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a b s t r a c t

In this paper, we present a compositional semantics for the channel-based coordination
language Reo that enables the analysis of quality of service (QoS) properties of service
compositions. For this purpose, we annotate Reo channels with stochastic delay rates
and explicitly model data-arrival rates at the boundary of a connector, to capture its
interaction with the services that comprise its environment. We propose Stochastic Reo
Automata as an extension of Reo automata, in order to compositionally derive a QoS-
aware semantics for Reo. We further present a translation of Stochastic Reo Automata to
Continuous-Time Markov Chains (CTMCs). This translation enables us to use third-party
CTMC verification tools to do an end-to-end performance analysis of service compositions.
In addition, we discuss to what extent Interactive Markov Chains (IMCs) can serve as an
alternative semantic model for Stochastic Reo. We show that the semantics of Stochastic
Reo cannot be specified compositionally using the product operator provided by IMCs.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In service-oriented computing (SOC), complexdistributed applications are built by composing existing – often third-party
– services using additional coordinationmechanisms, such asworkflow engines, component connectors, or tailor-made glue
code. Due to the high degree of heterogeneity and the fact that the owner of the application is not necessarily the owner
of its building blocks, issues involving quality of service (QoS) properties become increasingly entangled. Even if the QoS
properties of every individual service and connector are known, it is far from trivial to determine and reason about the
end-to-end QoS of a composed system in its application context. Yet, the end-to-end QoS of a composed service is often as
important as its functional properties in determining its viability in its market.

Reo [1], a channel-based coordination language, supports the composition of services, and typically, its semantics is
given in terms of Constraint Automata (CA) [2]. However, CA do not account for the QoS properties and cannot capture the
context-dependency [2] of Reo connectors. To capture context-dependency, Reo Automatawere introduced in [3]. However,
they also provide no means for modeling QoS properties. On the other hand, Quantitative Intentional Automata (QIA) were
proposed in [4] to account for the end-to-end QoS properties of Reo connectors. Unfortunately, no formal results are readily
available regarding the compositionality of QIA. Thus, in order to overcome the shortcomings of CA and QIA, mentioned
above, the design of a new compositional semantic model for Reo connectors was required.
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For this purpose, in [5], we suggested Stochastic Reo Automata as a compositional semantic model for reasoning about
the end-to-end QoS properties, as well as handling the context-dependency of Reo connectors. We showed that the
compositionality results of Reo Automata extend to Stochastic Reo Automata. We also presented a translation of Stochastic
Reo Automata to Continuous-TimeMarkov Chains (CTMCs). This enabled the use of third-party tools for stochastic analysis.
Therefore, [5] shows a compositional approach for constructing Markov Chain (MC) models of complex composite systems,
using Stochastic Reo Automata as an intermediate model. Stochastic Reo Automata provide a compositional framework
wherein the corresponding CTMC model of a connector can be derived. This approach, thus, enabled us to model the QoS
properties of system behavior, where our translation derives a CTMC model for complex systems for subsequent analysis
by other tools. This paper is the extended version of [5] together with the contribution mentioned above. In this paper,
we provide more examples for Stochastic Reo, its semantic model, and the translation method. We show the proof of the
compositionality of Stochastic Reo Automata. In addition, we discuss to what extend Interactive Markov Chains (IMCs) can
serve as an alternative semantic model for Stochastic Reo.

2. Overview of Reo

Reo is a channel-based coordination model wherein so-called connectors are used to coordinate (i.e., control the
communication among) components or services exogenously (from outside of those components and services). In Reo,
complex connectors are compositionally built out of basic channels. Channels are atomic connectors with exactly two ends,
which can be either source or sink ends. Source ends accept data into, and sink ends dispense data out of their respective
channels. Reo allows channels to be undirected, i.e., to have respectively two source or two sink ends.

a b

Sync

a b

LossySync

a b

FIFO1

a b

SyncDrain

Fig. 1. Some basic Reo channels.

Fig. 1 shows the graphical representations of somebasic channel types. TheSync channel is a directed, unbuffered channel
that synchronously reads data items from its source end and writes them to its sink end. The LossySync channel behaves
similarly, except that it does not block if the party at the sink end is not ready to receive data. Instead, it just loses the data
item. FIFO1 is an asynchronous channel with a buffer of size one. The SyncDrain channel differs from the other channels in
that it has two source ends (and no sink end). If there is data available at both ends, this channel consumes (and loses) both
data items synchronously.

Channels can be joined together using nodes. A node can have one of three types: source, sink or mixed node, depending
on whether all ends that coincide on the node are source ends, sink ends or a combination of both. Source and sink nodes,
called boundary nodes, form the boundary of a connector, allowing interaction with its environment. Source nodes act as
synchronous replicators, and sink nodes as mergers. A mixed node combines both behaviors by atomically consuming a
data item from one sink end and replicating it to all of its source ends.

a b c d

Fig. 2. Example connector: LossyFIFO1.

An example connector is depicted in Fig. 2. It reads a data item from a, buffers it in a FIFO1 andwrites it to d. The connector
loses data items from a if and only if the FIFO1 buffer is already full. This construct, therefore, behaves as a connector called
(overflow) LossyFIFO1.

2.1. Semantics: Reo Automata

In this section, we recall Reo Automata [3], an automata model that provides a compositional operational semantics for
Reo connectors. Intuitively, a Reo Automaton is a non-deterministic automaton whose transitions have labels of the form
g|f , where f a set of nodes that fire synchronously, and g is a guard (boolean condition) that represents the presence or the
absence of I/O requests at nodes, i.e., the pending status of the nodes. A transition can be taken only when its guard g is true.

We recall some facts about Boolean algebras. Let Σ = {σ1, . . . , σk} be a set of symbols that denote names of connector
ports, σ be the negation of σ , and BΣ be the free Boolean algebra generated by the following grammar:

g ::= σ ∈ Σ | ⊤ | ⊥ | g ∨ g | g ∧ g | g

We refer to the elements of the above grammar as guards and in its representation we frequently omit ∧ and write g1g2
instead of g1 ∧ g2. Given two guards g1, g2 ∈ BΣ , we define a natural order ≤ as g1 ≤ g2 ⇐⇒ g1 ∧ g2 = g1. The intended
interpretation of ≤ is logical implication: g1 implies g2. An atom of BΣ is a guard a1 . . . ak such that ai ∈ Σ ∪ Σ with
Σ = {σ i | σi ∈ Σ}, 1 ≤ i ≤ k. We can think of an atom as a truth assignment. We denote atoms by Greek letters α, β, . . .
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Fig. 3. Automata for the basic Reo channels of Fig. 1.

and the set of all atoms of BΣ by AtΣ . Given S ⊆ Σ , we defineS ∈ BΣ as the conjunction of all elements of S. For instance,
for S = {a, b, c} we haveS = abc.

Definition 2.1 (Reo Automaton [3]). A Reo Automaton is a triple (Σ,Q , δ) where Σ is the set of nodes, Q is the set of states,

δ ⊆ Q ×BΣ ×2Σ
×Q is the finite transition relation such that for each ⟨q, g, f , q′

⟩ ∈ δ, which is represented as q
g|f
−→ q′

∈ δ:
(i) g ≤f (reactivity)

(ii) ∀g ≤ g ′
≤f · ∀α ≤ g ′

· ∃q
g ′′

|f
−−→ q′

∈ δ · α ≤ g ′′ (uniformity)

In Reo Automata, for simplicity we abstract data constraints [2] and assume they are true.

Intuitively, a transition q
g|f
−→ q′ in an automaton corresponding to a Reo connector conveys the following notion: if the

connector is in state q and the boundary requests present at themoment, encoded by α that is the conjunction of all possible
requests presence, are such that α ≤ g , then the nodes f fire and the connector evolves to state q′. Each transition labeled
by g|f satisfies two criteria: (i) reactivity — data flow only through those nodes where a request is pending, capturing Reo’s
interaction model; and (ii) uniformity — which captures two properties: (a) the request set corresponding precisely to the
firing set is sufficient to cause firing, and (b) removing additional unfired requests from a transitionwill not affect the (firing)
behavior of the connector [3]. In compliance with these criteria, for a firing f , its guard g considers the presence of the least
sufficient requests.

In Fig. 3 we depict the Reo Automata for the basic channel types listed in Fig. 1. Note that here and in the remainder of

this paper, given transition q
g|f
−→ q′, if there is more than one transition from a state q to the same state q′ we often just

draw one arrow and separate their labels by commas, and every guard in a transition label in the automata is a conjunction
of literals inΣ . Moreover, it is always possible to transform any guard g into this form, by taking its disjunctive normal form
(DNF) g1 ∨ · · · ∨ gk and splitting the transition g|f into the several gi|f , for i = 1, . . . , k. Given a transition relation δ we call
norm(δ) the normalized transition relation obtained from δ by putting all of its guards in DNF and splitting the transitions
as explained above.

2.1.1. Composing Reo connectors
We now model at the automata level the composition of Reo connectors. We define two operations: product, which

puts two connectors in parallel, and synchronization, which models the plugging of two nodes. Thus, the product and
synchronization operations can be used to obtain the automaton of a Reo connector by composing the automata of its
primitive connectors. Later in this section we formally show the compositionality of these operations.

We first define the product operation for Reo Automata. This definition differs from the classical definition of
(synchronous) product for automata: our automata have disjoint alphabets and they can either take steps together or
independently. In the latter case the composite transition in the product automaton explicitly encodes that one of the two
automata cannot perform a step in the current state, using the following notion:

Definition 2.2 ([3]). Given a Reo Automaton A = (Σ,Q , δ) and q ∈ Q we define

q♯
= ¬


{ g | q

g|f
−→ q′

∈ δ }.

This captures precisely the condition under which A cannot fire in state q.

