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Abstract- A series of arylfuryl-bis(indolyl)methane derivatives 2 were prepared in good 

yields by electrophilic substitution of indole with furyl aldehydes through a simple and 

mild hydrogensulfate-catalyzed reaction and studied as chemosensors for transition 

metal cations by performing spectrophotometric and spectrofluorimetric titrations. 

Selective recognition of Hg2+ was achieved in organic aqueous mixture (CH3CN/H2O, 

7:3) for the various receptors, with an easily detectable colour change from colourless to 

purple and also through a fluorescence quenching, making these compounds suitable for 

dual chromo- and ratiometric fluorogenic sensing of Hg2+. The binding stoichiometry 

between the receptors and Hg2+ was found to be 1:1. The binding process was also 

followed by 1H NMR titrations which corroborated the previous findings.  

 

Keywords: Bis(indolyl)methanes; arylfuran; ratiometric fluorogenic chemosensors; 

Hg2+; direct visual detection; aqueous solution. 

 

 

1. Introduction 

 

 Chemosensors and chemodosimeters that can monitor heavy metal ions with 

high sensitivity and selectivity are especially important owing to the great concern with 

environment and health. Among transition and heavy metals, mercury, from a variety of 

natural and anthropogenic sources and widely distributed in water, soil and air, is 
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considered to be one of the most toxic because both ionic and elemental mercury can be 

converted by bacteria in the environment to methyl mercury, which subsequently 

bioaccumulates through the food chain. Mercury causes serious neurotoxic, genotoxic, 

and immunotoxic effects and thus poses severe risk for human beings and other 

organisms. Therefore, selective and sensitive detection of Hg2+ has been an important 

topic of investigation [1]. Presently, several methods such as atomic 

absorption/emission spectroscopy, inductively coupled plasma-mass spectrometry, 

voltammetry, etc. can be used in order to detect Hg2+. However, all these methods have 

drawbacks such as expensive instrumentation, only measure the total metal ion content 

and are not suitable for on-site assays [2]. Therefore, an easy and straightforward 

method that detects and quantifies Hg2+ is advantageous for instantaneous monitoring of 

environmental, biological, and industrial samples which occur in aqueous solution. 

Consequently, much attention has been paid to developing low-cost and easily-prepared 

colorimetric and/or fluorimetric mercury sensors that work in the aqueous medium [1a-

b,d-f,h-m]. Hg2+ is usually associated with a fluorescence quenching by different 

mechanisms, so a ratiometric approach for its detection (simultaneous monitoring of 

fluorescence intensity at two different wavelengths) would be preferable, since it 

minimizes interferences from other species present in the media [1b,i,l].  

 Although indoles are predominant in natural compounds and widely applied in 

the synthesis of pharmaceutical products, they were only recently recognized as useful 

building blocks for the assembly of synthetic anionic receptors [3]. Among the several 

indole-based systems, triaryl- and triheteroarylmethanes have found wide range 

applications in different areas of chemistry, due to their structure (presence of a pyrrolic 

NH group) and photophysical properties, such as chemical sensors [3-5] and as 

precursors in the synthesis of heterocyclic systems for molecular electronics [6] 

Therefore, there is a great deal of interest in the synthesis of this class of compounds 

and while several indole-based receptors have been developed for the selective sensing 

and detection of anions [3-5] only a few examples can be found in the literature for 

cation receptors bearing an indole group [7].  

