
Extrema Propagation: Fast Distributed
Estimation of Sums and Network Sizes

Carlos Baquero, Paulo Sérgio Almeida, Raquel Menezes, and Paulo Jesus

Abstract—Aggregation of data values plays an important role on distributed computations, in particular, over peer-to-peer and sensor

networks, as it can provide a summary of some global system property and direct the actions of self-adaptive distributed algorithms.

Examples include using estimates of the network size to dimension distributed hash tables or estimates of the average system load to

direct load balancing. Distributed aggregation using nonidempotent functions, like sums, is not trivial as it is not easy to prevent a given

value from being accounted for multiple times; this is especially the case if no centralized algorithms or global identifiers can be used.

This paper introduces Extrema Propagation, a probabilistic technique for distributed estimation of the sum of positive real numbers.

The technique relies on the exchange of duplicate insensitive messages and can be applied in flood and/or epidemic settings, where

multipath routing occurs; it is tolerant of message loss; it is fast, as the number of message exchange steps can be made just slightly

above the theoretical minimum; and it is fully distributed, with no single point of failure and the result produced at every node.

Index Terms—Aggregation, network size estimation, distributed sums, probabilistic estimation, self-configuration.

Ç

1 INTRODUCTION

AGGREGATION is recognized as an important building
block for distributed applications in peer-to-peer, ad-

hoc, and sensor network infrastructures [1], [2], [3]. Aggre-
gating data values can provide a summary of some global
system property and play an important role in directing the
actions of self-adaptive distributed algorithms. Examples can
be found in the use of estimates of the network size to direct
the dimensioning of distributed hash table structures [4],
when setting a quorum for voting algorithms [5], when
estimates of the average system load are needed to direct local
load-balancing decisions, or when an estimate of the total
disk space in the network is required in a P2P sharing system.

Distributed computation of aggregation functions in a
network is not trivial. Unlike aggregation in a tree [6], [7],
where each value is guaranteed to contribute only once, in a
graph it is not easy to prevent a given value from being
accounted for multiple times; this is especially the case if no
centralized algorithms or global identifiers can be used.
Thus, calculating general nonidempotent functions (e.g.,
COUNT, SUM, AVG) is problematic and we are restricted to
idempotent functions that are duplicate insensitive (e.g.,
MIN, MAX) [8]. Aggregation functions, that can be made
duplicate insensitive, have the advantage of being usable
under multipath routing.

This paper presents Extrema Propagation, a technique for
distributed estimation of the sum of positive real numbers. It

is a probabilistic technique, based on the statistics of
extremes, that exchanges duplicate insensitive messages
and, thus, can be applied in flood and/or epidemic settings,
where multipath routing occurs. It can also be easily
adapted to tolerate message loss. The paper expands on
our earlier results in [9] and shows a comprehensive
presentation of the technique that complements the theore-
tical analysis of the statistical estimator with important
practical concerns: message size reduction by controlling the
binary encoding of reals; termination detection (i.e., know-
ing that the estimation has converged); handling of message
loss and variable link latency in asynchronous settings.

Extrema Propagation has some important properties: the
precision is controlled by message size, independently of
network size; it is fast: the number of message exchange steps
can be made just slightly above the theoretical minimum; it is
fully distributed, with no single point of failure, and the
result is produced at every node. As a special important case
(and for presentation purposes), we show how this technique
can be applied to network size estimation.

The remainder of this paper is organized as follows.
Section 2 introduces the basic algorithm for network size
estimation. Section 3 introduces and proves the correctness
of a maximum likelihood estimator that can be used for both
counting and summing of a distributed set of positive values.
In Section 4, we describe a compact bit encoding of the real
values that fits the requirements of the estimator. Section 5
deals with termination detection in different network
topologies. In Section 6, we sketch how the algorithm can
be adapted for an asynchronous setting with message loss.
Finally, we contrast in more detail our results with the
related work, in Section 7, and conclude in Section 8.