Definition 2.3 (Product of Reo Automata [3]). Given two Reo Automata A1 = (Σ1,Q1, δ1) and A2 = (Σ2,Q2, δ2) such that
Σ1 ∩ Σ2 = ∅, we define the product of A1 and A2 as A1 × A2 = (Σ1 ∪ Σ2,Q1 × Q2, δ) where δ consists of:

{(q, p)
gg ′

|ff ′
−−−→ (q′, p′) | q

g|f
−→ q′

∈ δ1 ∧ p
g ′

|f ′
−−→ p′

∈ δ2}

∪ {(q, p)
gp♯

|f
−−→ (q′, p) | q

g|f
−→ q′

∈ δ1 ∧ p ∈ Q2}

∪ {(q, p)
gq♯

|f
−−→ (q, p′) | p

g|f
−→ p′

∈ δ2 ∧ q ∈ Q1}

Here and throughout, we use ff ′ as a shorthand for f ∪ f ′. The first term in the union, above, applies when both automata fire
in parallel. The other terms apply when one automaton fires and the other is unable to (indicated by p♯ and q♯, respectively).
Note that the product operation is closed for Reo Automata, since it preserves reactivity and uniformity [3]. Fig. 4 shows an
example of the product of two automata.
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q × e f = (q, e) (q, f )

ab|ab
ab|a

c|c

d|d

abc|abc
abc|ac
ac|c

abd|abd
abd|ad
ad|d

abc|ab
abc|a

abd|ab
abd|a

∂b,c
(q, e) (q, f )

a|a

ad|ad
ad|d

ad|a

Fig. 4. Product of LossySync and FIFO1 and the synchronization of nodes b and c.

We now define a synchronization operation that corresponds to joining two nodes in a Reo connector. When
synchronizing two nodes a and b (which are then made internal), in the resulting automaton, only the transitions where
either both a and b or neither a nor b fire are kept, i.e., a ∈ f ⇔ b ∈ f — this is what it means for a and b to synchronize.
Moreover, we will only keep transitions whose guards encode that ports a and b are not blocked. That is, transitions labeled
by g|f where g ≰ ab. This condition roughly corresponds to the notion of an internal node acting like a self-contained
pumping station [1], which implies that an internal node cannot store data nor actively block behavior.

Definition 2.4 (Synchronization [3]). Given a Reo Automaton A = (Σ,Q , δ), we define the synchronization for a, b ∈ Σ as
∂a,bA = (Σ,Q , δ′) where

δ′
= {q

g\ab|f \{a,b}
−−−−−−→ q′

| q
g|f
−→ q′

∈ norm(δ) s.t. g ≰ ab and a ∈ f ⇔ b ∈ f }

Here and throughout, g\ab is the guard obtained from g by deleting all occurrences of a and b. It is worth noting that
synchronization preserves reactivity and uniformity.

Fig. 41 depicts the product of LossySync and FIFO1, together with the result of synchronizing nodes b and c. This
synchronized result provides the semantics for the LossyFIFO1 example in Fig. 2.

2.1.2. Compositionality
Given two Reo AutomataA1 andA2 over the disjoint alphabetsΣ1 andΣ2, {a1, . . . , ak} ⊆ Σ1 and {b1, . . . , bk} ⊆ Σ2 we

construct ∂a1,b1∂a2,b2 · · · ∂ak,bk(A1×A2) as the automaton corresponding to a connector where node ai of the first connector
is connected to node bi of the second connector, for all i ∈ {1, . . . , k}. Note that the ‘plugging’ order does not matter because
∂ can be applied in any order and it interacts well with product. These properties are captured in the following lemma.

Lemma 2.5 ([3]). For the Reo Automata A1 = (Σ1,Q1, δ1) and A2 = (Σ2,Q2, δ2):

1. ∂a,b∂c,dA1 = ∂c,d∂a,bA1, if a, b, c, d ∈ Σ1.
2.


∂a,bA1


× A2 ∼ ∂a,b(A1 × A2), if a, b /∈ Σ2

The notion of equivalence ∼ used above is bisimilarity, defined as follows.

Definition 2.6 (Bisimulation [3]). Given the Reo Automata A1 = (Σ,Q1, δ1) and A2 = (Σ,Q2, δ2), we call R ⊆ Q1 × Q2 a
bisimulation iff for all (q1, q2) ∈ R:

If q1
g|f
−→ q′

1 ∈ δ1 and α ∈ AtΣ , α ≤ g , then there exists a transition q2
g ′

|f
−→ q′

2 ∈ δ2 such that α ≤ g ′ and (q′

1, q
′

2) ∈ R
and vice-versa.

We say that two states q1 ∈ Q1 and q2 ∈ Q2 are bisimilar if there exists a bisimulation relation containing the pair (q1, q2)
and we write q1 ∼ q2. Two automata A1 and A2 are bisimilar, written A1 ∼ A2, if there exists a bisimulation relation such
that every state of one automaton is related to some state of the other automaton.

3. Stochastic Reo

Stochastic Reo [4,5] is an extension of Reo where channel ends and channels are annotated with stochastic values for
data arrival rates at channel ends and processing delay rates at channels. Such rates are non-negative real values and describe
how the probability that an event occurs varies with time. Fig. 5 shows the stochastic versions of the basic Reo channels
in Fig. 1. Here and throughout, for simplicity, we omit the node names, since they can be inferred from the names of their
respective arrival rates: for instance, γ a is the arrival rate of node a.

1 For simplicity, we abstract away data-constrains on firings by assuming them true. Thus, the composition result of a LossySync and a FIFO1 channels,
i.e., an overflow LossyFIFO1 connector, becomes indistinguishable from the automaton for a shift LossyFIFO1 [2] connector. However, by reviving data
constraints we can distinguish the automata for these two connectors.
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γ a γ b

γ ab

γ a γ b

γ ab

γ aL γ a γ b

γ ab

γ a

γ aF

γ b

γ Fb

Fig. 5. Basic Stochastic Reo channels for the basic Reo channels of Fig. 1.

γ a

γ cF

γ d

γ Fdγ ab

γ aL

Fig. 6. Stochastic LossyFIFO1 connector.

It should be noted that such an annotation does not affect the functionalities of Reo connectors, thus, when the
annotations of rates are neglected, the mapping between the operational semantics of Reo and Stochastic Reo is quite
straightforward, i.e., one-to-one mapping.2

A processing delay rate represents how long it takes for a channel to perform a certain activity, such as data-flow. For
instance, a LossySync has two associated rates γ ab and γ aL for, respectively, successful data-flow from node a to node b,
and losing the data item from node a. In a FIFO1 γ aF represents the delay for data-flow from its source a into the buffer, and
γ Fb for sending the data from the buffer to the sink b.

Arrival rates describe the time between consecutive arrivals of I/O requests at the source and sink nodes of Reo
connectors. For instance, γ a and γ b in Fig. 5 are the associated arrival rates of write/take requests at the nodes a and b.

Since arrival rates on nodes model their interaction with the environment only, mixed nodes have no associated arrival
rates. This is justified by the fact that a mixed node delivers data items instantaneously to the source end(s) of its connected
channel(s). Hence, when joining a source with a sink node into a mixed node, their arrival rates are discarded.3

A stochastic version of the LossyFIFO1 is depicted in Fig. 6, including its arrival and processing delay rates.
As a more complex Stochastic Reo connector, Fig. 7 shows a discriminator which takes the first arriving input value and

produces it as its output; it also ensures that an input value arrives on every other input port before the next round.

w

x

l

γ aF γ Fb

γ tF γ Fu

γ oF γ Fp

γ iF γ Fj

γ cd

γ ef

γ gh
γ nF

γ Fm

γ kl

γ vr,
γ vL

γ sq,
γ sL

Fig. 7. Stochastic Discriminator with two inputs.

3.1. Semantics: Stochastic Reo Automata

In this section, we provide a compositional semantics for Stochastic Reo connectors, as an extension of Reo Automata
with functions that assign stochastic values for data-flows and I/O request arrivals.

Definition 3.1 (Stochastic Reo Automaton). A Stochastic Reo Automaton is a triple (A, r, t) where A = (Σ,Q , δA) is a Reo
Automaton and

2 Stochastic Reo is a conservative extension of Reo: if you take a certain Stochastic Reo connector and delete all the rates, what one ends up with is
precisely the Reo connector where the rates have also been deleted.
3 For simplicity, we assume ideal nodes whose activity incurs no delay. Any real implementation of a node, of course, induces some processing delay

rate. A real node can be modeled as a composition of an ideal node with a Sync channel that manifests the processing delay rate. Thus, we can associate
delay distributions with Stochastic Reo nodes and automatically translate them into such ‘‘Sync plus ideal node’’ constructs.
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Table 1
Stochastic Reo Automata for the basic Stochastic Reo channels of Fig. 5.

Synchronous Channels

γ a γ b

γ ab

q

ab|ab, {({a}, {b}, γ ab)} r
a γ a
b γ b

γ a γ b

γ ab
γ aL

q

ab|ab, {({a}, {b}, γ ab)}
ab|a, {({a}, ∅, γ aL)} r

a γ a
b γ b

γ a γ b

γ ab

q

ab|ab, {({a, b}, ∅, γ ab)} r
a γ a
b γ b

Asynchronous Channel

γ c

γ cF

γ d

γ Fd
e f

c|c, {({c}, ∅, γ cF)}

d|d, {(∅, {d}, γ Fd)}

r
c γ c
d γ d

• r : Σ → R+ is a function that associates with each node its arrival rate.
• t : δA → 2Θ is a function that associates with a transition a subset of Θ = 2Σ

× 2Σ
× R+ such that for any I, O ⊆ Σ

and I ∩ O = ∅, each (I,O, r) ∈ Θ corresponds to a data-flow where I is a set of input and/or mixed nodes; O is a set of
output and/or mixed nodes; and r is a processing delay rate for the data-flow described by I and O, which must satisfy
that given two 3-tuples (I1,O1, r1), (I2,O2, r2) ∈ Θ , if I1 = I2 ∧ O1 = O2, then r1 = r2.