 Recently, the synthesis and evaluation of new bis-indolylmethenes containing 

thienyl and bithienyl moieties has been reported by us in order to evaluate the effect of 

the length of the π-conjugated bridge and also the electronic nature of these heterocycles 

on the sensory properties of these chromophores [8]. Keeping in mind our interests in 

the synthesis of colorimetric/fluorimetric chemosensors for selective detection of 
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cations and anions, we proceeded to synthesize new non-oxidized bis-indolylmethane 

derivatives containing functionalized arylfuryl moieties and evaluate their 

chemosensory ability. The main difference resides in the replacement of the π-

conjugated bi(thiophene) spacer by an arylfuryl system (instead of the more commonly 

used aryl group), allowing a more sensitive fluorimetric detection due to the higher 

fluorescent character of the heteroaromatic furan when compared to thiophene [9]. On 

the other hand, the different electronic nature of the substituents at the arylfuryl group 

was used to tune the photophysical properties of the resulting compounds. These non-

conjugated bis-indolylmethane derivatives with an sp3 carbon at meso position may 

even promote more significant color changes when compared with the previous 

examples, probably because the interaction with cations can occur through a variation in 

carbon hybridization with concomitant modulation of the internal charge transfer (ICT) 

state.  

 

 

2. Experimental 

2.1. Synthesis general 

 Reaction progress was monitored by thin layer chromatography (0.25 mm thick 

precoated silica plates: Merck Fertigplatten Kieselgel 60 F254), while purification was 

effected by silica gel column chromatography (Merck Kieselgel 60; 230-400 mesh). 

NMR spectra were obtained on a Varian Unity Plus Spectrometer at an operating 

frequency of 300 MHz for 1H and 75.4 MHz for 13C or a Bruker Avance III 400 at an 

operating frequency of 400 MHz for 1H and 100.6 MHz for 13C using the solvent peak 

as internal reference. The solvents are indicated in parenthesis before the chemical shift 

values (δ relative to TMS and given in ppm). Mps were determined on a Gallenkamp 

apparatus. Infrared spectra were recorded on a BOMEM MB 104 spectrophotometer. 

Mass spectrometry analyses were performed at the “C.A.C.T.I. -Unidad de 

Espectrometria de Masas” at the University of Vigo, Spain. Fluorescence spectra were 

collected using a FluoroMax-4 spectrofluorometer. UV-visible absorption spectra (200 

– 700 nm) were obtained using a Shimadzu UV/2501PC spectrophotometer. 

Luminescence quantum yields were measured using quinine sulphate in 0.5 M sulphuric 

acid solution as standard (ϕF=0.54) [10]. All commercially available reagents were used 

as received.  
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2.2. Synthesis of 5-(4’-methoxyphenyl)furan-2-carbaldehyde (1b)  

 5-Bromofuran-2-carbaldehyde (1.5 mmol) was coupled with 4-

methoxyphenylboronic acid (1.9 mmol) in a mixture of DME (15 mL), aqueous 2 M 

Na2CO3 (1 mL) and Pd(PPh3)4 (6 mol %) at 80 °C under argon. The reaction was 

monitored by TLC and after cooling, the mixture was filtered. Ethyl acetate and a 

saturated solution of NaCl were added and the phases were separated. The organic 

phase was washed with water (3×50 mL) and with a solution of NaOH (10%) (1×50 

mL). The organic phase obtained was dried (MgSO4), filtered and the solvent removed 

to give a crude mixture. The crude residue was submitted to silica gel column 

chromatography using mixtures of hexane and chloroform of increasing polarity. The 

fractions containing the purified product were collected and evaporated under vacuum 

to afford product 1b as orange oil (82%). IR (liquid film): ν = 1667, 1590, 1500, 1213, 

1176, 1112, 1066, 1020, 965, 830, 767 cm-1. 1H NMR (CDCl3): δ = 3.86 (s, 3H, OCH3), 

6.96 (dd, 2H, J = 9.0 and 2.1 Hz, H3’ and H5’), 7.29 (d, 1H, J = 3.9 Hz, H4), 7.62 (dd, 

2H, J = 9.0 and 2.1 Hz, H2’ and H6’), 7.71 (d, 1H, J = 3.9 Hz, H3), 9.86 (s, 1H, CHO) 

ppm. 

