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Abstract. Detection of overlapping communities in complex networks has 

motivated recent research in the relevant fields. Aiming this problem, we 

propose a Markov dynamics based algorithm, called UEOC, which means, 

“unfold and extract overlapping communities”. In UEOC, when identifying 

each natural community that overlaps, a Markov random walk method 

combined with a constraint strategy, which is based on the corresponding 

annealed network (degree conserving random network), is performed to unfold 

the community. Then, a cutoff criterion with the aid of a local community 

function, called conductance, which can be thought of as the ratio between the 

number of edges inside the community and those leaving it, is presented to 

extract this emerged community from the entire network. The UEOC 

algorithm depends on only one parameter whose value can be easily set, and it 

requires no prior knowledge on the hidden community structures. The 

proposed UEOC has been evaluated both on synthetic benchmarks and on 

some real-world networks, and was compared with a set of competing 

algorithms. Experimental result has shown that UEOC is highly effective and 

efficient for discovering overlapping communities. 
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1. Introduction 

Many complex systems in real world exist in the form of networks, such as social networks, 



biological networks, Web networks, etc., which are collectively referred to as complex 

networks. One of the main problems in the study of complex networks is the detection of 

community structure, i.e. the division of a network into groups of nodes having dense 

intra-connections, and sparse inter-connections [1]. In the last few years, many different 

approaches have been proposed to uncover community structure in networks; the interested 

reader can consult the excellent and comprehensive survey by Fortunato [2]. 

However, it is well known that many real-world networks consist of communities that 

overlap because nodes are members of more than one community [3]. Such observation is 

visible in the numerous communities each of us belongs to, including those related to our 

scientific activities or personal life (school, hobby, family, and so on). Another, biological 

example is that a large fraction of proteins simultaneously belong to several protein 

complexes [4]. Thus, hard clustering is inadequate for the investigation of real-world 

networks with such overlapping communities. Instead, one requires methods that allow nodes 

to be members of more than one community in the network. 

Recently, a number of approaches to the detection of overlapping communities in graphs 

have been proposed. One type, among these methods, is based on the idea of clique 

percolation theory, i.e. that a cluster can be interpreted as the union of small fully connected 

sub-graphs that share nodes [3, 5, 6]. Another type of method transforms the interaction graph 

into the corresponding line graph in which edges represent nodes and nodes represent edges, 

and then apply a known clustering algorithm on the line graph [7-10]. A third type of method, 

which our work belongs to, discovers each natural community that overlaps by using some 

local property based approach [11-13].  

Though there are already some algorithms for detecting overlapping communities, which 

have been presented recently, there is still ground for improvements in the performance. 

Moreover, while the Markov dynamics model has been successfully used in the area for 

community detection [14-18], unfortunately, the existing approaches still largely lack the 

ability to deal with overlapping communities. To the best of our knowledge, only to recent 

works, available in pre-print format, constitute exceptions to this. Esquivel et al. [19] 

generalized the map equation method [16] by releasing the constraint that a node can only 

belong to one module codebook, and made it able to measure how well one can compress a 

description of flow in the network when we partition it into modules with possible overlaps. 

Kim et al. [20] extended the map equation method [16], which is originally developed for 

node communities, in order to find link communities in networks, and made it able to find 

overlapping communities of nodes by partitioning links instead of nodes. 

In this paper, an algorithm UEOC based on the Markov dynamics model is proposed to 

discover communities that share nodes. In the UEOC approach, so as to detect all the natural 

communities, a Markov random walk method is combined with a new constraint strategy, 

which is based on the corresponding annealed network [21], and used to unfold each 

community. Then, a cutoff criterion with the aid of conductance, which is a local community 

fitness function [22], is applied to extract the emerged community. These extracted 

communities will naturally overlap if this configuration is present in the network. 

Furthermore, a strong point in our approach is that UEOC is not sensitive to the choice of its 

only parameter, and needs no prior knowledge on the community structure, such as the 

number of communities. 



2. Algorithm 

2.1. Overview of the UEOC 

Let N = (V, E) denote an unweighted and undirected network, where V is the set of nodes (or 

vertices) and E is the set of edges (or links). We define a cover of network N as a set of 

overlapping communities with a high density of edges. In this case, some nodes may belong 

to more than one community. This is an extension of the traditional concept of community 

detection (in which each node belongs to a single community), to account for possible 

overlapping communities. In our case, detecting a cover amounts to discovering the natural 

community of each node in network N. 

The straightforward way to compute a cover of a targeted network is to repeatedly detect 

the community for each single node. This is, however, computationally expensive. The natural 

communities of many nodes often coincide, so most of the computer time is spent to 

rediscover the same modules over and over. For our algorithm, UEOC, a more efficient way is 

summarized as follows. 

S1. Pick node s with maximum degree, which has not been assigned to any community; 

S2. Unfold the natural community of node s by a Markov random walk method 

combined with a constraint strategy; 

S3. Extract the emerged community of node s by a cutoff criterion based on a 

conductance function; 

S4. If there are still nodes that have not been assigned to any community, repeat from S1. 

The core of UEOC is how to unfold and extract the natural community of each node, and 

this directly decides the performance of our algorithm. For the first goal, a Markov random 

walk method combined with a constraint strategy is proposed here, and this will result in 

making each community clearly visible. For the second one, a cutoff criterion based on the 

conductance function is presented, so as to precisely extract the emerged community.  

2.2. Unfolding a community 

Given a network N = (V, E), consider a stochastic process defined on N, in which an 

imaginary agent freely walks from one node to another along the links between them. When 

the agent arrives at one node, it will randomly select one of its neighbors and move there. 

