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Abstract. A mixed-integer nonlinear programming problem (MINLP)
is a problem with continuous and integer variables and at least, one
nonlinear function. This kind of problem appears in a wide range of
real applications and is very difficult to solve. The difficulties are due
to the nonlinearities of the functions in the problem and the integrality
restrictions on some variables. When they are nonconvex then they are
the most difficult to solve above all. We present a methodology to solve
nonsmooth nonconvex MINLP problems based on a branch and bound
paradigm and a stochastic strategy. To solve the relaxed subproblems
at each node of the branch and bound tree search, an algorithm based
on a multistart strategy with a coordinate search filter methodology is
implemented. The produced numerical results show the robustness of the
proposed methodology.
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1 Introduction

A wide range of problems arising in practical applications, which involve both
discrete decisions and nonlinear real-world phenomena, are modeled as mixed-
integer nonlinear programming (MINLP) problems. Examples of practical appli-
cations modeled as MINLP appear in various areas, such as, process engineering
[14], water, gas, energy and transportation networks [5]. For a review of a wide
range of MINLP applications, see [3].



MINLP problems combine the combinatorial difficulty of optimizing over dis-
crete variable sets with the challenge of handling nonlinear functions. They are
the most general optimization problems, containing as special cases the mixed-
integer linear programming (MILP) problem and the nonlinear programming
(NLP) problem. This generality allows the modeling of a wide range of prac-
tical applications. When all functions involved in the problem are convex, the
problem is a convex MINLP problem; otherwise it is a nonconvex one. Although
MINLP problems are in general NP-hard, convex MINLPs are much easier to
solve than nonconvex ones. This is due to the fact that the continuous relaxation
of a convex MINLP problem, which is obtained by considering all the variables
continuous, is itself convex and the computed solution being a global one pro-
vides a lower bound for the optimal solution of the MINLP. A variety of effective
exact solution methods for convex MINLPs have been devised based on this fact.
Unfortunately, when the MINLP is nonconvex, the continuous relaxation of a
nonconvex MINLP is itself a global optimization problem, and therefore likely to
be NP-hard. There is no guarantee that the computed solution of the continuous
relaxation is a global optimum. The situation gets even worse when the MINLP
model involves nonsmooth functions. For example, when the objective and con-
straints are provided as black-boxes. In this case, the MINLP is a nonsmooth
and nonconvex problem.

There are different strategies to solve MINLP problems and a great majority
rely on a branch and bound paradigm. One of the most well-known solvers for
MINLP problems is the BARON (Branch And Reduce Optimization Naviga-
tor) solver [23]. For a review of the available solvers, we refer the reader to [3].
Recently, the nonconvex MINLP research area became more interesting due to
its range of applications and the new techniques for globally solving NLP prob-
lems [8]. In the last 10–15 years, innovative heuristic type algorithms have also
appeared: genetic algorithm [15], ant colony [22], pattern search algorithms [1],
multistart Hooke and Jeeves algorithm [12], and differential evolution [19].

In this work we develop a derivative-free methodology to solve nonsmooth
nonconvex MINLP problems. The proposed method is based on a branch and
bound (BB) scheme, and the NLP problems that appear in the BB tree search
are solved to optimality by a derivative-free global method that is based on a
multistart algorithm coupled with a coordinate search filter method, initially
developed in [11]. The therein called MCSFilter method is able to find multiple
minima of a nonconvex NLP problem, and consequently the global one. The
MCSFilter method is appropriate to solve nonsmooth problems since neither
analytical nor numerical derivatives are required.

Our BB paradigm for nonsmooth nonconvex MINLP problems, henceforth
denoted by BBMCSFilter, has been implemented in MatLab and the numer-
ical experiments with a benchmark set of problems show that the method is
competitive with others of the same type.

The remaining part of the paper is organized as follows. In Section 2 the
MINLP problem is described and in Section 3 the proposed BBMCSFilter al-
gorithm is presented and discussed. Section 4 reports on the computational ex-



periments carried out using a benchmark set of problems (from the engineering
field) from the MINLPLib library available online [6] and we conclude the paper
with Section 5.