  

2.3. General procedure for the synthesis of bis(indolyl)methanes 2a-d 

 KHSO4 (1.20 mmol) was added to a mixture of indole (2.40 mmol) and the 

corresponding aldehyde 1a-d (1.20 mmol) in dry methanol (10 mL), and the reaction 

was stirred at room temperature for 7 h. Then water (10 mL) was added to quench the 

reaction, and the aqueous phase was extracted with CHCl3 (3 x 20 mL). The organic 

phase was dried with anhydrous MgSO4, and the crude compounds 2 were purified by 

recrystallization from CHCl3.  

 

2.3.1. 3-((1H-Indol-3-yl)(5’-phenylfuran-2’-yl)methyl)-1H-indole (2a).  

Pink solid (50 %). Mp: 192.0-193.0 ºC. IR (Nujol) ν = 3412, 3055, 2955, 2925, 1610, 

1594, 1544, 1419, 1336, 1214, 1203, 1090, 1018, 789, 763, 745 cm-1. 1H NMR 

(acetone-d6) δ = 6.09 (s, 1H, CH), 6.23 (d, 1H, J = 3.3 Hz, H3’), 6.79 (d, 1H, J = 3.3 

Hz, H4’), 6.98 (dt, 2H, J = 7.6 and 1.4 Hz, 2 x H5), 7.11 (dt, 2H, J = 7.6 and 1.4 Hz, 2 x 

H6), 7.17 (d, 2H, J = 2.1 Hz, 2 x H2), 7.24 (m, 1H, H4’’), 7.38-7.42 (m, 2H, H3’’ and 

H5’’), 7.44 (dt, 2H, J = 7.5 and 1.4 Hz, 2 x H7), 7.59 (d, 2H, J = 7.5 Hz, 2 x H4), 7.68 
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(d, 2H, J = 8.3 Hz, H2’’ and H6’’), 10.11 (s, 2H, 2 x NH). 13C NMR (acetone-d6) δ = 

35.2 (CH), 106.7 (C4’), 109.2 (C3’), 112.2 (2 x C7), 117.2 (2 x C3), 119.4 (2 x C5), 

120.2 (2 x C4), 122.1 (2 x C6), 124.0 (C2’’ and C6’’), 124.2 (2 x C2), 127.6 (C4’’), 

127.8 (2 x C3a), 129.5 (C3’’ and C5’’), 132.2 (C1’’), 137.9 (2 x C7a), 153.0 (C5’), 

158.8 (C2’). MS (EI) m/z (%): 388 (M+, 42), 283 (100), 273 (23), 168 (20), 117 (21), 77 

(13). HRMS: (EI) m/z (%) for C27H20N2O; calcd 388.1576; found 388.1577. 

 

2.3.2. 3-((1H-Indol-3-yl)(5’-(4’’-methoxyphenyl)furan-2’-yl)methyl)-1H-indole (2b). 

Purple solid (40 %). Mp: 115.0-116.0 ºC. IR (Nujol) ν = 3411, 2920, 1616, 1598, 1547, 

1498, 1420, 1295, 1249, 1176, 1094, 1021, 967, 832, 782, 743 cm-1. 1H NMR (acetone-

d6) δ = 3.82 (s, 3H, OCH3), 6.06 (s, 1H, CH), 6.18 (d, 1H, J = 3.3 Hz, H3’), 6.61 (d, 1H, 

J = 3.3 Hz, H4’), 6.94-7.00 (m, 4H, H3’’, H5’’ and 2 x H5), 7.10 (dt, 2H, J = 7.8 Hz, 2 

x H6), 7.15 (d, 2H, J = 2.4 Hz, 2 x H2), 7.42 (d, 2H, J = 7.8 Hz, 2 x H7), 7.57-7.63 (m, 

4H, H2’’, H6’’ and 2 x H4), 10.10 (s, 2H, 2 x NH). 13C NMR (acetone-d6) δ = 35.2 

(CH), 55.5 (OCH3), 104.9 (C4’), 109.0 (C3’), 112.2 (2 x C7), 114.9 (C3’’ and C5’’), 

