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Abstract

Experiments were conducted to study the effect of the presence of the solid phase on the homogeneous–heterogeneous flow regime
transition in a bubble column 0.14m diameter. Air, distilled water and calcium alginate beads (2.1mm, 1023 kg/m3) at concentrations
c=0–30% (vol.) were the phases. The basic data were the voidage–gas flow rate dependences. The critical point, where the homogeneous
regime loses stability and the transition begins, was evaluated by the drift flux model. The critical values of voidage and gas flow rate
were the quantitative measures of the homogeneous regime stability. These were plotted against the solid phase concentration. It was
found, that both the voidage and the critical values increased with the solid content at low solid loading, approx.c=0–3%, and decreased
at higher loading,c >3%. The homogeneous regime was thus first stabilized and then destabilized. To explain this dual effect, possible
physical mechanisms of the solid phase influence on the uniform bubble bed were discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In bubble column reactors there are two principal flow
regimes: homogeneous and heterogeneous (seeFig. 1)
(Deckwer, 1992; Kastanek et al., 1993; Molerus, 1993).
Thehomogeneousregime is produced by plates with small
and closely spaced orifices at low gas flow rates. The bub-
bles generated at the plate are small, almost spherical and
monodisperse, and rise roughly vertically with small verti-
cal and horizontal fluctuations. Coalescence and break-up
are negligible and no large-scale liquid circulations occur
in the bed. The long-time radial profiles of voidage and liq-
uid velocity are flat. Theheterogeneousregime is produced
either by plates with small and closely spaced orifices at
high gas flow rates, or by plates with large orifices at any
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gas flow rate (pure heterogeneous regime). This regime is
characterized by a wide bubble size distribution, due to gen-
eration of large and highly non-uniform bubbles. Bubble co-
alescence is promoted and macro-scale circulations of the
liquid phase are present. The long-time radial profiles are
roughly parabolic with a maximum at the centre.
The homogeneous–heterogeneous regime transition is a

gradual process of increasing the number and size of coher-
ent structures (circulations) in the bubble bed. The transi-
tion is intermittent in space and time and both regimes co-
exist in the bubble column. The two flow regimes can be
identified from the character of the experimental voidage
e–gas flow rateq graph (seeFig. 2). The homogeneous
voidage increases progressively with gas flow rate (con-
vex graph) while heterogeneous voidage follows a ratio-
nal function (concave graph) (e.g.Zahradnik et al., 1997;
Ruzicka et al., 2001a).
Bubble column reactors have different behaviour in the

homogeneous and heterogeneous regimes, since the rate of
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Fig. 1. Definition sketch of homogeneous and heterogeneous flow regimes
in bubble columns: (a) flow pattern, and (b) long-term radial profiles of
voidage and gas phase velocity.
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Fig. 2. Typical graph of (voidagee)–(gas flow rateq) dependencee=e(q).
Homogeneous regime loses stability in inflection point where regime
transition begins.

transport processes depends on the hydrodynamics. There-
fore, for rational reactor design and operation, it is of crucial
importance to know the range of parameters over which the
respective regime prevails. This naturally leads to the stabil-
ity issue and the regime transition condition. In our previous
studies focused on the regime transition, we suggested two
stability theories: one kinematic, based on the concept of
the Darwinian drift of bubbles (Ruzicka et al., 2001a), and
the second, more elaborated, dynamic, based on the analogy
with the Rayleigh–Benard instability in thermal convection
(Ruzicka and Thomas, 2003). The latter yields a stability cri-
terion for the homogeneous regime in terms of the following
parameters: column dimensions, effective viscosity of bub-
bly mixture, hydrodynamic diffusivity of bubbles. The latter
two have a clear physical meaning, but their concepts are
not yet well developed, especially at intermediateRe. We
also performed experiments to validate particular aspects of
the stability criterion, namely, the effect of column dimen-
sions (Ruzicka et al., 2001b) and liquid viscosity (Ruzicka
et al., 2003, 2004). In this study, we consider the effect of the

presence of the solid phase, which is not explicitly involved
in the above theories.
The behaviour of the gas–liquid–solid systems has been

studied for a long time (e.g.Shah, 1979). These systems can
be considered as bubbly flows with the presence of solids,
or, as liquid–solid fluidized beds with presence of gas bub-
bles. Therefore, various research communities dealing with
bubble columns (Pandit and Joshi, 1984), airlift reactors (Lu
et al., 1995), bubbly flows (Douek et al., 1997), flotation
columns (Ityokumbul et al., 1995), pulp slurry columns (Xie
et al., 2003) and fluidized beds (Muroyama and Fan, 1985)
are interested in this complicated three-phase system. Be-
cause they operate the equipments under different condi-
tions, the results are not always comparable. One obvious
difference is the liquid throughput, which is typically zero
in bubble columns, often nonzero in flotation and always
nonzero in fluidized beds and bubbly flows. Another dif-
ference is in the solid particles, regarding their size, shape,
material and surface properties. Big wettable beads likely
produce different effects from those by fine hydrophobic
particles of a catalyst, or by flexible and sticky fibres in pulp
suspensions in paper industry.
Despite the intense research, our knowledge about the