2 The MINLP Problem

The problem to be solved is of the form

min f(x, y)
subject to gj(x, y) ≤ 0, j ∈ J

x ∈ X, y ∈ Y
(1)

where f is the objective function f : Rn −→ R, gj , j ∈ J = {1, · · · ,m}, are the
constraint functions and J is the index set of the g functions. The continuous
variables are represented by the vector x, with X ⊂ Rnc being the set of simple
bounds on x:

X = {x ∈ Rnc : lx ≤ x ≤ ux} ,

with lx, ux ∈ Rnc . The integer variables are represented by the vector y, where
Y ⊂ Zni is the set of simple bounds on y:

Y = {y ∈ Zni : ly ≤ y ≤ uy} ,

with ly, uy ∈ Zni . The parameter n = nc + ni represents the total number of
variables. We will assume that at least one of the functions is nonlinear since this
study aims to focus on MINLP problems. In the present study we are particularly
interested in nonsmooth and nonconvex MINLPs. With this kind of problems
two major issues have to be addressed:

– one is related with the integrality of some variables;

– the other is concerned with the lack of smoothness and convexity of the
functions.

To settle the first issue, a BB paradigm is used. A brief description of the
main ideas behind this classical technique is presented in the next section. The
second issue is crucial since the nonconvex NLP relaxed problems that arise in the
nodes of the BB tree search have multiple minima, some global and others local.
When a minimum is found it is not possible to know if it is a global or a local
one, until all the minima are computed and compared. Unless, a global search
exact method with guaranteed convergence to a global minimum is used when
solving the nonconvex NLP problems. Some heuristic methods that do not use
derivative information by methodically searching the space can also guarantee
convergence to global solutions with probability one. Both real analysis point-
wise convergence and stochastic convergence are appropriate when convergence
to a global minimum is required.



3 The BBMCSFilter Method

As previously stated, the BB paradigm and the MCSFilter method constitute
the two major parts of the method. First, a summary of the BB paradigm is
presented.

3.1 BB Method

The BB method was initially devised for MILP problems but has been applied
ever since to MINLPs too. The first reference to nonlinear MINLP problems
appears in 1965 [7]. The extension to convex MINLP problems is an easy task
since the minimum of the convex relaxed NLP problem is also a global one [18].
BB methodology can be explained accordingly with a tree search [3,4,20]. We
first define a continuous relaxation.

Definition 1. Consider the (convex or nonconvex) MINLP problem (1). A con-
tinuous relaxation of problem (1) is:

min f(x, y)
subject to gj(x, y) ≤ 0, j ∈ J

x ∈ X ⊂ Rnc , y ∈ YR ⊂ Rni

(2)

with YR = {y ∈ Rni : ly ≤ y ≤ uy}, meaning that all variables are real numbers.

At the beginning of the process all the integer variables are relaxed and the
relaxed NLP problem (2) is solved. This is the first node (also known as root)
of the tree search. After solving this problem, if all integer variables take integer
values at the solution then this solution also is the solution of the MINLP prob-
lem. However, in general, at this stage, some integer variables take non-integer
values. Then, a tree search is performed in the space of the integer variables.
Branching generates new NLP subproblems by adding new simple bounds to the
new relaxed NLP subproblems. Next, a new subproblem is selected and solved.
The solution of each relaxed subproblem provides a lower bound, f , for the
descent nodes of the tree (or the child nodes). The integer solutions (at some
nodes of the tree) provide upper bounds, f , on the optimal integer solution. This
process of branching at each node continues until:

– the lower bound exceeds the best known upper bound;
– the NLP subproblem is infeasible;
– the solution provides integer values for the integer variables, thus providing

an upper bound.

The BB algorithm stops when there are no more nodes to explore. In a BB
technique there are two crucial components. One is related with choosing a
good branching variable. The main goal is to choose the branching variable that
minimizes the size of the tree that needs to be searched. However, this is not
practical and the selection of a branching variable that maximizes the increase
in the lower bound at a node is a good alternative. The other component is



related with the choice of which relaxed problem (node) should be solved next.
The main goal here is to find a good feasible solution as quickly as possible in
order to reduce the upper bound, and to prove optimality of the current best
integer solution by increasing the lower bound as quickly as possible.

Our main contribution is related with solving the relaxed NLP subproblems
that appear in the multiple nodes of the tree search by a derivative-free multistart
method so that a global solution of the relaxed subproblem (2) is obtained. This
is a challenging task that is accomplished by the MCSFilter method.

