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aDepartment of Mathematics, Southeast University, Nanjing 210096, China.
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Abstract

In this paper, we study representations of the Moore-Penrose inverse of a
2 × 2 matrix M over a ∗-regular ring with two term star-cancellation. As
applications, some necessary and sufficient conditions for the Moore-Penrose
inverse of M to have different types are given.
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1. Introduction

Representations for the Moore-Penrose inverse (abbr. MP-inverse) of
matrices over various settings attract wide interest from many scholars. For
instance, Cline [1, 2] derived the representations for the MP-inverse of a
partitioned complex matrix. Hung and Markham [7, 8] obtained the explicit
formula for the MP-inverse of an m×n partitioned matrix. Recently, Hartwig
and Patŕıcio [6] obtained new expressions for the MP-inverse of the matrix

[ a 0
b d ]over a ∗-regular ring, extending some well known results for complex

matrices.
This article is motivated by the papers [5, 6]. We investigate the MP-

inverse of M = [ a cb d ] over a ∗-regular ring satisfying some additional con-
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Patŕıcio)

Preprint submitted to Applied Mathematics and Computation January 2, 2015



ditions. As applications, some necessary and sufficient conditions for the
matrix M to have various types are obtained. Some results in [5, 6] are
generalized.

Let R be a unital ∗-ring, that is a ring with unity 1 and an involution
a 7→ a∗ satisfying (a∗)∗ = a, (ab)∗ = b∗a∗ and (a + b)∗ = a∗ + b∗. By Rm×n
we denote the set of m× n matrices over R. The involution on R induces a
map Rm×n → Rn×m, (aij) 7→ (a∗ji) denoted still by ∗. A matrix A ∈ Rm×n is
said to have an MP-inverse if there exists B ∈ Rn×m such that the following
equations hold [10]:

ABA = A, BAB = B, (AB)∗ = AB and (BA)∗ = BA.

Any elementB ∈ Rn×m satisfying the equations above is called an MP-inverse
of A. If such a B exists, it is unique and is denoted by A†.

Following [4], a ∗-ring R is said to satisfy the k-term star-cancellation law
(SCk) if

a∗1a1 + · · ·+ a∗kak = 0⇒ a1 = · · · = ak = 0

for any a1, · · · , ak ∈ R. Note that a ∗-ring satisfying SC1 is known as a ∗-
cancellable ring. A ring is said to be ∗-regular if it is regular and ∗-cancellable
(see, e.g., [9]). It is well-known that R is a ∗-regular ring if and only if every
element in R is MP-invertible, and that R2×2 is a ∗-regular ring if and only
if R is a regular ∗-ring satisfying SC2 (see, e.g., [6, p.182]).

2. Main results

Throughout this article we assume that R is a regular ∗-ring satisfying
SC2, an assumption that plays an essential role in Theorem 2.1 and Theorem
2.7. (See Examples 2.2 and 2.8.). In particular, the rings R and R2×2 are

∗-regular rings and every matrix M = [ a cb d ] in R2×2 is MP-invertible. Note
that M † = M∗(MM∗)† in this case (see [10, p.407]), a result that will be
widely-used in the sequel.

If ab∗ + cd∗ = 0, as MM∗ =
[
aa∗+cc∗ ab∗+cd∗
ba∗+dc∗ bb∗+dd∗

]
then

M † =

[
a∗(aa∗+cc∗)† b∗(bb∗+dd∗)†

c∗(aa∗+cc∗)† d∗(bb∗+dd∗)†

]
.

Next theorem shows that the condition ab∗ + cd∗ = 0 is also necessary for
such a decomposition to hold.
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As usual, we denote the right annihilator of an element a in a ring R by
a0. That is, a0 = {r ∈ R | ar = 0}.

Theorem 2.1. Let R be a regular ∗-ring satisfying SC2 and M = [ a c
b d ]

∈ R2×2. Pose k = aa∗ + cc∗, l = bb∗ + dd∗ and m = ab∗ + cd∗. Then M † =[
a∗k† b∗l†

c∗k† d∗l†

]
if and only if m = 0.

