The Moore-Penrose inverse of a factorization*

Pedro Patrício ${ }^{\dagger}$
Centro de Matemática
Universidade do Minho
Campus de Gualtar
4710-057 Braga
Portugal

Abstract

In this paper, we consider the product of matrices $P A Q$, where A is von Neumann regular and there exist P^{\prime} and Q^{\prime} such that $P^{\prime} P A=A=A Q Q^{\prime}$. We give necessary and sufficient conditions in order to $P A Q$ be Moore-Penrose invertible, extending known characterizations. Finally, an application is given to matrices over separative regular rings.

1 Introduction

Let R be an arbitrary ring with unity $1, \mathcal{M}_{m \times n}(R)$ be the set of $m \times n$ matrices and $\mathcal{M}_{m}(R)$ the ring of $m \times m$ matrices over R. Let * be an involution, see [8], on the matrices over R. Given an $m \times n$ matrix A over R, A is (von Neumann) regular if there exists an $n \times m$ matrix A^{-}such that

$$
A A^{-} A=A .
$$

The set of von Neumann inverses of A will be denoted by $A\{1\}$. That is,

$$
A\{1\}=\left\{X \in \mathcal{M}_{n \times m}(R): A X A=A\right\} .
$$

[^0]A is said to be Moore-Penrose invertible with respect to * if there exists a (unique) $n \times m$ matrix A^{\dagger} such that:
\[

$$
\begin{aligned}
A A^{\dagger} A & =A, \\
A^{\dagger} A A^{\dagger} & =A^{\dagger}, \\
\left(A A^{\dagger}\right)^{*} & =A A^{\dagger}, \\
\left(A^{\dagger} A\right)^{*} & =A^{\dagger} A .
\end{aligned}
$$
\]

Also, if $m=n$, then the group inverse of A exists if there is a (unique) $A^{\#}$ such that

$$
\begin{aligned}
A A^{\#} A & =A, \\
A^{\#} A A^{\#} & =A^{\#} \\
A A^{\#} & =A^{\#} A .
\end{aligned}
$$

In this paper, we give an alternative proof of the main result from [6], as well as a more general formula for the computation of the Moore-Penrose inverse of a matrix, extending results from [9], [6] and [3]. As an application we derive the Moore-Penrose inverse of matrices over separative regular rings, using recent results that appear in [1].

2 Results

The following lemma was proved in [7] and will provide a simpler and shorter proof of [6, Theorem 1] in the next theorem.
Lemma 1. Let $A \in \mathcal{M}_{m \times n}(R)$ be a regular matrix and $B \in \mathcal{M}_{m}(R)$ such that $A X=B$ is a consistent matrix equation. Then the following conditions are equivalent:

1. $\Gamma=B A A^{-}+I_{m}-A A^{-}$is an invertible matrix for one and hence all choices of $A^{-} \in A\{1\}$.
2. $\Omega=A^{-} B A+I_{n}-A^{-} A$ is an invertible matrix for one and hence all choices of $A^{-} \in A\{1\}$.

Moreover,

$$
\Omega^{-1}=A^{-} A A^{-} \Gamma^{-1} A+I_{n}-A^{-} A
$$

and also

$$
\Gamma^{-1}=A \Omega^{-1} A^{-} A A^{-}+I_{m}-A A^{-} .
$$

Theorem 2. Let T be an $m \times n$ matrix over R. The following conditions are equivalent:

1. T is von Neumann regular and $T T^{*} T T^{-}+I_{m}-T T^{-}$is invertible.
2. T is von Neumann regular and $T^{-} T T^{*} T+I_{n}-T^{-} T$ is invertible.
3. The Moore-Penrose inverse T^{\dagger} exists w.r.t.*.