3.2 MCSFilter Method for the Relaxed NLP Subproblems

In each node of the tree search a nonsmooth nonconvex NLP subproblem is
required to be globally solved. To obtain the global optimal solution of these
relaxed problems is crucial since fathoming /eliminating nodes of the BB tree
search can no longer be made if the solution is not a global one. The process of
eliminating nodes is very important because if all subproblems need to be solved
the BB scheme will be very time consuming. So, it is necessary to eliminate some
nodes as the result of a bounding scheme with f and f .

The MCSFilter method which is used to solve the relaxed nonsmooth non-
convex NLP subproblems at each node of the tree has nice features:

– does not make use of any derivative information;
– solves nonconvex NLP problems;
– finds multiple solutions, global as well as the local ones;
– is based on a multistart strategy with regions of attraction coupled with a

coordinate search filter methodology;
– is, relatively, simple to implement.

Since the variables of the relaxed problem are all real, hereafter we use z to denote
the vector of all the n variables, the vectors l and u of the set Rn to denote the
lower and upper bounds respectively, of all the variables. Thus, problem (2) is
now formulated as:

min f(z)
subject to gj(z) ≤ 0, j ∈ J .

z ∈ [l, u] ⊂ Rn
(3)

This method is based on a multistart strategy. To explore the search space more
effectively, the multistart algorithm sequentially generates points

zi = li + λ (ui − li) , i = 1, . . . , n,

where λ is a random number uniformly distributed in [0, 1], and applies a local
search aiming to converge to the optimal solutions of the problem (3). Since
this simple strategy may converge to some or all the minimizers over and over
again, the implemented multistart strategy incorporates the concept of regions
of attraction of minimizers to avoid convergence to the already computed solu-
tions [17,24]. The region of attraction of a minimizer, zi∗, associated with a local
search procedure L, is defined as:

Ai ≡
{
z ∈ [l, u] : L(z) = zi∗

}
, (4)



where L(z) is the minimizer obtained when the local search procedure L starts
at point z. Computing the region of attraction Ai of a minimizer zi∗ is not an
easy task. Alternatively, a stochastic procedure may be used to estimate the
probability, p, that a sampled point will not belong to the union of the regions
of attraction of already computed minimizers. This probability is estimated sim-
ilarly to [24] but using instead forward differences to estimate the gradient of f
[10]. Different stopping rules have been tested in a multistart algorithm context,
see [17]. The algorithm should stop when all minima have been identified with
certainty, and it should not require a large number of calls to the local search
procedure to decide that all minima have been found. The rule used in our im-
plementation gives an estimate of the fraction of uncovered space [17]. A formal
description of the multistart algorithm for solving the nonsmooth nonconvex
NLP subproblem (2), based on the CSFilter method as the procedure for the
local search (4), is presented in Algorithm 1.

Algorithm 1 Multistart algorithm

1: Set Z∗ = ∅ (contains the computed minimizers), k = 1, t = 1;
2: Randomly generate z ∈ [l, u];
3: Compute z1∗ = L(z) using Algorithm 2, set Z∗ = Z∗ ∪ z1∗, define A1;
4: repeat
5: Randomly generate z ∈ [l, u];
6: if z has a high probability of being outside

⋃k
i=1Ai then

7: Compute z∗ = L(z) using Algorithm 2, set t = t+ 1;
8: if z∗ /∈ Z∗ then
9: Set k = k + 1, zk∗ = z∗, Z

∗ = Z∗ ∪ zk∗ , compute Ak;
10: else
11: Update Al (region of attraction of the nearest to z∗ minimizer)
12: end if
13: end if
14: until the stopping rule is satisfied

Local CSFilter Method. The CSFilter method that combines a derivative-
free local search technique with a filter methodology [13] is used as the search
procedure L, to compute a minimizer z∗ starting from a sampled point z ∈ [l, u]
[11]. The classical coordinate search, which is a direct search method [16], and the
filter methodology are combined to construct a local search procedure that does
not require any derivative information. The filter methodology is implemented
to handle the constraints by forcing the local search towards the feasible region.
The main idea behind the filter approach is to interpret problem (3) as a bi-
objective optimization problem aiming to minimize both the objective function
f(z) and a nonnegative continuous aggregate constraint violation function θ(z)
defined by

θ(z) = ‖g(z)+‖2 + ‖(l − z)+‖2 + ‖(z − u)+‖2 (5)



where v+ = max{0, v}. Therefore, the problem is rewritten as a bi-objective
optimization problem of the form

min
z

(θ(z), f(z)) . (6)

The filter technique incorporates the concept of nondominance, present in the
field of multi-objective optimization, to build a filter that is able to accept
trial approximations if they improve the constraint violation or objective func-
tion value [1,2,13]. A filter F is a finite set of points z, corresponding to pairs
(θ(z), f(z)), none of which is dominated by any of the others. A point z is said
to dominate a point z′ if and only if θ(z) ≤ θ(z′) and f(z) ≤ f(z′).