possible effects of solids on gas–liquid systems is far from
satisfactory. Even less are understood the physical mecha-
nisms underlying the known macroscopic effects. Often, the
results are ambiguous or even contradictory. Partly because
of comparing results obtained under aforementioned differ-
ent operating conditions, partly due to complex nature of the
solid influence, where many aspects have to be taken into
account. The presence of solids affect the gas–liquid mixture
in many different ways: bubble formation (Yoo et al., 1997;
Luo et al., 1998; Fan et al., 1999), bubble rise (Bly and
Worden, 1992; Luo et al., 1997a; Fan et al., 1999), ax-
ial (Gandhi et al., 1999) and radial (Warsito et al., 1997)
profiles, mixing and dispersion (Smith and Ruether, 1985;
Matsumoto et al., 1989), mass transfer (Koide et al., 1984;
Quicker et al., 1984; Pandit and Joshi, 1986; Charinpanitkul
et al., 1993), and voidage and flow regimes. Unfortunately,
it seems that there is no authoritative review available cov-
ering in detail this broad area where the reader could be
referred to. However, some particular aspects have been re-
viewed (Pandit and Joshi, 1984; Fan and Tsuchiya, 1990;
Fan et al., 1999, see also the proceedings from the GLS
Congresses). References are given below, having a relevance
for the present study: effect of solids on voidage and flow
regimes in bubble columns.
Most of the published work report that thevoidage(gas

holdup) generally decreases with increasing solid concentra-
tion (e.g.Kara et al., 1982; Kelkar et al., 1984; Koide et al.,
1984; Banisi et al., 1995 a,b; Lu et al., 1995; Reese et al.,
1996; Swart et al., 1996; Jianping and Shonglin, 1998; Fan
et al., 1999; Krishna et al., 1999; Zon et al., 2002). Equiv-
alently, the mean bubble speed must increase with solids.
This is usually attributed to an increase in bubble coales-
cence caused by the solids, which results in bigger and faster
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bubbles (e.g.Kato et al., 1972; Kara et al., 1982; Lu et al.,
1995; Jianping and Shonglin, 1998; Krishna et al., 1999;
Zon et al., 2002; Su and Heindel, 2003). An apparent shift
in the bubble population from small to large bubbles is doc-
umented (Swart et al., 1996). Further, reduction of bubble
breakup (Gandhi et al., 1999; Su and Heindel, 2003) and
increase of mixture viscosity (Kara et al., 1982; Luo et al.,
1997a; Tsuchiya et al., 1997; Jianping and Shonglin, 1998;
Fan et al., 1999) are suggested as alternative probable rea-
sons. Another possibility can be the reduction of the space
available for the g–l mixture in presence of solids (Lu et al.,
1995). Effects of hydrodynamic interactions between bub-
bles and solids are considered too (Fan and Tsuchiya, 1990).
Relative importance of several possible mechanisms (coa-
lescence, mixture density and viscosity, radial profiles, wake
effects) causing the decrease of voidage in a particular flota-
tion system has been evaluated (Banisi et al., 1995b).
On the other hand, an interesting dual effect of solids

on gas holdup has also been observed (Kara et al., 1982;
Pandit and Joshi, 1984; Sada et al., 1986 a,b; Bukur
et al., 1990; Khare and Joshi, 1990; Jamialahmadi and
Muller-Steinhagen, 1991; Garcia-Ochoa et al., 1997; Xie
et al., 2003, see also Table 1 inBanisi et al., 1995a), indi-
cating the presence of two counteracting physical mecha-
nisms. Besides the above mentioned drop in voidage with
solids,Kara et al. (1982)also find a subtle opposite effect:
“ . . . In fact, systems with10-�m particles indicated slightly
higher gas holdups than obtained from an air–water sys-
tem. Although the reason for this behaviour is unknown at
the present time, it was thought that different wettability. . .
caused that increase. . .” . In their review,Pandit and Joshi
(1984)state that the solids reduce the gas holdup, but some
data in theirFig. 2 indicate that the opposite may also be
true. With fine 7�m wettable solids,Sada et al. (1986a)
find a maximum in the (voidagee)–(solid contentc) de-
pendence aboutc ≈ 5%, where the unexpected increase
is explained by suppression of coalescence by presence
of solids in the liquid film between bubbles. A similar
result is find also in their sequel paper (Sada et al., 1986b).
Next, Bukur et al. (1990)find the dual effect (maximum
betweenc = 20% and 30%) of small solids (iron oxide,
silica) in the batch-mode but not in the continuous mode of
column operation, assuming that coalescence suppression
prevails in the former and nonuniformities due to inflowing
liquid in the latter modes.Khare and Joshi (1990)prove
unequivocally the dual effect, with a pronounced maximum
at aboutc = 0.6% of fine alumina particles.Jamialahmadi
and Muller-Steinhagen (1991)report an important differ-
ence between wettable (Styrocel) and non-wettable (Nylon,
Diakon) particles(∼ 1mm): the former increase the holdup
(suppress coalescence by slowing the drainage) while the
latter decrease the holdup (enhance the drainage).Zon
et al. (2002)confirm that hydrophobic particles reduce
the holdup. On the other hand,Kelkar et al. (1984)report
that the wettability enhances the coalescence, and,Banisi
et al. (1995a)find that no apparent difference exists between

hydrophilic and hydrophobic particles. The dual effect is
observed also for pulp slurry (Xie et al., 2003). Occasion-
ally, under certain conditions, roughly negligible effect of
solids on voidage is reported too (Ityokumbul et al., 1995).
Closely related is the effect of the particle size on gas

holdup. Usually, a decrease is reported (e.g.Kato et al., 1972;
Kara et al., 1982; Jamialahmadi and Muller-Steinhagen,
1991; Lu et al., 1995). Sometimes, an increase is detected
(Banisi et al., 1995a). A negligible effect can be found
too (Kelkar et al., 1984; Matsumoto et al., 1989; Fan
et al., 1999). Pandit and Joshi (1984)resolve this ambi-
guity by showing that the graphe = e(dp) has a peculiar
structure of four qualitatively different regions: (i) small
particles(Re<2) increase the holdup, (ii) medium particles
(2�Re�300) decrease, (iii) large particles(Re>500) in-
crease it again, and then (iv) the graph saturates at a roughly
constant level (see alsoPandit and Joshi, 1986). They in-
terpret this peculiarity in terms of bubble size and bubble
speed.Garcia-Ochoa et al. (1997)confirm the existence of
the first two regions also for heavy polydisperse pyrite par-
ticles. Khare and Joshi (1990)study in detail the first two
regions and prove that the dual effect of solids on voidage
exists in the first region, where small particles suppress the
coalescence. Regarding the complicated relations between
holdup and solids size and content, i.e., the character of the
function e = e(dp, c), Banisi et al. (1995a)suggest a con-
sensus: small amount of fine particles (suppressing coales-
cence) and large amount of big particles (break up of large
bubbles) tend to increase the holdup (reduce mean bubble
speed). Otherwise a decrease can be expected (e.g. much of
small particles, medium particles at moderate content, little
of big particles).
In spite of all the efforts aimed at the gas holdup stud-