In that case, besides the expressions for T^{\dagger} in [6],

$$
\begin{aligned}
T^{\dagger} & =T^{*}\left(T T^{*} T T^{-}+I_{m}-T T^{-}\right)^{*-1} \\
& =\left(T^{-} T T^{*} T+I_{n}-T^{-} T\right)^{*-1} T^{*}
\end{aligned}
$$

Proof. (1) $\Leftrightarrow(2)$ follows from Lemma 1, taking $B=T T^{*}$.
$(3) \Rightarrow(1)$ Let T^{\dagger} and T^{-}, respectively, be the Moore-Penrose inverse and a von Neumann inverse of T. Note that

$$
\begin{aligned}
T^{\dagger} T^{\dagger}\left(T T^{*} T T^{-}\right) & =T^{\dagger *} T^{*} T^{\dagger *} T^{*} T T^{-} \\
& =T^{\dagger *} T^{*} T T^{-} \\
& =T T^{\dagger} T T^{-} \\
& =T T^{-}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(T T^{*} T T^{-}\right) T T^{\dagger} T^{\dagger *} T^{-} & =T T^{*} T T^{\dagger} T^{\dagger *} T^{-} \\
& =T T^{*} T^{\dagger *} T^{*} T^{\dagger *} T^{-} \\
& =T T^{*} T^{\dagger *} T^{-} \\
& =T T^{\dagger} T T^{-} \\
& =T T^{-}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
I_{m} & =\left(T^{\dagger *} T^{\dagger} T T^{-}+I_{m}-T T^{-}\right)\left(T T^{*} T T^{-}+I_{m}-T T^{-}\right) \\
& =\left(T T^{*} T T^{-}+I_{m}-T T^{-}\right)\left(T T^{\dagger} T^{\dagger *} T^{-}+I_{m}-T T^{-}\right)
\end{aligned}
$$

and $T T^{*} T T^{-}+I_{m}-T T^{-}$is invertible.
$(1) \Rightarrow(3)$ Let $U=T T^{*} T T^{-}+I_{m}-T T^{-}$and $V=T^{-} T T^{*} T+I_{n}-T^{-} T$.
Assume U is invertible, and consequently V invertible. As

$$
U T=T T^{*} T=T V
$$

then

$$
T T^{*}\left(T V^{-1}\right)=T=\left(U^{-1} T\right) T^{*} T
$$

and therefore T is Moore-Penrose invertible (see [8, Lemma 3]) with

$$
\begin{aligned}
T^{\dagger} & =\left(T V^{-1}\right)^{*} T\left(U^{-1} T\right)^{*} \\
& =\left(U^{-1} T\right)^{*} T\left(U^{-1} T\right)^{*} \\
& =\left(U^{-1} T T^{*} U^{-1} T\right)^{*} \\
& =\left(U^{-1} T T^{*} U^{-1} T T^{-} T\right)^{*} \\
& =\left(U^{-1} T T^{*} T T^{-} U^{-1} T\right)^{*} \\
& =\left(T T^{-} U^{-1} T\right)^{*} \\
& =\left(U^{-1} T\right)^{*}
\end{aligned}
$$

since $U T=T V, U$ commutes with $T T^{-}$and $U^{-1} T T^{*} T=T$. As $U^{-1} T=$ $T V^{-1}$,

$$
T^{\dagger}=\left(T V^{-1}\right)^{*}
$$

Remark. Assume $\mathcal{M}_{m \times n}(R)$ is $*$-regular, that is, every matrix A over R is regular (or equivalently, R is a regular ring) and

$$
A^{*} A=0 \Rightarrow A=0
$$

holds. This implication is equivalent to A is $*$-cancellable, i.e.,

$$
\begin{aligned}
A^{*} A B & =A^{*} A C \Rightarrow A B=A C \\
B^{\prime} A A^{*} & =C^{\prime} A A^{*} \Rightarrow B^{\prime} A=C^{\prime} A
\end{aligned}
$$

where $B, B^{\prime}, C, C^{\prime}$ have appropriate sizes. In this case, and by a result of R. Puystjens and D.W. Robinson (see [8, Lemma 3]), all matrices over R are Moore-Penrose invertible. So, for any T belonging to a *-regular $\mathcal{M}_{m \times n}(R)$ and for every choice of $T^{-} \in T\{1\}$,

$$
\begin{aligned}
U & =T T^{*} T T^{-}+I_{m}-T T^{-} \\
V & =T^{-} T T^{*} T+I_{n}-T^{-} T
\end{aligned}
$$

are invertible matrices.
Theorem 3. Let $A \in \mathcal{M}_{m \times n}(R)$ with von Neumann inverse A^{-}. Let $P \in$ $\mathcal{M}_{p \times m}(R)$ and $Q \in \mathcal{M}_{n \times q}(R)$. The following conditions are equivalent:

1. $\widetilde{U}=A Q Q^{*} A^{*} P^{*} P A A^{-}+I_{m}-A A^{-}$is invertible.
2. $\widetilde{V}=A^{-} A Q Q^{*} A^{*} P^{*} P A+I_{n}-A^{-} A$ is invertible.
3. $(P A Q)^{\dagger}$ exists w.r.t. ${ }^{*}$ and there exist P^{\prime}, Q^{\prime} such that $P^{\prime} P A=A=$ $A Q Q^{\prime}$.

Moreover,

$$
\begin{aligned}
(P A Q)^{\dagger} & =\left(P \widetilde{U}^{-1} A Q\right)^{*} \\
& =\left(P A \widetilde{V}^{-1} Q\right)^{*}
\end{aligned}
$$

Proof. (1) \Leftrightarrow (2).
If \widetilde{U} is invertible then $A Q Q^{*} A^{*} P^{*} A A^{-}$is invertible in the ring $A A^{-} \mathcal{M}_{m} A A^{-}$. That is, there exists $X \in A A^{-} \mathcal{M}_{m} A A^{-}$for which

$$
A Q Q^{*} A^{*} P^{*} P A A^{-} X=A A^{-}=X A Q Q^{*} A^{*} P^{*} P A A^{-}
$$

Then

$$
A^{-} A Q Q^{*} A^{*} P^{*} P A\left(A^{-} X A\right)=A^{-} A=A^{-} X A Q Q^{*} A^{*} P^{*} P A
$$

which implies $A^{-} X A \in A^{-} A \mathcal{M}_{n} A^{-} A$ is an inverse of $A^{-} A Q Q^{*} A^{*} P^{*} P A$ in $A^{-} A \mathcal{M}_{n} A^{-} A$. Therefore, $A^{-} A Q Q^{*} A^{*} P^{*} P A+I_{n}+A^{-} A$ is an invertible matrix.

$$
(3) \Rightarrow(1) .
$$

In the first place, we remark that $P A Q(P A Q)^{*}+I-P A Q(P A Q)^{\dagger}=P A Q(P A Q)^{*} P A Q(P A Q)^{\dagger}+I-P A Q(P A Q)^{\dagger}$
has inverse

$$
\left((P A Q)^{*}\right)^{\dagger}(P A Q)^{\dagger}+I-P A Q(P A Q)^{\dagger}
$$

As $(P A Q)^{\dagger}$ is in particular a von Neumann inverse of $P A Q$, then

$$
P A Q(P A Q)^{*} P A Q(P A Q)^{-}+I-P A Q(P A Q)^{-}
$$

is invertible for any choice of $(P A Q)^{-} \in P A Q\{1\}$.
It is clear that $Q^{\prime} A^{-} P^{\prime}$ is a von Neumann inverse of $P A Q$. As $(P A Q)^{\dagger}$ exists, then

$$
P A Q(P A Q)^{*} P A Q\left(Q^{\prime} A^{-} P^{\prime}\right)+I_{p}-P A Q\left(Q^{\prime} A^{-} P^{\prime}\right)
$$

is invertible, i.e.,

$$
K=P A Q Q^{*} A^{*} P^{*} P A A^{-} P^{\prime}+I_{p}-P A A^{-} P^{\prime}
$$

is invertible. Setting $E=P A A^{-} P^{\prime}$, and since $E^{2}=E$ and K is invertible, then

$$
\begin{aligned}
W & =P A Q Q^{*} A^{*} P^{*} P A A^{-} P^{\prime} \\
& =E K E
\end{aligned}
$$

is invertible in the $\operatorname{ring} E \mathcal{M}_{p}(R) E$. So, there exists a $X \in E \mathcal{M}_{p}(R) E$ such that

$$
\begin{align*}
& E=W X \tag{1}\\
& E=X W \tag{2}
\end{align*}
$$

By (1), and as $E X=X$,

$$
\begin{aligned}
P A A^{-} P^{\prime} & =E \\
& =W X \\
& =W E X \\
& =\left(W P A A^{-}\right) P^{\prime} X \\
& =\left(P A Q Q^{*} A^{*} P^{*} P A A^{-}\right) P^{\prime} X
\end{aligned}
$$