The Stochastic Reo Automata corresponding to the basic Stochastic Reo channels in Fig. 5 are defined by the functions
r and t shown in Table 1. Note that the function t is depicted in the transitions, and function r is shown inside the
tables.

An element of θ ∈ Θ is accessed by projection functions i : Θ → 2Σ , o : Θ → 2Σ and v : Θ → R+; i(θ) and o(θ)
return the respective input and output nodes of a data-flow, and v(θ) returns the delay rate of the data-flow through the
nodes in i(θ) and o(θ).

As mentioned in Section 2.1.2, Reo Automata provide a compositional semantics for Reo connectors. As an extension of
Reo Automata, Stochastic Reo Automata also present the composition of Stochastic Reo connectors at the automata level.
For this purpose, we define two operations of the product and the synchronization that are used to obtain an automaton of a
Stochastic Reo connector by composing the automata of its primitive connectors. The compositionality of these operations
is formally proved later in this section.

Definition 3.2 (Product). Given two Stochastic Reo Automata (A1, r1, t1) with A1 = (Σ1,Q1, δ1) and (A2, r2, t2) with
A2 = (Σ2,Q2, Σ2), their product is defined as (A1, r1, t1) × (A2, r2, t2) = (A1 × A2, r1 ∪ r2, t) where

t((q, p)
gg ′

|ff ′
−−−→ (q′, p′)) = t1(q

g|f
−→ q′) ∪ t2(p

g ′
|f ′

−−→ p′)

where q
g|f
−→ q′

∈ δ1 ∧ p
g ′

|f ′
−−→ p′

∈ δ2

t((q, p)
gp♯

|f
−−→ (q′, p)) = t1(q

g|f
−→ q′) where q

g|f
−→ q′

∈ δ1 ∧ p ∈ Q2

t((q, p)
gq♯

|f
−−→ (q, p′)) = t2(p

g|f
−→ p′) where p

g|f
−→ p′

∈ δ2 ∧ q ∈ Q1

Note thatwe use× to denote both the product of ReoAutomata and the product of Stochastic ReoAutomata. Since Stochastic
Reo Automata are a conservative extension of Reo Automata with stochastic information, it is easy to derive the product
result for a Reo Automaton of a certain connector from the product result of a Stochastic Reo Automaton for the same
connector, just by ignoring the second and third components of the Stochastic Reo Automaton.

The set of 3-tuples that t associates with a transitionm combines the delay rates involved in all data-flows synchronized
by the transition m. In order to keep Stochastic Reo Automata generally useful and compositional, and their product
commutative, we avoid fixing the precise formal meaning of distribution rates of synchronized transitions composed in
a product; instead, we represent the ‘‘delay rate’’ of their composite transition in the product automaton as the union of the
delay rates of the synchronizing transitions of the two automata. How exactly these rates combine to yield the composite
rate of the transition depends on the different properties of the distributions and their time ranges. For example, in the
continuous-time case, no two events can occur at the same time; and the exponential distributions are not closed under
takingmaximum. In Section 4, we show how to translate a Stochastic Reo Automaton to a CTMC using the union of the rates
of the exponential distributions in the continuous-time case.
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Definition 3.3 (Synchronization). For a Stochastic Reo Automaton (A, r, t), the synchronization operation on nodes a and
b is defined as ∂a,b(A, r, t) = (∂a,bA, r′, t′) where

• r′ is r restricted to the domain Σ \ {a, b}.
• t′ is defined as:

t′(q
g\ab|f \{a,b}
−−−−−−→ q′) = {(A′, B′, r) | (A, B, r) ∈ t(q

g|f
−→ q′),

A′
= sync(A, {a, b}) ∧ B′

= sync(B, {a, b})}

where sync : 2Σ
× 2Σ

→ 2Σ gathers nodes joined by synchronization, and is defined as:

sync(A, B) =


A ∪ B if A ∩ B ≠ ∅

A otherwise

Note that we use the symbol ∂a,b to denote both the synchronization of Reo Automata and the synchronization of Stochastic
Reo Automata. The number of nodes joined by the synchronization is always two, and the sets of joined nodes in multiple
synchronization steps are disjoint. That is, given two different synchronization ∂a,b and ∂c,d on a Stochastic Reo automaton,
{a, b} ∩ {c, d} = ∅.

We now revisit the LossyFIFO1 example. Its semantics is given by the triple (ALossyFIFO1, r, t), where ALossyFIFO1 is the
automaton depicted in Fig. 4 and r is defined as r = {a → γ a, d → γ d}. For t, we first compute tLossySync×FIFO1:

(q, e) (q, f )

abc|abc, 23
abc|ac, Θ4
ca|c, Θ5

abd|abd, Θ6

abd|ad, 27
da|d, 28

abc|ab, Θ1

abc|a, Θ2
abd|ab, Θ1

abd|a, 22 Θ1 : {({a}, {b}, γ ab)}
Θ2 : {({a}, ∅, γ aL)}
Θ3 : {({a}, {b}, γ ab), ({c}, ∅, γ cF)}
Θ4 : {({a}, ∅, γ aL), ({c}, ∅, γ cF)}
Θ5 : {({c}, ∅, γ cF)}
Θ6 : {({a}, {b}, γ ab), (∅, {d}, γ Fd)}
Θ7 : {({a}, ∅, γ aL), (∅, {d}, γ Fd)}
Θ8 : {(∅, {d}, γ Fd)}

Above, the labels that correspond to the transitions that will be kept after synchronization appear in bold. Thus, the result
of joining nodes by synchronization, is shown in Fig. 8 as:

(q, e) (q, f )

a|a
{({a}, {b, c}, γ ab), ({b, c}, ∅, γ cF)}

ad|ad, {({a}, ∅, γ aL), (∅, {d}, γ Fd)}
da|d, {(∅, {d}, γ Fd)}

ad|a, {({a}, ∅, γ aL)}

Fig. 8. Stochastic Reo Automaton for LossyFIFO1.

Note that the port names that appear in bold represent the synchronization of nodes b and c.
In this way, we can carry in the semantic model of Reo connectors, given as Reo automata, stochastic information, i.e.,

arrival rates and processing delay rates that pertain to its QoS.
As a more complex example of such composition, Fig. 9 shows a Stochastic Reo Automaton for the discriminator in Fig. 7.
Definition 3.1 shows that our extension of Reo Automata deals with such stochastic information separately, apart from

the underlying Reo Automaton. Thus, our extended model retains the properties of Reo Automata, i.e., the compositionality
result presented in Section 2.1.2 can be extended to Stochastic Reo Automata.

Given two Stochastic Reo Automata (A1, r1, t1) and (A2, r2, t2) with A1 = (Σ1,Q1, δ1) and A2 = (Σ2,Q2, δ2) over
the disjoint alphabets Σ1 and Σ2, {a1, . . . , ak} ⊆ Σ1 and {b1, . . . , bk} ⊆ Σ2, we construct ∂a1,b1∂a2,b2 · · · ∂ak,bk(A1 × A2)
as the automaton corresponding to a connector where node ai of the first connector is connected to node bi of the second
connector, for all i ∈ {1, . . . , k}. Note that the ‘plugging’ order does not matter because ∂ can be applied in any order and it
interacts well with product. These properties are captured in the following lemma.

Lemma 3.4 (Compositionality). Given two disjoint Stochastic Reo Automata (A1, r1, t1) and (A2, r2, t2) with A1 = (Σ1,
Q1, δ1) and A2 = (Σ2,Q2, δ2),
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wx|w, φ1

wx|x, φ2

wx|wx, φ3
wx|wx, φ4

wx|x, φ6

l|l, φ7

lxw|lx, φ8

wx|w, φ5

l|l, φ12

lwx|lw, φ11

wx|x, φ9

wx|w, φ13

l|l, φ10

⊤|∅, φ14

φ1 = { ({w}, {a, v}, γ avw), ({a, v}, {r}, γ vr), ({a, v}, ∅, γ aF),
({r}, {n, o}, γ nor), ({n, o}, ∅, γ oF), ({n, o}, ∅, γ nF) }

φ2 = { ({x}, {s, t}, γ stx), ({s, t}, {q}, γ sq), ({s, t}, ∅, γ tF),
({q}, {n, o}, γ noq), ({n, o}, ∅, γ oF), ({n, o}, ∅, γ nF) }

φ3 = φ2 ∪ φ5
φ4 = φ1 ∪ φ6
φ5 = { ({w}, {a, v}, γ avw), ({a, v}, ∅, γ aF), ({a, v}, ∅, γ vL) }

φ6 = { ({x}, {s, t}, γ stx) , ({s, t}, ∅, γ tF), ({s, t}, ∅, γ sL) }

φ7 = { (∅, {m}, γ Fm), ({m}, {i, k}, γ ikm), ({i, k}, {l}, γ kl),
({i, k}, ∅, γ iF) }

φ8 = φ7 ∪ φ6
φ9 = φ6
φ10 = φ12 = φ7
φ11 = φ7 ∪ φ5
φ13 = φ5
φ14 = { (∅, {b, c}, γ Fb), ({b, c, d, e}, ∅, γ cd), (∅, {u}, γ Fu)

({u}, {d, e}, γ deu), ({d, e, f , g}, ∅, γ ef ), (∅, {p}, γ Fp),
({p}, {f , g}, γ fgp), ({f , g, h, j}, ∅, γ gh), (∅, {h, j}, γ Fj) }

Fig. 9. Stochastic Reo Automaton for discriminator in Fig. 7.

1. ∂a,b∂c,d(A1, r1, t1) = ∂c,d∂a,b(A1, r1, t1), if a, b, c, d ∈ Σ1

2. (∂a,b(A1, r1, t1)) × (A2, r2, t2) ∼ ∂a,b((A1, r1, t1) × (A2, r2, t2)), if a, b /∈ Σ2

Here (A1, r1, t1) ∼ (A2, r2, t2) if and only if A1 ∼ A2, r1 = r2 and t1 = t2.