Assume that X = {Xt, t  0} denote the agent positions, and P{Xt = j, 1  j  n} denote 

the probability that the agent arrives at node j after t steps walking. For t > 0 we have P{Xt | 

X0, X1, …, Xt-1} = P{Xt | Xt-1}. That is, the next state of the agent is completely decided by its 

previous state, which is called a Markov property. So, this stochastic process is a discrete 

Markov chain and its state space is V. Furthermore, Xt is homogeneous because P{Xt = j | Xt-1 

= i} = pij, where pij is the transition probability from node i to node j. In terms of the 

adjacency matrix of N, A = (aij)nn, pij is defined as (1). 




ij
ij

irr

a
p

a
                                  (1) 

Lets consider the Markov dynamics model above. Given a specific source node s for the 

agent, let ( )l
s i  denotes the probability that this agent starts from node s and eventually 

arrives at an arbitrary destination node i within l steps. The value of ( )l
s i  can be estimated 



iteratively by (2).  

1
( ) ( )1


 nl l

s s rir
i r p                              (2) 

Here, l
s  is called the l step transition probability distribution (vector). Note that the 

sum of the probability values arriving at all the nodes from source node s will be 1, i.e. 

1
( ) 1


n l

si
i . When step number l equals to 0, which means the agent is still on node s, then 

( )0
s s  equals to 1 and ( )0

s i  equals to 0 for each i  s. 

As the link density within a community is, in general, much higher than that between 

communities, a random walk agent that starts from the source node s should have more paths, 

to choose from, to reach the nodes in its own community within l steps, when the value of l is 

suitable. On the contrary, the agent should have much lower probability to arrive at the nodes 

outside its associated community. In other words, it will be difficult for the agent to escape 

from its existing community by passing those “bottleneck” links and to arrive at other 

communities. Thus, in general, vector l
s  should broadly meet the condition (3) when the 

step number l is suitable. In this equation, Cs denotes the community where node s is situated.  

: ( ) ( )
 

 
s s

l l
s s

i C j C

i j                                (3) 

However, though the above Markov method is well suitable for some simple networks, 

such as the benchmark graphs in the Newman model [1] and some small real networks, it is 

not so effective for some complicated networks, like the benchmark graphs in the 

Lancichinetti model [23] (such as in the example of figure 1(a)) and some large-scale real 

networks. Furthermore, this method is very sensitive to the choice of the step number l, which 

depicts a crucial influence in its performance.  

There is an example, depicting vector l
s  and shown in figure 1(b). As we can see, the 

associated probability values of many within community nodes are smaller than that of the 

outside community nodes, thus it cannot unfold a clear community. This also means that l
s  

does not fit condition (3) well enough for this relatively complicated network. Moreover, the 

result shown in this figure is the best performance case (when l equals to 3). It will become 

worse when step number l is greater or smaller than 3.  

In order to overcome these drawbacks, a Markov random walk method combined with a 

constraint strategy based on the corresponding annealed network is proposed here. The idea of 

our method arises in the intuition that a Markov random process on a network with 

community structure is different from that process on its corresponding annealed network 

without communities. Considering this, in each step, the probability that an agent starts from a 

specific source node s and arrives at each destination node i will be defined as the difference 

between its associated probability computed on the community network N and that on the 

corresponding annealed network R. Due to R having no community structure, the link density 

within a community in network N should be much higher than that in R, while the link 

density between communities in N should be much lower than that in R. Thus, under the 

constraint brought by the annealed network, this agent will be deterred from escaping it’s 

associated community and reach the nodes outside that community. This will also cause that, 



the computed probability value of each within community node will be high, whilst that of 

each outside node will be relatively low and in most cases even equal to 0. 

Given network N = (V, E) with its degree distribution D, and the corresponding annealed 
network ( , )R V' E'  with its degree distribution D' , it should be so that V V' , D D'  

while E E' . This means that N and R have the same degree distribution [21]. Let A = 

(aij)nn denote the adjacency matrix of network N. There will be D = diag(d1, … dn), in which 

i ijj
d a  denotes the degree of node i. Assume that B = (bij)nn is the adjacency matrix 

(also called probability matrix) of R. We have 
1

/


 n
ij i j rr

b d d d , which denotes the 

expected number of links (or called expected link probability) between nodes i and j. Let qij 

denote the transition probability from node i to node j on graph R. It will be defined as (4). 
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Considering the constraint generated by this annealed network R, let ( )l
s i  denote the 

probability that this agent starts from the source node s and eventually arrives at an arbitrary 

destination node i within l steps. The value of ( )l
s i  can be estimated iteratively by (5).  
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It’s obvious that 
1

( )1
 n l

s rir
r p   denotes the transition probability from node s to 

node i within l steps on network N, while 
1

( )1
 n l

s rir
r q   denotes that probability 

computed on annealed network R. Furthermore, we make each ( )l
s i  always a nonnegative 

value. Since the sum of the probability values arriving at all the nodes from source node s 

should be 1, we also normalize ( )l
s i  after each step. 

An example for the proposed l step transition probability distribution l
s  is shown in 

figure 1(c). As we can see, the associated probability values of almost all within community 

nodes are greater than that of the outside community nodes, except for only a few special 

nodes whose community relations may be not very clear. In particular, there are 766 out of 

903 outside community nodes whose probability values are 0. Thus, it’s obvious that, l
s  

can meet condition (3) well, and unfold a very clear community for source node s. Moreover, 

this Markov process will convergence very well when step number l is greater than some 

value (in particular, 20 was found to be a good lower value). Thus, its performance is not as 

sensitive as before to the parameter l. Later, we will offer some detailed analysis on this 

parameter.  

