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H I G H L I G H T S

� A novel photobioreactor (SCAPBR) was developed.
� SCAPBR has up to 53% more illuminated area comparing to a bubble column.
� Mass transference in SCAPBR was very efficient (KLa up to 0.003 s�1).
� Maximum biomass productivity was obtained in SCAPBR 50 at UGr¼0.004 m s�1.
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a b s t r a c t

An extensive characterization of photobioreactors (PBRs) must be made in order to optimize their
operational conditions, operate design improvements and perform scale-up. In this work, a hydro-
dynamic characterization of liquid and gas phases was performed, as well as the determination of the
mass transfer coefficient of three different PBRs (bubble column – BC – and two Split Cylinder Airlift
Photobioreactors – SCAPBRs – featuring two different riser-to-downcomer cross sectional area ratios:
SCAPBR 75 and SCAPBR 50). The effect of these parameters on biomass productivity was also evaluated.
The developed SCAPBRs proved to be extremely suitable for microalgae cultivation. The design of the
PBR, particularly the designed gas sparger, allowed meeting the needs of microalgae in terms of mixing
and mass transfer (efficient supply and removal of CO2 and O2, respectively). SCAPBR 50 (with a
superficial gas velocity of 0.0044 m s�1) showed, among the tested PBRs, the highest value of biomass
volumetric productivity (0.75 g L�1 d�1). This result is probably due to a higher PBR illuminated surface
area, and a more regular flow pattern between the illuminated and dark zones verified in SCAPBR 50,
which allows exposing cells to regular light–dark periods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The driving force for the development of microalgae-related
technology is the ability of these microorganisms to efficiently
convert solar energy to chemical energy via carbon dioxide (CO2)
fixation. In recent years microalgae became one of the most
promising feedstocks for biofuel, bioplastics, cosmetics, pharma-
ceutical and human nutrition markets. In spite of the huge interest
in microalgae cultivation, the economic aspects of the process are
still not satisfactorily solved, especially at large-scale. Assuming
that the best microalgal specie for the process is identified and
selected, the next quest remaining is an optimal design of the

microalgae cultivation system to increase cultivation productivity
as a whole, reducing the cost of the production process.

In general, the cultivation systems that have been proposed or
used for microalgae growth are, inefficient, complex or too costly
to be applied in large-scale production. Enclosed photobioreactors
(PBRs) have several advantages over open pond production and
these advantages are even more important if the desired product
is to be used in pharmaceutical applications or if the microalgae
require a culture environment that is not highly selective (Mirón
et al., 2003) and consequently liable to contaminations. Generally,
closed PBRs can be divided in horizontal and vertical PBRs.

Vertical PBR orientation has been proposed to enhance pro-
ductivity by reducing the photosaturation (Cuaresma et al., 2011).
This photosaturation reduction is achieved by an effect of light
dilution, since the sunlight falling on a given ground area is spread
over a larger reactor surface area when the PBRs are placed
vertically. As a result, more algae are exposed to lower intensities,
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being able to maximize their photosynthetic efficiency (Posten and
Schaub, 2009). Cuaresma et al. (2011) tested outdoor vertical and
horizontal PBRs and concluded that the highest photosynthetic
efficiency was found for the vertical simulation, 1.3 g of biomass
produced per mol of PAR photons supplied, against 0.85 g mol�1

of horizontal PBR and the theoretical maximal yield (1.8 g mol�1).
In addition, it is known that under low light intensity a vertical
orientation captures more reflected light (Sánchez Mirón et al.,
1999). The same authors also concluded that vertical PBRs per-
formed better than horizontal PBRs because they are supposedly
more suited for scale-up, require less energy for cooling because of
the low surface to volume ratio, and overall outperform horizontal
reactors throughout the year. Moreover, vertical column PBRs are
characterized by their high volumetric gas transfer coefficients.
This is caused by the bubbling of gas from the bottom, which
enables not only efficient CO2 utilization, but also optimal O2

removal (Wang et al., 2012). The main factor that affects micro-
algae growth in vertical PBRs is the limited efficiency of light
utilization.

It is well known that both the quantity and the quality of the
light delivered to the cells are significant to the cells' growth
(Fernandes et al., 2010). For dense cultures, in certain periods of
the day, the regions close to the surface are subject to high light
intensities. These are often greater than the saturation value of the
main microalgae species causing photoinibition (Wu and Merchuk,
2004). On the other hand some zones in the reactor may remain in
the dark due to optical absorption and self-shading of the cells,
causing photolimitation. Thus, it is necessary to prevent high
residence time of microalgae cells under these conditions, which
is achieved through a constant but regular cell circulation. It is
known that the conversion of light energy to biomass can be
enhanced if microalgal cells are made to repeatedly move between
the well-lit exterior and the dimly lit interior of the photobior-
eactor (Janssen et al., 2003). Ordered mixing forces the cells to
experience periodical light/dark cycles. The effect of the light/dark
cycles has been studied previously (Merchuk et al., 1998), and it
was found that periodical light/dark cycles might enhance growth
(Wu and Merchuk, 2004). However, random mixing does not
appear to enhance productivity as much as a regular light–dark
cycle (Degen et al., 2001). According to Janssen et al. (2003) fast
light/dark cycles on a microsecond–millisecond scale improve
microalgal photosynthetic efficiencies. The same authors state
that photosynthetic efficiencies can be increased with light/dark
cycles of 1–4 s, but these improvements were less evident at the
longest cycles. On the other hand, utilization of light/dark cycles of
several seconds to tens of seconds does not appear to result in an
improvement of the photosynthetic efficiency. Therefore the
microalgal photosynthetic efficiency seems to be influenced by
the frequency of light/dark cycles, which is determined by liquid
circulation velocity, which in turn depends on reactor design and
superficial gas velocity (Janssen et al., 2003).