117.4 (2 x C3), 119.4 (2 x C5), 120.2 (2 x C4), 122.0 (2 x C6), 124.2 (2 x C2), 125.2 

(C1’’), 125.5 (C2’’ and C6’’), 127.8 (2 x C3a), 137.9 (2 x C7a), 153.2 (C5’), 157.9 

(C2’), 159.8 (C4’’). MS (EI) m/z (%): 418 (M+, 37), 303 (27), 283 (100), 168 (13), 135 

(18), 117 (21). HRMS: (EI) m/z (%) for C28H22N2O2; calcd 418.1681; found 418.1682. 

 

2.3.3. 3-((5’-(4’’-Bromophenyl)furan-2’-yl)(1H-indol-3-yl)methyl)-1H-indole (2c).  

Pale pink solid (54 %). Mp: 116.0 -117.0 ºC. IR (Nujol) ν = 3409, 2919, 1538, 1477, 

1418, 1338, 1242, 1205, 1094, 1073, 1008, 967, 826, 783, 743 cm-1. 1H NMR (acetone-

d6) δ = 6.08 (s, 1H, CH), 6.25 (d, 1H, J = 3.2 Hz, H3’), 6.85 (d, 1H, J = 3.2 Hz, H4’), 

6.97 (t, 2H, J = 7.2 Hz, 2 x H5), 7.10 (t, 2H, J = 7.2 Hz, 2 x H6), 7.16 (d, 2H, J = 1.6 

Hz, 2 x H2), 7.42 (d, 2H, J = 8.4 Hz, 2 x H7), 7.54-7.63 (m, 6H, H2’’, H3’’, H5’’, H6’’ 

and 2 x H4), 10.10 (s, 2H, 2 x NH).13C NMR (CDCl3) δ = 34.3 (CH), 106.4 (C4’), 

109.0 (C3’), 111.1 (2 x C7), 116.9 (2 x C3), 119.4 (2 x C5), 119.7 (2 x C4), 120.4 

(C4’’), 121.9 (2 x C6), 123.1 (2 x C2), 124.9 (C2’’ and C6’’), 126.7 (2 x C3a), 130.1 

(C1’’), 131.6 ( C3’’and C5’’), 136.5 (2 x C7a), 151.5 (C5), 157.3 (C2ʼ). MS (ESI) m/z 

(%): 467 (M+ 81Br, 35), 465 (M+ 79Br, 35), 431 (28), 367 (28), 345 (66), 289 (14), 231 

(49), 227 (100), 187 (30), 159 (16). HRMS: (ESI) m/z (%) for C27H18
81BrN2O calcd 

467.05779; found 467.05753. C27H18
79BrN2O; calcd 465.05970; found 465.05900. 
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2.3.4. 3-((1H-Indol-3-yl)(5’-(4’’-nitrophenyl)furan-2’-yl)methyl)-1H-indole (2d). 

Yellow solid (65%). Mp: 119.0-120.0 ºC. IR (Nujol) ν = 3409, 2925, 1602, 1536, 1507, 

1335, 1109, 1096, 1057, 1022, 968, 852, 783, 742, 722 cm-1. 1H NMR (acetone-d6) δ = 

6.14 (s, 1H, CH), 6.36 (d, 1H, J = 4.4 Hz, H3’), 6.99 (dt, 2H, J = 7.2 and 0.8 Hz, 2 x 

H5), 7.09-7.15 (m, 3H, 2 x H6 and H4’), 7.19 (d, 2H, J = 2.4 Hz, 2 x H2), 7.44 (d, 2H, J 

= 8.5 Hz, 2 x H7), 7.20 (d, 2H, J = 8.5 Hz, 2 x H4), 7.91 (dd, 2H, J = 7.2 and 2.0 Hz, 

