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7 Abstract
8 Purpose: Successful therapy of patients with prostate cancer is highly dependent on reliable diagnostic
9 and prognostic biomarkers. Brachyury is considered a negative prognostic factor in colon and lung cancer;
10 however, there are no reports on Brachyury’s expression in prostate cancer.
11 Experimental Design: In this study, we aimed to assess the impact of Brachyury expression in prostate
12 tumorigenesis using a large series of human prostate samples comprising benign tissue, prostate intrae-
13 pithelial neoplasia (PIN) lesions, localized tumor, and metastatic tissues. The results obtained were
14 compared with what can be inferred from the Oncomine database. In addition, multiple in vitro models
15 of prostate cancer were used to dissect the biologic role of Brachyury in prostate cancer progression.
16 Results: We found that Brachyury is significantly overexpressed in prostate cancer and metastatic tumors
17 when compared with normal tissues, both at protein and at mRNA levels. Brachyury expression in the
18 cytoplasm correlates with highly aggressive tumors, whereas the presence of Brachyury in the nucleus is
19 correlated with tumor invasion. We found that Brachyury-positive cells present higher viability, prolifer-
20 ation, migration, and invasion rates than Brachyury-negative cells. Microarray analysis further showed that
21 genes co-expressed with Brachyury are clustered in oncogenic-related pathways, namely cell motility, cell-
22 cycle regulation, and cell metabolism.
23 Conclusions: Collectively, the present study suggests that Brachyury plays an important role in prostate
24 cancer aggressiveness and points, for the first time, to Brachyury as a significant predictor of poor prostate
25 cancer prognosis. Our work paves the way for future studies assessing Brachyury as a possible prostate cancer
26 therapeutic target. Clin Cancer Res; 1-13. ©2014 AACR.
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29
30 Introduction surgical techniques, and improvements in adjuvant radio-
31 Prostate cancer is the most common malignancy in men therapy and che.rnot’herapy, rne.tastasis is a ffeque?“ event
32 and the second leading cause of cancer-related deaths that hinders patlents cure. One important mechan'lsrp that
33 worldwide. In the United States, prostate cancer is the governs cancer cell invasion and ﬁ%r'ther metastasis is cel-
34 leading cause of cancer-related mortality (1). Despite lular .eplthellal—mesenchymal transition (EMT; ref. 2). The
35 advances in prevention and early detection, refinements in EMT is a complex process that involves downregulation of
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epithelial markers, such as E-cadherin, and upregulation of
mesenchymal markers, such as Snail, Slug, and N-cadherin,
among other alterations. These lead to loss of epithelial cell
polarity and acquisition of more motile and invasive phe-
notypes, promoting cancer cell dissemination into distant
sites (3).

The T-box protein Brachyury is a transcription factor
required for mesoderm specification during embryo devel-
opment (4), which is widely expressed in notochord cells
and plays a pivotal role in notochord development (5).
Recently, Brachyury was associated with tumor aggres-
siveness in several tumor types (6-11) and was found to
be a significant predictor of poor prognosis in early colon
cancer (8) and lung cancer (6). In vitro studies suggested that
these associations are driven by EMT, accomplished by
increased migratory and invasion capacity (12-14) and
increased cancer stem cell features (10, 11). Different stud-
ies have reported divergent effects of Brachyury expression
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Translational Relevance

There is an emerging interest and demand to discover
new robust biomarkers of prostate cancer development
and prognostic. The presence of embryonic T-box tran-
scription factor Brachyury has been recently associated
with cancer aggressiveness and metastasis. Currently, the
role of Brachyury in prostate cancer tumorigenesis is
unknown. Using a large cohort of human prostate tissues
with different malignancy grades (normal, intraepithe-
lial lesions, primary tumors, and metastasis), in silico
data, and in vitro studies, we provide the first evidence of
aberrant Brachyury activation in primary and metastatic
prostate cancer and its clinical relevance. In addition, we
found that Brachyury nuclear expression predicts inva-
sive and metastatic prostate cancer behavior. Herein, we
suggest Brachyury as a novel biomarker of prostate
cancer metastasis and a potential therapeutic target for
patients with advanced prostate cancer.

on cell proliferation. In lung cancer cell lines, it was dem-
onstrated that Brachyury blocks cell-cycle progression and,
therefore, mediates tumor resistance (15). However, in
adenoid cystic carcinoma cells, Brachyury promoted tumor
growth and metastasis formation in vivo (11). Therefore,
despite the described oncogenic role of Brachyury, some
authors suggest that it can also act as a tumor suppressor
gene (16).