According to Wang et al. (2012), airlift PBRs can sustain better
biomass production of different microalgae in comparison to other
vertical column PBRs. This might be due to this regular mixing, as
opposed to random mixing found in bubble columns. The con-
centric tube airlift is the most commonly used airlift for micro-
algae cultivation. However some limitations are evidenced, such as
difficult temperature control and large fraction of dark zones
inside the PBR, mainly due to the presence of the internal column,
which limits light penetration.

In this work a novel Split Column Airlift Photobioreactor
(SCAPBR) is proposed as a very promising microalgae cultivation
system. The novel SCAPBR has the potential to overcome the
limitations of the concentric tube airlift (integrated temperature
control system and transport of light to the centre), while main-
taining all the benefits inherent to an airlift PBR. In order to

provide the best conditions for microalgae growth in SCAPBR, it is
of interest to determine and optimize all the parameters that
characterize SCAPBR operation. At this stage it is necessary to
prove some of the assumptions on which the design was based.
SCAPBRs characterization in terms of hydrodynamics and mass
transfer characteristics includes the determination of: mass trans-
fer coefficient (KLa), mixing time, liquid velocity, gas bubble
velocity and gas hold-up. The nutritional and light requirements
of photosynthetic microorganisms may be covered in PBRs with
larger light paths, if hydrodynamic and mass transfer conditions
are optimized in these PBRs. Only taking into account this point it
will also allow predicting the effects of scale-up on the perfor-
mance of the SCAPBR. In this work a full characterization of two
different SCAPBRs designs (SCAPBR 50 and SCAPBR 75) and a
bubble column (BC) (used as a control PBR) will be carried out, as
well as the evaluation of the effect of the hydrodynamic char-
acteristics and design on biomass productivity.

2. Material and methods

2.1. Photobioreactors

In the proposed SCAPBRs (Fig. 1), a flat plate splits the diameter
of the column and separates the column into two parts (riser and
downcomer), acting also as a heat exchanger and an internal light
guide. The choice for a SCAPBR and the options made in the
project design had as main objective to overcome some of the
limitations of existing microalgae cultivation systems.

The flat plate that splits the column is made of a transparent
material and fully filled with water and acts as a light conductor
and distributor inside the SCAPBR (Fig. 1). Therefore the PBR
illuminated surface significantly increases. Thus, the central area
of the PBR which normally would be completely devoid of light
(especially for higher cell concentrations) will have a continuous
supply of light. The presence of this central baffle also allows using
diameters in the SCAPBR scale-up that would be otherwise
unviable due to a substantial increase of dark zones within the
PBR. Finally the central wall of the PBR also functions as heat
exchanger (Fig. 1), ensuring an efficient cooling of the medium
without the need of a large technical apparatus nor the use of
large amounts of water.

Considering all the characteristics presented, the SCAPBR
proposed has the potential to provide conditions for an ideal
microalgae cultivation: proper exposure to light energy, good mass
exchange between gas and liquid, flow mixing, low shear stress
over the cells and a proper temperature control.

Three different PBRs were tested: a bubble column (BC) and
two different SCAPBRs, as shown schematically in Fig. 1.

All vessels were made of 3.8 mm thick, transparent poly
(methyl methacrylate) with 90 mm of internal diameter. The liquid
height was 600 mm, for a working volume of 3.7 L. All the three
PBRs have a total height of 700 mm. The riser-to-downcomer cross
sectional area ratio was 1.0 for the SCAPBR 50 and 3.0 for the
SCAPBR 75. The baffles, with 4.0 mm of thickness, were located
50 mm from the bottom of the PBRs and 50 mm below the liquid
level and were also made of transparent poly(methyl methacry-
late) to allow light penetration (Fig. 1).

2.1.1. Aeration system
To ensure an efficient mass transfer inside the SCAPBR an

aeration system was developed. The fluid was mixed by sparging
CO2-enriched air (2% v/v CO2) through a sparger composed by 45,
26 and 19 uniformly spaced needles (with an inner diameter (dn)
of 0.25 mm) in the BC, SCAPBR 75 and SCAPBR 50, respectively.
In all the spargers, needles were placed with a spacing (Ln) of
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5.0 mm between them (Fig. 1). The shape and size of the needles
ensure the formation of small and well-defined bubbles. Needles'
disposition enables a uniform bubble distribution along the PBRs
which, in theory, optimizes mass transfer and enhances the
suspension of low-density solids.

The aeration system comprises two mass flow controllers that
determine CO2 and air flow rates; these gases are subsequently
mixed in a gas mixing chamber and filtered before being injected
into the PBR through the sparger. Between the filter and the gas
sparger there is a pressure chamber (Fig. 1), which allows a
homogeneous gas distribution through all needles even at low
flow rates.

2.2. Hydrodynamic and mass transfer characterization of PBRs

All the hydrodynamic and mass transfer determinations were
performed at different superficial gas velocities (UGr) (0.001–
0.009 m s�1) based on the riser cross-section of the reactors.
The superficial gas velocity UGr is easily derived from the air-
flow rate by dividing this value by the cross-sectional area of the
aerated zone.