H2’’ and H6’’), 8.25 (dd, 2H, J = 7.2 and 2.0 Hz, H3’’and H5’’), 10.15 (s, 2H, 2 x NH). 
13C NMR (acetone-d6) δ = 35.3 (CH), 110.3 (C3’), 111.5 (C4’), 112.3 (2 x C7), 116.7 (2 

x C3), 119.5 (2 x C5), 120.1 (2 x C4), 122.2 (2 x C6), 124.3 (2 x C2), 124.4 (C2’’ and 

C6’’), 125.1 (C3’’and C5’’), 127.7 (2 x C3a), 137.7 (C1’’), 137.9 (2 x C7a), 146.9 

(C4’’), 151.1 (C5’), 161.5 (C2’). MS (EI) m/z (%): 456 (M+, 19), 432 (58), 359 (25), 

313 (42), 245 (100), 218 (72), 179 (23). HRMS: (EI) m/z (%) for C27H19N3NaO3; calcd 

456.13186; found 456.13041. 

 

2.4. Spectrophotometric and spectrofluorimetric titrations of compounds 2a-d 

 Solutions of bis-(indolyl)methane derivatives 2a-d (ca. 1.0 × 10-5 to 1.0 × 10-6 

M) and of the cations under study (ca. 1.0 × 10-1 to 1.0 × 10-3 M) were prepared in 

MeCN/H2O (7:3) (in the form of hexahidratated tetrafluorborate salts for Cu2+, Co2+, 

Ni2+, Pd2+, and perchlorate salts for Cd2+, Ca2+, Na+, Cr3+, Zn2+,  Hg2+, Fe2+and Fe3+). 

Titration of the compounds was performed by the sequential addition of a metal cation 

to the bis-(indolyl)methane derivative solution, in a 10 mm path length quartz cuvette 

and emission spectra were measured by excitation at the wavelength of maximum 

absorption for each compound, indicated in Table 1. The binding stoichiometry of the 

bis-(indolyl)methane derivatives with the metal cations was determined by using Job’s 

plots, by varying the molar fraction of the cation while maintaining constant the total 

bis-(indolyl)methane derivative and metal cation concentration. The association 

constants were obtained from Hyperquad Software. 

 

2. Results and discussion 

2.1.  Synthesis and characterization 

 

 A new series of arylfuryl-bis(indolyl)methanes 2 was synthesized with substituents 

such as alkoxy, bromo or nitro, in order to evaluate the influence of the electron 
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donating or withdrawing strength of the substituent groups on the optical and sensing 

properties of the receptors. These compounds were obtained in moderate to good yields 

(40-65%) by condensation of indole with several formyl precursors 1 with substituents 

of  different electronic nature in dry methanol in the presence of potassium 

hydrogensulfate [11] (Scheme 1). Formyl-arylfuran precursors 1a and 1c-d were 

commercially available and 5-(4’-methoxyphenyl)furan-2-carbaldehyde 1b [12] was 

synthesized by us through Suzuki cross-coupling reaction [13]. 

 

<Scheme 1> 

 

 These new systems constituted by aryl-furan π-conjugated bridges displayed an 

increased intramolecular charge transfer due to the high eletronegativity of the oxygen 

at the heteroaromatic ring.  As a consequence, the acidity of the indolyl NH was 

increased, with a bathochromic shift in absorption and emission bands and quite 

pronounced color changes. In compound 2b the electron donor methoxy group induced 

a certain decrease in the acidity of the NH proton (δ = 10.10 ppm) when compared to 

the arylfuryl-bis(indolyl)methane functionalized with a nitro group (compound 2d, δ = 

10.15 ppm). A dramatic bathochromic shift from 289 nm to 370 nm was observed for 

compound 2d, when compared with compound 2b, being a direct consequence of the 

electronic nature of the substituent at the arylfuran moiety. The high fluorescence of the 

furan ring also gave these new systems the advantage of using a more sensitive 

technique to detect metal cations. The relative fluorescence quantum yields were 

determined using a 10-6 M solution of quinine sulfate in 0.5 M H2SO4 as standard 

(ϕF=0.54) [10]. The absorption and emission spectra of arylfuryl-bis(indolyl)methanes 2 

were measured in MeCN/H2O (7:3) solution (10-6 to 10-5 M solution) (Table 1). 