A recent in vitro study showed that Brachyury overexpres-
sion promoted cell invasion in prostate cancer, probably
mediated by TGFB1 production (13). However, knowledge
on the role of Brachyury in prostate cancer progression
remains very limited. In the present work, we investigated
the clinical impact of Brachyury expression in a well-char-
acterized cohort of human prostate cancer samples and
evaluated its biologic role in prostate cancer cell prolifera-
tion and invasiveness. We report that Brachyury is over-
expressed in primary prostate cancer and metastatic tissues
and that Brachyury expression is correlated with classic
parameters of prostate cancer progression and aggres-
siveness. We also provide data that suggest Brachyury as a
therapeutic target in prostate cancer treatment.

Materials and Methods

Tissue samples

Prostate tissues were obtained from 480 patients with a
64-year-old median age (range, 46-74), who performed
radical prostatectomy as primary therapy (no preceding
hormonal or radical therapy) from 1993 to 2010 at Centro
Hospitalar do Porto and Centro Hospitalar do Alto Ave-
Guimaraes, Portugal. The series included a total of 211
nonneoplastic tissue, 143 high-grade prostate intraepithe-
lial neoplasia (PIN) lesions, and 409 primary prostate
carcinomas. High-grade PIN lesions and nonneoplastic
tissues were obtained from tumor adjacency. Thirteen nor-
mal samples were obtained from patients undergoing rad-

ical cystoprostatectomy for transitional cell carcinoma of
the bladder. Nine metastatic tissues were obtained from
patients who performed biopsies for metastatic prostate
cancer. Formalin-fixed and paraffin-embedded tumors and
clinicopathologic data were retrieved from the files of the
Department of Pathology of both the hospitals. Tumors
were staged using the 2010pTNM American Joint Commit-
tee on Cancer (AJCC) classification (17) and graded using
the Gleason grading system 2005 (18). Samples were orga-
nized into tissue microarray (TMA) as previously described
(19). The histologic features of the sampled areas were
representative of the final Gleason score for the case. The
study was previously approved by Local Ethical Review
Committee of Centro Hospitalar do Porto (ref. no. 017/
08-010-DEFI/015-CES).

Cell lines and cell culture

Five human prostate cell lines representing in vitro models
of prostate cancer progression and aggressiveness, PNT2,
22RV1, LNCaP, PC3, and DU145 (ATCC), were grown in
RPMI-1640 medium supplemented with 10% FBS (GIBCO,
Invitrogen) and 1% penicillin/streptomycin (P/S; GIBCO,
Invitrogen). PNT2 is a normal prostate cell line, 22RV1 is a
prostate epithelial carcinoma cell line, LNCaP is derived
from lymph node metastasis and is hormone-sensitive, and
DU145 and PC3 cell lines are derived from brain and bone
metastasis, respectively, and represent poorly differentiated
tumors.

Brachyury overexpression and knockdown in prostate
cancer cell lines

22RV1 and DU145 cell lines were transfected with full-
length human Brachyury in pcDNA4/TO vector, thus des-
ignated pcBrachyury. The empty vector (designated 4/TO)
was used as control (12). Stable 22RV1 and DU145 cell
pools with pcBrachyury expression were obtained following
treatment with 50 ug/mL zeocin (Invitrogen). PC3 cells
were transfected with Brachyury-specific shRNA construct
(shBrachy.1) or empty vector alone (pLKO.1l; Sigma-
Aldrich) using X-tremeGENE HP transfection reagent
(Roche) as recommended by the manufacturer. Stable PC3
cells with depleted endogenous Brachyury expression were
obtained following treatment with 5 pg/mL of puromycin
(Sigma-Aldrich).

Expression analysis by semiquantitative RT-PCR

Total RNA was extracted from cell lines using TRIzol
Reagent (Invitrogen S.A.). One microgram of RNA was
reverse-transcribed using Phusion RT-PCR Kit (Finnzymes),
as recommended by the manufacturer. The primers used are
presented in Supplementary Table S1. No amplification was
obtained when RNA was mock-transcribed without adding
reverse transcriptase.

Western blot analysis

Cells were lysed in buffer containing 50 mmol/L Tris, pH
7.6-8, 150 mmol/L NaCl, 5 mmol/L EDTA, 1 mmol/L Naj
VO,, 10 mmol/L NaF, 10 mmol/L Na pyrophosphate, 1%
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NP-40, and 1/7 of protease cocktail inhibitors (Roche).
Proteins were resolved on standard 12% SDS-PAGE gels,
transferred onto nitrocellulose membranes, and probed
with antibody against Brachyury (AF2085, R&D Systems)
and GAPDH (sc-69778, Santa Cruz Biotechnology, Inc.) at
4°C overnight. Blot detection was done by chemilumines-
cence (ECL Western Blotting Detection Reagents, GE
Healthcare) using Chemidoc (Bio-Rad).