Furthermore, most complex networks have power-law degree distribution, which means 

there are more paths arriving at the nodes with high degrees than those with low degrees. If 

not compensated, this will lead to detrimental effects when unfolding communities. Thus, we 



take into account the effect of power-law degree distribution in complex networks, and 

propose a further improved l step transition probability distribution l
s  as defined as (6), 

where di denotes the degree of node i. Note that this equation is not iteratively computed. 

1
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

l l
l ls s
s s n l
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i i

d r

 
 


                     (6) 

There is an example for vector l
s  shown as figure 1(d). As we can see, this improved 

method can unfold a more clear community, and l
s  can meet (3) a little better than l

s .  
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(c)                                    (d) 

Figure 1. An illustration for the Markov random walk method combined with our constraint 

strategy to unfold a community. (a) A benchmark network with power-law distribution of 

degree and community size by Lancichinetti model [23]. In this network, the number of nodes 

is 1000, the minimum community size is 20, the mixing parameter  is 0.3, and the number of 
overlapping nodes is 400. Here we just consider the largest community, which contains 97 

nodes. They are all put on the top of the nodes sequence. The selected source node s is the one 

with maximum degree in this community. (b) The generated l step transition probability 

vector  according to (2). The best performance appears when l equals 3. (c) The generated l 

step transition probability vector  according to (5). Its performance is insensitive to the 

increase of parameter l after it is greater than 20. (d) The generated l step transition 

probability vector  according to (6). Its performance is insensitive to the increase of 
parameter l after it is greater than 20. 

 



Based on this above idea, a method for unfolding the community, which contains a 

specific source node s, will be described bellow. This method is called UC (Unfolding 

Community). 

S1. Calculate the l step transition probability vector of node s, which is l
s ;  

S2. Rank all the nodes according to their associated probability values in descending 

order, producing the sorted node list L. 

After these two steps, almost all the within community nodes will be ranked on the top 

of the sorted node sequence L. The target community has now clearly emerged and is ready 

for detection. Now, by properly setting a cutoff point (to be explained in the next section), we 

can precisely extract the community’s nodes.  

Proposition 1. The time complexity of the UC is O(ln2), where l is the step number of 

the random walk agent, and n corresponds to the number of nodes in network N.  

Proof. In S1, It’s obvious that the time to compute l
s  by (5) and (6) will be O(ln2). In 

S2, the time to rank l
s  will be O(nlogn), derived from quick sorting algorithms. Thus, the 

time complexity of the UC will be O(ln2). 

2.3. Underlying mechanism in Unfolding Community 
Let an agent freely walk on a network N. For any node i, j and step number l, the probability 

that the agent starts from node i and arrives at node j within l steps will be ( )l
i j  according 

to (2). This is a discrete Markov process.  
From the analysis of [24], according to large deviation theory, we know that the Markov 

chain has n local mixing states, and the i-th local mixing state corresponds to the number of 

communities i. In particular, if the network N has a well-defined community structure with k 

clear communities, this Markov chain will stay, in a stable way, in the k-th local mixing state 

during a period of time with a probability of 1, called a metastable state in this situation. 

According to this theory [24], all the local mixing times of the Markov chain can be 

estimated by using the spectrum of its Markov generator (normalized graph Laplacians) M = 

I−P, where I is the identity matrix and P is (pij)nn according to (1). For an undirected 
network, M is positive semi-definite and has n non-negative real-valued eigenvalues 

( 0 21 2     n   ). Let ent
iT  and ext

iT  be the entering time and exiting time of the 

i-th local mixing state. We have 1 (1 (1)) 
i

ext
iT o . Reasonably, we can also use the exiting 

time of the (i+1)-th local mixing state to estimate the entering time of the i-th local mixing 

state. That is 1/1 1 ent ext
i i iT T   . 

There is an example shown as figure 2. In order to depict this Markov process more 

clearly, we use a simple network and adopt the transition probability matrix instead of the 

transition probability vector here. Figure 2(a) shows a Newman network [1] which contains a 

known community structure with four clear communities. Figure 2(b) shows the spectrum of 

this network. Figure 2(c) shows the exiting time of each local mixing state. Especially, it also 

offers the entering time and exiting time of the 4-th local mixing state, which corresponds to a 

metastable state and evidences the real community structure of the network. Figure 2(d)-(f) 

depict the process of the Markov chain when it goes through the metastable state and finally 



reaches the global mixing state. Figure 2(d) denotes the t1 ( 2 1/1 4 5 5   ent extt T T  ) step 

transition probability matrix when it begins to enter the metastable state which corresponds to 

the four clear communities. Figure 2(e) denotes the t2 ( 7 1/2 4 4  extt T  ) step transition 

probability matrix when it begins to exit this metastable state. Figure 2(f) shows the t3 

( 20 1/3 1 2 2   ent extt T T  ) step transition probability matrix after it enters the global 

mixing state and eventually converges to this state, where we now have ( ) /3  t
j ri r

j d d  

for each node i and j. 