We now discuss the implemented CSFilter algorithm for the local procedure
[11]. The pseudo-code for the local filter-based coordinate search algorithm is
presented below in Algorithm 2. At the beginning, and every time the procedure

Algorithm 2 CSFilter algorithm

Require: z (sampled in the Multistart algorithm) and parameter values; set z̃ = z,
zinf
F = z, t = z̃;

1: Initialize the filter;

2: Set α = min{1, 0.05
∑n

i=1 ui−li
n

};
3: repeat
4: Compute the trial approximations tic = z̃ + αdi, for all di ∈ D⊕;
5: repeat
6: Check acceptability of trial points tic using (7) and (8);
7: if there are some tic acceptable by the filter then
8: Update the filter;
9: Choose tbestc ;

10: Set t = z̃, z̃ = tbestc ; update zinf
F if appropriate;

11: else
12: Compute the trial approximations tic = zinf

F + αdi, for all di ∈ D⊕;
13: Check acceptability of trial points tic using (7) and (8);
14: if there are some tic acceptable by the filter then
15: Update the filter;
16: Choose tbestc ;
17: Set t = z̃, z̃ = tbestc ; update zinf

F if appropriate;
18: else
19: Set α = α/2;
20: end if
21: end if
22: until new trial tbestc is acceptable
23: until the stopping condition is satisfied

is invoked inside the multistart algorithm, the filter is initialized to F = {(θ, f) :
θ ≥ θmax}, where θmax > 0 is an upper bound on the acceptable constraint
violation.



Let D⊕ denote the set of 2n coordinate directions, defined as the positive
and negative unit coordinate vectors, D⊕ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en}.
The search begins with a central point, the current approximation z̃, as well
as 2n trial approximations tic = z̃ + αdi, for di ∈ D⊕, where α > 0 is a step
size. The constraint violation value and the objective function value of all 2n+1
points are computed. If some trial approximations improve over z̃, reducing θ
or f by a certain amount (see equations (7) and (8)), and are acceptable by
the filter, then the best of these non-dominated trial approximations, tbestc , is
selected and the filter is updated (adding the corresponding entries to the filter
and removing any dominated entries). Then, this best approximation becomes
the new central point in the next iteration, z̃ ← tbestc . If, on the other hand,
all trial approximations tic are dominated by the current filter, then all tic are
rejected, and a restoration phase is invoked.

To avoid the acceptance of a point tic, or the corresponding pair
(
θ(tic), f(tic)

)
,

that is arbitrary close to the boundary of F , the trial tic is considered to improve
over z̃ if one of the conditions

θ(tic) < (1− γθ) θ(z̃) or f(tic) ≤ f(z̃)− γf θ(z̃) (7)

holds, for fixed constants γθ, γf ∈ (0, 1). However, the filter alone cannot ensure
convergence to optimal points. For example, if a sequence of trial points satis-
fies θ(tic) < (1− γθ) θ(z̃) then it could converge to an arbitrary feasible point.
Therefore, when z̃ is nearly feasible, θ(z̃) ≤ θmin, for a small positive θmin, the
trial approximation tic has to satisfy only the condition

f(tic) ≤ f(z̃)− γf θ(z̃) (8)

instead of (7), in order to be acceptable.
The best non-dominated trial approximation is selected as follows. The best

point tbestc of a set T = {tic : tic = z̃ + αdi, di ∈ D⊕} is the point that satisfies
one of two following conditions:

i) if there are some feasible points in T , tbestc is the point that has the smallest
objective function value among the feasible points;

ii) if there are no feasible points in T , tbestc is the point that has the smallest
constraint violation among the non-dominated infeasible points.

We remark that the filter is updated whenever the trial approximations tic verify
conditions (7) or (8) and are non-dominated.