Immunofluorescence microscopy

Cells were plated on glass coverslips placed into 12-well
plates and allowed to adhere overnight. Cells were fixed with
4% paraformaldehyde (PFA) in 1X PBS, washed, and per-
meabilized with 0.1% Triton X-100. Then, cells were blocked
in 10% FBS, labeled for 1 hour at room temperature with
primary anti-Brachyury antibody (sc-20109, Santa Cruz
Biotechnology, Inc.), washed, and incubated at room tem-
perature for 1 hour with a secondary anti-rabbit Alexa-488
antibody (Invitrogen-Molecular Probes). Coverslips were
mounted on microscope slides with Vectashield Mounting
Medium with DAPI (Vector Laboratories). Digital images
were recorded with Olympus BX61 (Olympus Corporation).

Cell viability and proliferation assays

Colony formation assays were used to assess the survival
capacity of 22RV1, DU145, and PC3 cells with and without
Brachyury. A total of 1 x 10 cells per well were seeded into
6-well plates. After 15 days of culture, colonies formed were
fixed in 4% PFA, washed, stained with 0.05% crystal violet,
and manually counted.

MTS and bromodeoxyuridine (BrdUrd) assays were used
to evaluate the viability and proliferation capacity over time.
Atotal of 2 x 10> cells per well for 22RV1 and 1 x 10> cells
per well for DU145 and PC3 were plated into 96-well plates
in triplicate and allowed to adhere overnight. After 6 hours
of starvation (RPMI only), viable or proliferative cells were
quantified using the Cell Titer96 Aqueous cell proliferation
(MTS, Promega) or Cell Proliferation ELISA, BrdUrd (col-
orimetric, Roche Applied Science) assay and this was the
value for time 0. After 24, 48, and 72 hours, cell viability and
proliferation were again assessed. The results were calibrat-
ed to the starting value (time 0 hours, considered as 100% of
viability/proliferation) as previously described (20).

Wound-healing migration assay

Cells were seeded in 12-well plates and cultured to at least
95% of confluence. Monolayer cells were washed with 1X
PBS and scraped with a plastic pipette tip and then incu-
bated with fresh RPMI medium. The "wounded" areas were
photographed by phase-contrast microscopy at different
time points. The relative migration distance was calculated
as described (20, 21).

Matrigel invasion assay

Matrigel invasion assays were performed using 8-um pore
size BD BioCoat Matrigel Invasion Chambers (BD Bios-
ciences). Briefly, after rehydration with RPMI, 10% FBS, the
upper compartment of the chamber received 2.5 x 10* cells

per well grown in RPMI only, whereas the lower compart-
ment contained fresh medium supplemented with 10% FBS
and 10 ng/mL of EGF (Prepotech). After 22 hours of
incubation, the upper surface of the filter was washed with
1X PBS and fixed with 4% PFA. Then, residual cells were
cleared with a cotton swab, the filter washed with 1X PBS,
and invasive cells attached to the lower filter surface were
mounted in Vectashield Mounting Medium with DAPI
(Vector Laboratories). Images were recorded on an Olym-
pus BX61 microscope (Olympus Corporation), and inva-
sive cells counted using ImageJ software.

IHC analysis

Histologic slides with 4-um-thick tissue sections were
subjected to THC analysis according to the streptavidin-
biotin peroxidase complex system (UltraVision Large Vol-
ume Detection System Anti-Polyvalent, HRP; LabVision
Corporation), using the primary antibody raised against
Brachyury (diluted 1:200; sc-20109, Santa Cruz Biotech-
nology, Inc.) or against AMACR (diluted 1:50; 504R-16,
Cell Marque). CD44 staining was performed using an anti-
human CD44 antibody (diluted 1:100; 156-3C11, AbD
Serotec) and detected using Vectastain Universal Elite ABC
kit PK-6200 (Vector Laboratories). The negative control was
treated identically but with omitted primary antibody.
Sections were scored in a double-blind fashion for cyto-
plasm expression following a semiquantitative criterion
based on the intensity (0, negative; 1, weak; 2, moderate;
3, strong) and percentage of cells stained (0, 0% of immu-
noreactive cells; 1, <25% of immunoreactive cells; 2, 25%-
50% of immunoreactive cells; and 3, >50% of immunore-
active cells). Both components were considered for an
overall semiquantitative staining score (range, 0-6). Sam-
ples with scores 0, 1, and 2 were considered negative and
those with scores 3-6 were considered positive. Tissues
sections were separately evaluated for expression in the
nucleus (>25% nuclear staining was considered positive
and cases with <25% of nuclear staining were considered
negative).