Proof. We need only to prove the “only if” part.
First, we show that l0 ⊆ (b∗)0.
Let x ∈ l0, i.e., (bb∗ + dd∗)x = 0. Then (b∗x)∗b∗x + (d∗x)∗d∗x = 0. Since

R satisfies SC2, we have b∗x = 0, i.e., x ∈ (b∗)0.
Since 1− l†l ∈ l0, it follows that b∗ = b∗l†l and hence b = l∗(l∗)†b = ll†b.

Similarly, d = ll†d.

As

[
kk†a+ml†b kk†c+ml†d
m∗k†a+ll†b m∗k†c+ll†d

]
= MM †M = M = [ a cb d ], one can see

that m∗k†a = 0 = m∗k†c, which implies m∗k†aa∗ = 0 = m∗k†cc∗. Hence
m∗k†k = 0.

Again, SC2 guarantees that k0 ⊆ (m∗)0 and hence m∗ = m∗k†k = 0.
Consequently, m = 0.

The next example shows that the assumption “R is a regular ∗-ring sat-
isfying SC2” plays an essential role in Theorem 2.1.

Example 2.2. Let R = Z/2Z with ∗ given by the identity map. Then R is
a regular ∗-ring but it does not fulfil SC2 as 1∗1 + 1∗1 = 0 but 1 6= 0. Let M

= [ a cb d ] = [ 1 1
1 1 ]. Then m = ab∗ + cd∗ = 0 but M † does not exist.

Hartwig and Patŕıcio [6] expressed the flipped MP-inverse of M = [ a 0
b d ].

Among others, they gave a necessary and sufficient condition under which
M † is of (2, 1, 0) type, i.e., the (2, 1) entry of M † is 0. Taking c = 0 in
Theorem 2.1, we obtain a special case in which M † is of (2, 1, 0) type.

Corollary 2.3. Let R be a regular ∗-ring satisfying SC2 and M = [ a 0
b d ]

∈ R2×2. Then M
† =

[
a† b∗(bb∗+dd∗)†

0 d∗(bb∗+dd∗)†

]
if and only if ab∗ = 0.
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Theorem 2.4. A ring R is a regular ∗-ring satisfying SCn if and only if

every n× 1 matrix

[
a1
...
an

]
over R is MP-invertible.

Proof. “⇐” We first prove that R has the SCn property. Assume a∗1a1 +

· · ·+a∗nan = 0 and α =

[
a1
...
an

]
. It follows thatA = [α, 0] ∈ Rn×n andA∗A = 0.

As α† exists, A† =
[
α†
0

]
. Note that A = (AA†)∗A = (A†)∗A∗A = 0. We see

that R has the SCn property.

For a ∈ R, let

[ a
...
0

]†
=[c1, · · · , cn]. Then c1 is the MP-inverse of a by a

direct check.
Therefore, R is a regular ∗-ring satisfying SCn.

Conversely, let α =

[
a1
...
an

]
∈ Rn×1 and A = [α, 0] ∈ Rn×n. By hypothesis

A† exists and set A† =

 β1
...
βn

. It is easy to see α† = β1.

Cline [2, Theorem 2] provided the presentation for the MP-inverse of
A+C, where A and C are complex matrices such that AC∗ = 0. His formula
indeed holds in the ring case, i.e., for any a, c ∈ R with ac∗ = 0,

(a+ c)† = a† + (1− a†c)[u† + (1− u†u)vc∗(a†)∗a†(1− cu†)],

where u = (1− aa†)c, w = a†c(1− u†u) and v = (1 +w∗w)−1. Note that the
invertibility of 1 +w∗w is guaranteed by our assumption at the beginning of
this section (see [6, p. 182]).

Hartwig and Patŕıcio [6, p.183] simplified the above formula to

(a+ c)† = (1 + y∗)(1 + yy∗)−1s+ u†,

where u = (1−aa†)c, s = a†(1− cu†) and y = a†c(1−u†u). In addition, they
proved the following result.