ies, the information about the effect of solids on theflow
regimesis very scarce. Often, no attempt is made to spec-
ify the prevailing flow regime during the experiment. Some-
times, the type of the regime is assessed. For instance,Kara
et al. (1982)and Clark (1990)plot the lines correspond-
ing to the homogeneous and heterogeneous regimes in the
plane (drift fluxj)–(voidagee) and find that their experimen-
tal data fall between these two, i.e., the transition regime
prevails. In a similar way,Luo et al. (1997b)report stabi-
lization of the homogeneous regime by increased pressure
in a three-phase bubble column.Koide et al. (1984)demar-
cate the respective regimes in thee–q plane by lines of rec-
ommended correlations and find their data in the transition
and heterogeneous regimes.Kelkar et al. (1984)estimate the
heterogeneous regime based on large values of the distribu-
tion parameter in the drift flux model. Further, the regime
type is assessed visually from the shape of thee(q) graph.
Based on this rather subjective method,Jamialahmadi and
Muller-Steinhagen (1991)find delayed/advanced transition
for wettable/nonwettable solids, i.e., different kinds of par-
ticles produce different effects.Reese et al. (1996)find ad-
vanced transition for pulp slurry andKrishna et al. (1997)
that for fine silica particles. Based on a substantial voidage
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drop caused by fine glass powder,Clark (1990)assumes that
the original transition regime shifts to the heterogeneous one
due to enhanced bubble coalescence.
There are also few studies where thetransition point is

determined.Krishna et al. (1999)use the homogeneous drift-
flux model for the critical point (beginning of the transition)
and demonstrated by two experimental points that the pres-
ence of solids (14% of fine silica in ethanol) dramatically
reduces the critical values of gas flow and voidage, hence
destabilizes the uniform regime.Su and Heindel (2003)use
the heterogeneous drift-flux model for the critical point (end
of the transition) to find the same effect of pulp slurry (Rayon
fibre).
It follows that the knowledge regarding the flow regimes

and their transitions in three-phase systems is indeed far
from satisfactory. We lack both data and their interpretation
in terms of underlying physical processes. The purpose of
this study is to contribute to this subject and examine the
effect of solid particles on homogeneous regime stability.
For that, two kinds of experiments are done: the basic regime
transition study (macro-scale) and an auxiliary visualization
study (micro-scale). The results show that the homogeneous
regime is stabilized by low solid load, but destabilized by
high solid load. The discussion offers some clues towards
the explanation of this dual effect.

2. Experiments and data treatment

2.1. Measurements and errors

The measurements were performed in a cylindrical plex-
iglas bubble column of 0.14m diameter. The column was
equipped with a 3mm brass perforated plate with 0.5mm
orifices, 10mm pitch, and relative free area 0.2%. This plate
ensures generation of the homogeneous, transition and het-
erogeneous bubbling regimes. Such a plate is a typical gas
distributor for production of the uniform bubbly layers for
stability studies, and is also suitable for applications. Typ-
ical bubble size in the homogeneous regime was 4–5mm,
with the following features: terminal speedu0 ≈ 0.2m/s,
Re ≈ 103, We ≈ 2.7, Eo ≈ 3.3, Mo ≈ 1.9 × 10−6.
Compressed filtered air from laboratory lines was the gas
phase. Distilled water was the liquid phase. Calcium alginate
beads, roughly spherical particles, with equivalent diameter
dp = 2.1mm and density�p = 1023 kg/m3 were the solid
phase. The choice of the phases corresponds to our interest in
three-phase airlift reactors with immobilized biomass. The
solids are well-defined completely wettable objects with rea-
sonable rigidity that do not form agglomerates and are big
enough not to affect the surface properties of the gas–liquid
interface. The following nine values of solid loading were
used: 0 (water), 1, 3, 5, 10, 15, 20, 25 and 30 vol%. The
clear liquid height wasH = 0.4m for all experiments (no
liquid throughput). The dependence of the voidagee on the
gas flow rateqwas measured three times and then averaged.

The gas flow rate varied in the rangeq = 0–0.1m/s, which
covers the homogeneous regime and part of the transition
regime. The gas flow was read from a rotameter. The 33
measuring points covered densely the range fromq=0.0144
to 0.0722m/s, where the transition point were located, with
the step of 1.8mm/s. The gas holdup was determined from
the bed expansion. The estimated error of the results is less
than 5%.
The claimed 5% is the upper limit for voidage in the

range measured (homogeneous regime+part of transitional
regime). When the layer is uniform, the surface is stable
and horizontal and the interface can be located with preci-
sion of 1mm (resolution of the ruler). For layers withH
∼ 40–55 cm (voidage 0–30%) this gives an error 0.25–0.18%
in H for the homogeneous range up to the critical point,
which causes a comparable error in measuringe, being
a function ofH. Going further into the transition regime,
the surface starts to wave and the uncertainty increases. Its
position was determined as the mean over certain number
of periods of the oscillations, providing enough data to
obtain the deviation within the claimed 5% range. These
data, however, are well beyond the transition point and are
shown only for depicting the trend of thee–q dependence
for largerq. We consider that reading the gas flow from the
rotametres was precise.
As for the critical values, the simultaneous application of