Multiplying on the left by P^{\prime} and on the right by $P A A^{-}$, we have

$$
\left(A Q Q^{*} A^{*} P^{*} P A A^{-}\right) P^{\prime} X P A A^{-}=A A^{-}
$$

and therefore

$$
\begin{equation*}
\left[\left(A A^{-}\right) A Q Q^{*} A^{*} P^{*} P\left(A A^{-}\right)\right]\left[\left(A A^{-}\right) P^{\prime} X P\left(A A^{-}\right)\right]=A A^{-} \tag{3}
\end{equation*}
$$

By (2), and as $X E=X$,

$$
\begin{aligned}
P A A^{-} P^{\prime} & =E \\
& =X W \\
& =X E W \\
& =X P A A^{-} P^{\prime} W \\
& =X P\left(A Q Q^{*} A^{*} P^{*} P A A^{-} P^{\prime}\right)
\end{aligned}
$$

Multiplying on the left by $A A^{-} P^{\prime}$ and on the right by $P A A^{-}$,

$$
\begin{equation*}
\left[\left(A A^{-}\right) P^{\prime} X P\left(A A^{-}\right)\right]\left[\left(A A^{-}\right) A Q Q^{*} A^{*} P^{*} P\left(A A^{-}\right)\right]=A A^{-} \tag{4}
\end{equation*}
$$

Combining (3) and (4), it follows that $A Q Q^{*} A^{*} P^{*} P A A^{-}$is invertible in the ring $A A^{-} \mathcal{M}_{m}(R) A A^{-}$and therefore $A Q Q^{*} A^{*} P^{*} P A A^{-}+I_{m}-A A^{-}$is an invertible matrix.
$(1) \Rightarrow(3)$ If $\widetilde{U}=A Q Q^{*} A^{*} P^{*} P A A^{-}+I_{m}-A A^{-}$is invertible, then as $A A^{-} \widetilde{U}=A Q Q^{*} A^{*} P^{*} P A A^{-}$,

$$
\begin{aligned}
A & =A A^{-} A \\
& =A A^{-} \widetilde{U} \widetilde{U}^{-1} A \\
& =A Q\left(Q^{*} A^{*} P^{*} P A A^{-} \widetilde{U}^{-1} A\right)
\end{aligned}
$$

and we take $Q^{\prime}=Q^{*} A^{*} P^{*} P A A^{-} \widetilde{U}^{-1} A$. Moreover, since $\widetilde{U} A=A Q Q^{*} A^{*} P^{*} P A$ and \widetilde{U} is invertible,

$$
A=\left(\widetilde{U}^{-1} A Q Q^{*} A^{*} P^{*}\right) P A
$$

and we can take $P^{\prime}=\widetilde{U}^{-1} A Q Q^{*} A^{*} P^{*}$. To show that $(P A Q)^{\dagger}$ exists it is sufficient to show that

$$
P A Q(P A Q)^{*} P A Q(P A Q)^{-}+I_{p}-P A Q(P A Q)^{-}
$$

is invertible for one choice of $(P A Q)^{-}$, in this case for $(P A Q)^{-}=Q^{\prime} A^{-} P^{\prime}$. As \widetilde{U} is invertible in the $\operatorname{ring} \mathcal{M}_{m}(R)$ then $A A^{-} \widetilde{U} A A^{-}$is invertible in the ring $A A^{-} \mathcal{M}_{m}(R) A A^{-}$. So, there exists a X in $A A^{-} \mathcal{M}_{m}(R) A A^{-}$such that

$$
X\left(A A^{-}\right) \widetilde{U}\left(A A^{-}\right)=\left(A A^{-}\right) \widetilde{U}\left(A A^{-}\right) X=A A^{-}
$$