As we can see from this example, if a network has a community structure with k clear 

communities, there will be a short entering time (1/k+1) and a relatively long exiting time 

(1/k) for the k-th local mixing state, which denotes a metastable state. During this period of 
time, each community locally mixes together and we can observe the k communities of the 

network. Furthermore, the Markov chain will quickly converge to the global mixing state 

after it enters this state (> 1/2).  
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(d)                      (e)                       (f) 

Figure 2. An example to demonstrate the characteristic of the iteration process for the 

Markov chain according to (2) on a benchmark network by Newman model [1]. (a) A 

Newman network consists of 128 nodes divided into four groups of 32 nodes. Each node has 

on average 14 edges connecting it to members of the same group and 2 edges to members of 

other groups, with the expected degree 16. (b) The spectral distribution (i) of this network. (c) 

The exiting time (1/i) of the local mixing state for each number of communities. (d) The t1 

(t1 = 1/5) step transition probability matrix when the Markov chain begins to enter the 

metastable state. (e) The t2 (t2 = 1/4) step transition probability matrix when the Markov 

chain begins to exit the metastable state. (f) The t3 (t2 > 1/2) step transition probability matrix 
when the global stable state is finally reached. 

 



Though the Markov chain of a random walk on the network contains a metastable state 

that corresponds to its real community structure, it will eventually reach the global mixing 

state, which denotes a trivial solution. For detecting communities, the followed intuition is 

that, if we can make the Markov chain remain and converge to this metastable state by 

deliberately adjusting transition probabilities, a nontrivial solution, which corresponds to the 

real community structure of the network, will be naturally attained due to this adjustment. 

Starting from this intuition, here we consider the difference between the Markov random 

process on a network N with community structure and that on its corresponding annealed 

network R without communities. It’s obvious that, the link density within a community in 

network N will be much higher than that in R, while the link density between communities in 

N will be much lower than that in R. Then, for any node i, j and step number l, if the l step 

transition probability from node i to node j computed on the community network N is no 

better (lower) than that computed on the annealed network R, we will have reason to believe 

that node i will have no chance of being in a same community of node j. Thus, we adjust and 

rescale the transition probability according to (5), which will make the probability that the 

constrained walker (agent) starts from node i and arrive at node j, within l steps, be null. It’s 

obvious that this will make the agent have almost no chance escaping from its own 

community, and the constrained Markov chain can hardly exit the metastable state that 

corresponds to the real community structure of the network. 

There is an example shown as figure 3, which corresponds to the case in figure 2. We 

find out that this constrained Markov chain can also enter the metastable state corresponding 

to the real community structure at time t1 = 1/5, which is shown as figure 3(a). However, it 

will not begin to exit the metastable state at time t2 = 1/4, but has almost converged to this 

state, which is shown as figure 3(b). At time t2 > 1/2, it has completely converged to the 
metastable state, which depicts the four clear communities shown as figure 3(c). 

As we can see from this example, the constrained Markov chain (according to (5)) has 

similar characteristics to the iteration process with the unconstrained Markov chain 

(according to (2)). However, the difference is that the unconstrained Markov chain will 

quickly converge to the global mixing sate after it enters this state (> 1/2), while the 
constrained Markov chain will quickly converge to the metastable sate that shows its k real 

communities after it enters this state (> 1/k+1). Therefore, we can make use of the spectrum 
of a network to approximate the convergence characteristics of the method UC. In fact, if the 

network has k real communities, the convergence time of the UC should be only a little longer 

than the entering time of the k-th local mixing state (> 1/k+1).  
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Figure 3. An example that demonstrates the characteristics of the iteration process for the 

constrained Markov chain according to (5) on the network which is shown as figure 2(a). (a) 



The t1 (t1 = 1/5) step transition probability matrix of the constrained Markov chain, which 

corresponds to figure 2(d). (b) The t2 (t2 = 1/4) step transition probability matrix of the 

constrained Markov chain, which corresponds to figure 2(e). (c) The t3 (t2 > 1/2) step 
transition probability matrix of the constrained Markov chain, which corresponds to figure 

2(f). 

 

It is noteworthy that the above analysis on the characteristics of the iteration process of 

our UC method is in a close to ideal situation. It becomes more complex when dealing with 

networks depicting overlapping communities and some more complex topological properties, 

such as the sample network in figure 1(a) and for some large real-world networks. However, 

as we can see from figure 1, our UC method can still clearly unfold each node’s community 

and it’s also effective in this relatively complicated situation. Later, we will give some 

detailed analysis on the convergence characteristics of the UC in the experimental section of 

this article. 

2.4. Extracting the emerged community  

As the community emerged from UC by computing the l step transition probability vector 

l
s , so that the associated probability values of the within community nodes are much greater 

than those of outside community nodes, the community associated to source node s can be 

easily distilled by designing a suitable cutoff criterion.  

At first we considered a simple method that takes the average probability value  of all 

the nodes as a cutoff value, which is defined as 
1

( ) /n l
si

i n  . Then we extract the nodes 

whose associated probabilities are greater than  as the detected community. For instance, in 

figure 4(b), the black line denotes the average probability  as cutoff value. We find out that, 
although this can make all the within community nodes present in the same community, it will 

also include several outside nodes into this community. Let the structural similarity [25] of 

two arbitrary sets v and w be | | / | | | | v w v w . This average cutoff method will show that 

the structural similarity between the extracted community and the actual community is 0.8068. 

It’s obvious that the method is far from ideal to extract the emerged community on the sample 

network, even though this network already depicts some complexity. 

In order to improve this result and propose a more effective cutoff method, a well-known 

conductance function [22], corresponding to the weak definition of community [26], is used 

here in substitute of the less efficient  boundary. 
The conductance can be simply thought of as the ratio between the number of edges 

inside the community and those leaving it. More formally, conductance (S) of a set of nodes 

S is (S) = cS/min(Vol(S), Vol(V \S)), where cS denotes the size of the edge boundary, cS = 

|{(u, v) : uS, vS}|, and Vol(S) =
 uu S

d , where du is the degree of node u. Thus, in 

particular, more community-like sets of nodes have lower conductance. Moreover, this 

community function has some local characteristics, making it suitable to extract the emerged 

community. 