All the measurements were made at 25 1C with tap water and
microalgae growth medium (described in Section 2.3). Viscosities
of growth medium and tap water were approximately the same
(0.998�10�3 Pa s). The viscosities were measured at 25 1C using a
Cannon–Fenske viscometer. The surface tension of both fluids
was also approximately the same (72.3�10�3 N m�1). The surface
tension was measured at 25 1C using a tensiometer (Kruss K6
GmBH, Germany). The conductivity (Conductivity Meter LF 538,
WTW, Germany) of water and growth medium was 2.07 and
516.67 μS cm�1, respectively.

2.2.1. Liquid phase characterization
2.2.1.1. Mixing and circulation time. For determination of mixing
time and circulation time, 1 mL of saturated NaCl aqueous solution
was injected (using a syringe) as a pulse near the bottom of the

riser in the central region through a 1 mm stainless steel capillary.
The tracer influence in the system was assessed by a conductivity
probe (Conductivity Meter LF 538, WTW, Germany) placed near
the top of the riser. For each operating condition, experiments
were run five times. The liquid phase was changed after each
three runs.

Mixing time was defined as the time needed to reach 95% of
complete mixing. The circulation time was computed by averaging
the time spans between maximum consecutive peaks in the
conductivity probe response curve (Freitas et al., 2000).

2.2.1.2. Liquid circulation velocity. The mean liquid circulation
velocity in the riser was obtained using a thermal tracer method,
which provides the fastest response time among the various tracer
methods available. The thermal tracer method involves injecting a
pulse of 5 ml of hot water into the flowing liquid and plotting the
time–temperature profile at two given points in the riser by means
of two thermocouples connected to a computer. The liquid linear
velocity in the riser was then obtained by the ratio of the distance
between the two thermocouples and the differences in response
times between the two sensors (Garcıá-Calvo et al., 1999).

2.2.2. Gas phase characterization
2.2.2.1. Gas holdup. Riser gas holdup in the PBRs was determined
by the use of a monofibre optical probe technology described
by Mena et al. (2008) The optical probe is used to locally detect
the presence of the gas phase in a multiphase system. A mono-
chromatic light is transmitted through an optical fiber to the tip of
the probe. When the tip is dipped into a gas phase, the light is
mainly reflected, travels back to the detector through a Y junction
and is converted into an electrical signal (high level signal). This
signal is converted to a digital signal that is subsequently inter-
preted by the So2_4 software (Mena et al., 2008), which finally
provides the values of gas holdup. In order to obtain values with a
statistical meaning, about 2000 bubbles were analyzed for each
experimental condition.

Fig. 1. The geometry of tested photobioreactors (BC, SCAPBR 75 and SCAPBR 50) and respective air spargers (frontal and top view). Sparger (a); pressure chamber (b); baffle
(c); heat exchanger inlet and outlet (d). Detailed schematic representation lateral and top view of SCAPBRs baffle (c), acting as heat exchanger and light guide. Cold water
inlet (dʹ); warm water outlet (dʹʹ).
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2.2.2.2. Bubble characterization. In order to obtain the bubble size
distribution (Sauter mean diameter (d32)), bubble elongation (Fmax/
Fmin) and bubble complexity degree (BCD), a chamber with a flat
straight section filled with water was coupled to the PBRs. The
chamber used during bubble size measurements was designed in
order to minimize the problems related with the effect of the
optical distortion of bubbles caused by the round surface of the
photobioreactors. Sets of images, obtained at 200 mm from the gas
sparger, were grabbed with a black and white high speed digital
video camera (frame rate of 250 images s�1) connected to a PC,
and used to study the bubble shape and size distribution. After
the acquisition of a set of images (about 5 images s�1), these
were automatically treated and the bubbles were identified
and classified. For that, the image analysis technique and the
discriminant factorial analysis were combined as described by
Ferreira et al. (2012). In order to obtain values with a statistical
meaning, about 600 bubbles were analyzed for each experimental
condition, this number is in accordance with the values presented
elsewhere (Ferreira et al., 2012).

Bubble gas velocity in the BC and in the SCAPBRs riser were
also measured by means of the optic probe technique, previously
described by Mena et al. (2008) and used for gas holdup determi-
nation. In order to obtain values with a statistical meaning, about
2000 bubbles were analyzed for each experimental condition.

2.2.3. Mass transfer coefficient (KLa) of carbon dioxide
In autotrophic microalgae cultivation, gas–liquid mass transfer

of CO2 is of major importance, because CO2 is the main carbon
source. Therefore, it is necessary to determine the volumetric mass
transfer coefficient KLa (CO2) that allows characterizing the CO2

transfer rate between gas and liquid phases.
According to the literature (Baquerisse et al., 1999), the physical

properties of the liquid, liquid flow, as well as system and gas
injector geometries are the factors that determine volumetric
mass transfer coefficients. Thus, the calculation of KLa of CO2 has
been done from the determination of the KLa of O2

KLa ðCO2Þ ¼
ffiffiffiffiffiffiffiffiffiffi
DO2

DCO2

s
KLa ðO2Þ; ð1Þ

where KLa (CO2) is the CO2 mass transfer coefficient (s�1), KLa (O2)
is the O2 mass transfer coefficient (s�1); DO2 is the O2 diffusion
coefficient (m2 s�1) and DCO2 is the CO2 diffusion coefficient
(m2 s�1).