several methods gives the uncertainty in its determination
within one experimental data point. So the error inqc is the
discrete step size inq, i.e., 0.0018m/s, which amounts to
4.5–5% with the typical values ofqc being 0.035–0.040m/s
(Fig. 6b). Since the data points were connected with a con-
tinuous line, the actual precision in determination ofqc is
much better and these 4.5–5% represent the upper limit. The
error of ec comprises (i) that of measuringe and (ii) that
of determining the transition point on thee-coordinate. The
former contribution is the above mentioned less than 1%.
The latter relates to the difference between the neighbour-
ing data points. Considering that theechanges from 0 to 0.3
within about 30 measuring points (Fig. 3), the mean step in
e is 0.01, which amounts to 5% with the typical values of
ec being 0.2 (Fig. 6a). Since the data points were connected
with a continuous line, the actual precision in determina-
tion of ec is much better and the 5% represents the upper
limit.

2.2. Evaluation of critical point

The dependencee= e(q) for each solid contentcwas the
primary data. The critical point could be find as theinflexion
point of the data graph, but its direct determination in this
way is difficult and inaccurate.
Therefore, the data were re-plotted according to thedrift-

flux modelby Wallis (1969)and the point was determined
from the deviation of the data from the theoretical line of the
uniform regime. This is a standard procedure. The theoretical
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Fig. 3. Primary data: voidagee vs. gas flow rateq: (a) low solid contentc increases voidagec = 0 vol% (water)(�), 1 vol% (�), 3 vol% (�), 5 vol%
(�) and (b) higher solid contentc decreases voidage.c = 5 vol% (�), 10 vol% (�), 15 vol% (�), 20 vol% (×), 25 vol% (∗) and 30 vol%(−).

line j = j (e) is defined as

jt = e(1− e)u (1)

which must be closed by a formula for the hindered bubble
speedu, which is the mean slip speed in case of no liquid
flux through the column. Instead of many common empirical
relations (e.g. by Richardson–Zaki), we prefer our equation
based on the concept of Darwinian drift (Ruzicka et al.,
2001a),

u = u0(1− ae/(1− e)), (2)

where the two parameters have a clear physical meaning:
u0—bubble terminal speed,a—drift coefficient. For each
data linee(q), they are obtained by linearization of Eq. (2),
using the basic relation

e = q/u (3)

which is the mass conservation of the gas phase. The exper-
imental drift flux is obtained from Eq. (1) using Eq. (3),

je = (1− e)q. (4)

The transitionbeginswhere Eq. (4) separates from Eq. (1): it
is the critical point[qc, ec], the instability threshold. The nu-
merical values ofqc andec are the quantitative measures of
the homogeneous regime stability. The evaluation procedure
is an iterative process. First, the homogeneous data range
is assessed. Then, these data are used for the linearization.
These two steps are repeated, till the correlation coefficient
of the linearization is sufficiently close to unity.
Additionally, the regime transition was also found using

the slip-speed concept, where, at the critical point, the slip
speed data given by Eq. (3),u = q/e, based on the mea-
suredq ande, depart from the model line (2). The homoge-
neous regime ends where the hindrance disappears. The re-
sult is the average over these two methods. Since these two

methods are equivalent, only using different co-ordinates,
the results—when evaluated correctly—were close together.
This was the test of correctness.

2.3. Criteria for transition

There are not many stability criteria available for the ho-
mogeneous regime in g–l system. Even less is known about
the criteria designed for g–l–s systems. Those we are aware
of are discussed below.
(i) The simplest and sometimes most effective is therule

of thumb, that the transition in water–air system under nor-
mal conditions begins somewhere around 0.03m/s and is
completed around 0.1m/s, say. Thus theqc is expected to
be within this interval, depending on its definition: some au-
thors take the critical point at the maximum ofe(q) graph,
others at the beginning or the end of the transition. We pre-
fer the beginning of the transition range where the instability
occurs first (seeFig. 2). For instance, in Krishna’s simple
and flexible model designed mostly for practical purposes, it
is estimatedqc ≈ 0.09m/s (Krishna et al., 1991). Empirical
criteria of this kind usually stems from long-term experience
and are reliable, but not much precise.
(ii) Other kind of criteria are basicallyempiricalor semi-

empirical correlationsfor the criticals. They are based on
experimental data, should be both reliable and precise. Their
basic weakness is that they lack the universal character. They
usually refer to the particular situations under which the data
were collected, and reflect particular effects of only certain
parameters. Unfortunately, there are not many of them avail-
able at present. One such is byWilkinson et al. (1992), who
suggested a correlation for critical voidage,

ec = 0.5 exp(−193�−0.61
g �0.5�0.11), (5)
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based on data collected from the literature as well as on
their own experiments. The critical gas flow rateqc is given
by ec/us , whereus is the speed of so-called ‘small bubbles’
that are responsible for the prevailing part of the uniform
voidage,

us = 2.25(�/�)(�3�/g�4)−0.273(�g/�)
0.03. (6)