In silico analysis of Brachyury expression in the
Oncomine database

Brachyury mRNA expression was assessed in 7 prostate
cancer datasets (LaTulippe, ref. 22; Varambally, ref. 23;
Grasso, ref. 24; Taylor, ref. 25; Glinsky, ref. 26; Yu, ref. 27;
TCGA, ref. 28; and Arredouani, ref. 29) from the Oncomine
database (30, 31). Categorization of patients with Brachy-
ury-positive and Brachyury-negative prostate cancer was
based on the log, median-centered intensity values of
Brachyury probes per study, and a linear model was fitted
to estimate the association significance. Patient samples in
each study with Brachyury expression values greater than its
median intensity were grouped as Brachyury-positive and
others were grouped as Brachyury-negative. Brachyury
expression was further correlated with corresponding
patient clinical data available.

Microarray co-expression studies were extracted from the
Oncomine database. Microarray expression profiles were
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clustered by functional importance and signaling pathways
using DAVID v6.7 bioinformatic tool (The Database for
Annotation, Visualization and Integrated Discovery;
refs. 32, 33).

Statistical analysis

Univariate (x> test) and multivariate analyses (linear
regression model) were used to assess the correlations
between Brachyury expression and clinicopathologic fea-
tures from primary specimens. Pearson test was used to
evaluate the correlation between gene expression profiles.
Simple comparisons between 2 different conditions were
analyzed using the Student ¢ test and, for comparison of 2
conditions over time, we used the 2-way ANOVA (Bonfer-
roni post-test). The statistical analysis was performed using
SPSS software (version 19.0) or using Prism GraphPad
software (version 5.0a). The level of significance in the
statistical analyses is indicated as *, P < 0.05; **, P < 0.01;
***, P <0.001.

Results

Brachyury protein is overexpressed in prostate cancer
and PIN lesions

Brachyury protein expression was assessed by IHC in a
series of 784 prostate tissues, including normal tissues, PIN
lesions, primary prostate cancer samples with different
Gleason scores and prostate cancer metastasis. Figure 1
shows representative results of intensity scores observed
for Brachyury expression. Normal prostate gland and adja-
cent nonneoplastic tissues presented absence or low levels
of Brachyury staining when compared with neoplastic tis-

sues (Fig. 1A; Supplementary Fig. S1) and were therefore
clustered in a single group, designated nonneoplastic tis-
sues. Brachyury was expressed in the nuclei and/or cyto-
plasm of epithelial cells in nonneoplastic tissues, PIN
lesions, prostate cancer, and metastatic tissues (Fig. 1B-
D; Supplementary Fig. S1). Overall, the number of cases
presenting cytoplasm protein expression increased from
nonneoplastic to prostate cancer and PIN lesions and to
metastasis (33.9%, 55.2%, 61.5%, and 100% of positive
cases, respectively; P < 0.001; Fig. 2A). Brachyury nuclear
staining was present in a comparable number of cases in
nonneoplastic (25.0%), PIN lesions (38.6%), and prostate
cancer cases (25.4%), in contrast to 100% of metastatic
tissue samples (P < 0.001; Figs. 1vi and 2A). Interestingly,
Brachyury was also detected in the stroma (Supplementary
Fig. S1) with a significant reduction of stroma-positive
cases from nonneoplastic tissues (52.6%), to PIN lesions
(44.2%), and to prostate cancer (14.2%; P< 0.001; Fig. 2A),
indicating a possible role for Brachyury in prostate cancer
tumor tissue microenvironment.

Heatmap analysis of overall Brachyury protein expression
showed that Brachyury is remarkably overexpressed in
PIN, prostate cancer, and metastatic prostate tissues when
compared with nonneoplastic tissues (Fig. 2B). The higher
expression profile was found in metastasis with scores
consistently >4.

Brachyury protein overexpression is associated with
poor prognosis in prostate cancer

The clinical impact of Brachyury protein expression levels
was further explored in our cohort of 409 primary prostate