Based on the ranked node list L obtained from UC, the emerged community can be 

easily distilled by computing the cut position that corresponds to the minimum conductance 

value, and taking it as the cutoff point along this ranked list of nodes. We can now summarize 

the method to extract the emerged community. This method is called EC (Extract 

Community). 

S1. Remove the nodes whose associated probability is 0 from the sorted node list L; 

S2. Compute the conductance value of the community corresponding to each cut 

position; 

S3. Take the community corresponding to the minimum conductance as the extracted 

one. 

Here we consider an example illustrating EC operation when extracting the emerged 

community, which is shown as figure 4 and corresponds to the case in figure 1. In figure 4(a), 

the blue curve denotes that the conductance value varies with the cut position. The pink 

triangle indicates the cutoff position corresponding to the minimum conductance value, while 

the black inverted triangle denotes the cutoff position corresponding to that of the average 

probability  as cutoff value. In figure 4(b), the pink line denotes the cutoff value 
corresponding to the cut position that makes the conductance of the community to be minimal. 

It’s obvious that, EC can very effectively extract the community, which has emerged by UC, 

and the structural similarity between the extracted community and the real one is now much 

higher, 0.9379. 

0 50 100 150 200 250
0.5

0.6

0.7

0.8

0.9

1

the cutoff position of the sorted nodes

th
e

 c
o

rr
e

s
p

o
n

d
in

g
 c

o
n

d
u

c
ta

n
c

e
 v

a
lu

e
s

 

 

the sequence of conductance values

the cut pos corresponding to 
the cut pos corresponding to min conductance

 
0 200 400 600 800 1000

0

0.005

0.01

0.015

0.02

0.025

the ID number of each node

th
e

 t
ra

n
s

it
io

n
 p

ro
b

a
b

ili
ty

 d
is

tr
ib

u
ti

o
n

 

 

 

the probabilities of within community nodes
the probabilities of outside community nodes

average probability  as cutoff value
local min conductance as cutoff criterion

 

(a)                                    (b) 

Figure 4. An illustration EC extraction of the emerged community, which comes from figure 

1. (a) The conductance value for the extracted community as a function of the cutoff position 

of the sorted node sequence L. These nodes are ranked according to their probabilities in 

descending order. There are only 234 of 1000 nodes whose associated probabilities are greater 

than 0, thus the x-axis is just in the range of 1~234. (b) Extracting the emerged community by 

cutting the l step transition probability vector l
s  via two types of cutoff criterions. 

 

Proposition 2. The time complexity of the EC is smaller than O(dn2), where d denotes 

the average degree of all the nodes.  

Proof. It’s obvious that S2 is the most computationally costly step in EC. We employ an 

incremental method to calculate the conductance value for each cut pos in the node list L. 

When the cut pos equals to 1, there is S1 = {L(1)} where L(1) denotes the first node in the 



sorted node list L, cS
1 = dL(1), Vol(S1) = dL(1), and Vol(V \S1) = m Vol(S1) where m is the 

number of edges in the network. When the cut pos equals to k, there should be Sk = 

Sk-1 {L(k)}, cS
k = cS

k-1 + dL(k)  2*|SkNL(k)| where NL(k) denotes the neighbor set of node 

L(k), Vol(Sk) = Vol(Sk-1) + dL(k), and Vol(V \Sk) = m  Vol(Sk). It’s obvious that, for each cut 

pos k, SkNL(k) is the most costly step, whose time complexity is |Sk|*|NL(k)| = k*dL(k). Due to 

k being placed in the range of 1  k  kmax where kmax << n, the time complexity of EC should 

be ( )*
1 maxk

L kk
k d , which is much smaller than O(dn2). 

Proposition 3. The time complexity of UEOC is O(lKn2), where K denotes the number 

of communities. 

Proof. From proposition 1 and proposition 2, it’s obvious that the time to unfold and 

extract a community is O((l+d)n2). As there are K communities in the cover, the time 

complexity of UEOC is O((l+d)Kn2). Since the average degree d can be regarded as a 

constant as most complex networks are sparse graphs, it results that the time complexity of 

UEOC can also be given by O(lKn2). 

There is a simple example to illustrate our UEOC method, which is shown as figure 5. 

As we can see, the UC subroutine induces two clear overlapping communities by calculating 

the transition probabilities. Meanwhile, the EC subroutine easily extracts these two 

communities by using our cut strategy. Furthermore, on this simple network this algorithm 

will attain convergence within five iterations. 

  

(a)                                    (b) 

Figure 5. A simple example showing UEOC operation for the detection of overlapping 

communities. (a) A simple network with two overlapping communities. Node 3 is the 

overlapping node. (b) The result attained by the UEOC. The UC subroutine unfolds each 

source node’s community by calculating the transition probabilities. The EC subroutine 

extracts each emerged community by using our cut strategy. 

3. Experiments and evaluation 

In order to evaluate the performance of algorithm UEOC, we tested it in benchmark 

computer-generated networks as well as on some widely used real-word networks. Two 

well-known algorithms CPM [3] and LFM [11] were selected to compare with UEOC. We 

conclude by analyzing the step number parameter l, which is defined in this algorithm. 

There is only one parameter l in UEOC. Here, we set l = 20 based on the experimental 

analysis in Sec. 3.3. Thus, the time complexity of UEOC can now be given by O(Kn2). For 

CPM, we set k = 4, which will return the best overall results [3]. For LFM, we set  = 1, 
which is a natural choice, as it is the ratio of the internal degree to the total degree of the 

community [11]. 