2 NETWORK SIZE ESTIMATION

In order to simplify the description, we concentrate on a
specific counting problem: How many nodes are present in a

668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

. C. Baquero, P.S. Almeida, and P. Jesus are with the Departamento de
Informática, Universidade do Minho, Campus de Gualtar, 4710-057 Braga,
Portugal. E-mail: {cbm, psa, pcoj}@di.uminho.pt.

. R. Menezes is with the Departamento de Matemática e Aplicações,
Universidade do Minho, Campus de Azurem, 4800-058 Guimarães,
Portugal. E-mail: rmenezes@math.uminho.pt.

Manuscript received 2 Aug. 2010; revised 8 Apr. 2011; accepted 10 July 2011;
published online 21 July 2011.
Recommended for acceptance by S. Ranka.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2010-08-0462.
Digital Object Identifier no. 10.1109/TPDS.2011.209.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

given network? Moreover, we aim for a distributed assess-
ment of such estimate and to have it available at every node
after a short number of message exchange steps.

Our assumptions are: 1) each node can communicate with
a set of neighbor nodes; 2) each node has access to a random
number generator. We also make use of some assumptions
that, although not necessary for this class of algorithms,
simplify the presentation and analysis: a) messages are not
lost or corrupted; b) the network is static and represented by
a connected graph; c) connections are bidirectional (the
graph is undirected). Message loss is later addressed in
Section 6.

The estimation of network size in all nodes takes at least
D (the network diameter) rounds, to allow each node at
distance D from some others to become aware of them.

One trivial approach would be the use of one unique
identifier per node (an additional assumption) and a
protocol that collects the set of all identifiers, aggregating
by set union. Such a protocol would provide an estimate in
D steps, but creates messages that are linear with the
network size.

Our technique avoids both the need for unique
identifiers and message sizes which depend on network
size [10]. It is based on idempotent operations on numbers,
more specifically the minimum function, and the use of
statistical inference.

2.1 Synopsis of the Estimation Technique

The insight to our approach is the following: if we generate
a random real number in each node using a known
probability distribution (e.g., Gaussian or exponential),
and aggregate across all nodes using the minimum
function, the resulting value has a new distribution which
depends on the number of nodes.

The basic idea is then to generate a vector of random
numbers at each node, aggregate each component across
the network using the pointwise minimum, and then use
the resulting vector as a sample from which to infer the
number of nodes (by a maximum likelihood estimator).

We will show that if a vector of K numbers is generated
per node, it is possible to provide an estimate bN of the
network size N with a standard deviation of N=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 2
p

.
This means that the relative accuracy can be chosen
independently of the network size, and is determined by K.

If we want to enforce a maximum relative error r ¼
j bN �Nj=N with a confidence of 95 percent we need to make
K ¼ 2þ ð1:96

r Þ
2. For example, for an error r ¼ 10%, one

needs to make K ¼ 387.
The focus of our technique is not accuracy but speed: we

do not aim for very low errors (e.g., 1 percent would lead to
large messages), but for a fast computation of a useful
approximation that can serve as input to some other
algorithm (in some cases even 10 percent may be more
than enough, only the order of magnitude may be needed).

2.2 Basic Extrema Propagation

The basic algorithm that every node runs is shown in
Algorithm 1. Each node maintains a vector x of K
numbers, initialized using function rExpð1Þ, which returns
a random number with an exponential distribution of rate
parameter 1.

Algorithm 1. Basic Extrema Propagation
const K

var n; x½1::K�
Upon: Init

n neighborsðselfÞ
for all i 2 1::K do x½i� rExpð1Þ
Send x to every p 2 n

Upon: Receive m1::mj from all p 2 n
for all l 2 1::j do

x pointwiseminðx;mlÞ
end for

Send x to every p 2 n
Upon: Query

return N̂ðxÞ
The algorithm consists of a series of rounds toward

convergence. In each round every node sends a message
containing vector x to its neighbors, collects the correspond-
ing messages from its neighbors, and computes the
pointwise minimum of x and all corresponding vectors
received, updating x with the result.