Figure 1. Brachyury expression in
nonneoplastic tissues, PIN lesions,
prostate cancer, and metastatic
tissues. Brachyury is absent or
expressed at low levels in
nonneoplastic tissues (A, normal
gland). Primary prostate cancer
Brachyury-positive cases can
exhibited only cytoplasm staining
(B) or both cytoplasm and nuclear
staining (C). Metastatic lesion
showing both cytoplasm and
nuclear (D). Magnification, x200 (A)
and x400 (B-D).
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cancer. Univariate outcome analysis showed that Brachy-
ury-positive cases (scores > 3) are significantly (P < 0.001)
associated with the prostate cancer biomarker o-methyla-
cyl-CoA racemase (AMACR; Supplementary Table S2). Bra-
chyury-positive cases correlated with highly undifferentiat-
ed prostate cancer tumors (P = 0.007, Table 1) and, con-
cordantly, a strong tendency to be associated with stem cell
marker CD44 was observed (P = 0.054; Supplementary
Table S2). Importantly, Brachyury protein levels increased
with the Gleason score (P < 0.027, Table 1; P < 0.01,
Supplementary Fig. S2). To evaluate the clinical impact of
the presence of Brachyury in the nucleus, a comparison
between Brachyury nuclei-positive and nuclei-negative in
prostate cancer—positive cases was performed (nonneoplas-
tic tissues, n = 76; PIN lesion, n = 88; prostate cancer, n =
228; metastasis, n = 9). Primary prostate cancer tumors with
nuclear Brachyury staining were significantly associated
with perineural invasion (P = 0.046) and with capsular
invasion (P = 0.025; Table 1), which is in agreement
with predominant nuclear expression in metastasis (Figs. 1
and 2). Because Gleason scores and pT stage are known
prognostic biomarkers, we performed multivariate analysis
to determine whether high Brachyury expression has
an independent statistical value. We observed that Bra-
chyury is significantly associated with capsular invasion
(P =10.027, Table 1) on primary prostate cancer samples.

No significant correlations were found for Brachyury
staining in stroma with clinicopathologic parameters by
univariate analysis (Table 1). Yet, the multivariate analysis
showed a significant association with capsular invasion
(P = 0.030, Table 1), indicating the possible role of Bra-
chyury on tumor microenvironment.

Altogether, these data suggest that high Brachyury levels
are associated with patient’s poor outcome and indicate that
nuclear Brachyury staining in prostate cancer is an inde-
pendent prognostic factor.

In silico validation of the role of Brachyury expression
in prostate cancer aggressive behavior

To corroborate our findings, we extended the analysis to
microarray profiling datasets of prostate cancer tissues
available on the Oncomine database (30, 31). Brachyury
mRNA expression was analyzed in 6 independent prostate
cancer datasets (LaTulippe, ref. 22; Varambally, ref. 23;
Grasso, ref. 24; Taylor, ref. 25; Yu, ref. 27; and Arredouani,
ref. 29) comprising a total of 97 normal prostate gland, 304
prostate cancer, and 83 prostate cancer metastasis samples.
We found that Brachyury was significantly overexpressed in

prostate tissues in multiple microarray cancer profiling
datasets, in particular in metastatic prostate cancer (Fig.
2C). This was concordant with our protein analysis reported
above. Importantly, although multiple probes were used to
determine Brachyury mRNA levels in these datasets
(23996_at, 206524 _at, A_24_P63642, 7679), they all con-
sistently showed that Brachyury overexpression isa common
event in primary and metastatic prostate cancer (Fig. 2C).

We next assessed the impact of Brachyury in prostate
cancer prognosis at the mRNA level, exploring the micro-
array profiling datasets of localized prostate tumors with
clinical data from Oncomine (Table 2). Univariate statisti-
cal analysis revealed that high levels of Brachyury expression
correlated with higher (>7) Gleason scores for the Taylor
(25), Glinsky (26), and LaTulippe (22) datasets (P = 0.043,
P =0.042, and P = 0.049, respectively; Table 2). In agree-
ment with protein IHC levels, the percentage of Brachyury-
positive cases directly increased with the Gleason score (P <
0.05; Supplementary Fig. S2). In addition, high Brachyury
mRNA levels correlated with pT (Yu, ref. 27; P=0.033) and
N stage (Taylor, ref. 25; P = 0.043), biochemical recurrence
(Taylor, ref. 25; P = 0.048), capsular invasion and extra-
prostatic extension (Glinsky, ref. 26; P = 0.002 and 0.007,
respectively; Table 2). A similar tendency could also be
observed in the other datasets. In the multivariate analysis,
we found that high Brachyury mRNA levels still correlate
with capsular invasion and extraprostatic extension
(Glinsky, ref. 26; P = 0.001 and 0.032, respectively) and
with biochemical recurrence (TCGA, ref. 28; P =
0.004; Table 2).