Arylfuryl-bis(indolyl)methanes 2 exhibited different fluorescence quantum yields 

according to the functionalization at the furan ring: higher ϕF for the hydrogen and 

methoxy groups (0.21 and 0.58, respectively for compounds 2a-b), and low 

fluorescence in the case of compounds 2c-d with bromine and nitro groups (ϕF 0.01 and 

0.001, respectively). Considering these photophysical properties, derivatives 2a-b 

would be the more interesting candidates as chemosensors due to the higher 

fluorescence quantum yields, important for maximization of the response in the analysis 

of very dilute samples. 
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<Figure 1> 

 

<Table 1> 

 

2.2 Spectrophotometric/spectrofluorimetric titrations and chemosensing studies of 2a-

d with metallic cations 

 

 Compounds 2a-d were evaluated as chemosensors in the presence of several 

metal cations (Cu2+, Co2+, Ni2+, Pd2+, Cd2+, Ca2+, Cr3+, Zn2+, Hg2+, Fe2+ and Fe3+) in 

MeCN/H2O (7:3) solutions. The hexahydratated tetrafluorborate salts of Cu2+, Co2+, 

Ni2+ and Pd2+ and perchlorate salts of Cd2+, Ca2+, Cr3+, Zn2+, Hg2+, Fe2+ and Fe3+ were 

added to solutions of 2a-d (10-4 M), in order to evaluate their chemosensory ability. A 

preliminary study with 100 equiv of the cations revealed that compounds 2a-d 

responded selectively to the presence of Hg2+ with a distinct color change from 

colorless to purple (Figure 2). 

 

<Figure 2> 

 

 Regarding the fluorimetric response, selectivity towards Hg2+ was also achieved 

with a clearly visible quenching in the fluorescence intensity, (Figure 3), that can be 

attributed to electron and/or energy transfer processes due to empty d shell of Hg2+ [7c]. 

 

<Figure 3> 

 

 Spectrophotometric titration of compounds 2a-b, d in MeCN/H2O (7:3) (10-5-10-

6 M) with Hg2+ revealed a trend in the UV-vis spectra: the intensity of the longest 

wavelength absorption band (between 290-377 nm) decreased progressively upon 

addition of the metal cation, with the simultaneous growth of a new red-shifted 

absorption band located between 505-543 nm. On the other hand, for compound 2c 

there was a very slight increase of the corresponding absorption band at 267 nm 

together with the appearance of a new band at 518 nm of low intensity (Figure 4). The 

number of necessary metal equivalents to achieve a plateau was between 30-40 

equivalents for compounds 2a-c and at about 100 equivalents for compound 2d. 
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<Figure 4> 

 

 In order to gain insight into the interaction mechanism between the cation and 

the receptors, similar titrations with Hg2+ were also conducted in MeCN/H2O at 

different pH (2.05 and 7.05). In both cases there was no formation of the red-shifted 

band upon addition of the metal, revealing that no interaction took place due to the fact 

that the indolyl NH was protonated.  

 The association constants (Kass), the detection (LOD) and quantification (LOQ) 

limits were also obtained from the results of the spectrophotometric titrations in 

MeCN/H2O (7:3) (Table 2). The highest association constant was found for compound 

2b bearing the electron donor methoxy group linked to the arylfuryl moiety. 
 

<Table 2> 

 

 The stoichiometry of the complexes was obtained by the changes in the 

colorimetric response of compounds 2a-d in the presence of varying concentrations of 

Hg2+ (Figure 5). The results indicated an empirical 1:1 ratio (L:M), which is also in 

agreement with the stoichiometry suggested from Hyperquad Software.  