Here,�g is the gas density,� the liquid viscosity,� the sur-
face tension,� the liquid density, andg the gravity. Another
example is the criterion due toReilly et al. (1994), stem-
ming from an assumption of a specific form of the relation
between the gas momentum flux and the voidage. It is based
on data obtained in 0.15m diameter column with water and
non-aqueous liquids in the form:

ec = 0.59B1.5(�0.96g �0.12/�), (7)

qc = (�0.12/2.84�0.04g )ec(1− ec), (8)

whereB is an empirical parameter≈ 4, depending on the
kind of the liquid.
(iii) The third kind of criteria is based on an underlying

theoretical concept. Their reliability relies on reliable clo-
sures used in the analysis. Depending on their predictive
value, they belong to two classes. A posteriori criteria are
used for evaluation of the critical point from data already
measured. Two common examples are the slip speed concept
and the drift-flux model, used also for our data. The former
is based on the empirical fact that, in uniform bed, the bub-
ble speed decreases with bubble concentration (hindrance),
the latter on the mass conservation of the phases. Both rely
heavily on robust closures for the slip speed. A priori crite-
ria are more ambitious and take the form of relations for the
criticals. They belong to two qualitatively different groups.
The first group is based on strictly one-dimensional (ID)

models of the flow. These have been developed by the
nuclear/mechanical engineering community for externally
driven g–l flows, flow regimes and their stability, in long
and narrow pipes of cooling circuits in nuclear power plants
where the liquid speed is large (bubbly flows). These models
were adopted/developed by chemical engineers to investi-
gate fluidized beds and bubble columns. These are several
studies devoted to 1D bubble columns (e.g.Hoefsloot
and Krishna, 1993; Minev et al., 1999; Joshi et al., 2001;
Leon-Becerril and Line, 2001), and further will surely ap-
pear due to the relative simplicity of the concept and ease at
evaluating the effects of particular forces (e.g. added mass,
drag, lift, etc.). The common feature of these models is that
the first instability mode is the planar wave mode, where
regions of low and large voidage appear periodically along
the (infinite) pipe due to the positive feed-back effect pro-
duced by the hindrance (the more bubbles the lower their
speed). These models are generally not suitable for bubble
columns due to completely different conditions: internally
(buoyancy) driven flow, short and wide containers, low liq-
uid speed. The effect of the horizontal extent of the column
and the presence of the boundaries on all sides prevent us

from treating the bubble columns as a infinitely long 1D
systems with flat radial profiles.
The second group is based on two-dimensional (2D) mod-

els of the flow. We are currently aware about two of them.
First, Shnip et al. (1992)performed linear stability analysis
of relatively simple governing equations for gas–liquid flow
and obtained an implicit stability criterion for the homoge-
neous regime in the form:

2g

�PJ ′u0
<

( �
D

) sinh(�A)
cosh(�A) − 1

. (9)

Here,�P relates to the pressure drop across the plate and
J ′ equalsu + e(�u/�e); both must be obtained from some
closure relations, usually empirical.D is the column diam-
eter andA the column aspect ratioH/D. To obtain the crit-
ical values, Eq. (9) must be solved forec, upon substituting
someu(e), e.g. that by Richardson–Zaki. Note that the ef-
fect of viscosity is absent in Eq. (9) and can enter only via
the closure foru. Second,Ruzicka and Thomas (2003)un-
dertook a different approach, based on the analogy between
the buoyancy-driven instability of uniform dispersed layers
and the Rayleigh–Benard instability in thermal convection.
In both these cases, the original homogeneous state is bro-
ken by onset of large-scale circulations when increasing the
energy input into the system. The Rayleigh number is the
order parameter. This generic physical concept yields the
following explicit stability criterion:

e < ec = �∗�
�g

(
k1

H 3 + k2

H 3−cDc

)
. (10)

Here,�∗ is the effective dynamic viscosity of the bubbly
mixture and� is the hydrodynamic diffusivity of bubbles,
thatmust be closed.k1, k2 andcare empirical parameters that
depend on the columns size (Ruzicka et al., 2001b). For the
bubble column used in this study(D=0.14m, H =0.4m),
Eq. (10) reads

ec = 2.11× 105�∗� (11)

which predicts a linear increase of the stability with the
viscosity and diffusivity. Estimating these two,�∗∼� ≈
10−3 Pa s and �∼(bubble size) × (bubble speed) ≈
0.005m× 0.2m/s= 10−3m2/s, we have for tap water a
constant valueec = 0.211.
All the above concepts relate to g–l systems and do not

contain the effect of solids explicitly. However, it can be in-
volved indirectly, through the dependence of certain quan-
tities on the solid content. These can be either the constitu-
tive properties of the multiphase system (density, viscosity,
diffusivity, etc.), or closure relations for pressure drop, slip
speed, etc. Thus, the g–l criteria can in principle be used for
the data obtained in this study.
There are also studies devoted to flow regime identi-

fication in true three-phase g–l–s systems, mainly liquid-
fluidized beds. The main difference from bubble columns
is the essentially non-zero liquid speed, because the liquid



P.C. Mena et al. / Chemical Engineering Science 60 (2005) 6013–6026 6019

passes through the system. Since the flow maps are usually
plotted in the co-ordinates ‘liquid speed’ and ‘gas speed’,
only the ‘gas speed’-axis is applicable to bubble columns.
For instance,Zhang et al. (1997)classify up to seven
different flow regimes of the three-phase flow and present
correlations for the boundary lines separating them in the
parameter plane. Most of these regimes do not occur in a
typical bubble column (e.g. slug, bridging, annular). For the
lowest value of the liquid speed considered, 10−3m/s, their
map predicts transition from discrete bubbly flow to slug
flow at gas speed≈ 3 cm/s, which is not observed in bub-
ble columns. The authors also warn the reader: “Note that
this map. . . is applicable only for the size of column and
type of distributor studied. In addition, the map is strictly
only applicable at the height of the measurement probe
. . .”. With their column width 0.0826m, column height 2m,
2-mm orifices, and probe position 0.65m, their flow maps
are completely irrelevant for our data.
Nowadays, we can do nothing but agree withKrishna

et al. (1993): “There is a need to better understand flow
regime transitions and the development of a unified the-
ory of multiphase flow regime transitions will be useful and
enlightening”. The convective theory of stability of dispersed
layers based on the generic physical concept (Ruzicka and
Thomas, 2003) is one step towards this distant goal. Also,
regarding the g–l–s systems, the statement byFan et al.
(1999)“The studies of the regime transition in three-phase
fluidized beds and slurry bubble columns are scarce” is still
valid. The present study contributes to filling in this gap.