Each node uses function N̂ðxÞ, which takes as parameter
the vector of K aggregated minimums, and returns an
estimation of the number of participants (network size). In
this first version, we do not deal with termination and
assume that a node can be queried at any time, possibly
before convergence is reached, i.e., before we have collected
the pointwise minimum of every vector in the network.
Termination is addressed below.

One important property of the algorithm is that a node
sends the same message to all its neighbors. This means that
broadcast facilities can be explored if available on the
underlying network protocols. This is relevant, for example
in sensor networks, where broadcast fits naturally and, due to
sharing in the physical medium, a unicast has the same cost as
a broadcast; algorithms that need to send a different message
to each neighbor are at a significant disadvantage.

3 ESTIMATION FUNCTION

We first introduce the maximum likelihood estimator bNF

used to estimate the unknown parameter N . We then
proceed with the theoretical study of its main properties,
namely, bias and variance. The likelihood function is
obtained from the extreme value theory, which is a branch
of statistics dealing with the extreme deviations from the
median of probability distributions. The following results
deal with deviations imposed by the minimum function,
but similar results can be easily derived for the maximum.

Let FminðxÞ ¼ 1� ð1� F ðxÞÞN be the limiting distribu-
tion for the minimum of a large collection X1; . . . ; XN of
random observations from the same arbitrary distribution
F ðxÞ [11].

Proposition 1. Given a vector of K minimums x½1�; . . . ; x½K�,
which are observed values from FminðxÞ distribution, then
the maximum likelihood estimator for the unknown para-
meter N is

bNF ¼ �
KPK

i¼1 logf1� F ðx½i�Þg
: ð1Þ

BAQUERO ET AL.: EXTREMA PROPAGATION: FAST DISTRIBUTED ESTIMATION OF SUMS AND NETWORK SIZES 669

Proof. The limiting density for the minimum is fminðxÞ ¼
d
dx FminðxÞ ¼ NfðxÞð1� F ðxÞÞ

N�1, where fðxÞ ¼ d
dx F ðxÞ.

According to the likelihood method, we wish to maximize

the function LðNÞ ¼
QK

i¼1 fminðx½i�Þ, or equivalently, to

m a x i m i z e logLðNÞ, w h e r e logLðNÞ ¼ K logN þPK
i¼1 log fðx½i�Þ þ ðN � 1Þ

PK
i¼1 logf1 � F ðx½i�Þg. From

d
dN logLðNÞ ¼ 0 one concludes that

N ¼ � KPK
i¼1 logf1� F ðx½i�Þg

:

ut

We now concentrate on the special case of using the

exponential distribution for F ðxÞ as it will lead to a simple

estimator. We will also derive an unbiased estimator for this

distribution. (The generic estimator N̂F above is not

necessarily unbiased.) We denote the exponential distribu-

tion with rate 1 by Expð1Þ.
Now, F ðxÞ ¼ 1� e�x, x � 0 and the corresponding

estimator for N becomes

bNExp ¼
KPK
i¼1 x½i�

:

Moreover, FminðxÞ ¼ 1� e�Nx, x � 0, is an exponential

distribution with rate N , denoted by ExpðNÞ.
In order to correct the bias in bNExp there is a need for an

auxiliary lemma, which follows from a straightforward

application of Mathematical Statistics (see, e.g., [12]).

Lemma 1. If X1; . . . ; Xk are independent random variables

(r.v.’s) from distribution ExpðNÞ, then

a.
PK

i¼1 Xi is a r.v. from a gamma distribution with
shape and scale parameters equal to K and N ,
respectively.

b. Furthermore, the next expectation and variance hold

E
1PK

i¼1 Xi

" #
¼ N

K � 1
;

and

Var
1PK

i¼1 Xi

" #
¼ N2

ðK � 1ÞðK � 2Þ �
N2

ðK � 1Þ2
:

Proposition 2. The estimator given by

bN ¼ K � 1

K
bNExp ¼

K � 1PK
i¼1 x½i�

; ð2Þ

is unbiased.