 

<Figure 5> 

 

 As for the spectrofluorimetric titrations in MeCN/H2O (7:3), only compounds 

2a-b were studied since the other compounds were not fluorescent. The response to the 

presence of Hg2+ was seen by a variation in the fluorescence intensity of the emission 

band (Figure 5), after excitation at the maximum wavelength of absorption of the ligand 

and of the complex between the metal and the ligand. The results are similar for both 

compounds, with a quenching of fluorescence being visible for the ligand emission 

band, whereas the opposite effect occurred with an increase of the fluorescence intensity 

for the complex emission band (Figure 6), illustrating the ratiometric response of 

receptors 2a-b to different Hg2+ concentrations. The number of necessary metal 

equivalents to achieve a plateau was at about 30 equivalents for compounds 2a-b. 

 

<Figure 6> 
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 From the results of the spectrofluorimetric titrations in MeCN/H2O (7:3) for 

compounds 2a-b, it was possible to calculate association constants (Kass), the detection 

(LOD) and quantification (LOQ) limits, which are between 8 and 11 ppm (Table 3). 

Recently, several receptors have been reported for the detection and quantification of 

Hg2+ in organic and aqueous media, with limits of detection and quantification in the 

ppm-ppb range [1b,i]. 

 

<Table 3> 
 

 

 As can be seen by the LOD and LOQ data presented in Tables 2 and 3, the 

values obtained by spectrophotometric and spectrofluorimetric titrations are in 

agreement, especially for compound 2b.  

2.3. 1H NMR titrations  

The sensory behaviour observed by the spectrophotometric/spectrofluorimetric titrations 

was also confirmed by performing 1H NMR titrations but due to the limited solubility of 

compounds 2a-d in deuterated acetonitrile, the titrations were carried out with Hg2+ in 

acetone-d6 at room temperature (representative example for compound 2b in figure 7).  

 

<Figure 7> 

 

 The signal of the indolyl NH appearing at about 10 ppm was further shifted 

downfield (Δδ ~ 0.8 ppm) upon addition of up to 6 equivalents of Hg2+, thus suggesting 

that the interaction with the metal cation is occurring at this site. The chemical shifts of 

the remaining protons were unaffected by the metal interaction. 

 

3. Conclusions 

 

 The selective determination of Hg2+ in MeCN/H2O (7:3) solution among various 

transition metal cations was possible with novel arylfuryl-bis(indolyl)methane 

derivatives bearing different electron donor and acceptor substituents. All the 

compounds 2a-d exhibited a selective and significant colour change from colourless to 

purple, whereas a marked quenching of the fluorescence was additionally observed for 
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compounds 2a-b, making these compounds suitable for dual chromo- and fluorimetric 

sensing of Hg2+ in aqueous mixtures. The binding stoichiometry between the receptors 

and Hg2+ was found to be 1:1, and the results obtained through UV-vis and 1H NMR 

titrations were found to be in agreement, suggesting the formation of a complex 

between the metal and the ligand through interaction with the indolyl NH group. 
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Captions 

 

 

Scheme 1. Synthesis of arylfuryl-bis(indolyl)methanes 2. 

 

Figure 1.  Solid samples and MeCN/H2O (7:3) solutions (10-4 M) of compounds 2a-d.  

 

Figure 2. Color changes of compound 2b (10-4 M in MeCN/H2O (7:3)) in the presence 

of 100 equiv. of Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+, Hg2+, Pd2+, Ni2+ and Zn2+ (in 

the form of tetrafluorborate or perchlorate salts). 

 

Figure 3. Relative fluorimetric response (I/I0) of compound 2a in the presence of 100 

equiv of Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+, Hg2+, Pd2+, Ni2+ and Zn2+, as a function 

of metal concentration in acetonitrile/H2O (7:3, v/v) solution. 

 

Figure 4. Spectrophotometric titrations of 2a (A), 2b (B), 2c (C) and 2d (D) with 

addition of increasing amounts of Hg2+ in MeCN/H2O (7:3). The inset represents the 

normalized absorption at: 290 and 516 nm (A); 290 and 543 nm (B); 267 and 518 nm 

(C) and 377 and 505 nm (D) ([2a-d] = 2.5 × 10-5 M, T = 298 K).  