Prostate cell lines recapitulate Brachyury expression
profiles of human prostate cancer tissues

To explore the biologic role of Brachyury in prostate
cancer aggressiveness, 5 prostate cancer cell lines (PNT2,
22RV1, LnCaP, PC3, and DU145), representative of differ-
ent degrees of prostate cancer progression, were screened for
Brachyury expression by semiquantitative RT-PCR and
Western blot analyses. Brachyury protein subcellular local-
ization was additionally evaluated by immunofluorescence.
We observed an absence of Brachyury at both mRNA and
protein levels in the nonmalignant prostate cell line (PNT2)
and in the primary prostate cancer cell line (22RV1; Sup-
plementary Fig. S3A). In contrast, the metastatic cell lines
LNCaP and PC3 showed strong nuclear and cytoplasm
Brachyury expression both at mRNA and at protein levels
(Supplementary Fig. S3A). The metastatic DU145 cell line
was negative for mRNA by conventional RT-PCR but still

Figure 2. Brachyury is overexpressed in prostate cancer (PCa) and metastatic tissues. A, representation of Brachyury-positive cases according to Brachyury
localization; left, overall score for cytoplasm staining; middle, presence in nucleus; right, presence in stromal cells. B, heatmap of protein levels in

tissue microarray prostate samples (range, 0-6). There is a predominant blue staining (negative, score < 3) in normal tissues and orange/red staining (positive,
score > 3) in PIN, prostate cancer, and metastasis tissues. Each column represents a single case and it is possible verify the respective normal adjacent
tissue or PIN lesion of a specific prostate cancer case. In the majority of the cases, an increased expression from normal to PIN and to prostate cancer
can be appreciated in the same patient. C, analysis of microarray expression data for Brachyury levels from the Oncomine database. Logz median-
centered ratio expression is present for 6 different datasets (Yu, ref. 27; Varambally, ref. 23; Grasso, ref. 24; Taylor, ref. 25; Latullipe, ref. 22; and Arredouani, ref.
29) representing 4 different probes for Brachyury detection (34996_at, 206524 _at, A_24_P63642, and 7679). Brachyury is commonly overexpressed in
prostate cancer tissues and PCa metastasis. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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exhibited low levels of nuclear protein expression (Supple-
mentary Fig. S3A). These findings indicate that prostate cell
lines are good models to study the functional role of
Brachyury in prostate cancer cells, as they recapitulate the
expression profiles found in human clinical samples.

Brachyury promotes prostate cancer aggressiveness in
vitro

To address whether the modulation of Brachyury expres-
sion influences the tumorigenic properties of prostate can-
cer cells, Brachyury was overexpressed in primary (22RV1)
and metastatic (DU145) prostate cancer cell lines. Success-
ful ectopic overexpression was obtained upon transfection
of both cell lines with the pcBrachyury expression vector
and Brachyury protein exhibited nuclear localization (Sup-
plementary Fig. S3B). To investigate the effect of Brachyury
inhibition, a specific short-hairpin clone (shBrachy.1) was
used to deplete Brachyury in a positive metastatic prostate
cell line (PC3; Supplementary Fig. S3B).

We initially studied the biologic role of Brachyury on
prostate cancer cell viability and proliferation (Fig. 3A;
Supplementary Fig. S4A). pcBrachyury prostate cells had
a significant (P < 0.05) viability advantage over time (MTS
assay) compared with the cells transfected with the empty
vector (4/T0). Colony formation assays revealed a signifi-
cant (P < 0.05) increase in the number of the colonies
formed in the pcBrachyury-transfected cells when com-
pared with the control cells (Fig. 3A, Supplementary Fig.

S4A). The opposite findings were obtained with Brachyury
depletion in shBrachy.1-PC3 cells (P < 0.05; Fig. 3A). To
determine whether this viability advantage was due to
higher proliferation rates, we analyzed BrdUrd incorpo-
ration during S-phase of the cell cycle. The presence of
Brachyury, whether endogenous or exogenously overex-
pressed, promoted higher rates of proliferation over time
(P < 0.05; Fig. 3A; Supplementary Fig. S4A). We further
performed wound migration and Matrigel invasion assays
in the transfected cell lines and observed that both 22RV1
and DU145 pcBrachyury cells had a higher migratory
capacity over time and increased cell invasion capability
than the empty vector cells (P < 0.05; Fig. 3B; Supplemen-
tary Fig. S4B). When Brachyury was depleted in an endog-
enously positive cell line, we were able to attenuate the
aggressive behavior (P < 0.05; Fig. 3B).

To characterize the molecular players underlying prostate
aggressiveness in vitro, we studied the expression profile of
some key genes involved in EMT, migration, and stemness
processes. We observed that Brachyury expression was asso-
ciated with a decrease of the epithelial marker E-cadherin
and concomitant increased expression of mesenchymal
genes (N-cadherin, fibronectin, and Snail), as well as upre-
gulation of metalloprotease MMP14 (Supplementary Fig.
S5). Concordantly with THC analysis in human prostate
cancer (Supplementary Table S2), Brachyury overexpres-
sion was associated with an increased expression of the stem
cell marker CD44 (Supplementary Fig. S5).
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Figure 3. Evaluation of biologic role of Brachyury in prostate cancer cell lines. A, effect of Brachyury on viability and proliferation of prostate cells (22RV1 and
PC3) evaluated by MTS, colony formation, and BrdUrd assays. B, wound-healing and Matrigel invasion assays were used to evaluate the role of Brachyury in
migration and invasion, respectively. The presence of Brachyury correlated with increased cell viability, proliferation, migration, and invasion. Red lines and
black bars, Brachyury-positive cell lines; blue lines and white bars, Brachyury-negative or Brachyury-depleted cell lines. *, P <0.05; **, P<0.01; ***, P<0.001.
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Genes co-expressed with Brachyury in microarray
analyses are associated with tumorigenic clusters