Proof. We need to prove that the expectation E½ bN� is equal

to N . Let Xi be the r.v. related to the observed value x½i�.
First, by Lemma 1, one has

E½ bNExp� ¼ E
KPK
i¼0 Xi

" #
¼ K N

K � 1
;

and

E½ bN� ¼ E
K � 1

K
bNExp

� �
¼ N:

ut

Proposition 3. The variance of bN is given by

V ar½ bN � ¼ N2

K � 2
:

Proof. This proof is again straightforward from the
application of Lemma 1

Var½ bN� ¼ ðK � 1Þ2 Var
1PK

i¼1 Xi

" #
¼ N2

K � 2
:

ut

We now generalize this result so that one can estimate a
sum of positive reals. This new estimator can be applied to a
broad class of aggregations that can be expressed by
operations on sums, e.g., AVG. Here, the variance is
determined by the magnitude of the sum that is to be
estimated.

Proposition 4. For 1 � i � N , let Xi be independent r.v.’s from
distribution Expð�iÞ with �i > 0, and minimumðX1; . . . ;
XNÞ a new r.v. from distribution Expð

PN
i¼1 �iÞ. Given a set of

K minimums x½1�; . . . ; x½K�, which are observed values from
Expð

PN
i¼1 �iÞ, then an unbiased estimator for Sum ¼PN

i¼1 �i is

dSum ¼ K � 1PK
i¼1 x½i�

;

with

V ar½dSum� ¼ Sum2

K � 2
:

Proof. The proof is straightforward from the proofs of
Propositions 2 and 3, renaming N to Sum. tu

4 BINARY ENCODING

In some application contexts, e.g., mobile ad-hoc networks
and sensor networks, message size has an important
practical impact both in speed and energy consumption.

It is intuitive to see that, when aiming for a precision of
only a few percent, storing each value in the vector naively
as a float or double would probably be using a much higher
precision than needed. Therefore, we tried encoding values
with less precision.

After numerically studying several combinations of bit
allocations in a binary mantissa and exponent encoding, we
have concluded that it is appropriate to store only the
exponent. Moreover, looking at values that occur in an
exponential distribution, and the way that they contribute to
the sum in the estimator, a range of only nine binary orders
of magnitude in the exponent contributes to 99.9 percent of
the result.

Table 1 shows the relative cumulative contribution of
values from higher to lower exponents occurring in an
exponential distribution. The exponents shown, from 3 to�5

670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

would be the ones contributing almost exclusively to the
sum, for N ¼ 1 (1 node network). The distribution of
minimums for an N node network is also exponential, but

with the range of meaningful values scaled by 1=N . For a
given maximumN , we must use a range of exponents that is
9þ log2ðNÞ. This leads to using 5 bits for storing the

exponent, to account for possibly large networks up to about
8 million nodes: 5 bits gives a range of 32 for the exponent;
this means networks up to 232�9 ¼ 223 nodes. (Using 4 bits

would only allow up to 216�9 ¼ 27 ¼ 128 nodes.)
A given real value v in vector x is encoded by the

integer floorðlog2 vÞ, and when reconstructed becomes
v ¼ 2floorðlog2 vÞ. Likewise, the base 2 discretization of vector

x is denoted by x.
Although N̂ðxÞ was proved to be unbiased, the coarser

grain discretization due to encoding introduces a bias in
N̂ðxÞ. This bias can be corrected as it is possible to calculate

a scale factor sðKÞ such that E½N̂ðxÞ� � E½sðKÞN̂ðxÞ�.
Calculation of the base 2 scale parameter sðKÞ was

performed numerically and is depicted in Table 2. This
value shows a slight dependence on K. This is due to a

small change in the shape of the distribution of N̂ for small
values of K, since the r.v. N̂ follows a Gamma distribution
with shape parameter K.