So,

$$
\left[\left(A A^{-}\right) X\left(A A^{-}\right)\right]\left[\left(A A^{-}\right) A Q Q^{*} A^{*} P^{*} P\left(A A^{-}\right)\right]=A A^{-}
$$

and since $A A^{-}=\left(A A^{-}\right)^{2}=\left(A A^{-}\right) P^{\prime} P\left(A A^{-}\right)=P^{\prime} P A A^{-}$and $A=P^{\prime} P A$, it follows that
$\left[\left(A A^{-} P^{\prime}\right) P A A^{-} X P^{\prime}\left(P A A^{-} P^{\prime}\right)\right]\left[\left(P A A^{-} P^{\prime}\right) P A Q Q^{*} A^{*} P^{*}\left(P A A^{-}\right)\right]=A A^{-}$.
Multiplying on the left by P and on the right by P^{\prime},

$$
\left[\left(P A A^{-} P^{\prime}\right) P A A^{-} X P^{\prime}\left(P A A^{-} P^{\prime}\right)\right]\left[\left(P A A^{-} P^{\prime}\right) P A Q Q^{*} A^{*} P^{*}\left(P A A^{-} P^{\prime}\right)\right]=P A A^{-} P^{\prime}
$$

Analogously, as

$$
\left[\left(A A^{-}\right) A Q Q^{*} A^{*} P^{*} P\left(A A^{-}\right)\right]\left[\left(A A^{-}\right) X\left(A A^{-}\right)\right]=A A^{-}
$$

then
$\left[\left(A A^{-} P^{\prime}\right) P A Q Q^{*} A^{*} P^{*}\left(P A A^{-} P^{\prime}\right)\right]\left[\left(P A A^{-} P^{\prime}\right) P A A^{-} X P^{\prime}\left(P A A^{-}\right)\right]=A A^{-}$,
and multiplying on the left by P and on the right by P^{\prime},

$$
\left[\left(P A A^{-} P^{\prime}\right) P A Q Q^{*} A^{*} P^{*}\left(P A A^{-} P^{\prime}\right)\right]\left[\left(P A A^{-} P^{\prime}\right) P A A^{-} X P^{\prime}\left(P A A^{-} P^{\prime}\right)\right]=P A A^{-} P^{\prime}
$$

Therefore,

$$
\left(P A A^{-} P^{\prime}\right) P A Q Q^{*} A^{*} P^{*}\left(P A A^{-} P^{\prime}\right)
$$

is invertible in the ring $\left(P A A^{-} P^{\prime}\right) \mathcal{M}_{p}(R)\left(P A A^{-} P^{\prime}\right)$ and consequently

$$
\left(P A A^{-} P^{\prime}\right) P A Q Q^{*} A^{*} P^{*}\left(P A A^{-} P^{\prime}\right)+I_{p}-P A A^{-} P^{\prime}
$$

is an invertible matrix. That is,

$$
P A Q(P A Q)^{*} P A Q\left(Q^{\prime} A^{-} P^{\prime}\right)+I_{p}-P A Q\left(Q^{\prime} A^{-} P^{\prime}\right)
$$

is an invertible matrix.
Let $U=P A Q(P A Q)^{*} P A Q\left(Q^{\prime} A^{-} P^{\prime}\right)+I_{p}-P A Q\left(Q^{\prime} A^{-} P^{\prime}\right)$. As $U P A A^{-}=$ $P A A^{-} \widetilde{U}$ and the invertibility of \widetilde{U} implies the invertibility of U, then

$$
U^{-1} P A A^{-}=P A A^{-} \widetilde{U}^{-1} .
$$

Furthermore, and since $A A^{-}$commutes with \widetilde{U}, then $A A^{-} \widetilde{U}^{-1}=\widetilde{U}^{-1} A A^{-}$. So,

$$
\begin{aligned}
(P A Q)^{\dagger} & =\left(U^{-1} P A A^{-} A Q\right)^{*} \\
& =\left(P A A^{-} \widetilde{U}^{-1} A Q\right)^{*} \\
& =\left(P \widetilde{U}^{-1} A Q\right)^{*} .
\end{aligned}
$$

In addition, $\widetilde{U} A=A \widetilde{V}$ and thus $A \widetilde{V}^{-1}=\widetilde{U}^{-1} A$. So,

$$
(P A Q)^{\dagger}=\left(P A \widetilde{V}^{-1} Q\right)^{*}
$$

Remark. Using the same notation of the previous proof, it is known (see [6]) that if U (and therefore V) is invertible then $P A Q$ is MoorePenrose invertible with

$$
(P A Q)^{\dagger}=(P A Q)^{*}\left(U U^{*}\right)^{-1}\left(P A Q(P A Q)^{*}\right) .
$$