Proof. Let

• ∂a,b∂c,d(A1, r1, t1) = (∂a,b∂c,dA1, r′1, t
′

1) and
• ∂c,d∂a,b(A1, r1, t1) = (∂c,d∂a,bA, r′′1, t

′′

1)

By Lemma 4.13 in [3] which is the analogue result for Reo Automata, we know that ∂a,b∂c,dA1 = ∂c,d∂a,bA1. Using basic set
theory, we also have that

r′1 = r | (Σ \ {a, b}) \ {c, d}
= r | (Σ \ {c, d}) \ {a, b}
= r′′1

where for v ⊆ Σ, r|v is the restriction of r to v.
Before moving to the fact that t′1 = t′′1 , we show that the order of applying the synchronization is irrelevant to the

synchronization result, i.e., given three node sets A, {a, b}, and {c, d},

sync(sync(A, {a, b}), {c, d}) = sync(sync(A, {c, d}), {a, b})
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because, given three node sets A, B, and C with B ∩ C = ∅,

sync(sync(A, B), C) =


A ∪ B ∪ C if A ∩ B ≠ ∅ ∧ A ∩ C ≠ ∅

A ∪ B if A ∩ B ≠ ∅ ∧ A ∩ C = ∅

A ∪ C if A ∩ B = ∅ ∧ A ∩ C ≠ ∅

A otherwise
and the set union operation ∪ is commutative.

t′1(q
g\abcd | (f \{a,b})\{c,d}
−−−−−−−−−−−−→ q′)

= {(A′, B′, r) | (A, B, r) ∈ t1(q
g|f
−→ q′),

A1
= sync(A, {a, b}) ∧ B1

= sync(B, {a, b}) ∧

A′
= sync(A1, {c, d}) ∧ B′

= sync(B1, {c, d})}

= {(A′, B′, r) | (A, B, r) ∈ t1(q
g|f
−→ q′),

A1
= sync(A, {c, d}) ∧ B1

= sync(B, {c, d}) ∧

A′
= sync(A1, {a, b}) ∧ B′

= sync(B1, {a, b})}

= t′′(q
g\cdab | (f \{c,d})\{a,b}
−−−−−−−−−−−−→ q′)

For the second proposition, let

• (∂a,b(A1, r1, t1)) × (A2, r2, t2) = (∂a,b(A1) × A2, r, t) and
• ∂a,b((A1, r1, t1) × (A2, r2, t2)) = (∂a,b(A1 × A2), r′, t′)

By [3, Lemma 4.13], we know that ∂a,b(A1) × A2 = ∂a,b(A1 × A2) if a, b /∈ Σ2. It remains to prove that r = r′ and t = t′.
To prove r = r′, we easily calculate, ∀p ∈ (Σ1 \ {a, b}) ∪ Σ2:

r(p) =


r1(p) if p ∈ Σ1 \ {a, b}
r2(p) if p ∈ Σ2

= r′(p)

To prove t = t′, consider transitions (q1, q2)
(g1\ab)g2|(f1\{a,b})f2
−−−−−−−−−−−→ (p1, p2) in ∂a,b(A1) × A2 and (q1, q2)

(g1g2)\ab|(f1f2)\{a,b}
−−−−−−−−−−−→

(p1, p2) in ∂a,b(A1 × A2) with gi ∈ BΣi and fi ∈ 2Σi for i = 1, 2, which includes joined nodes a and b. Then,

t((q1, q2)
(g1\ab)g2|(f1\{a,b})f2
−−−−−−−−−−−→ (p1, p2))

= {(A′, B′, r) | (A, B, r) ∈ t1(q1
g1|f1
−−→ p1),

A′
= sync(A, {a, b}) ∧ B′

= sync(B, {a, b})}

∪ {(A, B, r) | (A, B, r) ∈ t2(q2
g2|f2
−−→ p2)}

= {(A′, B′, r) | (A, B, r) ∈ t1(q1
g1|f1
−−→ p1) ∪ t2(q2

g2|f2
−−→ p2),

A′
= sync(A, {a, b}) ∧ B′

= sync(B, {a, b})}

= t′((q1, q2)
(g1g2)\ab|(f1f2)\{a,b}
−−−−−−−−−−−→ (p1, p2))

Since sync(C,D) = C if C ∩ D = ∅, the equation above holds without a need to consider if ab ≤ g1 or {a, b} ⊆ f1. This also

implies that t = t′ holds for transitions (q, p)
g|f
−→ (q′, p) and (q, p)

g ′
|f ′

−−→ (q, p′), which do not include the joined nodes, in
∂a,b(A1) × A2 (equivalently, in ∂a,b(A1 × A2)). �

4. Translation to CTMC

In this section, we show how to translate a Stochastic Reo Automaton into a homogeneous CTMCmodel. A homogeneous
CTMC is a stochastic process with (1) discrete state space, (2) Markov property, (3) memoryless property, and (4)
homogeneity in the continuous-time domain [6]. That is, in a homogeneous CTMC, (1) — the state space is countable; (2)
— the state changes depend on the current state, not on the trace of state changes; (3) — the remaining time before exiting
a current state is independent of the time already spent in that state; and (4) — the probability of state changes does not
depend on a time instance, i.e., the occurrence of stochastic event can take place at any time instance. These properties
yield efficient methodologies [7] for numerical analysis. In the continuous-time domain, the exponential distribution is the
only one that satisfies thememoryless property. Therefore, for the translation, we assume that the rates of data-arrivals and
data-flows are exponentially distributed.

A CTMCmodel derived from a Stochastic Reo Automaton (A, r, t)withA = (Σ,Q , δA) is a pair (S, δ)where S = SA∪SM
is the set of states. SA represents the configurations of the systemderived from its Stochastic Reo Automaton and the pending
status of I/O requests; SM is the set of states that result from the micro-step division of synchronous actions (see below).
δ = δArr ∪ δProc ⊆ S × R+

× S, explained below, is the set of transitions, each labeled with a stochastic value specifying the
arrival or the processing delay rate of the transition. δArr and δProc are defined in Section 4.3.

A state in S models a configuration of the connector, including the presence of the I/O requests pending on its boundary
nodes, if any. Data-arrivals change system configuration only by changing the pending status of their respective boundary
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nodes. Data-flows corresponding to a transition of a Reo Automaton change the system configuration, and release the
pending I/O requests on their involved boundary nodes.

In a CTMCmodel, the probability that two events (e.g., the arrival of an I/O request, the transfer of a data item, a processing
step, etc.) happen at the same time is zero: only a single event occurs at a time. In compliance with this requirement, for a
Stochastic Reo Automaton (A, r, t) with A = (Σ,Q , δA) and a set of boundary nodes Σ ′

⊆ Σ , we define its set of data-
arrival transitions, δArr , in several steps. The set SA and the preliminary set4 of data-arrival transitions of the CTMC derived
for (A, r, t) are defined as:

SA = {(q, R) | q ∈ Q , R ⊆ Σ ′
}

δ′

Arr = {(q, R)
r(c)
−→ (q, R ∪ {c}) | (q, R), (q, R ∪ {c}) ∈ SA, c /∈ R}

The set δ′

Arr is used in Section 4.3 to define δArr .
As an example of obtaining SA and δ′

Arr , let us recall the Stochastic Reo Automaton for the LossyFIFO1 connector in Fig. 8.
It has two states of (q, e) and (q, f ), and its boundary nodes set Σ ′ is {a, d}. Therefore,

SA = { ((q, e), ∅), ((q, e), {a}), ((q, e), {d}), ((q, e), {a, d})
((q, f ), ∅), ((q, f ), {a}), ((q, f ), {d}), ((q, f ), {a, d}) }

δ′

Arr = { ((q, e), ∅)
r(a)
−−→ ((q, e), {a}), ((q, e), ∅)

r(d)
−−→ ((q, e), {d}),

((q, e), {a})
r(d)
−−→ ((q, e), {a, d}), ((q, e), {d})

r(a)
−−→ ((q, e), {a, d}),

((q, f ), ∅)
r(a)
−−→ ((q, f ), {a}), ((q, f ), ∅)

r(d)
−−→ ((q, f ), {d}),

((q, f ), {a})
r(d)
−−→ ((q, f ), {a, d}), ((q, e), {d})

r(a)
−−→ ((q, f ), {a, d}) }

In the remainder of this section, for simplicity, we abbreviate the configurations of states. For instance, in this example, (q, e)
and (q, f ) are represented as e and f . Thus, the diagram of SA and δ′

Arr are represented as follows:

e, ∅ e, {a}

e, {d} e, {a, d}

f , ∅ f , {a}

f , {d} f , {a, d}

r(a)

r(d) r(d)

r(a)

r(a)

r(d) r(d)

r(a)

Fig. 10. State diagram for data-arrivals.

4.1. Micro-step transitions

The CTMC transitions associated with data-flows are more complicated because groups of synchronized data-flows are
modeled as a single transition in a Reo Automaton, abstracting away their precise occurrence order. Therefore, we need to
divide such synchronized data-flows into so-called micro-step transitions,5 respecting the connection information, i.e., the
topology of a Reo connector, through which the data-flow occurs.

The connection information can be recovered from the 3-tuples associated with each transition in a Reo Automaton,
since the first and the second elements of a 3-tuple describe the input and the output nodes, respectively, involved in the
data-flow of its transition, and the data-flow in the transition occurs from its input to its output nodes.

For example, the transition (q, e)
a|a
−→ (q, f ) in the Reo Automaton of the LossyFIFO1 example in Fig. 8 has {({a},

{b, c}, γ ab), ({b, c}, ∅, γ cF)} as a set of 3-tuples. The connection information inferred from this set states that data-flow
occurs from a to the buffer through b and c. The transition is thus divided into two consecutive micro-step transitions
({a}, {b, c}, γ ab) and ({b, c}, ∅, γ cF).