Lemma 2.5. [6, p.186] Let R be a regular ∗-ring satisfying SC2 and let
A,C ∈ R2×2 with AC∗ = 0. If I + Y Y ∗ is invertible then

(A+ C)† = (I + Y ∗)(I + Y Y ∗)−1S + U †,
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where U = (I − AA†)C, S = A†(I − CU †) and Y = A†C(I − U †U).

Lemma 2.6. Given a ∈ R, [ 1
a ] is MP-invertible if and only if 1 + a∗a is

invertible.

Proof. “⇒” Let [ 1a ]† = [b, c]. As ([ 1
a ][b, c])∗ = [ 1

a ][b, c], we have (ac)∗ = ac,
b∗ = b and c∗ = ab. As [ 1a ] = [ 1a ] [b, c] [ 1a ], we get b+ ca = 1. So, (1 + a∗a)b =
b∗ + a∗c∗ = (b+ ca)∗ = 1, and hence b∗(1 + a∗a) = 1.

Conversely, pose y = (1 + a∗a)−1[1, a∗]. It is easy to check that y is the

MP-inverse of [ 1
a ].

By virtue of Lemma 2.5, we can now prove our main theorem of this
paper. To calculate simply, we introduce the following notations

e = a∗a+ b∗b, f = a∗c+ b∗d, g = c− ae†f, h = d− be†f,
j = g∗g + h∗h, k = e†f(1− j†j), l = e†(a∗ − fj†g∗) and m = e†(b∗ − fj†h∗).

Theorem 2.7. Let R be a regular ∗-ring satisfying SC2 and M = [ a c
b d ]

∈ R2×2.

Then M † =
[
p r
q s

]
, where

p = (1 + kk∗)−1l, r = (1 + kk∗)−1m,
q = j†g∗ + k∗(1 + kk∗)−1l and s = j†h∗ + k∗(1 + kk∗)−1m.

Proof. Let A = [ a 0
b 0 ], C = [ 0 c

0 d ], U = (I − AA†)C, S = A†(I − CU †)
and Y = A†C(I − U †U). As M = A + C and AC∗ = 0, then M † =
(I + Y ∗)(I + Y Y ∗)−1S + U †.

It is straightforward to check that A† = (A∗A)†A∗ =
[
e†a∗ e†b∗

0 0

]
and

U = (I − AA†)C =
[

0 g
0 h

]
. Similarly, U † = (U∗U)†U∗ =

[
0 0

j†g∗ j†h∗

]
.

Hence

Y = A†C(I − U †U) =
[
e†a∗ e†b∗

0 0

]
[ 0 c

0 d ]
[

1 0
0 1−j†j

]
= [ 0 k

0 0 ]

and
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S = A†(I − CU †) =
[
e†a∗ e†b∗

0 0

] [
1−cj†g∗ −cj†h∗
−dj†g∗ 1−dj†h∗

]
= [ l m0 0 ].

According to Theorem 2.4 and Lemma 2.6, it follows that 1 + kk∗ is
invertible and hence I + Y Y ∗ is invertible. Now, we have

(I + Y ∗)(I + Y Y ∗)−1S = [ 1 0
k∗ 1 ]

[
(1+kk∗)−1 0

0 1

]
[ l m0 0 ]

=

[
(1+kk∗)−1l (1+kk∗)−1m

k∗(1+kk∗)−1l k∗(1+kk∗)−1m

]
.

Therefore, the result follows by Lemma 2.5.

The next example shows that the assumption “R is a regular ∗-ring sat-
isfying SC2” is also essential for Theorem 2.7.

Example 2.8. Let R = Z/2Z be as in Example 2.2. The following table

exhibits two cases in which M † = [ p rq s ] does not hold.
Table

M M † 1 + kk∗
[
p r
q s

][
1 1
1 1

]
does not exist 1

[
0 0
0 0

][
1 0
1 1

] [
1 0
1 1

]
1

[
0 0
0 1

]
In the remainder of this section, we give some applications of Theorem

2.7.