Oxygen mass transfer experiments were performed in a two-
phase system at different superficial aeration velocities (UGr)
(0.001–0.008 m s�1) and liquids (water and mineral growth med-
ium). Air was used as gas phase. The liquid height was h0¼
600 mm for all experiments (no liquid throughput). Firstly, the
liquid was deoxygenated by bubbling nitrogen, then, when the
dissolved oxygen concentration was practically zero, humidified
air was fed into the column. Dissolved oxygen concentration
values were measured online using an O2 electrode (CellOx 325,
WTW, Germany), located 200 mm from the gas sparger and
30 mm from the wall, and recorded directly in a PC, through a
data acquisition board. Dissolved oxygen concentration data ver-
sus time, t, were obtained, and KLa was calculated according to
Ferreira et al. (2012). The experimental results are reproducible
with an average relative error of 5% and are not influenced by the
dynamics of the oxygen electrode since its response time, less than
16 s for a 95% confidence interval (technical data), was smaller
than the mass transfer time of the system (ranging from 25 to
500 s). Additionally, the first-order time constant of this probe is
6 s (as measured by Vasconcelos et al. (2003)), therefore indicating
its possible application in the present system (Ferreira et al., 2013).

2.3. Evaluation of PBRs biomass productivity

Chlorella vulgaris (P12) obtained from the Culture Collection of
Algal Laboratory (CCALA, Czech Republic), was used for cultivation.
The inoculum for the photobioreactors was grown under artificial
light (250 μmol m�2 s�1 light flux at the PBR's surface) in a 1 L
bubble column aerated at 0.5 vvm. The preculture medium was
identical to that used in the final reactor cultivation. The carbon
source and agitation during cultivation of microalgae were sup-
plied by bubbling CO2-enriched air (2% v/v CO2) through a needle
sparger (Fig. 1).

The three PBRs tested were placed in a fully closed compart-
ment with controlled temperature, in order to maintain cultures at
30 1C. Illumination was provided by 8 fluorescent lamps (Sylvania
Standard 36 FW) placed equidistant from the PBRs surface
(200 mm) and equidistant from each other (60 mm) on one side
of the photobioreactors, at an irradiance level of 250 μmol m�2 s�1,
measured using a LI-COR Quantum/Radiometer/Photometer Model
LI-250 Light Meter (San Diego, CA, USA). The incident photon flux
density was measured (in triplicate) at 5 different points (different
heights) at the surface of the PBRs.

Also the light radiating from the central baffle to the interior of
both SCAPBRs was measured. The SCAPBRs were filled with water
and externally covered with opaque paper except in the line that
represents the intersection of the central baffle with the SCAPBR
column, allowing the penetration of light there. In both SCAPBRs
the light flux conveyed by the central baffle was measured to be ca.
25 μmol m�2 s�1. This value is the average of the measurements
(in triplicate) in 5 different points of the baffle and is independent
of cell concentration, since the baffle was filled with water. Like
the PBR walls, baffle internal walls were considered as a con-
tinuously illuminated PBR surface.

The growthmedium based on chemical components present in the
microalgal biomass (Fernandes et al., 2013) had the following compo-
sition (mM): 18.32 (NH2)2CO, 1.74 KH2PO4, 0.83 MgSO4 �H2O, 0.79
CaCl2, 0.11 FeNa–C10H12O8N2, 0.017 MnCl2 �4H2O, 0.013 H3BO3, 0.009
ZnSO4 �7H2O, 0.004 CuSO4 �5H2O, 0.002 CoSO4 �7H2O, 0.0001
(NH4)6Mo7O24 �4H2O and 0.0001 (NH4)VO3 in distilled water. The
medium was inoculated using inoculum in the late exponential
growth phase after cell synchronization and the pH was adjusted to
7. Biomass concentration in the freshly inoculated PBRs was about
0.05 g L�1.

In order to determine how the hydrodynamic and mass
transfer parameters affect the system productivity, microalgae
cultivations were carried out (in triplicate) at 3 different condi-
tions (UGr¼0.0011; 0.0044 and; 0.0077 m s�1) in each of the
3 different tested PBRs.

Biomass concentration was estimated by cell dry weight after
centrifugation of the sample (8750 g for 10 min), washing with
distilled water and drying at 105 1C until constant weight.

Biomass productivity (Pmax, g L�1 d�1) during the culture
period was calculated from

Pmax ¼ ðXt� XoÞ=ðtx� t0Þ; ð2Þ
where Xt is the biomass concentration (g L�1) at the end of the
exponential growth phase (tx) and X0 is the initial biomass
concentration (g L�1) at t0 (day).

3. Results and discussion

Liquid and gas phase characterization and volumetric mass
transfer coefficient determination (KLa) were performed for all
PBRs at different values of superficial gas velocity in the riser (UGr)
using tap water and growth medium. No statistically significant
differences in these parameters were found between water and
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growth medium suggesting that changes in ionic strength within a
certain range of values did not significantly affect liquid and gas
phase parameters as well as mass transfer. This is in agreement
with the results obtained by other authors (Sánchez Mirón et al.,
2004; Sánchez Mirón et al., 1999). Thus, the results presented refer
only to results obtained with water.

3.1. Liquid phase characterization

It is known that the level of mixing in a reactor strongly
contributes to the growth of microalgae (Suh and Lee, 2003).
Mixing improves biomass productivity by increasing the frequency
of cell exposure to light and dark volumes of the reactor and by
increasing mass transfer between nutrients and cells, maintaining
uniform pH and eliminating thermal stratification. Liquid phase
characterization was performed for the 3 PBRs (Fig. 2).

3.1.1. Liquid circulation velocity
The liquid circulation velocity is an important factor to assess

airlift reactors' mixing efficiency. Mixing time in these reactors is
expected to be affected by the relative velocity between the gas
and the liquid phases. Moreover liquid velocity is also a parameter
often used during the scale-up of airlift reactors. Liquid circulation
velocity is a meaningless parameter in bubble columns (in this
range of UGr values), thus it was only determined for the SCAPBRs
(Fig. 2A).

