hunt and Crossley, Marefka and Orin; (b) Herbert and McWhannell; (c) Lee and Wang; (d) Lankarani and 

Nikravesh; (e) Gonthier et al., Zhang and Sharf; (f) Zhiying and Qishao; (g) Flores et al.; (h) Gharib and Hurmuzlu. 
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Fig. 4 Phase portraits for different contact force models for a direct-central impact of two spheres: (a) Hunt and 
Crossley, Marefka and Orin; (b) Herbert and McWhannell; (c) Lee and Wang; (d) Lankarani and Nikravesh; (e) 

Gonthier et al., Zhang and Sharf; (f) Zhiying and Qishao; (g) Flores et al.; (h) Gharib and Hurmuzlu. 
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Fig. 5 Impact between a steel ball and a cylindrical specimen {Adapted from [16]}. 
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(g) (h) 

Fig. 6 Comparison of the contact force time histories for specimen C1, impact velocity of 0.094 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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(g) (h) 

Fig. 7 Comparison of the contact force time histories for specimen C2, impact velocity of 0.094 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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Fig. 8 Comparison of the contact force time histories for specimen C1, impact velocity of 0.5 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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Fig. 9 Comparison of the contact force time histories for specimen C2, impact velocity of 0.5 m/s and eight 
different contact force models: (a) Hertz; (b) Hunt and Crossley, Marefka and Orin; (c) Herbert and 

McWhannell; (d) Lee and Wang; (e) Lankarani and Nikravesh; (f) Gonthier et al., Zhang and Sharf; (g) Zhiying 
and Qishao; (h) Flores et al. 
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List of tables 
 

Table 1 Hysteresis damping factors for different viscoelastic models, in Eq. (1). 

Contact force model Constitutive law n m χ 
Hertz [104]   f = Kδ

3
2  3/2 - - 

Anagnostopoulos [105]   f = Kδ + χδ δ  1 1 
  

χ = 2
− lncr

π 2 + (lncr )2
Kmeff  

Ristow [106] 
Shäfer et al. [107] f = Kδ

3
2 + χδ δ  3/2 1 Empirical 

Lee and Herrmann [108] f = Kδ
3
2 +meff χδ

δ  3/2 1 Empirical 

Hunt and Crossley [96] 
Marefka and Orin [27]    f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 

   
χ =

3(1− cr )
2

K
δ (− )  

Herbert and McWhannell [102]    f = Kδ
3
2 + χδ

3
2 δ  3/2 3/2 χ =

6(1− cr )
[(2cr −1)

2 + 3]
K
δ (−)

 

Lee and Wang [109] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 χ =

3(1− cr )
4

K
δ (−)

 

Lankarani and Nikravesh [100] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 

   
χ =

3(1− cr
2 )

4
K
δ (− )  

Gonthier et al. [110] 
Zhang and Sharf [103]    f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 χ ≈

1− cr
2

cr

K
δ (−)

 

Zhiying and Qishao [111]    f = Kδ
3
2 + χδ

3
2 δ  3/2 3/2 χ =

3(1− cr
2 )e2(1−cr )

4
K
δ (−)

 

Flores et al. [101]    f = Kδ
3
2 + χδ

3
2 δ  3/2 3/2 

   
χ =

8(1− cr )
5cr

K
δ (− )  

Gharib and Hurmuzlu [112] 
   f = Kδ

3
2 + χδ

3
2 δ  3/2 3/2 χ = 1

cr

K
δ (−)

 

Kuwabara and Kono [113] 
Brilliantov et al. [114, 115] f = Kδ

3
2 + χδ

1
2 δ  3/2 1/2 

  
χ = K

3
(3η2 −η1)2

3η2 + 2η1

(1−ν )(1− 2ν )
Eν 2  

Tsuji et al. [116] 
   f = Kδ

3
2 + χδ

1
4 δ  3/2 1/4 χ =α Kmeff  

Jankowski [117] 
   

f = Kδ
3
2 + χδ δ , ( δ > 0)

f = Kδ
3
2 , ( δ < 0)

 

3/2 1 χ = 2 9 5
2

1− cr
2

cr[cr (9π −16) +16]
Kδ

1
2meff

 
Bordbar and Hyppänen [118] 
Schwager and Poschel [119]    f = Kδ

3
2 + χδ 0.65 δ  3/2 0.65 Empirical 

 
 
 
 

Table 2 Properties of the contacting bodies utilized in the present work {Adapted from [16]}. 

Contact part Young’s modulus 
[GPa] Poisson’s ratio Contact force of 

yield [N] 
Steel ball 210 0.30 - 

Specimen C1 213 0.29 6674 
Specimen C2 205 0.29 42 
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Table 3 Generalized contact stiffness and coefficient of restitution {Adapted from [16]}. 

Contact part Contact stiffness 
[N/m3/2] 

Coefficient of 
restitution 

Specimen C1 (0.094 m/s) 2.46×1010 0.974 
Specimen C1 (0.500 m/s) 2.46×1010 0.955 
Specimen C2 (0.094 m/s) 2.41×1010 0.917 
Specimen C2 (0.500 m/s) 2.41×1010 0.757 

 
 
 

Table 4 Global results obtained in terms of maximum contact force and corresponding percentage error. 
 Specimen C1 Specimen C1 Specimen C2 Specimen C2 

Contact force 0.094 m/s 0.500 m/s 0.094 m/s 0.500 m/s 

model Fmax [N] Error [%] Fmax [N] Error [%] Fmax [N] Error [%] Fmax [N] Error [%] 

Experimental [16] 663.0 - 4709.6 - 660.2 - 4364.6 - 
Hertz [104] 662.5 -0.1 4937.8 4.8 657.5 -0.4 4899.9 12.3 
Hunt and Crossley [96], 
Marhefka and Orin [27] 652.7 -1.6 4817.6 2.3 630.6 -4.5 4496.4 3.0 

Herbert and McWhannell [102] 652.4 -1.6 4812.8 2.2 628.9 -4.7 4464.1 2.3 
Lee and Wang [109] 657.4 -0.8 4874.3 3.5 642.6 -2.7 4633.5 6.2 
Lankarani and Nikravesh [100] 652.8 -1.5 4820.0 2.3 631.5 -4.3 4522.3 3.6 
Gonthier et al. [110], Zhang 
and Sharf [103] 649.5 -2.0 4780.2 1.5 622.9 -5.7 4436.0 1.6 

Zhying and Qishao [111] 652.3 -1.6 4810.1 2.1 627.8 -4.9 4444.0 1.8 
Flores et al. [101] 651.8 -1.7 4805.2 2.0 627.2 -5.0 4445.5 1.9 

 
 

 

 