Such data-flow information on each transition in a Stochastic Reo Automaton is formalized by a delay-sequence defined
by the following grammar:

Λ ∋ λ ::= ϵ | θ | λ|λ | λ; λ

where ϵ is the empty sequence and θ is a 3-tuple (I,O, r) for a basic Reo channel. λ|λ denotes parallel composition, and λ; λ
denotes sequential composition. The empty sequence ϵ is an identity element for | and ;, | is commutative, associative, and
idempotent, ; is associative and distributes over |. Most of properties of these compositional operators are intuitive, except
for the distributivity of ;. The delay-sequence λ extracted by the Algorithm 4.2.1 is in the format λ = λ1|λ1| . . . |λn. Consider

4 In the process of generating CTMCs, some macro-step events (e.g., synchronized data-flows) are divided into several micro-step events. After that,
independent events (e.g., data-arrivals) are considered as preemptive events between any two micro-step events. Before this division, we need to specify
the transitions for respective synchronized data-flows. For this purpose, SA is obtained to describe source and target states of these transitions. The
preliminary set of data-arrivals includes the transitions that connect the states in SA , each of which corresponds to all possible data-arrivals at every
connector configurations.
5 This division delineates multiple synchronized data-flows, not each data-flow itself.
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λ = λ1|λ2 = (θ1; θ2)|(θ3; θ2).6 Distributivity, that is, the property (θ1; θ2)|(θ3; θ2) = (θ1|θ3); θ2 is justified by the fact that
θ2 is the delay of the same action and the other actions θ1 and θ3 in the composed delays (θ1; θ2) and (θ3; θ2) need to finish
before the action corresponding to θ2 occurs. We use this distributivity law to generate compacter delay-sequences from
the delay-sequences extracted in Section 4.2. For example, recall the delay-sequence λ = (θ1|θ2)|(θ3; θ2). Then, λ becomes
(θ1|θ3); θ2 and it still preserves the sequential precedence of θ1 and θ3 over θ2 and shows the undetermined order between
θ1 and θ3.

4.2. Extracting delay-sequences

The delay-sequence corresponding to a set of 3-tuples associated with a transition in a Stochastic Reo Automaton
is obtained by Algorithm 4.2.1. Note that if the parameter of the function Ext is a singleton, then Ext({θ}) = θ since
i(θ) ∩ o(θ) = ∅ based on Definition 3.1.

Algorithm 4.2.1 Extraction of a delay-sequence out of a set Θ of 3-tuples

Ext(Θ) where Θ = t(p
g|f
−→ q)

S = ϵ, toGo = Θ, Init := {θ ∈ Θ | i(θ) ∩ o(θ ′) = ∅ for all θ ′
∈ Θ}

for θ ∈ Init do
λθ := θ
Pre := {θ}

toGo := toGo \ Pre
Post = {θ ∈ toGo | ∃θ ′

∈ Pre s.t. o(θ ′) ∩ i(θ) ≠ ∅}

while Post ≠ ∅ do
λ′

:= (θ1| · · · |θk) where Post = {θ1, . . . , θk}
λθ := λθ ; λ′

Pre := Post
toGo := toGo \ Pre
Post := {θ ∈ toGo | ∃θ ′

∈ Pre s.t. o(θ ′) ∩ i(θ) ≠ ∅}

end while
S := S|(λθ )

end for
return S

Intuitively, the Ext function delineates the set of activities that – at the level of a Stochastic Reo Automaton – must
happen synchronously/atomically, into its corresponding delay-sequences. If a certain data-flow associated with a 3-tuple
θ1 explicitly precedes another one θ2, then θ1 is sequenced before θ2, i.e., encoded as θ1; θ2. Otherwise, they can occur in any
order, encoded as θ1|θ2.

Applying Algorithm 4.2.1 to the LossyFIFO1 example of Fig. 8 yields the following result:

(q, e) (q, f )

a|a, λ1

ad|ad, λ3
ad|d, λ4

ad|a, λ2 λ1 : ({a}, {b, c}, γ ab) ; ({b, c}, ∅, γ cF)
λ2 : ({a}, ∅, γ aL)
λ3 : ({a}, ∅, γ aL) | (∅, {d}, γ Fd)
λ4 : (∅, {d}, γ Fd)

Fig. 11. Extracting delay-sequences of LossyFIFO1.

The parameterΘ of Algorithm4.2.1 is a finite set of 3-tuples, and Init, Post and toGo, subsets ofΘ , are also finite.Moreover,
Post becomes eventually ∅ since toGo decreases during the procedure. Thus, we can conclude that Algorithm 4.2.1 always
terminates.

A resulting delay-sequence S extracted by Algorithm 4.2.1 is generated by the parallel composition of λθ . The order of
selecting θ from the set Init is not deterministic, thus, the resulting delay-sequence for the same input can be syntactically
different, for example, λθ |λθ ′ and λθ ′ |λθ with Init = {θ, θ ′

}. However, the parallel composition operator | is commutative,
thus, the composition order of | does not matter.

4.3. Deriving the CTMC

We now show how to derive the transitions in the CTMC model from the transitions in a Stochastic Reo Automaton. We
do this in two steps:

6 In general, the operators inside ‘()’ have the highest order. Here and in the remainder of this paper, we also follow this standard order without explicit
mention.
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1. For each transition p
g|f
−→ q ∈ δA, we derive transitions (p, R)

λ
−→ (q, R\ f ) for every set of pending requests R that suffices

to activate the guard g (R ≤ g \
Σ), where λ is the delay-sequence associated with the set of 3-tuples t(p

g|f
−→ q). This

set of derived transitions is defined below as δMacro.
2. We divide a transition in δMacro labeled by λ into a combination of micro-step transitions, each of which corresponds to

a single event.

The following figure briefly illustrates the procedure mentioned above, for two transitions p
λ1;λ2
−−−→ q and p

λ1|λ2
−−→ q where

λ1 = θ1; λ′

1 and λ2 = θ2; λ′

2:

p
λ1;λ2
−−−→ q p

λ1|λ2
−−→ q

p s1 si sk q
θ1 θ2

λ′

1 λ′

2 p
s1

s2

si

sj

sk

sl

s3 q
θ1

θ2

θ2

θ1

θ2

θ1

λ′

1
λ′

2

λ′

2

λ′

1

A sequential delay-sequence λ1; λ2 allows for the events corresponding to λ1 to occur before the ones corresponding to λ2.
For a parallel delay-sequence λ1|λ2, events corresponding to λ1 and λ2 occur interleaving each other, while they preserve
their respective order of occurrence in λ1 and λ2. All indexed states sn are included in SM which consists of the states derived
from the division of the synchronized data-flows into micro-step transitions. The formal description of dealing with these
twodelay-sequences is presented in the definition of a div function below, inwhich handling the respective delay-sequences
correspond to the second and the third conditions of the div function.

Given a Stochastic Reo Automaton (A, r, t)withA = (Σ,Q , δA) and a set of boundary nodesΣ ′, amacro-step transition
relation for the synchronized data-flows is defined as:

δMacro = {(p, R)
λ
−→ (q, R \ f ) | p

g|f
−→ q ∈ δA, R ⊆ Σ ′, R ≤ g \

Σ,

λ = Ext(t(p
g|f
−→ q))}

As an example of obtaining a macro-step transition relation, let us recall a transition (q, e)
a|a,λ1
−−−→ (q, f ) with λ1 =

({a}, {b, c}, γ ab) ; ({b, c}, ∅, γ cF) in Fig. 11. Given the guard g = a and the set of boundary nodes Σ ′
= {a, d}, g \

Σ =

a \ abcd = a, and R is ∅, {a}, {d}, or {a, d}. Thus,

R =


a if R = {a}
d if R = {d}
ad if R = {a, d}
⊤ otherwise

Then,R ≤ g \
Σ is satisfied when R is either {a} or {a, d}, i.e., a ≤ a and ad ≤ a. This generates the following macro-step

transitions ((q, e), {a})
λ1
−→ ((q, f ), ∅) and ((q, e), {a, d})

λ1
−→ ((q, f ), {d}), and these transitions are represented as dashed

transitions in the state diagram in Fig. 10 as follows:

e, ∅ e, {a}

e, {d} e, {a, d}

f , ∅ f , {a}

f , {d} f , {a, d}

r(a)

r(d) r(d)

r(a)

r(a)

r(d) r(d)

r(a)

λ1

λ1

We explicate a macro-step transition with a number of micro-step transitions, each of which corresponds to a single
data-flow. This refinement yields auxiliary states between the source and the target states of the macro-step transition.
Let (p, R) be a source state for a data-flow corresponding to a 3-tuple θ . Then the generated auxiliary states are defined
as (pθ , R \ nodes(θ)) where pθ is just a label denoting that data-flows corresponding to θ have occurred, and the function
nodes : Λ → 2Σ is defined as:

nodes(λ) =


i(θ) ∪ o(θ) if λ = θ
nodes(λ1) ∪ nodes(λ2) if λ = λ1; λ2 ∨ λ = λ1|λ2
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The set of such auxiliary states is obtained as SM = states((p, R)
λ
−→ (q, R′)) where

states((p, R)
λ
−→ (q, R′)) =
{(p, R), (q, R′)} if λ = θ

states(m) ∀m ∈ div((p, R)
λ
−→ (q, R′)) otherwise

The function div : δMacro → 2δMacro is defined as:

div((p, R)
λ
−→ (q, R′)) =



{(p, R)
θ
−→ (q, R′)} if λ = θ ∧ @(p, R)

θ
−→ (p′, R′) ∈ δMacro

div((p, R)
λ1
−→ (pλ1 , R

′′)) ∪ div((pλ1 , R
′′)

λ2
−→ (q, R′))

if λ = λ1; λ2 where R′′
= R \ nodes(λ1)

{m1 ◃▹ m2 | mi ∈ div((p, R)
λi
−→ (pλi , R

′′)), i ∈ {1, 2}}
if λ = λ1|λ2 where R′′

= R \ nodes(λi)
∅ otherwise

where the function ◃▹: δMacro × δMacro → 2δMacro computes all interleaving compositions of the two transitions as follows.