Since K is configured in the protocol one simply needs to
pick the appropriate scale factor for the respective K. In
short, under binary encoding the estimator for N becomes

sðKÞ K � 1PK
i¼1 x½i�

:

We can define a metric that indicates the relative error of
the estimation. The metric is named TRE (Theoretical

Relative Error) and is defined as follows:

TRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ar½N̂ �

q
N

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 2
p :

This metric indicates how the estimation deviates from N as
a proportion of N .

In order to numerically measure the quality of the
estimator after encoded and scale corrected, we define the
following metric, named ORE (Observed Relative Error)

ORE ¼

ffiPJ

i¼1
N̂i�Nð Þ2
J

r
N

;

where N̂i, for i ¼ 1::J , is a set of observations of the
estimate of a given N . Both metrics are defined in terms of
the MSE (Mean Square Error), since Relative Error can be seen
as

ffiffiffiffiffiffiffiffiffi
MSE
p

N .
To obtain an average observed relative error over

different network sizes, we use 200 values of N ranging
from N ¼ 1 to N ¼ 220 � 106. Table 3 shows how the values
for TRE and the average ORE compare, for different K 2
f10; 100; 1;000; 10;000g (with J samples for each N). We can
conclude that for practical purposes the observed values
agree with the theoretical ones.

5 TERMINATION DETECTION

Until now, we have not addressed termination. In the basic
algorithm, nodes can be queried at any time, before we have
taken into account the vectors from every node in the
network. If we query it too soon, messages from distant
nodes will not have yet contributed and the estimate will be
a number smaller and unrelated to the network size.

As the algorithm collects vectors from all neighbors, at
each new round the algorithm takes into account vectors
from all nodes one hop further than in the previous round;
i.e., the “visibility radius” increases at each round.

The intuition for the termination is as follows: at each
round, we collect information from some new nodes (all
nodes that entered the expanded visibility radius); as each
of these nodes contributes with K random numbers, the
probability that no new minimum is obtained at any index
in the vector (i.e., that “no news” has arrived) is small;
moreover, the probability that such “absence of news”
occurs T times in a row is close to zero even for a small T
(smaller T for larger K).

The termination of the algorithm is based precisely on
the detection of T (for some configurable T) consecutive
rounds where no component changed in the vector stored
locally. When that happens the algorithm assumes that all
nodes have contributed and the result can be reported. The
algorithm including termination detection is shown in
Algorithm 2.

BAQUERO ET AL.: EXTREMA PROPAGATION: FAST DISTRIBUTED ESTIMATION OF SUMS AND NETWORK SIZES 671

TABLE 1
Relative Cumulative Contribution

TABLE 2
Scale Factor sðKÞ and Respective

Standard Deviation

5 bits, base ¼ 2. Using 50 points and sample repetitions per point.

TABLE 3
Theoretical and Average Observed

Relative Errors

5 bits, base ¼ 2. Using 200 points from N ¼ 1 to N ¼ 220 and J samples
per point.

Algorithm 2. Extrema Propagation with termination
detection

const K;T

var n; x½1::K�
var oldx½1::K�; nonews; converged

Upon: Init

nonews 0

converged False

n neighborsðselfÞ
for all i 2 1::K do x½i� rExpð1Þ
Send x to every p 2 n

Upon: Receive m1::mj from all p 2 n
oldx x

for all l 2 1::j do

x pointwiseminðx;mlÞ
end for

if oldx 6¼ x then

nonews 0

else

nonews nonewsþ 1

end if

if nonews � T then

converged True

end if

Send x to every p 2 n
Upon: Query & converged ¼ True

return N̂ðxÞ
In order to determine the appropriate value of T to use for

termination detection, we have simulated runs of the
algorithm for different network settings. Detailed results
are depicted in the supplemental material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPDS.2011.209. In short,
suitable values for T are a small fraction of the network
diameter, which makes the overhead of termination detec-
tion a small overhead over the optimal number of rounds.