In both SCAPBRs the increase of UGr causes a pronounced
increase in liquid circulation velocity for UGro0.005 m s�1, mean-
ing by this that liquid circulation velocity is very dependent on UGr.
However, for higher values of UGr, liquid circulation velocity
appears to be nearly independent of UGr. This relation between
UGr and liquid circulation velocity has been previously reported in
airlifts reactors (Klein et al., 2003; Lu et al., 1995).

Fig. 2A also shows that SCAPBR 50 presented higher liquid
circulation velocity than SCAPBR 75 for all values of UGr, which is
most probably explained by differences in the PBRs geometry,
namely the different riser:downcomer ratios. Gavrilescu and
Tudose (1996) showed that riser:downcomer ratio affects the
circulation liquid circulation velocity because it modifies the
resistance to flow by varying the fraction of the total volume
contained in downcomer and riser. Riser:downcomer ratio has
proven to be the main factor which determines the friction in the
reactor which means that for higher riser:downcomer ratios the
liquid circulation velocity is lower (Gavrilescu and Tudose, 1996).

3.1.2. Mixing and circulation time
Mixing times vs UGr data for the three PBRs are shown in

Fig. 2B.
For a given UGr, the BC always has a lower mixing time com-

pared with the SCAPBRs. These results are in agreement with
other authors who reported that analysis of mixing in bubble
columns showed that they have shorter mixing times than airlift
reactors (Guieysse and Munoz, 2001). In fact, compared with the
chaotic flow in the bubble column, the organized cyclic flow in the
airlift reactors inhibits bulk mixing (Sánchez Mirón et al., 2004).
In the three tested PBRs, the general tendency was a decline of
mixing time with increasing UGr. As expected at low aeration
flow rates, the mixing time in the SCAPBRs was much more
sensitive to UGr than at high aeration rates. In the bubble column
the mixing time was almost flow-independent for gas flow rates
above 0.003 m s�1(Fig. 2B).

Comparing the two SCAPBRs it is clear that, for UGro
0.002 m s�1 mixing times are almost the same, whereas for
UGr40.002 m s�1 SCAPBR 75 requires less time to achieve com-
plete mixture. It is possible to assume that, in general, SCAPBR 75

could guarantee a more efficient transport of nutrients for the cells
than SCAPBR 50 at higher UGr. The reason for the lower mixing
times of SCAPBR 75 can be its higher riser:downcomer ratio, that
allows a more chaotic flow in its riser, promoting bulk mixing
and, consequently, reducing mixing time. These observations are
in close agreement with results of other authors (Gavrilescu and
Tudose, 1996).

The dependence of circulation time on UGr in SCAPBRs (Fig. 2C)
was quite similar to mixing time profiles in the same reactors
(Fig. 2B). Circulating time is defined as the average time needed for
particles to circulate one cycle in the bioreactor; it can be also used
to evaluate mixing performance of bioreactors (Oldshue, 1976).
Circulation time is a meaningless parameter in bubble columns,
thus it was only determined for SCAPBRs (Fig. 2C).
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Fig. 2. Liquid circulation velocity (A); mixing time (B); circulation time (C), for
SCAPBR 50 (▲), SCAPBR 75 (■) and BC (�), at different values of UGr.
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At gas flow rates lower than 0.005 m s�1, the circulation time
decreased sharply with increasing UGr. However, for UGr4
0.005 m s�1 circulation time dependence on UGr becomes very
small. This observation is common to both SCAPBRs and is quite
typical of airlift reactors (Sánchez Mirón et al., 2004). This
phenomenon is associated with micronization of gas bubbles
because of increasing turbulence and a consequent build-up of
these smaller bubbles in the downcomer zone. The consequently
reduced difference between gas holdup values in the riser and
downcomer reduces the driving force for liquid circulation
(Erickson, 1990; Sánchez Mirón et al., 2004). Although the shape
of the curves circulation time versus UGr is similar in both
SCAPBRs, circulation time values differ considerably, since SCAPBR
50 shows lower circulation times for all values of UGr tested.
However, it is clear that the difference between the circulation
time of these two SCAPBRs decreases with increasing UGr.

A comparison between Fig. 2B and C suggests that, in each
SCAPBR, mixing time improves when circulation time is reduced.
This is because rapid cycling causes the fluid to pass more
frequently through the relatively well-mixed head zone of the
reactor (i.e., the zone above the upper edge of the baffle) (Erickson,
1990; Sánchez Mirón et al., 2004). However, comparing the two
SCAPBRs shows that this relationship between the mixing time
and circulation time is not the same for the two cases. SCAPBR 50,
despite having a lower circulation time (Fig. 2C), shows a higher
mixing time (Fig. 2B) than SCAPBR 75. Again, the explanation
possibly lies in the fact that SCAPBR 75 allows bulk mixing in a
greater extent due to its larger riser, which behaves somehow as a
bubble column. Although it reduces mixing time when compared
to SCAPBR 50, this bulk mixing in the riser of SCAPBR 75 increases
the residence time in the riser and consequently increases the
circulation time.

It is known that mixing and circulation times depend primarily
on reactor geometry (Chisti and Moo-Young, 1988). Although
connected, mixing and circulation times do not necessarily vary
in the same way with the geometry which might explain the
observed differences in mixing and circulation times between the
three tested PBRs.