 

Figure 5. Job’s plot for the complexation of compounds 2a-d with Hg2+, indicating the 

formation of 1:1 complexes. The total [2a-d] + [Hg2+] = 4.0 × 10-5 M. 

 

Figure 6. Spectrofluorimetric titrations of 2a (A, B) and 2b (C, D) with the addition of 

increasing amounts of Hg2+ in MeCN/H2O (7:3) at pH 7.0 aqueous solution. The inset 

represents the normalized fluorescence intensity at 425 nm (A), 585 nm (B), 358 nm (C) 

and 625 nm (D) (T= 298 K; [2a]= [2b]=2.5x10-5 M, λexc(A)= 290 nm, λexc(B)= 516 nm, 

λexc(C)= 290 nm, λexc(D)= 543 nm). 

 

Figure 7. Partial 1H NMR spectra of 2b (1.4 x 10-2 M) in acetone-d6 in (a) the absence 

and (b) the presence of 1.0, (c) 2.0, (d) 4.0 and (e) 6.0 equiv of Hg2+. 
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Table 1. Yields, IR, UV-vis absorption and emission data for arylfuryl-bis-

(indolyl)methanes 2a-d, in MeCN/H2O (7:3) solution.  
a For the NH proton (in acetone-d6). b For the NH stretching band recorded in Nujol. 

 

Table 2. Absorption and limit of detection (LOD) and limit of quantification (LOQ) 

data upon titration of arylfuryl-bis-(indolyl)methanes 2a-d with Hg2+, in MeCN/H2O 

(7:3) solution (L, ligand; L-Hg2+, complex ligand-metal). 

 

Table 3. Fluorescence data and limit of detection (LOD) and limit of quantification 

(LOQ) data upon titration of arylfuryl-bis-(indolyl)methanes 2a-d with Hg2+, in 

MeCN/H2O (7:3) solution (L, ligand; L-Hg2+, complex ligand-metal). 
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Figures 

 

 

Figure 1. 
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Figure 2. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Tables 

 

Table 1 

 

 

 

Table 2 

 

 

Table 3 

 

 

Cpd 

 

R 

 

Yield 

(%) 

 

δH 

(ppm)a 

 

IR ν 

(cm-1)b 

UV-vis Fluorescence 

λabs (nm) 
λem 

(nm) 

Stokes’ shift  

(cm-1) 

�F 

2a H 50 10.11 3412 288 425 10953 0.21 

2b OMe 40 10.10 3411 289 358 6549 0.58 

2c Br 54 10.10 3409 287 387 11613 0.01 

2d NO2 65 10.15 3409 370 412 2755 0.001 

 

Cpd. 

UV-vis  

Isosbestic points 

(nm) 

 

Log Kass 

 

LOD 

(ppm) 

 

LOQ 

(ppm) 
L 

λabs (nm) 

L-Hg2+ 

λabs (nm) 

2a 290 516 274, 307 2.01 ± 0.03 20.2 67.5 

2b 290 543 271, 299 2.90 ± 0.01 10.6 35.6 

2c 270 518 --- 1.90 ± 0.03 24.7 82.2 

2d 377 505 344, 420 1.76 ± 0.02 31.7 105.7 

 

Cpd 

Fluorescence  

Log Kass 

 

 

LOD 

(ppm) 

 

LOQ 

(ppm) 
L 

λemis (nm) 

Stokes 

shift (cm-1) 

L-Hg2+ 

λemis(nm) 

Stokes 

shift (cm-1) 

2a 425 10953 585 2285 3.801 ± 0.003 8.5 28.3 

2b 358 6549 625 2416 3.691 ± 0.005 10.8 36.1 
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Schemes 

 

 

Scheme 1. 
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