2.4. Visualization experiments

Auxiliary visualization experiments were done in order to
investigate the three phase systems in more detail, namely
the pattern of the bubble–particle interactions, to obtain ar-
guments to support some possible mechanisms responsible
for the observed trends.
The measurements were performed in a cylindrical plex-

iglas bubble column of 7 cm diameter and 0.84m high. At
the bottom, the column was equipped with one 0.3mm inner
diameter needle for generation of bubbles of similar size like
those in the main experiments. Compressed air from labora-
tory lines passing through a microvalve was the gas phase.
The liquid phase was tap water. The same alginate beads
as before were used. In some experiments, a narrow glass
tube (6 or 14mm diameter) was placed into the column to
facilitate frequent and intense contact between bubbles and
particles.
Two cameras were used for the visualization. First, com-

mercial analogue Panasonic S-VHS-C camera, connected to
cassette recorder and monitor. Second, high-speed digital
system Kodak EKTAPRO, with speed up to 10 000 fps. The
images were downloaded from the fast memory unit through
a SCSI interface to PC. The pictures were taken from two dif-
ferent places in the column: at the bottom and 0.255m above

it. Different situations were studied: behaviour of bubbles
in the gas–liquid system, and the effect of particle–bubble
interactions in the gas–liquid–solid system.

3. Results

3.1. Primary data: voidage–gas flow rate

The plot of the basice(q) graphs is shown inFig. 3. For
low solid content,c�5%, the data presented inFig. 3a wit-
ness a significant increase of the voidage with increasing the
solid load. On the other hand, at larger contentc�5%, the
voidage displays a substantial reduction inFig. 3b. This dual
effect of the particles on the gas holdup is interesting, since
it indicates the presence of two competing mechanisms, one
stabilizing and the other destabilizing the uniform three-
phase system. This result also reconciles the contradictory
findings reported in the literature. The quantitative aspect of
the change in voidage is documented inFig. 4a. The corre-
sponding variations in the mean speed of the gas phase is
shown inFig. 4b. Note that the data inFig. 4 belong to the
transition regime, where the bubble speed is enhanced by
the liquid circulations.

3.2. Secondary data: drift-flux plot

A demonstration of the determination of the critical point
based on the drift-flux model is presented inFig. 5. The
data are shown in the co-ordinates voidagee–drift flux j,
according to Eqs. (1) and (4). It is clearly seen, where the
data separate from the uniformity line.

3.3. Main result: stability

The critical values of voidageec and gas flow rateqc are
plotted versus the solid contentc in Fig. 6. The picture un-
equivocally demonstrates the ambiguous effect of the solid
particles on the stability of the homogeneous flow regime.
The stabilization occurs at low solid load,c�3%, and the
destabilization at higher load,c >3%. Qualitatively, the be-
haviour of the voidage inFig. 3 and the critical voidage in
Fig. 6 is similar: both have a maximum with respect to the
solid content. Quantitatively, there is a little discrepancy:
the maximum is atc = 3% in Fig. 6 while at c = 5% in
Fig. 3. This suggests that the shapes of thee(q) graphs are
not universal in the following sense: there are exceptions to
the expected rule: the larger the voidage, the larger the criti-
cal voidage. The absolute values of the criticals inFig. 6may
seem rather low,qc ∼ 0.035–0.04m/s andec ∼ 0.13–0.2,
say. This is because they refer to the beginning of the tran-
sition process.
The stabilization effect amounts to 11% of increase in

qc and 13% of increase inec, relative to the g–l air/water
system. The increase ofec betweenc = 0% and 1% can be
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Fig. 4. Primary data: effect of solid contentc on (a) voidagee and (b) mean bubble speedu.
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described by a modified Eq. (11),

ec = 0.175× 105�∗�(1+ 2.23f ), (12)

where the original critical voidage 0.211 of g–l sys-
tem with tap water was replaced by a somewhat lower
value 0.175 for distilled water, withf = c/100 being
the solid volume fraction. Eq. (12) should not be con-

sidered a reliable correlation; it only demonstrates how
to incorporate the stabilizing effect of solids into the
stability criterion (10) and indicate its magnitude. The
destabilization trend inFig. 6a can well be fitted with a
straightline:

ec = 0.21.0.25f (Rxy = 0.987). (13)
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Fig. 6. Main result: homogeneous regime stability measured by critical values of (a) voidageec and (b) gas flow rateqc.

4. Discussion

The purpose of this discussion is to provide some sugges-
tions regarding the explanation of the observed dual effect
of the solids: first increase and then decrease of both the
voidagee and the critical voidageec, hence increase and
decrease of the homogeneous regime stability. Correspond-
ingly, by Eq. (3), the presence of solids first reduces and
then enhances the mean bubble rise speed.
Strictly speaking, the suspended solids should be regarded

as a new phase, and the original set of equations for g–l
system should be expanded to g–l–s system. The difference
between the solutions of the respective sets of governing
equations is exactly the ‘effect of solids’, hard to predict.
Therefore, we resort to making a list of particular effects
known from literature, suggesting possible ways how can
the presence of the solid phase affect the behaviour of bub-
ble bed. First, the corresponding physical mechanisms is
explain, then themagnitude of the effect in case of our exper-
imental data is assessed. In quantitative evaluations, the fol-
lowing relations between the voidage and the quantities that
can be directly affected by the solids can be used:e ∼ 1/u
by Eq. (3),u ∼ u0 by Eq. (2),u0 ∼ ((� − �g)d/�C)