As $U P A A^{-}=P A A^{-} \widetilde{U}$ and the invertibility of \widetilde{U} implies the invertibility of U, then

$$
U^{-1} P A A^{-}=P A A^{-} \widetilde{U}^{-1} .
$$

Furthermore, and since $A A^{-}$commutes with \widetilde{U}, then $A A^{-} \widetilde{U}^{-1}=$ $\widetilde{U}^{-1} A A^{-}$. So,

$$
\begin{aligned}
(P A Q)^{\dagger} & =Q^{*} A^{*} P^{*} U^{*-1} U^{-1} P A Q(P A Q)^{*} \\
& =Q^{*} A^{*} \widetilde{U}^{*-1}\left(A^{-}\right)^{*} A^{*} P^{*} P A A^{-} \widetilde{U}^{-1} A Q(P A Q)^{*} \\
& =Q^{*} A^{*} \widetilde{U}^{*-1} P^{*} P \widetilde{U}^{-1} A Q(P A Q)^{*} \\
& =(A Q)^{*}\left(P \widetilde{U}^{-1}\right)^{*} P \widetilde{U}^{-1} A Q(P A Q)^{*} \\
& =\left(P \widetilde{U}^{-1} A Q\right)^{*} P \widetilde{U}^{-1} A Q(P A Q)^{*}
\end{aligned}
$$

In addition, $\widetilde{U} A=A \widetilde{V}$ and thus $A \widetilde{V}^{-1}=\widetilde{U}^{-1} A$. So,

$$
(P A Q)^{\dagger}=\left(P A \tilde{V}^{-1} Q\right)^{*} P A \tilde{V}^{-1} Q(P A Q)^{*}
$$

Theorem 4. If $P A Q$ is a matrix product for which there exist matrices P^{\prime} and Q^{\prime} such that $P^{\prime} P A=A=A Q Q^{\prime}$, then the Moore-Penrose inverse of $P A Q$ exists if and only if $(P A)^{1,3}$ and $(A Q)^{1,4}$ exist, in which case

$$
(P A Q)^{\dagger}=(A Q)^{1,4} A(P A)^{1,3}
$$

Proof.
Assume, in the first place, $(P A)^{1,3}$ and $(A Q)^{1,4}$ exist. Then

$$
A Q=A Q(A Q)^{1,4} A Q=A Q(A Q)^{*}\left((A Q)^{1,4}\right)^{*}
$$

and hence

$$
P A Q=P A Q(P A Q)^{*}\left(P^{\prime}\right)^{*}\left((A Q)^{1,4}\right)^{*}
$$

Analogously,

$$
P A=P A(P A)^{1,3} P A=\left((P A)^{1,3}\right)^{*}(P A)^{*} P A
$$

and hence

$$
P A Q=\left((P A)^{1,3}\right)^{*}\left(Q^{\prime}\right)^{*}(P A Q)^{*} P A Q
$$

We therefore have,

$$
(P A Q)^{\dagger}=(A Q)^{1,4} P^{\prime} P A Q Q^{\prime}(P A)^{1,3}=(A Q)^{1,4} A(P A)^{1,3}
$$

Conversely, assume $(P A Q)^{\dagger}$ exists. By one hand,

$$
P A Q=P A Q(P A Q)^{*}\left((P A Q)^{\dagger}\right)^{*}
$$

which implies $A Q=A Q(A Q)^{*} X$ is a consistent matrix equation on X. We will show that $X^{*} \in A Q\{1,4\}$. Indeed it is a von Neumann inverse of $A Q$ as

$$
A Q=A Q X^{*} A Q(A Q)^{*} X=A Q X^{*} A Q
$$

and the idempotent $X^{*} A Q$ is symmetric since

$$
\begin{aligned}
X^{*} A Q & =X^{*} A Q X^{*} A Q \\
& =X^{*} A Q X^{*} A Q(A Q)^{*} X \\
& =X^{*} A Q(A Q)^{*} X .
\end{aligned}
$$

Similar arguments show that $(P A)^{1,3}$ exists if $(P A Q)^{\dagger}$ exists.