All experiments are done on a single Dell Server (Intel(R) Xeon(R) CPU 5130 @ 



2.00GHz 2.00GHz processor with 4Gbytes of main memory), and the source code of the 

algorithms used here can be obtained from the authors. 

3.1. Computer-generated networks 

Here, we adopt two kinds of randomly generated synthetic networks (following both Newman 

model [1] and the Lancichinetti model [23]) with a known community structure, in order to 

evaluate the performance of the different algorithms. 

There are various standard measures [27] that can be used to compare the known 

community structure of the benchmark and the one delivered by the algorithm. Unfortunately, 

most of these are not suitable for overlapping communities. The exception is a new variant of 

the Mutual Information measure, which has been widely used in the scientific area and was 

extended to handle overlapping communities [11]. We adopt this Normalized Mutual 

Information (NMI) as the accuracy measure in the following experiments. 

3.1.1. Benchmarks by Newman model. The first type of synthetic networks employed here is 

that proposed by Newman at al. [1]. For these benchmarks, each graph consists of n = 128 

vertices divided into four groups of 32 nodes. Each vertex has on average zin edges connecting 

it to members of the same group and zout edges to members of other groups, with zin and zout 

chosen so that the total expected degree zin+zout = 16. As zout is increased, starting from small 

initial values, the resulting graphs become more challenging to the community detection 

algorithms. Especially, when zout is greater than 8, meaning that the number of 

within-community edges is less than that of between-community edges for per vertex, the 

network doesn’t have a community structure [1]. In figure 6(a), we show the NMI accuracy 

attained by each algorithm as a function of zout. As we can see, our algorithm UEOC 

outperforms CPM and LFM in terms of NMI accuracy on these benchmarks.  

Computational speed is another very important criterion to evaluate the performance of 

an algorithm. Time complexity analysis for UEOC has been covered under proposition 3 in 

Sec. 2.4 and refined by the second paragraph in Sec. 3. Nevertheless, here we show the actual 

running time of UEOC from an experimental angle, in order to further evaluate its efficiency. 

Here we also address synthetic networks based on the Newman model [1]. In this case, 

each graph consists of n = 40a vertices divided into forty groups of a nodes. Each vertex has 

on average zin = 10 edges connecting it to members of the same group and zout = 6 edges to 

members of other groups. The only difference between the networks used here and the former 

ones is that, now zout is fixed while the community size a is changeable. Figure 6(b)-(d) shows 

the actual running time of the UEOC and LFM. As we can see, when the community number 

K is a constant, the square root of the running time by UEOC is nearly proportional to the 

number of nodes in the network, which is shown as figure 6(c). In the meantime, its efficiency 

is the same as that of the function y=ax2+b, which is shown as figure 6(d). Thus, the 

experiment concurs with the analysis on the time complexity for UEOC, which is O(Kn2) 

when parameter l is set at 20.  

As far as we know, the worst-case computational complexity of LFM is O(n2logn) [11], 

even though the efficiency of LFM seems to be better than UEOC on our test graphs, which is 

shown as figure 6(d). Meanwhile, the time complexity of CPM is non-polynomial even 

though it proves to be very efficient when applied to the real networks [3]. Thus, the 



efficiency (time complexity) of UEOC should be competitive with the efficiency of LFM, and 

higher than that of CPM.  
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Figure 6. Testing the performance of UEOC on artificial networks under the Newman model. 

Error bars show the standard deviations estimated from 50 graphs. (a) Comparison of UEOC 

with CPM and LFM in terms of NMI accuracy. (b) Actual running time of UEOC as a 

function of the network scale. (c) Square root of the running time of UECO as a function of 

the network scale. (d) Efficiency of LFM, UECO and O(n2) under the log-log plots. 

3.1.2. Benchmarks by Lancichinetti model. There are some basic statistical properties found in 

real networks, such as heterogeneous distributions of degree and community size, that are not 

found in benchmark networks based on Newman model. Accordingly, a new type of 

benchmark proposed by Lancichinetti et al. [23] is here adopted to further evaluate the 

accuracy of these algorithms. This class of benchmark networks not only has the property of 

heterogeneous distributions of degree and community size, but also can exhibit overlapping 

community structure. 

Like the experiment designed by Lancichinetti et al. [23] to test CPM’s ability to detect 

overlapping communities, the parameters setting for the Lancichinetti benchmarks are as 

follows. The network size n is 1000, the minimum community size cmin is set to either 10 or 

20, the mixing parameter  (each vertex shares a fraction  of its edges with vertices in other 
communities) is set to either 0.1 or 0.3, the fraction of overlapping vertices (on/n) varies from 

0 to 0.5 with interval 0.05. We keep the remaining parameters fixed: the average degree d is 

20, the maximum degree dmax is 2.5*d, the maximum community size cmax is 5*cmin, the 



number of communities, each overlapping vertex belongs to (denoted om), is 2, and the 

exponents of the power-law distribution of vertex degrees 1 and community sizes 2 are -2 
and -1, respectively. This design space leads to four sets of benchmarks.  

Figure 7 shows the results that compare UEOC with CPM and LFM in terms of NMI 

accuracy on the heterogeneous artificial networks with overlapping communities. As we can 

see, UEOC is most effective for networks with relatively big communities while CPM gives 

its best results for networks with small communities, and LFM has medium performance 

along both cases. Moreover, the quality of UEOC is relatively stationary with the increase of 

mixing parameter , while that of the other two algorithms quickly declines in this situation. 
Thus, it’s clear that our algorithm UEOC is competitive with, or better, than the other two 

algorithms on the Lancichinetti benchmarks. 
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Figure 7. NMI accuracy of each algorithm as a function of the fraction of overlapping nodes. 