3.2. Gas phase characterization

3.2.1. Gas holdup
Gas holdup (ε) is one of the most important parameters

characterizing PBRs hydrodynamics since the difference between
gas holdup in the riser and in the downcomer is the driving force
for the circulation inside the reactor. In this work, gas holdup was
measured in the riser, for different UGr (Fig. 3).

In all the three PBRs tested riser gas holdup increased almost
linearly with the increase of UGr. Due to its large riser fraction,

SCAPBR 75 shows very similar ε values in comparison to that
obtained in the BC, while SCAPBR 50 displays considerably lower ε
values. The differences between the 2 SCAPBRs can be explained
by other authors who claim that in airlift reactors, holdup is also
influenced by the induced liquid circulation velocity (Fig. 2A) that
depends on the geometry of the flow path (Xu et al., 2002).

3.2.2. Bubble characterization
In combination with gas holdup, bubble size and shape

influence the gas–liquid interfacial area available and conse-
quently the mass transfer coefficient (Erickson, 1990). Interfacial
area may be enhanced either by increasing gas holdup or by
decreasing the prevailing bubble size. However there are limits for
bubble size decrease since it is known that small bubbles induce
more shear stress to cells than larger bubbles.

3.2.2.1. Sauter mean diameter (d32). Bubble size is a crucial factor to
minimize shear damage to cells and optimize mass transfer. Rocha
et al. (2003)grew Nannochloropsis gaditana using small vs. large
bubbles and they found better microalgal growth with larger
bubbles and as air flow rate was increased the cells suffered
more shear with smaller than with larger bubbles. In practice,
there is a diameter distribution of bubble sizes in the PBR. The
Sauter mean bubble diameter (d32) is frequently used as a bubble
size quantification parameter. The d32 refers to the diameter of a
sphere with the same volume-to-surface ratio as the gas bubble
(Erickson, 1990). For all tested PBRs, bubbles' Sauter mean dia-
meter (d32) generally increases with UGr (Fig. 4A).

The dependence of d32 to UGr is lower for higher values of UGr.
Although the difference is not very defined, it is possible to
conclude that the largest bubbles are observed in BC and the
smallest in SCAPBR 50 for all tested values of UGr.

3.2.2.2. Elongation (Fmax/Fmin). Maximum (Fmax) and minimum
(Fmin) Feret diameters (Feret diameter is the smallest distance
between two parallel tangents to the object, the tangent position
being defined by the angle between them and the horizontal axis)
were obtained in order to calculate the elongation (Fmax/Fmin) of
bubbles (Ferreira et al., 2012).

It is known that the shape of bubbles is influenced by the
superficial gas velocity. Depending on UGr, bubbles can be more or
less elongated. Fig. 4B shows the Fmax/Fmin ratio (i.e., elongation),
which gives the bubble shape for different UGr in the three
tested PBRs.

In the three tested PBRs, it was found that for UGro0.005 m s�1

bubble shape (in terms of Fmax/Fmin ratio) is strongly dependent
on the UGr value. However, for UGr40.005 m s�1 bubble shape
becomes constant. In BC, bubbles have a slightly higher elongation
than in both SCAPBRs, which can be attributed to different mixing
patterns between BCs and SCAPBRs. According to Fmax/Fmin values
and using the classification previously described (Mena et al., 2005),
the bubbles present in all tested PBRs are classified as flattened
spheroids. Flattened spheroids are known to have higher oscillation
amplitudes that influence mass transfer. Montes et al., 1999 showed
that oscillating bubbles improve mass transfer due to the variation
of contact times and concentration profiles surrounding the
bubbles.

3.2.2.3. Bubble complexity degree (BCD). The complexity of the
bubble system can be determined through the parameter “bubble
complexity degree” (BCD). The higher the value of BCD, the higher
the tendency of bubbles to flow in groups which typically, above
certain BCD levels, means that mass transfer is reduced (Ferreira
et al., 2012).
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Fig. 3. Riser gas holdup for SCAPBR 50 (▲), SCAPBR 75 (■) and BC (�), at different
values of UGr.
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The values of BCD of the three tested PBRs (Fig. 4C) increased
almost linearly with the increase of UGr, with the exception of BC
at UGr higher than 0.07 m s�1. The SCAPBR 50 shows for all UGr a
lower value of BCD, whereas the BC has, for UGro0.07 m s�1

higher BCD values than those obtained in SCAPBRs. For UGr4
0.07 m s�1 SCAPBR 75 shows the higher bubble complexity
degree.

3.2.2.4. Gas bubble velocity. Gas bubble velocity determination
(Fig. 4D) shows that in SCAPBR, this parameter is almost
independent of UGr since it remains almost constant over the
different values of UGr. In the BC, bubble velocity decreases with
the increase of UGr (probably due to an increase of turbulence
caused by the higher number of bubbles), keeping constant from
UGr40.03 m s�1 onwards. These results are not in agreement with
what would be expected by the analysis of Fig. 4A. Typically, larger
bubbles tend to have higher rising velocities, which was not
observed in this case. Possibly the fact that bubbles in BC have a
more flattened geometry (as shown in Fig. 4B) has a major
influence in the calculation of their size: they are actually sized
as being bigger than they effectively are. When comparing
bubbles' velocity in the different PBRs, it is expected that the BC
shows the best mass transfer performance followed by SCAPBR 75
and SCAPBR 50.

This happens because the lower bubbles' velocity means a
higher residence time in the PBR and, consequently, a better mass
transfer. These differences between BC and SCAPBR are in agree-
ment with those reported by other researchers (Contreras et al.,
1998).