6 ASYNCHRONY AND MESSAGE LOSS

A strong point in our estimation technique is that it is suitable
to address scenarios where message loss and arbitrary delays
can occur. Contrary to techniques such as [2], which cannot
afford to lose messages, in ours the knowledge in each
message is made obsolete by subsequent ones: if a message
fromA toB containing vector x is lost, a subsequent message
will have content y, where y � x (in pointwise order).

This means that our algorithm can be easily modified to
deal with message loss. The algorithms presented send a
message to all neighbors and wait for messages from all
neighbors. This means that a single message loss will
deadlock the entire system. Some simple modifications to
deal with the problem are possible.

. One is the use of a timeout, ONLY-TIMEOUT strategy.
The algorithm would wait for messages from all
neighbors, but if more than some time elapsed, it
would proceed using the messages received so far.

. Another is to wait until a given number of neighbors
have responded. However, this must be comple-
mented with a timeout, since it would still deadlock

if less than those neighbor messages arrived. This
strategy is referred as F-PLUS-TIMEOUT and para-
metrized by the F ratio of neighbor messages that
can be missed and the timeout value.

These strategies can make the algorithm robust to
message loss and slow links. In order to evaluate them
and determine adequate values for the timeout parameter,
we conducted a simulation of the algorithm in an
asynchronous setting and considered both fault free and
20 percent message loss scenarios. The setup and details are
described in the available online supplemental material and
we resume here the main findings.

The F-PLUS-TIMEOUT depicted no significant advantage
over the simpler ONLY-TIMEOUT strategy. This later
strategy was analyzed in detail over the influence of the
chosen timeout value. Short timeout values lead to fast
convergence at the expense of a high level of message
transmissions, while higher timeouts induce slower con-
vergence under message loss. We concluded that, as a rule
of thumb, we will be well served by choosing a timeout
corresponding to the 98 percent percentile of the CDF of the
latency distribution.

7 RELATED WORK

Several distributed algorithms to estimate sums and network
sizes (i.e., count) can be found in the literature. Some require
the use of a specific communication structure, like classic
tree-based and cluster-based aggregation techniques, such as
TAG [13], [14] and I-LEAG [15], [16]. These hierarchy-based
approaches are known to be cheap in terms of message
exchange, being commonly used in WSN (Wireless Sensor
Networks) due to energy efficiency. However, a single point
of failure might greatly impact their accuracy.

Other approaches [17], [18] rely on the existence of a ring,
establishing successor relations among nodes. In [17], a
network size estimation is produced at each node relying
only on the arrival and departure of nodes, without further
communication, simply by incrementing/decrementing
local estimators. However, this scheme provides coarse
estimates, ranging from N=2 to N2. In [18], the network size
is estimated based on the average distance between
consecutive nodes on a ring, executing an averaging process
(Push-Pull Gossiping [2]). This approach makes strong
assumptions on the ring structure, besides it should inherit
the dependability issues of the used push-pull protocol [19].
Here, we are interested in providing an estimate in a robust
way, without assuming the existence of any predefined
routing structure.

Regarding unstructured aggregation approaches, three
main groups of techniques can be identified: sampling,
sketching, and averaging. A study comparing a few
sampling and averaging approaches is found in [20], but
sketching techniques have been left out of it.