For a transition (p, R)
λ1|λ2
−−→ (q, R′) ∈ δMacro, (p, R)

λ1
−→ (pλ1 , R\nodes(λ1)) and (p, R)

λ2
−→ (pλ2 , R\nodes(λ2)) correspond to,

respectively,m1 andm2 of the third condition in the definition of the div function. Whilem1 andm2 are handled by the div
function recursively, some auxiliary states, i.e., states(m1) and states(m2), are generated. In the interleaving composition,
m1 can occur at any states that are generated by states(m2), and vice-versa. This interleaving composition of m1 and m2 is
represented as:

m1 ◃▹ m2 = { div

(p1, R1)

λ2
−→ (p(1,λ2), R \ nodes(λ2))


,

div

(p2, R2)

λ1
−→ (p(2,λ1), R \ nodes(λ1))


|

(p1, R1) ∈ states(m1) and (p2, R2) ∈ states(m2) }

The following example shows the application of the function div to a non-trivial delay-sequence, which contains a
combination of sequential and parallel compositions.
Example 4.1. Consider the Stochastic Reo connector shown below. Every indexed θ is a rate for its respective processing
activity, e.g., θ2 is the rate at which the top-left FIFO1 dispenses data through its sink end; θ3 is the rate at which the node
replicates its incoming data, etc. Data-flows contained in boxed regions marked as P1 and P2 appear in δMacro, derived from
the Stochastic Reo Automaton of this connector, as two transitions with the delay-sequences of λ1 and λ2 where:

• from P1: λ1 = ((θ2; θ3)|(θ8; θ9)) ; (θ4|θ10|θ11)
• from P2: λ2 = (θ5; θ6) | (θ12; θ13)

θ1 θ2

θ3

θ4 θ5

θ7 θ8 θ11

θ9

θ12

θ6

θ13

θ10

P1 P2

To derive a CTMC, λ1 and λ2 must be divided into micro-step transitions. We exemplify a few of these divisions. For λ1,
the division of (θ4|θ10|θ11) is trivial since it contains only simple parallel composition. This division result is then appended
to the division result of (θ2; θ3)|(θ8; θ9), which has the same structure as that of λ2. Thus, we show below the division result
of λ2 only.

In the following CTMC fragment, to depict which events have occurred up to a current state, the name of each state
consists of the delays of all the events that have occurred up to that state. The delay for a newly occurring event is appended
at the end of its respective segment in the current state name.

ϵ | ϵ

ϵ | θ12

θ5 | ϵ

θ5 | θ12

(θ5; θ6) | ϵ

ϵ | (θ12; θ13)

θ5 | (θ12; θ13)

(θ5; θ6) | θ12

(θ5; θ6) | (θ12; θ13)
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This example shows that when a delay-sequence λ is generated by parallel composition, the events in one of the sub-
delay-sequences of λ occur independently of the events in other sub-delay-sequences. Still events preserve their occurrence
order within the sub-delay-sequence that they belong to. �

e, ∅ e, {a} e′, ∅ f , ∅ f , {a}

e, {d} e, {a, d} e′, {d} f , {d} f , {a, d}

γ a γ ab γ cF γ a

γ a γ ab γ cF γ a

γ d γ d γ d γ d γ d

γ Fd γ Fd

γ aL

γ aL

Fig. 12. Derived CTMC of LossyFIFO1.

The division into micro-step transitions ensures that each transition has a single 3-tuple in its label. Thus, the micro-step
transitions can be extracted as:

δProc = {(p, R)
v(θ)
−−→ (p′, R′) | (p, R)

θ
−→ (p′, R′) ∈ div(t) for all t ∈ δMacro}

Synchronized data-flows in Stochastic Reo Automata are considered atomic, hence other events cannot interfere with
them. However, splitting these data-flows allows non-interfering events to interleave with their micro-steps, disregarding
the strict sense of their atomicity. For example, a certain boundary node unrelated to a group of synchronized data-flows
can accept a data item between any twomicro-steps. Since we want to allow such interleaving, wemust explicitly add such
data-arrivals. For a Stochastic Reo Automaton (A, r, t) with A = (Σ,Q , δA) and a set of micro-step states SM , its full set of
data-arrival transitions, including its preliminary data-arrival set δ′

Arr , is defined as:

δArr = δ′

Arr ∪ {(p, R)
r(d)
−−→ (p, R ∪ {d}) | (p, R), (p, R ∪ {d}) ∈ SM , d ∈ Σ, d /∈ R}

The derived CTMC model can be used for stochastic analysis. For instance, Fig. 13 is obtained from PRISM7 [8] using the
CTMCmodel (see Fig. 12) derived from the Stochastic Reo connector of the LossyFIFO1 example in Fig. 6. Fig. 13 shows how
the probability of data loss varies as the arrival rate at node a increases.

Fig. 13. Probability of data lost at node a.

5. Example

As an example for the whole process mentioned in the previous sections, we use the Stochastic Reo connector of a task
queue with minimum capacity of 2:

γ a

γ cF γ Fd γ eF

γ f

γ Ffγ ab

γ aL

7 http://www.prismmodelchecker.org/.

http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/
http://www.prismmodelchecker.org/
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The Stochastic ReoAutomaton corresponding to this Stochastic Reo connector is given below. In Stochastic ReoAutomata,
the nodes joined by synchronization disappear, but, to facilitate the understanding of the behavior of the queue, we keep
the joined nodes in the labels of their respective firing transitions and highlight them in bold. An indexed Θ represents the
composite delay information relevant for its respective firing transition.

ee fe

ef ff

a|abc, Θ1

a|de, Θ4
a|ade, Θ5

af |af bc, Θ6

af |f , Θ3

af |abc, Θ1

f |f , Θ3

a|a, Θ2

af |a, Θ2

Θ1 : {({a}, {b, c}, γ ab), ({b, c}, ∅, γ cF)}

Θ2 : {({a}, ∅, γ aL)} Θ3 : {(∅, {f }, γ Ff )}
Θ4 : {(∅, {d, e}, γ Fd), ({d, e}, ∅, γ eF)}

Θ5 : Θ2 ∪ Θ4 Θ6 : Θ1 ∪ Θ3

5.1. Stochastic analysis

The CTMC model derived from the Stochastic Reo Automaton corresponding to the Stochastic Reo connector of the task
queue appears in Fig. 14. This figure shows the derived CTMC model as input to the PRISM tool for stochastic analysis.

Fig. 14. CTMC for a task queue in PRISM.

In PRISM, properties of models are expressed using operations such as P and S operators: the P operator is used to reason
about the probability of the occurrence of a certain event; the S operator is used to reason about the steady-state behavior of
a model. In addition, labels are used to concisely express the formulas representing the properties of a model. The following
labels are used to express some properties later.
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• Qsize represents how many tasks are in the task queue.
• MaxSize is the capacity of the task queue, i.e., 2 in this example.
• DataLost represents how many tasks are lost in the task queue.
• MaxDataLost is a fixed maximum for losing data items in the task queue.

We have analyzed the derived CTMC model with the following properties of the queue:

1. S =? [ (Qsize/MaxSize) > 0.5 ]

This formula is a PRISM query asking the steady-state probability that the queue is more than 50% full (i.e., contains at
least one task). As seen in Fig. 15, when the task-arrival rate at the queue is twice the rate at which tasks are handled,
the answer is 0.438.

Fig. 15. Analysis result of Property 1.

2. S =? [ DataLost = MaxDataLost ]
Fig. 16 shows the variation of the steady-state probability that the queue loses new incoming tasks because it reached
its capacity. Here, we fix the task-arrival rate and vary the task-handling rate.

Fig. 16. Analysis result of Property 2.

This example shows the analysis of the task queue with variable rates. If we put the actual arrival and processing rates of
a real deployed system in this derived CTMC model, we can determine, e.g., whether or not the number of available server
components is sufficient to process the incoming tasks efficiently.

6. Interactive Markov Chains

Interactive Markov Chains (IMCs) are a compositional stochastic model [6] which can be used to provide quantitative
semantics to concurrent systems. In IMCmodels, delays canbe represented by combinations of exponential delay transitions,
it allows to accommodate non-exponential distributions within the models. That is, it can represent delays from the larger
class of phase-type distributions [9,10]which can approximate general continuous distributions. This enables amore general
usage of Stochastic Reo Automata, if IMCs are used instead of CTMCs as the translation target of Stochastic Reo Automata
models.

In this section,we discuss towhat extent IMCs are an appropriate semanticmodel for Stochastic Reo, instead of Stochastic
Reo Automata. In addition, we provide a translation from Stochastic Reo into IMCs, which enables the use of the latter as an
alternative target stochastic model.

An IMC specifies a reactive system and is formally described as a tuple (S, Act, →, ⇒, s0)where S is a finite set of states;
Act is a set of actions; s0 is an initial state in S; → and ⇒ are two types of transition relations:
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• → ⊆ S × Act × S for interactive transitions and
• ⇒ ⊆ S × R+

× S forMarkovian transitions.

Thus, an IMC is a Labeled Transition System (LTS) if ⇒= ∅ and →≠ ∅, and is a CTMC if ⇒≠ ∅ and →= ∅.
Compared to other stochastic models such as CTMCs, the main strength of IMCs is their compositionality. Thus, one can

generate a complex IMC as the composition of relevant simple IMCs, which enables compositional specification of complex
systems.