3.3. Mass transfer of CO2

Microalgae cultivation systems, especially at a large scale, are
limited by the transfer of CO2 from the gas to the liquid phase.
Mass transfer can be evaluated by means of the volumetric mass-
transfer coefficient (KLa). The results shown in Fig. 5 are in close

agreement with results obtained for mixing time (Fig. 2B), gas
holdup (Fig. 3) and gas bubble velocity (Fig. 4D).

Among these factors, gas holdup seems to be the one that most
influences KLa, since as for gas holdup (Fig. 3), also KLa increases
almost linearly with UGr. The increase verified in Sauter mean
diameter (Fig. 4A) (perhaps because the variation was not very
significant) does not appear to have had a negative effect on KLa.

The very high KLa values obtained for all PBRs must be high-
lighted in this work. KLa values ranged between 0.007–0.04 s�1 in
BC; 0.005–0.03 s�1 in SCAPBR 75 and; 0.003–0.02 s�1 in SCAPBR
50. Through literature review (Table 1) it was not possible to find
such high values of KLa in microalgae cultivation systems. The key
to these KLa values seems to lie in the aeration system developed
(Fig. 1) more than in PBRs design, since comparing KLa values
obtained in the BC with the results obtained by Merchuk et al.
(1998) (also with a bubble column) there is nearly one order of
magnitude difference in the values.

The improved mass transfer capability of all the three PBRs
obtained in our study may contribute to an efficient CO2 delivery to
cells, and an effective removal of O2 from the culture. These results
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suggest that the CO2 and O2 mass transfer will not be a limiting
factor to the microalgae growth in 3 tested PBRs, which is an
important improvement in relation with other cultivation systems.

3.4. Biomass productivity

Although extremely important for characterization, optimiza-
tion and scale-up of PBRs, none of the previously analyzed
parameters allows concluding which PBR is more suitable for
microalgae cultivation. To make that evaluation, C. vulgaris was
grown in the three PBRs (BC, SCAPBR 75 and SCAPBR 50) at three
different values of UGr (0.0011, 0.0044 and, 0.0077 m s�1).

The maximum biomass productivities (Pmax) obtained in each
of the conditions are reported in Fig. 6. Contrary to what the
results of liquid and gaseous phase characterization as well as
mass transfer suggested (Figs. 2A–5), the highest volumetric
productivities (0.60–0.72 g L�1 d�1) were obtained by SCAPBR
50, exceeding BC's volumetric productivities in 15–36% and
SCAPBR 75's volumetric productivities in 5–22%, depending on
the UGr. Additionally it was found that in all the PBRs the highest
value of Pmax was achieved at UGr¼0.0044 m s�1, and the lowest
at UGr¼0.0077 m s�1. In all the situations the maximum cell
concentration was around 6 g L�1 (data not shown), which was
most likely due to nutrient depletion given the concentration of
medium components available. Also, no major pH differences were
verified during the different growth experiments, where a max-
imum pH value of 7.670.2 was obtained.

Published literature shows no unanimous conclusions when it
comes to comparing the performance of airlift and bubble column
PBRs. In a review by Janssen et al., the authors concluded that
bubble column and air-lift reactors, in general, appear to have
similar productivities, however bubble column reactors perform
better at UGr40.05 m s�1 (Janssen et al., 2003).

Pilot scale (0.19 m column diameter, 2 m tall, 0.06 m3 working
volume) outdoor bubble column and airlift PBRs (a split-cylinder
and a draft-tube airlift device) were used for Phaeodactylum
tricornutum cultivation (Sánchez Mirón et al., 2002). The three
PBRs produced similar biomass versus time profiles and final
biomass concentration (�4 g L�1). In a different study (Mirón
et al., 2003), using the same PBRs and the same microalgae but
with different growth conditions, the volumetric productivity of
the three PBRs was approximately 0.30 g L�1 d�1 with UGr¼
0.01 m s�1. Other researchers (Krichnavaruk et al., 2007) exam-
ined the cultivation of Chaetoceros calcitrans in airlift and bubble
column PBRs and biomass productivity was about the double in an
airlift device than in a bubble column. These differences in the
conclusions of different studies show that it is not possible to
establish one particular type of PBR as being the most suitable for
microalgae cultivation. PBR performance depends on factors such
as PBR geometry, aeration system and operational conditions (e.g.,
UGr or light supply).

The results shown in Fig. 6 seem to indicate that none of
the previously discussed parameters (Figs. 2A–5) appear to be the
limiting factor to PBR productivity, since SCAPBR 50 showed the
least favorable values for all parameters, while apparently being
the one with the best results in terms of Pmax. The only factor that
has remained unchanged was the fact that the SCAPBR 75 is
invariably displayed as the intermediate element between the two
“extremes” in terms of design (SCAPBR 50 and BC). This contri-
butes to the conclusion that the SCAPBR 75 shows characteristics
between an airlift and a bubble column.

The fact that the highest value of Pmax was obtained for all PBRs
at UGr¼0.0044 m s�1 followed by a sharp decrease in productivity
for UGr¼0.0077 m s�1 does not seem to find an explanation in the
parameters previously discussed, since higher values of UGr and
KLa usually lead to higher biomass productivities (Zhang et al.,
2002). None of the parameters analyzed before (Figs. 3–5) showed
an inversion of behavior at UGr¼0.0044 m s�1 (or indeed at any
value of UGr).

One of the possible explanations for the decline in biomass
productivity at UGr¼0.0077 m sm s�1 is the shear stress caused by
a higher flow rate, but this does not seem plausible because the
tested values of UGr are below the values reported in the literature as
being capable of causing stress in microalgae (Camacho et al., 2001)
and C. vulgaris is described as very robust and resistant to shear
stress. Thus, the hydrodynamic stress may be discarded as a factor
that led to a decrease in biomass productivity in all the PBRs.