Error bars show the standard deviations estimated from 50 graphs. (a) Comparison on 

synthetic networks with small mixing parameter and small communities ( = 0.1, cmin = 10, 

cmax = 50). (b) Comparison on synthetic networks with big mixing parameter and small 

communities ( = 0.3, cmin = 10, cmax = 50). (c) Comparison on synthetic networks with small 

mixing parameter and big communities ( = 0.1, cmin = 20, cmax = 100). (d) Comparison on 

synthetic networks with big mixing parameter and big communities ( = 0.3, cmin = 20, cmax = 
100). 

3.2. Real-world networks 

As real networks may have some different topological properties from the synthetic ones, we 



now consider several widely used real-world networks to further evaluate the performance of 

these algorithms. These networks are listed in table 1.  

As the inherent community structure for real networks is usually unknown, we make use 

of two widely used quality measures for overlapping communities in order to evaluate the 

performance of the algorithms. The first one is the average conductance (AC), used by 

Leskovec et al. [22], which maps the average value of conductance for all the communities in 

a cover. The AC is defined as (7), where K denotes the number of communities, Ci denotes the 

i-th community, and (S) denotes the conductance of a community S. The calculation of (S) 
has been already given in Sec. 2.4. 

1

1
( )


 

K

i
i

AC C
K

                               (7) 

The second one is a variant of the commonly used modularity (Q) metric [28], which is 

defined for overlapping communities by Shen et al. [5]. This extended modularity (EQ) is 

defined bellow (8), where m denotes the number of total edges, Ci denotes the i-th community, 

Ov denotes the number of communities which node v belongs to, dv denotes the degree of 

node v. 

,

1 1

2 2

    
 

i

v w
vw

v wi v w C

d d
EQ A

m O O m
                    (8) 

It is noteworthy that, the quality of a cover is better when its AC-value is lower, whereas 

it is better when its EQ-value is higher. 

Table 2 shows the results that compares UEOC with CPM and LFM in terms of both AC 

and EQ measures on the real-world networks described in table 1. As we can see, the AC 

quality of UEOC is markedly better than that of CPM and LFM, while the EQ quality of 

UEOC is also competitive with that of these two algorithms. To sum up, our algorithm is also 

very effective on real-word networks. 

Table 1. Real-world networks used here. 

Networks |V| |E| 1/2 Descriptions 

karate 34 78 7.5602 Zachary’s karate club [29] 

dolphin 62 160 25.4027 Dolphin social network [30] 

polbooks 105 441 26.4520 Books about US politics [31] 

football 115 613 7.3097 American College football [1] 

email 1,133 5,451 8.2563 Emails of human interactions [32]

word 7,207 31,784 6.8955 Word semantic network [3] 

Table 2. The average result of 50 runs by UEOC, CPM and LFM on real networks. 

 AC-values (the smaller the better) EQ-values (the greater the better) 

 CPM LFM UEOC CPM LFM UEOC 

Karate 0.6028 0.4750 0.5206 0.1147 0.3201 0.2648 

Dolphin 0.3846 0.4494 0.3470 0.2908 0.3887 0.3846 

football 0.3696 0.3895 0.2823 0.5593 0.5158 0.5996 

polbooks 0.4093 0.2528 0.2749 0.4308 0.4744 0.4155 

email 0.6937 0.7018 0.4627 0.2641 0.2282 0.3506 

word 0.8089 0.7286 0.4553 0.1648 0.1624 0.1389 



3.3. Parameters analysis 

Sec. 2.3 shows that, if a network contains k real communities, the convergence time of the 

UC should be a little longer than of the entering time in the k-th local mixing state (metastable 

state), which is 1/k+1. However, the actual community structure of most real-world networks 

is unknown. Thus, we adopt the entering time of the global mixing state (1/2), which is 

greater than the entering time of the metastable state (1/k+1), to coarsely evaluate the 

convergence time of the UC. As we can see from table 1, the 1/2 of all these real networks 
used in this paper is very small, meanwhile, they are found to be independent of the network 

scale. Thus, it shows that the UC will converge fast in the general case. Moreover, in order to 

further study the convergence characteristics of the UC, we also proceed to supply some 

quantitative analysis on the iteration number l from an experimental angle. 

In the UC, after each step, the transition probability vector l
s  will be updated and, thus, 

the ranking of all nodes will be changed according to the probability values incoming from 

source node s. As long as l
s  is stationary, or say, all members of the source community are 

put on the top of the sorted nodes sequence, it will be good enough for our purpose of 
unfolding a community. 

Thus, the convergence of UC can be evaluated by considering the convergence of the 

transition probability vector, or that of the sorted node sequence. Figure 8 shows the 

convergence process of the UC with the increase of step number l. In figure 8(a), the x-axis 

refers to the l-value, and the y-axis refers to the difference between the two consecutive 

transition probability vectors, which is defined as the Euclidean distance between them. In 

figure 8(b), the x-axis still refers to the l-value, while the y-axis refers to the difference 

between the two consecutive sorted nodes lists L1 and L2, defined as nnz(L1L2), which 
counts the number of non-zeros of a given vector. 

We have tested different l values, in the range 1  l  20, for all real networks mentioned 
in the paper. It’s clear that the transition probability vector and the sorted node list can both 

converge well within 20 steps on each of the networks. Through these experiments, we also 

have found that UC in fact converges very quickly, thus its performance is insensitive to the 

choice of the parameter l when it is greater than 20.  
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Figure 8. Convergence analysis of UC with the increase of parameter l. For each network, the 

node with maximum degree is selected as source node s here. (a) Convergence process of the 

transition probability vector with the increase of step number l. (b) Convergence process of 

the sorted node sequence with the increase of step number l. 