We clustered the genes co-expressed with Brachyury
in prostate tissues available at the Oncomine database
(30, 31) by their functional role and importance in signal
transduction pathways using the DAVID bioinformatic tool

(Fig. 4A). We found that the majority of genes co-expressed
with Brachyury were functionally clustered in the categories
of immune response, cell membrane/receptor activity,
development, cell motility, and chemotaxis pathways in
cancer and response to hormone stimulus. A subanalysis
by KEGG signaling pathways revealed that Brachyury

MMP14
(A_24_P82106)

A Functional annotation clustering B KEGG functional annotation chart
Enrichment score Number of genes
00 05 10 15 20 25 30 35 40 45 0 5 1 15 2
L 1 L 1 N L 1 1 1 L N L )
Immune ] Immune resp: ]
e 8 1 P<0.05 of cell proliferati ]
D P 1 Pathways in cancer -
Cellmotility ] (S L ——
Pathways in cancer-————————_] c e —
¢ : Cytokine-cytokine receptor ]
P to stimulus =} ] MAPK si ing pathway )
tagadi it . g
1 n 0 ligand. t —_—
DNA bmdln'g/transcrlpllon [EE IR I — hd ';\xon quidance § ]
P ——
of 0 systev_n Endocytocis {1
b ] to [T E e—
—]
%yotzil::::-cytoldpa receptor Int'erac!!on Colorectal cancer
P F i i i "
) RNA bit —1l Whnt signaling pathway
of cell di p e | Melanoma. ]
g i i Pancreatic cancer -
Cell adhesiond——1 NS Chronic myeloid leukemia {————1
Regulation of nervous system development__________] g8 s el
of is/ cell death = ] N ineage |
Cell cycle/mitosis4———————] Jak-STAT signaling pathway4——_]
Protein izatic | Hormone metabolic process4—____]
Sodium ion ion L — of angi i ]
GTPase regulatory activity {1
Extracellular space
Organelle envelope/ lumen=""]
Response to DNA damage/ DNA repair-{_]
Cognition/sensory perception =]
lon binding/ Zinc-finger=]
E-cadherin N-cadherin Fibronectin
C (A_23.P206359) (A_23_P38732) (A_32_P201723)
2 6
.

MMP24
(A_23_P91446)

SNAIL

IL-8
(549)

s 20(a 24 P63642) Brachyury

o J Y 7o (A_24_P63642)

10 10 15 20 (A_24_P63642)

-3

TGFb1
(41445 _at)

-0 -08 05 10 15

Figure 4. In silico analysis of genes co-expressed with Brachyury in prostate cancer. Microarray expression profiles of Brachyury co-expressed genes were

clustered by functional role and signaling pathways using DAVID in silico tool. The functional clusters organized by enrichment score (A) and the KEGG
signaling pathway analysis (B). Brachyury co-expressed genes are associated with pathways involved in tumor aggressiveness, namely, in immune cell
response, positive cell-cycle regulation, cell motility, and chemotaxis. C, in silico analysis indicates an inverse correlation between Brachyury and epithelial
marker E-cadherin and a direct correlation with several genes involved with EMT (fibronectin, MMP14, MMP24, Snail, IL8, and TGF1). NS, not significant.
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co-expressed genes are grouped in pathways associated with
higher aggressiveness, namely, pathways in cancer, positive
cell-cycle regulation, and immune response (Fig. 4B). These
analyses strongly point to a role of Brachyury, not only in
cell migration and invasion but also as a regulator of the cell
cycle and in cancer microenvironment metabolism. Impor-
tantly, we found that the levels of Brachyury expression
in prostate cancer tissues are directly correlated with those
of IL8 and TGFP1 (Fig. 4C), which are involved in EMT
and cancer microenvironment modulation, as previously
described (13, 14). Accordingly, there is a correlation of
Brachyury expression with the expression of genes associated
with EMT process (like fibronectin) and migration (MMP14;
MMP24; Fig. 4C) that support our expression analysis
(Supplementary Fig. S5).