Definition 6.1 (Product [6]). Given two IMCs I1 = (S1, Act1, →1, ⇒1, s(1,0)) and I2 = (S2, Act2, →2, ⇒2, s(2,0)), the
composition of I1 and I2 over a set of actions A is defined as I1 × I2 = (S1 × S2, Act1 ∪ Act2, →, ⇒, s(1,0) × s(2,0)) where →

and ⇒ are defined as:

→ = {(s1, s2)
α
−→ (s′1, s

′

2) | α ∈ A, s1
α
−→1 s′1 ∧ s2

α
−→2 s′2}

∪ {(s1, s2)
α
−→ (s′1, s2) | α /∈ A, s2 ∈ S2, s1

α
−→1 s′1}

∪ {(s1, s2)
α
−→ (s1, s′2) | α /∈ A, s1 ∈ S1, s2

α
−→2 s′2}

⇒ = {(s1, s2)
λ
⇒ (s′1, s2) | s2 ∈ S2 , s1

λ
⇒1 s′1}

∪ {(s1, s2)
λ
⇒ (s1, s′2) | s1 ∈ S1 , s2

λ
⇒2 s′2}

The product of interactive transitions is similar to ordinary automaton product, which includes interleaving and
synchronized compositions of interactive transitions. The product of Markovian transitions consists only of interleaved
transitions.

We now discuss IMCs from two different perspectives:

1. as a semantic model for Stochastic Reo: translating basic Stochastic Reo channels into IMCs and then composing the
derived IMCs using the product operation defined above; or

2. as an alternative translation targetmodel: composing the Stochastic Reo Automata of basic channels and then translating
the composed Stochastic Reo Automaton into an IMC.

We show now that the first case is not adequate since it provides a wrong semantics for connectors that involve
propagation of synchrony. For example, consider the following connector, denoted as 2sync, that consists of two Sync
channels joined at nodes b and c.

a b c d

The behavior of basic channels consists of data-arrivals and data-flows which occur sequentially, i.e., data-flows follow
data-arrivals. Both data-arrivals and data-flows are divided into two phases: an action and the random processing delay for
each action. For instance, a data-arrival at node a consists of the arrival action at node a and waiting for the acceptance from
node a. To reason about the end-to-endQoS, the IMCs for eachSync channelmust haveMarkovian transitions for the random
processing delays of both data-arrivals and data-flows. The two phases of channels must be considered sequentially, that is,
the phase of random processing delays follows that of the action. Table 2 shows the possible IMCs for the Sync channels ab
and cd.

Table 2
IMCs for each Sync channel.

a b c d

â

b̂

γ a

b̂

â

γ b

b̂
γ a

γ b

â

γ b

γ a

abγ ab

ĉ

d̂

γ c

d̂

ĉ

γ d

d̂
γ c

γ d

ĉ

γ d

γ c

cdγ cd

Here, we use ‘^’ and ‘~’ over node names in order to represent data-arrivals and data-flows, respectively. Rates for each
data-arrival and each data-flow are represented with the prefix γ .

However, the composition of the IMCs for the two Sync channels does not capture the correct behavior of 2sync as
specified by Reo. Fig. 17 shows a fragment of the IMC product result. Note that, for simplicity, here and throughout, the rest
of the product result is omitted and represented as a cloud shape.
If we apply the assumption that the synchronization by joining nodes is an immediate action, then transitionswith (b̂, ĉ), γ b,
and γ c labels are considered internal interactive transitions or discarded by certain refinements before or after the product.
The result of the product and certain refinements is depicted in Fig. 18.
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· · ·

b̂, ĉ

â

d̂

γ a (b̂, ĉ) γ b

γ c

d̂

γ b

d̂
γ c

d̂

γ c
γ b

γ d

d̂

γ b

γ c

γ d

γ d

γ b

γ d

γ b

γ c

abcdγ ab

γ cd

γ cd

γ ab

Fig. 17. Composed IMC for 2sync.

(1)

â

d̂

γ a

d̂
â

γ d

d̂
γ a

γ d

â

γ d
γ a

abcd

γ abγ cd

γ cdγ ab

Fig. 18. IMC after refinements on 2sync.

Consider the diamond shape (1) in Fig. 18, formed by the two data-flows from a to b (γ ab) and from c to d (γ cd), which occur
interleaved. In the 2sync connector, these two data-flows occur sequentially, which means that data-flows do not occur
concurrently. This example illustrates that using the concurrent composition of IMCs is not appropriate for specifying the
behavior of connectors because propagation of synchrony is not properly modeled. It is natural and interesting to consider
whether it is possible to adapt the composition operator of IMCs in order to delete unintended transitions and still remain
a compositional model. However, we did not investigate this possibility since it is out of the scope of this paper.

We now showhow IMCs can be used as a target stochasticmodel, instead of CTMCs. In this approach, the synchronization
is considered in Stochastic Reo Automata, and we do not need to consider the IMC level refinements for synchronization
such as the transitions with (b̂, ĉ), γ b, and γ c labels in Fig. 17.

Since a Stochastic Reo Automaton does not have an initial state, the derived result is precisely an IMC transition
system (IMCTS) [6], i.e., an IMC without an initial state. However, an initial state can be decided by the interpretation of
the behavior of a connector. Thus, in this paper, we consider the IMCTS derived from a Stochastic Reo Automaton as an
IMC. An IMC derived from a Stochastic Reo Automaton (A, r, t) with A = (Σ,Q , δA) is a tuple (S, Act, →, ⇒) where
S = SA ∪ SM is the set of states. SA represents the configurations of the system derived from its Stochastic Reo Automaton
and the pending status of I/O requests; SM is the set of states that represent the occurrences of synchronized data-flows
and result from the micro-step divisions of the synchronized data-flows. In general, Act is a set of actions of the arrival of
a data item at a boundary node and synchronized data-flows through a connector. Thus, Act = Σ ′

∪ Frs where Σ ′ is a set

of boundary nodes, and Frs is a set of firings, e.g., for f in a label on every transition s
g|f
−→ s′ ∈ δA, f ∈ Frs. The relation

→= δArr ∪ δProc ⊆ S × R+
× S is a set of Markovian transitions, and ⇒= ζArr ∪ ζProc ⊆ (S × 2Σ ′

× S) ∪ (S × 2Frs
× S)

is a set of interactive transitions. The sets indexed with Arr and Proc represent transitions for data-arrivals and data-flows,
respectively.

A state in S ⊆ Q × 2Σ ′

× 2Σ ′

represents three kinds of configurations: configurations of a connector (Q ), the occurrence
of actions (first 2Σ ′

), and the presence of the I/O requests pending on its boundary nodes (second 2Σ ′

), if any. The set of SA
and the preliminary sets of data-arrival transitions are defined as:

SA = {(q, A, P) | q ∈ Q , P ⊆ A ⊆ Σ ′
}

ζ ′

Arr = {(q, A, P)
ĉ

−→ (q, A ∪ {c}, P) | (q, A, P), (q, A ∪ {c}, P) ∈ Σ ′, c /∈ A}

δ′

Arr = {(q, A, P)
r(c)
=⇒ (q, A, P ∪ {c}) | (q, A, P), (q, A, P ∪ {c}) ∈ Σ ′, c /∈ P}

ζ ′

Arr and δ′

Arr are used to define ζArr and δArr , respectively, below.
As mentioned in Section 4, synchronized data-flows are described by a single transition in a Stochastic Reo Automaton.

From the interactive transition perspective, the synchronized data-flows are also described by a single interactive transition.
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However, from the Markovian transition perspective in a continuous time domain, a transition corresponding to multiple
synchronized data-flows needs to be divided intomicro-step transitions. For this purpose, we reuse a delay-sequencewhich
is extracted by Algorithm 4.2.1. We now derive transitions for synchronized data-flows in two steps:

1. For each transition p
g|f
−→ q ∈ δA, we derive interactive and macro Markovian transitions (p, A, P)

f
−→ (p, A \ f , P)

and (p, A \ f , P)
λ
−→ (q, A \ f , P \ f ), respectively, for every set of pending requests P that suffices to activate the guard

g (P ≤ g\
Σ), whereλ is the delay-sequence extracted by Algorithm4.2.1, Ext(t(p

g|f
−→ q)). The sets of derived transitions

are defined below as ζMacro and δMacro for interactive and macro Markovian transitions, respectively.

2. We divide a transition s
λ
−→ s′ ∈ δMacro into a combination ofmicro-step transitions, each of which corresponds to a single

event.

Given a Stochastic Reo Automaton (A, r, t) with =(Q , Σ, δA) and a set of boundary nodes Σ ′, a macro-step transition
for synchronized data-flows is defined as:

ζMacro = {(p, A, P)
f
−→ (p, A \ f , P) | p

g|f
−→ q ∈ δA, A ⊆ P ⊆ Σ ′, P ≤ g \

Σ}

δMacro = {(p, A, P)
λ
−→ (q, A, P \ f ) | p

g|f
−→ q ∈ δA, A ∩ f = ∅, A ⊂ P ⊆ Σ ′,P ≤ g \

Σ, λ = Ext(t(p
g|f
−→ q))}

To derive an IMC from a Stochastic Reo Automaton, we reuse the function nodes and modify the definitions of functions
states and div in Section 4.3. Then, SM = state((p, A, P)

λ
−→ (q, A, P ′)) where

states((p, A, P)
λ
−→ (q, A, P ′)) =


{(p, A, P), (q, A, P ′)} if λ = θ

states(m) ∀m ∈ div((p, A, P)
λ
−→ (q, A, P ′)) otherwise

The function div : δMacro → 2δMacro is defined as:

div((p, A, P)
λ
−→ (q, A, P ′)) =



{(p, A, P)
θ
−→ (q, A, P ′)} if λ = θ ∧ @(p, A, P)

θ
−→ (p′, A, P ′) ∈ δMacro

div((p, A, P)
λ1
−→ (pλ1 , A, P ′′)) ∪ div((pλ1 , A, P ′′)

λ2
−→ (q, A, P ′))

if λ = λ1; λ2 where P ′′
= P \ nodes(λ1)