From the results it is clear that mass transfer was not a limiting
factor in the present work, since SCAPBR 50 is the PBR with lower
values of KLa while the BC shows the highest values for this
parameter (Fig. 5). Additionally, there is a decrease in productivity
between UGr¼0.0044 and 0.0077 m s�1, which is in opposite
direction to KLa variation in all PBRs (Fig. 5).

Thus, it seems reasonable to conclude that none of the para-
meters discussed earlier (Figs. 2A–5) is by itself a limiting factor
for the tested PBR productivities. It is also plausible to conclude
that provided conditions (mainly in terms of mixing, mass transfer
and hydrodynamic stress) are very suitable, in all three PBRs, and
cannot be considered as limiting factors as a whole to obtain
higher productivities in these PBRs.

The only parameters that have not been extensively studied
were the light distribution inside PBRs and microalgal cells light
history (frequency and pattern). However, it is known that these
factors may have an important role to define PBRs' productivity.

As described previously, the light conveyed by the central baffle
to the interior of SCAPBRs was measured and the light flux was
found to be around 25 μmol m�2 s�1 in both SCAPBRs. This value
is independent of cell concentration and, therefore, baffle internal
walls are considered as continuously illuminated PBR surfaces.

Table 1
KLa values obtained in different cultivation systems (adapted from Ugwu et al.
(2003).

PBR UG

(m s�1)
KLa
(s�1)

Reference

Concentric tube airlift 0.055 0.02 Contreras et al. (1998)
Stirred tank 0.009 0.02 Ogbonna et al. (1998)
Inclined tubular 0.02 0.003 Ugwu et al. (2002)
Bubble-column 0.008 0.005 Merchuk et al. (2000)
Flat plate 0.009 0.002 Zhang et al. (2002)
Split cylinder airlift 0.024 0.009 Vega-Estrada et al. (2005)
Horizontal tubular airlift 0.16 0.014 Camacho et al. (1999)
Tubular external-loop

airlift
0.25 0.006 Acién Fernández et al.

(2001)
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Thus, while the surface area that is continuously illuminated in
the BC is 0.190 m2, in SCAPBR 75 the illuminated surface is 39%
higher (0.265 m2) and in the SCAPBR 50 the illuminated surface
area is 0.290 m2 which is 53% and 9% higher than those presented
by BC and SCAPBR 75, respectively. At low cell concentrations this
difference is not very important, since some light can still reach
the central region of the BC, but at high cell concentrations the
SCAPBR enables delivery of light to regions that in the BC are in
complete darkness. This extra continuously illuminated surface
area, provided by the central baffle, supplies a relatively low light
flux (25 μmol m�2 s�1), however at high cell concentrations the
cells only have access to light when they circulate along the PBRs
walls (in all the PBRs) and along both sides of the central wall
(in SCAPBRs only). Consequently, these differences in illuminated
PBR surface can be an important part of the justification for
differences between the PBRs in terms of biomass productivity
and one justification to the highest productivities verified in
SCAPBR 50 for all tested conditions.

Regarding to the light/dark cycles frequency, as Janssen et al.
(2003) state, this parameter is determined by liquid circulation
velocity, which depends on reactor design and superficial gas
velocity. Also, it is known that higher light/dark cycles frequencies
lead to higher productivities. However, the bell-shaped curve
presented in Fig. 6 seems to show that the dependence between
all these parameters is not linear. The results seem to show that
when UGr is increased it does not mean that the light/dark cycles
frequencies are, forcibly, also increased. This is probably due to an
increase in average residence time of cells in the connections
between the riser and the downcomer (top and bottom sections).
In fact if the residence time increases in these sections, the light/
dark cycles frequency can decrease and not the opposite, which
can also explain the productivity values obtained. Analyzing
mixing and circulation times (Figs. 2B and 2C) it is possible to
see that for high values of UGr, the increase of UGr is not followed
by a significant decrease of mixing and circulation time, which
indicates that probably the medium (and the cells) become
“trapped” somewhere. Another fact that also suggests this
was the verification of bubbles “trapped” in the top and bottom
sections (where the dark volume is higher) when working at
higher values of UGr. These results and observations make us
believe that in the SCAPBR, from certain values of UGr onwards, it is
not possible to establish such a straightforward relation bet-
ween the increasing of UGr, mixing rate and light/dark cycles.
The existence of higher light/dark cycles frequencies in UGr¼
0.0044 m s�1 together with higher residence time of cells in the
top and bottom of SCAPBR (darker zones) can be the part of the
justification to the occurrence of higher productivities observed at
UGr¼0.0044 m s�1.

For more robust conclusions, an extensive study should be
carried out in order to evaluate the light distribution inside PBRs
(at different cells' concentration) and the microalgal cells light
history (frequency and pattern). This evaluation will be the subject
of future works.

4. Conclusions

The developed SCAPBRs proved to be suitable for microalgae
cultivation. The design of PBRs, particularly the gas sparger,
allowed meeting the needs of microalgae in terms of mixture
and mass transfer. SCAPBR 50 (UGr¼0.0044 m s�1) showed,
among the tested PBRs, the highest value of Pmax (0.75 g L�1 d�1).
This result is probably due to a higher PBR illuminated surface
area, and a more regular flow pattern between the illuminated and
dark zones.

These results provide important indications to predict the
effects of scale-up on the performance of the SCAPBR.
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