Discussion

The T-box transcription factor Brachyury was initially
discovered for its role in mouse mesoderm development
and differentiation (34). This involves massive conversion
of epithelial cells into migratory and invasive mesenchymal
cells during gastrulation via a process known as EMT (2, 4).
Several reports have demonstrated that EMT is critical for
prostate cancer progression, as acquisition of mesenchymal
features may favor dissemination and resistance to therapy
(35). High levels of Brachyury have previously been
reported in various types of cancer (5-9, 11) and a phase
I clinical trial of a vaccine targeting Brachyury-positive
tumors (GI-6301) is currently under way (36, 37). Although
prostate cancer is a leading cause of cancer-related deaths in
men worldwide, a characterization of Brachyury biologic
role in prostate tumorigenesis is missing.

Our study reports for the first time that the transcription
factor Brachyury is aberrantly overexpressed across prostate
malignancy and, in particular, nuclear Brachyury staining is
associated with prostate invasion and prostate metastatic
tissues. Our findings indicate Brachyury as an independent
prognostic factor in prostate cancer. The role of Brachyury
nuclear staining in metastasis was demonstrated in other
tumor types, such as colorectal, lung cancer, and oral
squamous cell carcinoma (6-9). Herein, we also found
that cytoplasm immunostaining in prostate cancer is asso-
ciated with prostate cancer biomarker AMACR and with
highly aggressive tumors. The role of Brachyury in the cell
cytoplasm remains to be elucidated, yet, we can hypothesize
that it interacts with other proteins and in this way regulates
cell behavior in a nontranscription manner.

It has been shown that Brachyury expression can influ-
ence tumor microenvironment through the release of sol-
uble factors that could induce adjacent epithelial tumor
cells to undergo an EMT and acquire metastatic potential
(14). In prostate cancer, the activation and secretion to the
extracellular environment of soluble factors that mediate
the cross-talk between tumor cells and tumor stroma, such
as interleukins and growth factors, has been reported to play
a role in tumor progression (13, 14, 38-40). Our analysis
confirm a previously result that demonstrated that Brachy-

ury increases the expression and secretion of TGFB1 in a
prostate cell line (13). However, the influence of Brachyury
expression in stromal cells has not yet been characterized.
To our knowledge, we provide the first evidence for
decreased Brachyury expression in stromal cells with pros-
tate malignancy, at variance with the reported upregulation
in tumor cells. Therefore, we can hypothesize that Brachy-
ury has different roles in stromal and tumor cells and that it
could be involved in the regulation of tumor microenvi-
ronment. In addition, we found that the majority of Bra-
chyury co-expressed genes are involved in immune or
metabolic processes.

By Brachyury overexpression and downregulation in pros-
tate cancer cell lines, we demonstrated its role in tumor cell
migration and invasion, as well as in cell viability and
proliferation. Our findings were further corroborated by an
in silico analysis with multiple genes functionally clustered in
pathways related with cell motility and cell proliferation. A
study performed by Shomoda and colleagues demonstrated
that ablation of Brachyury in adenoid cystic carcinoma (ACC)
cells decreased the number of metastasis and tumor size in
vivo (11). Moreover, depletion of Brachyury in chordoma cells
promotes a complete block of cell proliferation (41). An
opposite role for Brachyury in cell proliferation was demon-
strated in lung and colorectal cell lines by Huang and
collaborators, where Brachyury blocks cell cycle progression
and mediates tumor resistance to conventional antitumor
therapies (15). Therefore, it can be deduced that the role of
Brachyury may be tissue-specific or cell-type-dependent.

Brachyury seems to be a key driver of EMT in various
human tumors by increasing expression of genes such as Slug,
Snail, MMPs, IL8, and TGFp1 (6,9, 13-15, and current study).
A possible link between cells undergoing EMT and cells with
"stem cell-like" properties was recently described (42). The
role of Brachyury in conferring stemness properties was
already demonstrated in colorectal cancer cells (10) and in
ACC cells (11). The present study shows that Brachyury is
more represented in CD44" prostate tissues, and ectopic
Brachyury overexpression in vitro promotes CD44 expression.
Because CD44" prostate tumors are more resistant to the
currently used therapies (43, 44), we speculate that Brachyury
could have a role in prostate cancer therapy resistance. Future
studies are warranted to elucidate this hypothesis.

In conclusion, the present work reports increased levels of
Brachyury expression in localized and metastatic prostate
cancer, with clinicopathologic significance and evidences a
role for Brachyury in promoting prostate cancer cell growth
and invasion. Our work further suggests new roles for
Brachyury in prostate cancer, namely, in tumor microenvi-
ronment regulation and possibly in immune response.
Clinical applicable prognostic biomarkers are needed for
clinical management of patients with prostate cancer and
our study positions Brachyury as a putative independent
prognostic biomarker in prostate cancer and a possible
therapeutic target for advanced prostate tumor patients.
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