3 Matrices over separative regular rings

Throughout this section, R is a separative regular ring, i.e., for any finitely generated projective R-modules A and B, the following cancellation property holds:

$$
A \oplus A \cong A \oplus B \cong B \oplus B \Rightarrow A \cong B .
$$

A recent result states that every square matrix over a separative regular ring admits a diagonal reduction, i.e., is equivalent to a diagonal matrix (see [1, Theorem 2.5]). This means that for square matrices over separative regular rings the Moore-Penrose inverse can be characterized by [6, Theorem 2].

For nonsquare matrices over separative regular rings the characterization of the Moore-Penrose inverse can now be done in the following way:

Let $A_{m \times n} \in \mathcal{M}_{m \times n}(R)$, with $m<n$. Then we can complete it to a square matrix by adding zeros, and it follows from [1] that there exist invertible matrices P, Q and a diagonal matrix D such that

$$
\left[\begin{array}{l}
A_{m \times n} \tag{5}\\
0_{(n-m) \times n}
\end{array}\right]=P D Q .
$$

Therefore

$$
A_{m \times n}=\left(\left[\begin{array}{ll}
I_{m} & 0_{m \times(n-m)} \tag{6}
\end{array}\right] P\right) D Q .
$$

We are now in the conditions of Theorem 3 since $P^{\prime}=P^{-1}\left[\begin{array}{l}I_{m} \\ 0_{(n-m) \times m}\end{array}\right]$ is a matrix such that

$$
P^{\prime}\left(\left[\begin{array}{cc}
I_{m} & 0_{m \times(n-m)}
\end{array}\right] P\right) D=D .
$$

We therefore can apply Theorem 3 to the factorization (6). That is, $A_{m \times n}^{\dagger}$ exists if and only if

$$
D Q\left[\begin{array}{ll}
A_{n \times m}^{*} & \left.0_{n \times(n-m)}\right] P D D^{-}+I_{n}-D D^{-}
\end{array}\right.
$$

is invertible for one and hence all choices of von Neumann inverses D^{-}of D.

For the case $n<m$, the outline of the application is analogous.

Acknowledgment

I want to thank Professor R. Puystjens for comments and for suggesting the application to matrices over separative regular rings.

References

[1] P. Ara, K.R. Goodearl, K.C. O’Meara and E. Pardo. Diagonalization of matrices over regular rings. Linear Algebra and Its Applications, 265:147-163, 1997.
[2] S.L. Campbell and C.D. Meyer, Jr. Generalized Inverses of Linear Transformations, Dover, 1979.
[3] M.C. Gouveia and R. Puystjens. About the group inverse and the Moore-Penrose inverse of a product. Linear Algebra and Its Applications, 150:361-369, 1991.
[4] R.E. Hartwig, More on the Souriau-Frame algorithm and the Drazin inverse. SIAM J. Appl. Math., 31(1):42-46, 1976.
[5] D. Huylebrouck, R. Puystjens and J. van Geel. The Moore-Penrose inverse of a matrix over a semi-simple artinian ring. Linear and Multilinear Algebra, 16:239-246, 1984
[6] P. Patrício. The Moore-Penrose inverse of von Neumann regular matrices over a ring. Linear Algebra and Its Applications, to appear.
[7] P. Patrício and R. Puystjens. Generalized invertibility in two semigroups of a ring. Submitted.
[8] R. Puystjens and D.W. Robinson. The Moore-Penrose inverse of a morphism with factorization. Linear Algebra and Its Applications, 40:129141, 1981.
[9] R. Puystjens and D.W. Robinson. Symmetric morphisms and the existence of Moore-Penrose inverses. Linear Algebra and Its Applications, 131:51-69, 1990.
[10] R. Puystjens and R.E. Hartwig. The group inverse of a companion matrix. Linear and Multilinear Algebra, 43:137-150, 1997.

[^0]: *Research partially supported by Departamento de Matemática da Universidade do Minho, Portugal.
 ${ }^{\dagger}$ E-mail: pedro@math.uminho.pt