7.1 Sampling

These kind of algorithms [21], [22], [23], [24], [25] rely on the
results obtained from some sampling process to probabil-
istically estimate the size of the sampled population,
generally assuming that nodes possess unique identifiers.
These approaches are not accurate, with an approximation

672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

error that depends on the quality of the collected sample and
the used estimator. Moreover, sampling is commonly slow,
performing random walks and taking several rounds to
collect one sample at a single node. For example: in Sample
and Collide [21], [22] a single step (random walk) takes �dT
(where �d is the average connection degree and T is a timer
value that must be sufficiently large to provide a good
sample quality), and must be repeated until l sample
collisions have been observed; the capture-recapture meth-
od [23] produces an estimate based on the number of
repeated peers in each sample, requiring at least two random
walks at a source node, and being the sampling quality
highly affected by the network properties (e.g., degree).

Two different sampling algorithms, not based on
random walks, are presented in [24] and [25]. Still, both
assume that all nodes have unique IDs, and produce the
estimate at an initiator node. The first, Hops Sampling is a
gossip-based technique to sample receipt times, requiring a
membership list chosen uniformly at random, and the
capability to establish connections between arbitrary nodes.
The second, Interval Density has lighter requirements. In this
case, nodes have randomized IDs mapped into the interval
½0; 1�, which are collected the initiator. The estimate is
produced by determining the number X of IDs that fall in a
given subregion I of ½0; 1�, returning X=I. The weakness is
that it is difficult to set an adequate I since N is not known
and the transmitted data are always a fraction of N . For
both algorithms the achieved relative accuracy was re-
ported to be 5 percent.

7.2 Sketching

The use of idempotent messages for duplicate insensitive
aggregations in WSN was presented on [26], [27], [8], and
[28]. These papers make use of a sketching technique,
referred to as FM sketches, which was developed by Flajolet
and Martin [29] to estimate the number of distinct elements
in a multiset, and further enhanced in [30] and [31].

FM sketches is a discrete technique that builds on the use
of hash functions and bitmaps and that can estimate sums
of positive integers. Our approach is more general, building
on extreme value statistics and operating in the real
domain. Although intrinsically different the two techniques
have important similarities. If K is the number of units
dedicated to the estimation, both estimate with a relative
standard error of roughly Oð1=

ffiffiffiffiffi
K
p
Þ.

When considering the effect of binary encoding, we
observe that in [27], [26], and [28] the authors use the
nonenhanced FM sketches and thus would only be able to
encode in 5 bits a network size up to 25. For practical uses
they would need at least 16 bits per unit. Considering the
enhanced version of FM sketches in [30], one could expect
in 5 bits to be able to count up to 232 while we are limited to
about 223. However, the accuracy of FM sketches for small
counts is very weak.

The COMP algorithm [32], related to the earlier work on
k-mins sketches [33], reaches an estimator bNSF that is
equivalent to a biased version of our exponential estimator
for sums, dSum. Their estimator is biased and does not
converge to N but instead to K

K�1N , thus, it is much less
accurate for small values of K.

The statistics that lead to the estimator in [32] followed a
different path and build on asymptotic properties of
exponential random variables, being tied to this distribu-
tion. In contrast, our results (see Proposition 2) are more
general and apply to an arbitrary continuous distribution
F ðxÞ. In our case, the exponential distribution is one
possible instantiation that has the advantage of leading to
a simple formula in the derived estimator.

When considering the accuracy of bNSF , Mosk-Aoyama
and Shah derive in [32] (where � ¼ 2�) the expression

Prðj bNSF �N j > �NÞ � 2e�
�2K

12 :

In order to compare this envelope with our results, we need
to analyze

PrðjdSum�N j > �NÞ:

We know the variance and the expectation of dSum and that
the asymptotic distribution of maximum likelihood estima-
tors can be approximated by a normal distribution. From
this, we derive

PrðjdSum�Nj > �NÞ ¼ 2ð1� �ð�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
K � 2
p

ÞÞ;

where �ðÞ denotes the cumulative normal distribution.
Comparing the two expressions, one can verify that our
error bound is tighter and contained in the looser envelope
depicted for bNSF .