4. Discussion and conclusion  

In this work, we have developed a new algorithm, called UEOC, for the identification of 

overlapping communities in complex networks. The key idea behind it rests on a Markov 

random walk method combined with a constraint strategy, based on which the UC phase can 

clearly unfold each natural community that overlaps. Thereafter, the community emerged by 

UC will be extracted from the entire network by the EC subroutine, which is an effective 

cutoff method based on a conductance function. Furthermore, the UEOC depends on only one 

parameter whose value can be easily set and requires no prior knowledge on the community 

structure, namely the number of communities.  

We have tested this algorithm by using different types of networks. On Newman 

benchmarks, the accuracy of UEOC is higher than that of CPM and LFM. On Lancichinetti 

benchmarks, UEOC is most effective for networks with relatively big communities, and its 

clustering accuracy is relatively stationary with the increase of the mixing parameter. On real 

networks, the performance of our algorithm is in overall also better than that of the other two 

algorithms. 

It is noteworthy that, there is also a similar approach so called Markov Cluster Algorithm 

(MCL) [14], which has been widely applied for discovering communities in graphs [33, 34]. 

The MCL and our method UEOC have in common that they both are based on the dynamic of 

Markov random walk, and detect the communities present in networks by changing and 

adjusting the Markov chain. However, they also have some important difference. The MCL 

simulates many random walks (or flows) on the network. By raising the transition 

probabilities to a certain power greater than one, it strengthens flow where it is already strong, 

and weakens flow where it is weak. By repeating the process an underlying community 

structure will gradually become visible. The process ends up with a number of regions with 

strong internal flow (communities), separated by ‘dry’ boundaries with hardly any flow. 

Different from the MCL, our method UEOC makes use of the distinction between the Markov 

random process on a network with community structure and that on its corresponding 

annealed network without communities. By preventing the walker (or flow) from escaping its 

own community, it makes the constrained Markov chain converge to a metastable state 

instead of the global mixing state, which then unfolds the real community structure of the 

network. Furthermore, the UEOC is a local community finding method that is able to detect 

the community of each node. Moreover, it can be also effectively used to discover 

overlapping communities from networks that hold them. 

Other research, covering local methods for community detection, also harbors some 

potential for the detection of overlapping communities in complex networks. In 2002, Flake et 

al. [35] proposed an approach called Maximum Flow Communities (MFC). This method is 

based on the Max Flow-Min Cut theorem [36], stating that the maximum flow is identical to 

the minimum cut. Therefore, if you know the maximum flow between two points, you also 

know what edges you would have to remove to completely disconnect the same two points. 

The MFC has been successfully applied to the Web community mining area. However, this 

method is sensitive to the choice of its initial seed vertices, and its computational complexity, 

O(mnlog(n2/m)), is significant. In 2004, Costa [37] presents a hub-based approach to 

community finding in complex networks. After identifying the network nodes with highest 

degree (the so-called hubs), the network is flooded with wavefronts of labels emanating from 



the hubs, accounting for the identification of the involved communities. This method is 

simple, efficient and proved to be effective for some social networks organized around hubs. 

However, it has the following drawback: the number of communities detected is arbitrarily 

preassigned and the algorithm neglects the possibility of having two hubs within the same 

community. In 2005, Bagrow et al. [38] proposed another efficient hub-based method for 

detecting local communities. This algorithm works by expanding an l shell outward from 

some starting vertex j and comparing the change in total emerging degree to some threshold . 

When this change is lower than a given value , the l shell ceases to grow and all vertices 

covered by shells of a depth  l are listed as members of vertex j’s community. This method is 
also suitable for the graphs organized around hubs, such as most social networks. However, it 

sensitive to the choice of its starting vertex j and the setting of the threshold value . A 
potential compensating solution could be that, one would run the algorithm multiple times by 

using different starting vertices, and then achieve a group consensus as to which vertices 

belong to which communities. Different from these previous works, our algorithm UEOC is 

based on the Markov random walk on networks. It simulates the constrained probability flow 

starting from an arbitrary source node, and makes the local community of this node gradually 

appear during the iteration process. It is noteworthy that, our method is insensitive to the 

choice of its only one parameter (step number l), and it can effectively discover each node’s 

local community for the more general networks. 

Concluding, our future work can be laid as follows. In most real-word networks, there 

are often some marginal nodes, which will cause no energy change even they belong to 

several different communities. Generally speaking, if one does not comprehend the real 

meanings of the network structure, it will be very difficult for an algorithm to distinguish 

whether a specific marginal node is an overlapping node which plays an important role in the 

network and belongs to multi-communities, or an outlier which is just a isolated role in the 

network and belongs to none of these communities. However, it’s very important for an 

algorithm to be able to identify both overlapping nodes and outliers in the real world. As far 

as we know, most of the current approaches including our method UEOC can only discover 

overlapping nodes, but cannot distinguish outliers. Thus, it will be promising to design a type 

of algorithm that can not only detect overlapping nodes, but also outliers. Therefore, we will 

take this direction in our future work so as to further improve the presented UEOC method. 

Moreover, as we argued, the efficiency of UEOC is competitive with the efficiency of 

LFM and higher than that of CPM. Nevertheless, in order to deal with some large-scale 

networks such as WWW, Internet etc., it’s still important to improve it by exploring some 

potential optimization angles. Thus, we also intend to further use UEOC in some applied 

research areas, such as biological networks analysis, Web community mining, etc., and try to 

uncover and interpret the significant overlapping community structure that one can expect to 

be found. 
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