When it is not possible to find a non-dominated best trial approximation,
and before declaring the iteration unsuccessful, a restoration phase is invoked.
In this phase, the most nearly feasible point in the filter, zinfF , is recuperated
and the search along the 2n coordinate directions is carried out about it to
find the set T = {tic : tic = zinfF + αdi, di ∈ D⊕}. If a non-dominated best
trial approximation is found, this point becomes the central point of the next
iteration and the iteration is successful. Otherwise, the iteration is unsuccessful,
the search returns back to the current z̃, the step size α is halved, and new



2n trial approximations tic are generated around z̃. If a best non-dominated trial
approximation is still not found, the step size reduction is repeated since another
unsuccessful iteration has occurred. When α falls below αmin [16], the algorithm
stops, where αmin is a small positive tolerance.

4 Numerical Results

To analyze the performance of the BBMCSFilter algorithm, a set of 23 test prob-
lems is used (see Table 1). The set contains inequality and equality constrained
problems. Almost all problems are selected from published literature in several
different engineering fields [12,19,21]. The BBMCSFilter method was coded in
MatLab. Crucial BB algorithm specifications are:

– the branching variable is chosen by a simple heuristic that picks up the
variable which maximizes the increase in the lower bound at that node, i.e.,

arg max
i=1,...,ni

{|f
i
− f |},

where f = f(x′, y′) is the solution of the NLP subproblem (x′ ∈ X, y′ ∈ YR)
and f

i
= f(x′, yi), for i = 1, . . . , ni, being yi = [y′i]R the scalar rounding of

y′i to the nearest integer;
– the next subproblem to be solved is selected by a depth-first strategy, also

known as last-in-first-out, so that the upper bounds are found as early as
possible.

The results were obtained in a PC with an Intel Core i7-2600 CPU (3.4GHz)
and 8 GB of memory. In the CSFilter method, we set after an empirical study:
γθ = γf = 10−5, αmin = 10−3, θmin = 10−6 and θmax = 102 max{1, 1.25θ(z)},
where z is the point on entry in the local search. A maximum of 10 points were
generated in the multistart algorithm and each problem was solved 30 times.

Table 1 shows the numerical results produced by the proposed BBMCSFilter
method. The columns in the table show:

– the known global optimum, f∗;
– the average value of the obtained objective function values (over the 30

runs), ‘favg’;
– the standard deviation of obtained function values, ‘SD’;
– the average number of function evaluations, ‘nfeavg’;
– the average CPU time (in seconds), ‘Tavg’;
– the average number of nodes, ‘Nodesavg’;
– the successful rate (percentage of runs that found a solution within an error

of 10−2 of the known global optimal solution), ‘SR’ (%).

We may conclude from Table 1 that our algorithm found the global optimal
solution in all the 30 runs when solving 17 of the 23 problems. The computed
solutions are of high quality and the favg for all problems are very close to the
known minimum. We remark that our values of favg under f∗ (on problems f4,



Table 1. Numerical results produced by BBMCSFilter

Problem f∗ favg SD Tavg nfeavg Nodesavg SR

f1 2 2.00082 3.6E-04 10.0 3530 1.1 100
f2 2.124 2.124590 1.4E-06 1.5 1259 1.0 100
f3 1.07654 1.081640 8.1E-03 3.8 5274 3.0 87
f4 99.245209 99.239635 1.0E-07 0.2 670 1.0 100
f5 3.557463 3.560848 2.0E-03 59.3 76775 11.0 97
f6 4.579582 4.582322 9.3E-04 54.9 75413 10.7 100
f7 -17 -16.998054 2.3E-03 9.5 4296 1.8 100
f8 -32217.4 -32217.42778 0.0E00 3.2 18051 5.7 0
f9 7.6671801 7.667583 9.5E-04 30.3 28090 3.9 100
f10 -2.4444 -2.444444 0.0E00 2.4 2736 5.0 100
f11 3.2361 3.236121 8.7E-05 18.8 41635 10.0 100
f12 1.125 1.125115 2.9E-04 42.3 7770 2.8 100
f13 87.5 87.507043 1.7E-02 252.5 41852 3.0 90
f14 -6.666667 -6.666131 1.8E-04 0.5 1122 1.0 100
f15 -5.6848 -5.651952 2.6E-02 3567.4 393345 59.8 30
f16 2.000 2.000000 0.0E00 52.7 29847 4.9 100
f17 3.4455 3.445808 2.1E-04 18.2 5469 6.0 100
f18 2.2000 2.200000 0.0E00 8.6 11182 3.7 100
f19 6.0098 6.010714 6.6E-04 21.1 37132 5.3 100
f20 -17.0000 -16.994605 5.5E-03 52.5 27149 1.1 80
f21 -4.514202 -4.513448 6.8E-04 84.4 50146 4.6 100
f22 -13.401904 -13.401930 3.6E-04 57.8 84790 14.0 100
f23 -1.08333 -1.083245 5.4E-05 2.6 2458 1.0 100