0.5 ≈
(d/C)0.5, since� � �g, so that at an error of orderO(10−3)

the bubble speed does not explicitly depend on liquid den-
sity, C ∼ 1/Re, Re = �du0/� (consequently,e ∼ �0.5).
Since the possible effects depend on the solid load, they are
evaluated at the point where the stability diagrams inFig. 6
change their trends, i.e., at the characteristic valuec ≈ 3%,
the corresponding solid volume fractionf being≈ 0.03.
(i) The first effect is the steric effect, consisting in the sim-

ple fact that the solids occupy certain space of the column.
Consequently, the bubble concentration is different whether
based on g–l or g–l–s volume. At any givenq, the effective
bubble concentratione∗ based on the g–l volume is by a

factor 1/(1−f ) larger than the common voidageeused here
and based on the g–l–s volume. Thus also the true critical
valuee∗

c is reached sooner, at lower gas input, hence desta-
bilization. This effect can be particularly strong at largef,
i.e., at high solid loads.
In our case, when the solid content isc ≈ 3%, this desta-

bilizing effect is weak, 1/(1− f ) ≈ 1.03, i.e., about 3%.
However, at largec of 20–30%, this effect can contribute to
the instability (descending branch inFig. 6).
(ii) The second effect is the density effect. Although the

density itself should not affect the single bubble rise, the in-
fluence of solids can be estimated in terms of effective (mix-
ture, apparent) density:�∗ = (1− f )� + f�p. The concept
of effective density, hence buoyancy, applies only when the
sized of a body (here a bubble) immersed in a dispersion is
much larger than the sizedp of the dispersed particles, the
quantitative criterion for the body and the particles of like
shapes being:d >dp/f

1/3.
In our case, with almost neutrally buoyant dispersed par-

ticles(�p=1023 kg/m3), the solid–liquid density difference
is small asO(10−2), so that an effect of the same magni-
tude is expected due to the effective density—if applicable.
Evaluation of the criterion for applicability of the concept of
effective density withd ≈ 0.004m,dp ≈ 0.002m, and both
the characteristic solid loadf ≈ 0.03 and maximum solid
loadf = 0.3, we obtain 0.004>0.0065 and 0.004>0.003,
respectively. This means that the concept is inappropriate at
low solid load and only very weakly applies at large solid
load (the l.h.s. is not ‘much larger’ than the r.h.s.). We con-
clude that the possible density effect is very minute.
(iii) The third effect is the viscosity effect. It relates to

one particular change of the liquid flow field caused by
the presence of solids. Each particle in the flow presents
a new boundary surface with the no-slip condition, where
the liquid velocity must accommodate to zero. Therefore,
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additional velocity gradients arise and the viscous dissipa-
tion increases. This is reflected by the effective (mixture, ap-
parent) viscosity�∗ of a suspension, which is larger than that
of a pure fluid and increases with the particle content. Conse-
quently, the free rise speed of a buoyant body is reduced; not
because of higher friction at the surface—it experiences the
pure fluid, but because of higher capacity of the flow for ab-
sorbing the energy released by the body motion. Therefore,
the concept of effective viscosity applies generally, when-
ever the dispersed particles are presented, regardless of their
relations to the immersed body, as for the shapes, sizes, etc.
With bubbles, the reduction of bubble rise speed results in
larger voidage at the same gas input(e ∼ 1/u0), hence sta-
bilization. On the other hand, the bubble coalescence is pro-
moted in viscous media, bigger and fast bubbles are formed,
which results in lower voidage, hence destabilization. Thus,
the viscosity plays a dual role in the stability of uniform
bubble bed. There are many studies devoted to elaborating
formulas for�∗ (e.g.Thomas, 1965; Barnea and Mizrahi,
1973; Tsuchiya et al., 1997; Cheng and Law, 2003). A com-
mon form is a power series�∗/� = 1+ b1f + b2f

2 + · · ·,
with the coefficients ofO(100). The resulting figure can be
modified by the fact that the effective viscosity increases
with particle size (fordp larger than∼ 101�m), particle
density and particle anisometry (e.g.Clarke, 1967).
In our case, we had relatively large particles, but spher-

ical and almost neutrally buoyant. At low solid load, with
typical f ≈ 0.03 ∼ O(10−2), the viscosity effect is of
the same leading-orderO(10−2). Using the standard value
b1 = 2.5 it gives�∗/� = 1.075. Sincee ∼ �0.5, the effect
voidage ise∗/e ≈ 1.037, i.e., about 3–4%. This effect (re-
duction of bubble speed) can contribute to the increase of
stability in Fig. 6. At high solid load, withf ≈ 0.2–0.3,
this effect is ofO(10−1) in viscosity, giving�∗/� ≈ 1.75.
This may not be enough to promote a massive coalescence
(coalescence was not actually observed), so that another
effect must be responsible for the decrease of stability
in Fig. 6.
(iv) The fourth effect concerns the physical chemistry

of surfaces. Depending on the interfacial properties of the
g–l–s system (hydro-philicity/phobicity, wettability, etc.),
particles tend to increase or reduce their concentration
near the g–l interface. The deposition at the bubble surface
affects the original slip boundary condition. Stabilization
of the surface then causes higher drag, hence lower rise
speed. Also, bubble shape oscillations can be affected, and
the result in terms of bubble speed is difficult to assess.
The concentration differences along the interface can serve
as a driving force for various processes and complicated
electrokinetic phenomena can be encountered. Changes in
the interfacial properties affect the tendency to coalescence
and breakup. These effects will be strong in case of small
particles, much smaller than bubbles.
In our case, the particles are big (comparable with bubble

size) and completely wettable. Therefore, no interface effects
are expected.