Corollary 2.9. Under the hypothesis of Theorem 2.7, the following state-
ments are equivalent:

(1) M † =

[
(1+kk∗)−1e†a∗ (1+kk∗)−1e†b∗

k∗(1+kk∗)−1e†a∗ k∗(1+kk∗)−1e†b∗

]
.

(2) j = 0.

Proof. (2)⇒(1) is obvious.
(1)⇒(2). As k∗(1 + kk∗)−1 = (1 + k∗k)−1k∗, then

M † =

[
(1+kk∗)−1e†a∗ (1+kk∗)−1e†b∗

(1+k∗k)−1k∗e†a∗ (1+k∗k)−1k∗e†b∗

]
.
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Hence

(1 + kk∗)−1e†a∗ = (1 + kk∗)−1[e†(a∗ − fj†g∗)] (2.1)

and

(1 + k∗k)−1k∗e†a∗ = j†g∗ + (1 + k∗k)−1k∗[e†(a∗ − fj†g∗)] (2.2)

by Theorem 2.7. From (2.1) one can obtain e†fj†g∗ = 0. Combining this
with (2.2), we get j†g∗ = 0.

Similarly, it follows that j†h∗ = 0. Therefore, j = jj†j = jj†(g∗g + h∗h)
= 0.

A matrix M = [ a c
b d ] with coefficients in R is said to be of (i, j, 0) type

if the (i, j) entry of M is zero. Note in [3, Corollary 2.7] that aa† = a†a
for any a ∈ R† such that aa∗ = a∗a. It is easy to see that ee† = e†e since
e = a∗a+ b∗b.

If M † is of (1, 1, 0) type, then p = 0 reduces to e†a∗=e†fj†g∗ and hence
ea∗ = efj†g∗. This implies ae = gj†f ∗e. We hence obtain the following
corollary.

Corollary 2.10. Let M = [ a c
b d ]. Then M † is of (1, 1, 0) type if and only if

ae = gj†f ∗e. In this case, we have

M † =
[

0 (1+kk∗)−1m

j†g∗ j†h∗+k∗(1+kk∗)−1m

]
.

Corollary 2.11. Let M = [ a c
b d ]. Then M † is of (1, 2, 0) type if and only if

be = hj†f ∗e. In this case, we have

M † =
[

(1+kk∗)−1l 0

j†g∗+k∗(1+kk∗)−1l j†h∗

]
.

IfM † is of (2, 1, 0) type, then q = j†g∗+k∗(1+kk∗)−1l = 0. By multiplying
the above equations by 1 − j†j on the left, it follows that (1 − j†j)k∗(1 +
kk∗)−1l = 0, that is k∗(1 + kk∗)−1l = 0. Hence k∗l = 0 since k∗(1 + kk∗)−1 =
(1+k∗k)−1k∗. By substituting k∗l = 0 back into q, then follows that j†g∗ = 0.
As (1 + kk∗)−1 = 1− (1 + kk∗)−1kk∗, we have

Corollary 2.12. Let M = [ a c
b d ]. Then M † is of (2, 1, 0) type if and only if

j†g∗ = k∗l = 0. In this case, we have

M † =
[

l (1+kk∗)−1m

0 j†h∗+k∗(1+kk∗)−1m

]
.
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Corollary 2.13. Let M = [ a c
b d ]. Then M † is of (2, 2, 0) type if and only if

j†h∗ = k∗m = 0. In this case, we have

M † =
[

(1+kk∗)−1l m

j†g∗+k∗(1+kk∗)−1l 0

]
.
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[9] J.J. Koliha, P. Patŕıcio, Elements of rings with equal spectral idempo-
tents, J. Austral. Math. Soc. 72 (2002) 137-152.

[10] R. Penrose, A generalized inverse for matrices, Proc. Camb. phil. Soc.
51 (1955) 406-413.

9