Table 2. Numerical results obtained with BBGA

Problem favg SD Tavg nfeavg SR

f1 2.00 6.8E-05 2.5 10481 100
f2 2.1246 2.1E-04 2.4 11527 100
f3 1.078992 2.4E-03 3.3 13635 20
f5 3.564265 7.6E-03 13.5 47282 23
f6 4.5987 2.9E-02 13.7 46678 53
f7 -17 1.8E-04 3.4 14292 100
f8 -32217.4 1.5E-11 1.3 5220 100
f15 -5.684 1.9E-03 65.0 247055 87
f16 2.000 8.9E-07 3.2 12808 67
f17 3.446 2.0E-05 7.8 23489 100
f18 2.200 5.8E-05 4.5 15290 87

f8 and f22) are due to the slight constraint violation allowed by the algorithm
when it stops. The values of SD are equal to zero on problems f8, f10, f16 and f18,
and are moderate, ranging from 2.6E-02 to 1.0E-07, on the remaining problems,
showing the consistency of the algorithm. The number of function evaluations
and the time required by the algorithm are higher than one could expect.



To compare our results with those of a BB scheme that uses the genetic al-
gorithm solver from MatLabTM Optimization Toolbox, to solve the nonsmooth
nonconvex NLP relaxed subproblems, we include Table 2 with the results avail-
able in [9]. The columns in the table list the values of favg, SD, Tavg, nfeavg and
SR. The comparison with the therein called BBGA method involves 11 prob-
lems from the previous set of 23 problems. We conclude from the tables that
BBMCSFilter method outperforms BBGA in terms of criteria SD and SR, but
is outweighted by BBGA in criterion Tavg on all tested problems but one. As far
as nfeavg is concerned, BBMCSFilter is better than BBGA in 6 of the tested
problems.

Finally, we compare our results with those reported in [19]. This paper
presents two hybrid differential evolution (DE) algorithms. One, enhances a
modified DE (MDE) algorithm with a local search operator, therein denoted
by MDE-LS; the other, adds a second metaheuristic – the harmony search algo-
rithm – to cooperate with the MDE algorithm, and is denoted by MDE-IHS. The
results obtained from the MDE algorithm from which the other two hybrids were
created are also reported. These results are shown in Table 3. When a com-
parison is made between BBMCSFilter and MDE it is possible to state that our
method performs better than MDE, relatively to favg and SD. The BBMCSFilter
method requires in general more function evaluations than MDE but on the other
hand the quality of the solutions is higher. When comparing with the results
of MDE-LS algorithm, we observe that BBMCSFilter produces better values of
favg and SD in 7 of the 9 common problems (see Table 3). However, the values
of nfeavg are larger with BBMCSFilter on 6 problems. Observing the results
obtained by MDE-IHS algorithm in Table 3, we may conclude that this method
wins over BBMCSFilter in number of function evaluations, although the quality
of the solutions in terms of favg and SD are lower than that of BBMCSFilter in
5 of the 9 common problems.

5 Conclusions

We have presented a method to solve nonsmooth nonconvex MINLP problems,
the BBMCSFilter method, and showed that the BB paradigm coupled with
a stochastic multistart method based on the classical coordinate search for a
local exploitation of a minimizer is effective and worthy of further research.
The MCSFilter method is used to solve the nonsmooth nonconvex NLP relaxed
subproblems that appear in the multiple nodes of the BB tree search. The filter
methodology aims to promote convergence to feasible and optimal solutions.

A set of benchmark problems was used to test the algorithm performance
and the results are very promising. We observed that the proposed method
consistently located the global optimum of all problems. The quality of the
solutions is good and one can state that the BBMCSFilter behaves generally
better than the other methods in comparison.
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One problematic issue of the proposed BBMCSFilter method is related to
the required large number of function evaluations which is a consequence of the
set of search directions D⊕ inside the MCSFilter method. For large dimensional
problems, the computational effort in terms of number of function evaluations
and consequently CPU time greatly increases with n. This issue is to be deepen
in the near future.
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