(v) The fifth effect concerns the bubble size at detach-
ment, when formed in a suspension. In systems with a small
effect of particle inertia, the influence of solids is negligible
(Yoo et al., 1997), which is also our case. On the other hand,
in the opposite case, the bubble size generally increases due
to additional downward forces exerted by settling solids
on the growing bubble (Luo et al., 1998). At low gas flow
(lower than necessary for complete suspension, e.g.Roy
et al., 1964; Pandit and Joshi, 1984), the solids settle on
the plate and the bubbles coalesce there (Ityokumbul et al.,
1995).
In our case, with neutrally buoyant particles�p ≈ �, we

did not observe intensive particle settling. We conclude that
this effect can be neglected.
(vi) The sixth effect relates to bubble rise velocity in sus-

pension. The contribution of effective viscosity is treated in
(iii). Here, the effect of direct bubble–particle interactions is
considered. Generally, the presence of particles reduce the
bubble speed (Fan and Tsuchiya, 1990; Luo et al., 1997a),
the reason being the hydrodynamic forces and mutual col-
lisions. Both delay the bubble motion. One aspect of the
retardation is the hindrance effect from particles to bubbles.
It can be expressed in form of a series,u∗

0/u0 = 1+B1f +
B2f

2 + · · ·, with the coefficients ofO(100) (e.g.Bly and
Worden, 1992). TakingB1 ≈ 5 andf ≈ 0.03, one obtains
15% effect. Another effect is the lateral bubble motion in-
duced and/or enhanced by collisions with the particles. The
buoyant potential energy of a bubble is partitioned into more
degrees of freedom to the detriment of the vertical veloc-
ity component. It results in a net reduction of the mean rise
speed.
In our case, this effect is documented by the auxiliary

visualization experiments focused on a simple situation.
Fig. 7 shows a typical collision event, where a bubble is
deflected from its original trajectory after the contact with
a particle. These events were frequent in the column and
can contribute to the increase of stability inFig. 6. Pre-
liminary estimates indicate that the speed reduction could
be 5–15%. Consequently, the hydrodynamic g–s interac-
tions at low c can be important in stabilizing the bubble
bed by reducing the vertical component of the bubble
speed.
(vii) The seventh effect relates to bubble coalescence in

suspension. This is usually considered to be the reason for
the destabilizing effect of the solid phase. The properties of
the solids are very important here. Depending the their size,
density and surface properties (wettability), they can both
suppress and promote the coalescence, the detail mechanism
of which has not been fully understood yet.
In our case, during the visualization experiments we ob-

served an increase in number of coalescing events with in-
creasing solid content.Fig. 8shows a typical situation where
the rise of two bubbles is hindered by a small cloud of solids
so that they remain in contact for a time long enough to
complete the coalescence process. We did not succeed in
assessing this effect quantitatively.
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Fig. 7. Auxiliary visualization experiment. Demonstration of bubble deflection from vertical direction after collision with a solid particle.

Fig. 8. Auxiliary visualization experiment. Demonstration of bubble coalescence induced by collision with a swarm of solid particles.
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(viii) The last possible effect mentioned here relates to
spatial inhomogeneities in distribution of solid particles.
The homogeneity of the three-phase bed can be broken
by nonuniformities originated in any of the two dispersed
phases.When pronounced radial profiles develop in the solid
phase, the flow regime transition can occur even if the bub-
bles are distributed uniformly. On the other hand, a statisti-
cally uniform distribution of solids can act against the clus-
tering tendency of the gas phase, hence stabilize the bed.
Thus, interactions between two phenomena should be con-
sidered: (1) fluidization (sedimentation) of solids by liquid
and (2) generation of bubbly layer, both uniform at low
gas input and solid load. The mechanism of breakage of
the uniformity in both cases is believed to be the advec-
tion of randomly formed buoyant clusters that introduces the
large-scale motions, circulations. The clustering tendency of
the dispersed phases finds its long-term expression in the
nonuniform spatial profiles.
In our case, with particles and bubbles of comparable

size, we can presume a comparable tendency to formation
of clusters as a result of action of hydrodynamic forces.
Since the g–l density difference∼ O(102) is much larger
than the s–l difference∼ O(10−3), the clusters of solids can
generate only very small destabilizing buoyant energy, when
compared with clusters of bubbles. Therefore, we assume
that the nonuniformity starts in the gas phase first.
Note that qualitatively same dual effect on the stabil-

ity of the homogeneous flow regime exerted by the pres-
ence of solids has been found also for another important
parameter—the liquid viscosity: small viscosity stabilizes
uniform bubble bed while large viscosity destabilizes the
bed, the underlying physical mechanism being currently un-
der study (Ruzicka et al., 2004).

5. Conclusions

The effect of solid particles on homogeneous regime sta-
bility and regime transition in a three-phase bubble column
was investigated experimentally. The stability was expressed
by the critical values of gas holdup and gas flow rate. The ex-
periments showed that for low solid loading (0–3%) the ho-
mogeneous regime is stabilized, while for higher solid load-
ings (>3%) destabilization occurs. Several possible physi-
cal mechanisms underlying this dual effect were discussed.
The visualization indicated the importance of hydrodynamic
bubble–particle interactions.

Notation

a coefficient of Darwinian drift, dimensionless
c solid content in bubble column, vol%
C bubble drag coefficient, dimensionless
d bubble diameter, m
dp solid particle diameter, m

D column diameter, m
e voidage, gas holdup, dimensionless
f solid content in bubble columnf = c/100, dimen-

sionless
g gravity, m/s2

H column height (clear water height), m
j drift flux, m3/m2 s
q gas flow rate, m/s
Re Reynolds number of a single bubble,Re=�du0/�
u mean bubble rise speed (mean velocity of gas phase

in column), m/s
u0 terminal bubble speed, m/s

Greek letters

� hydrodynamic bubble diffusivity, m2/s
� liquid dynamic viscosity, Pa s
� liquid density, kg/m3

�g gas density, kg/m3

�p solid particle density, kg/m3

� interfacial tension (liquid surface tension),
N/m, J/m2

Subscript and superscript

c critical value (threshold of homogeneous regime
instability)

∗ ‘effective’ value
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