{m1 � m2 | mi ∈ div((p, A, P)
λi
−→ (pλi , A, P ′′)), i ∈ {1, 2}}

if λ = λ1|λ2 where P ′′
= P \ nodes(λi)

∅ otherwise

where the function � : δMacro×δMacro → 2δMacro computes all interleaving compositions of the two transitions as follows. For

a transition (p, A, P)
λ1|λ2
−−→ (q, A, P ′) ∈ δMacro, (p, A, P)

λ1
−→ (pλ1 , A, P \ nodes(λ1)) and (p, A, P)

λ2
−→ (pλ2 , A, P \ nodes(λ2))

correspond to, respectively, m1 and m2 of the third condition in the definition of the div function. While m1 and m2
are handled by the div function recursively, some auxiliary states, i.e., states(m1) and states(m2), are generated. In the
interleaving composition, m1 can occur at any states that are generated by states(m2), and vice-versa. This interleaving
composition of m1 and m2 is represented as:

m1 � m2 =

div


(p1, A, P1)

λ2
−→ (p(1,λ2), A, P1 \ nodes(λ2))


,

div

(p2, A, P2)

λ1
−→ (p(2,λ1), A, P2 \ nodes(λ1))


|

(p1, A, P1) ∈ states(m1) and (p2, A, P2) ∈ states(m2)


This composition is similar way to the function ◃▹ explained in Section 4.3. The only difference between these two functions
is the structure of their states: CTMC states are elements of Q × 2Σ ′

, whereas IMC states are in Q × 2Σ ′

× 2Σ ′

where Σ ′ is
a set of boundary nodes in a Stochastic Reo connector.

The division into micro-step transitions ensures that each transition has a single 3-tuple in its label. Thus, the micro-step
transitions can be extracted as:

δProc = {(p, A, P)
v(θ)
=⇒ (p′, A, P ′) |

(p, A, P)
θ
−→ (p′, A, P ′) ∈ div(t) for all t ∈ δMacro}

As mentioned above, interactive transitions in ζMacro do not need to be divided, thus, ζProc = ζMacro.
Splitting synchronized data-flows allows non-interfering events to interleave with their micro-steps, disregarding the

strict sense of their atomicity. In order to allow such interleaving, wemust explicitly add such data-arrivals. For a Stochastic
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(p, ∅, ∅)

(p, {a}, ∅)

(p, {c}, ∅)

(p, {a}, {a})

(p, {a, d}, ∅)

(p, {b}, {b})

(p, {a, b}, {a})

(p, {a, b}, {b})

(p, {a, b}, {a, b})

(p, ∅, {a, b})

(p, ∅, {d})

â

d̂

γ a

d̂

â

γ d

d̂

γ a

γ d

â

γ d

γ a

abcd

γ ab

γ cd

Fig. 19. Derived IMC for 2sync.

Reo Automaton (A, r, t) with A = (Σ,Q , δA) and a set of micro-step states SM , its full sets of data-arrival transitions,
including its data-arrivals, are defined as:

ζArr = ζ ′

Arr ∪ {(p, A, P)
d̂
−→ (p, A ∪ {d}, P) |

(p, A, P), (p, A ∪ {d}, P) ∈ SM , d ∈ Σ, d /∈ A}

δArr = δ′

Arr ∪ {(p, A, P)
r(d)
=⇒ (p, A, P ∪ {d}) |

(p, A, P), (p, A, P ∪ {d}) ∈ SM , d ∈ Σ, d /∈ P}

Applying this method, Fig. 19 shows the IMC corresponding to our 2sync example. The derived result is similar to the
IMC for a Sync in Table 2 and captures the correct behavior of the 2sync connector.

The foregoing illustrates that IMCs can serve as another alternative target model for the translation from Stochastic
Reo Automata, instead of CTMCs. Although doing so does not use the compositionality of IMCs, translation into IMCs is
still meaningful. The derived IMCs, for instance, can represent not only exponential distributions, but also non-exponential
distributions, especially phase-type distributions. The analysis of IMCs is supported by tools such as the Construction and
Analysis ofDistributed Processes (CADP) [11]. CADPverifies the functional correctness of the specification of systembehavior
and also minimizes IMCs effectively [12]. Moreover, IMCs can be used in various other applications, such as Dynamic Fault
Trees (DFTs) [13–15], Architectural Analysis and Design Language (AADL) [16–18], and so on [19].

7. Related work

The research in formal specification of systembehaviorwith quantitative aspects encompasses a variety of developments
such as Stochastic Process Algebras (SPAs) [20], Stochastic Automata Networks (SANs) [21,22], and Stochastic Petri
nets (SPNs) [23,24]. SPA is a model for both qualitative and quantitative specification and analysis with a compositional
and hierarchical framework. It has algebraic laws (the so-called static laws) and expansion laws which express parallel
compositions in terms of SPA operators. In SPA the interpretation of the parallel composition is a vexed one because
it allows various interpretations such as Performance Evaluation Process Algebra (PEPA) [25], and Extended Markovian
Process Algebra (EMPA) [26,27]. SPA describes ‘how’ each process behaves, while (Stochastic) Reo directly describes ‘what ’
communication protocols connect and coordinate the processes in a system, in terms of primitive channels and their
composition. Therefore, (Stochastic) Reo explicitly models the pure coordination and communication protocols including
the impact of real communication networks on software systems and their interactions. Compared to SPA, our approach
more naturally leads to a formulation using queueing models.

SPN is widely used for modeling concurrency, synchronization, and precedence, and is conducive to both top-down and
bottom-up modeling. Stochastic Reo shares the same properties with SPN and natively supports composition of synchrony
and exclusion together with asynchrony. The topology of connectors in (Stochastic) Reo is inherently dynamic, and it
accommodates mobility as described in [28]. Moreover, (Stochastic) Reo supports a liberal notion of channels, which allows
to express synchrony and asynchrony, which can be viewed as specialized channel-based models that incorporate certain
built-in primitive coordination constructs.

SAN consists of a number of stochastic automata each of which acts independently. Thus, the state of a SAN at time t
is expressed by the states of each automaton at time t . The concept of a collection of individual automata helps modeling
distributed andparallel systemsmore easily. The interactions in SANs are rather limited to patterns like synchronizing events
or operating at different rates. Compared with the SAN approach, the expressiveness of (Stochastic) Reomakes it possible to
model different interaction patterns involving both asynchronous and synchronous communications. We remark however
that in SAN, as in other synchronous models, asynchronous communication can be partially achieved by modeling bounded
FIFO channels and replacing direct synchronous communication with indirect asynchronous communication via the FIFO
channels.
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Continuous-Time Constraint Automata (CCA) [29] are another stochastic extension of CA which support reasoning about
QoS aspects such as expected response times. CCA are close to IMCs in that they distinguish between interactive transitions
andMarkovian transitions. In CCA, data-arrivals and data-flows in connectors are represented by interactive transitions, and
processing data in components is represented by Markovian transitions. Processing data in each component is independent
of processing in the others. Thus, interleaving composition of Markovian transitions is appropriate. The stochastic extension
in CCA focuses on internal behavior of a connector, but it does not take into account the interactionwith the environment, i.e.,
the arrivals of I/O requests at the ends of a connector as stochastic processes. Reasoning about the end-to-end QoS of system
behavior requires incorporation of such stochastic processes. In addition, CCA do not capture the context-dependency of
a Reo connector, i.e., it is possible for CCA models to have unintended transitions. Compared to such CCA, Stochastic Reo
Automata not only specify the end-to-end QoS of a Reo connector, but also capture context-dependent behavior.

8. Conclusions and future work

We introduced Stochastic ReoAutomata by extendingReoAutomatawith functions that assign stochastic values of arrival
rates and processing delay rates to boundary nodes and channels in Stochastic Reo. This model is very compact compared
to the existing models, e.g., in [4]. Various formal properties of our model are obtained, reusing the formal justifications of
the various properties of Reo Automata [3], such as compositionality.

The technical core in this paper shows the complexity of the original problem whence it stems from: derivation of
stochastic models for formal analysis of end-to-end QoS properties of systems composed of services/components supplied
by disparate providers, in their user environments. This complexity highlights the gross inadequacy of informal, or one-off
techniques and emphasizes the importance of formal approaches and soundmodels that can serve as the basis for automated
tools.

Stochastic Reo does not impose any restriction on the distribution of its annotated rates such as the rates for data-arrivals
at channel ends or data-flows through channels. However, for translation of Stochastic Reo to a homogeneous CTMCmodel,
we considered only the exponential distributions for the rates. For more general usage of Stochastic Reo Automata, we also
want to consider non-exponential distributions by considering phase-type distributions or using Semi-Markov Processes
[30] as targetmodels of our translation. A simulation engine [31], already integrated into our toolset, Extensible Coordination
Tools (ECT) [32] environment, supports a wide variety of more general distributions for Stochastic Reo. We discussed why
IMCs are not an appropriate semanticmodel for Stochastic Reo, and showed the translation fromStochastic Reo into IMCs via
Stochastic Reo Automata. A natural and interesting futurework is to considerwhether it is possible to adapt the composition
operator of IMCs in order to delete unintended transitions that it currently produces in synchrony propagation scenarios, and
still remainwithin a compositional framework. In addition, we plan to consider rewards of a system alongwith its stochastic
behavior aswell. Our translation resultwill thus becomeaCTMCmodelwith reward information on its transitions and states,
which can be fed into an appropriate stochastic analysis tool, such as PRISM. As an example, the translation of the Stochastic
Reo connector of the task queuewith amaximum capacity 2 into a CTMCmodel, using Stochastic Reo Automata, reported in
this paper was carried out manually. We have already incorporated tools for this translation using QIA (instead of Stochastic
Reo Automata) within our ECT environment. We are currently extending and improving these tools to use our Stochastic
Reo Automata. The more compact sizes of the automata models will then allow us to analyze larger system.
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