7.3 Averaging

A different trade-off in network size estimation can be
found in averaging techniques [34], [35], [2], [36], [37], [38].
To compute the COUNT function, these approaches start by
setting a value v to 1 at a single node and to 0 in all
remaining nodes. Then, nodes successively average the
values between its neighbors, and all eventually converge
to the network wide average of the initial values. When all
values converge each node has an estimate of N in
N̂ ¼ 1=v. Message state can be very small, since one needs
to encode a small set of reals with high precision (e.g., a
single real in the classic Push-Sum and Push-Pull
approaches, or one for each adjacent node in the case of
Flow Updating). Convergence requires a number of
message exchange steps much larger than the network
diameter, making this kind of approach slower than
Extrema Propagation. However, averaging approaches are
well suited for higher precision estimates.

7.4 Comparison

We compared Extrema Propagation against other represen-
tative algorithms, namely: COMP [32], Push-Vector [34], and
Flow Updating [38]. We choose those algorithms, because
like Extrema Propagation they operate independently from
the network routing structure, and produce a result at all
nodes. In a nutshell, the obtained results show that Extrema
Propagation should be preferred to obtain fast results with a
fair accuracy, outperforming averaging approaches in terms
of speed. Our encoding technique allows a noticeable
increase of precision (for the same message size) over COMP.
The comparison results are discussed in the available online
supplemental material (Comparison).

BAQUERO ET AL.: EXTREMA PROPAGATION: FAST DISTRIBUTED ESTIMATION OF SUMS AND NETWORK SIZES 673

8 CONCLUSIONS

We have introduced Extrema Propagation, a new approach
to distributed aggregation, based on the use of the statistical
theory of extreme values. The resulting unbiased estimators
for exponential distributions lead to very simple algorithms
and efficient implementations. Being able to estimate sums
of positive reals, we are more expressive than most
previous approaches: our technique encompasses summing
naturals and counting, constituting an important building
block for the construction of aggregate functions.

The technique is fast: all nodes have correct estimates
after, at most, a number of communication steps equal to
the network diameter, and in this sense we operate at the
theoretical minimum. Termination detection makes the
estimate available after a short additional number of
communication steps. Being fast, this technique is suitable
for dynamic systems, by adding a simple periodic restart
mechanism. The evaluation shows that it outperforms
averaging approaches in terms of speed, and is more
precise than previous sketching approaches.

In the algorithm, a node sends the same message to all its
neighbors. This means that broadcast facilities can be
explored if available on the underlying network protocols.
This is relevant, for example in sensor networks where, due
to sharing in the physical medium, a unicast has the same
cost as a broadcast.

Useful estimates can be obtained using short messages; we
have shown that only 5 bits are needed for each floating-point
number; an estimate with a 4 percent error with 95 percent
confidence can be obtained using K ¼ 2;400, which allows
the vector to fit in a 1,500 bytes MTU.

Finally, Extrema Propagation possesses an assortment of
interesting properties: it is fully distributed with no single
point of failure and with the result produced at every node,
it does not require globally unique identifiers and it is
suitable to tolerate message loss and slow links.

REFERENCES

[1] R. van Renesse, “The Importance of Aggregation,” Proc. Future
Directions in Distributed Computing, pp. 87-92, 2003.

[2] M. Jelasity, A. Montresor, and Ö. Babaoglu, “Gossip-Based
Aggregation in Large Dynamic Networks,” ACM Trans. Computer
System, vol. 23, no. 3, pp. 219-252, 2005.

[3] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation
of Aggregate Information,” Proc. IEEE 44th Ann. Symp. Foundations
of Computer Science (FOCS), pp. 482-491, 2003.

[4] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, and H.
Balakrishnan, “Chord: A Scalable Peer-to-Peer Lookup Service
for Internet Applications,” Proc. SIGCOMM, pp. 149-160, 2001.

[5] I. Abraham and D. Malkhi, “Probabilistic Quorums for Dynamic
Systems,” Proc. 17th Int’l Symp. Distributed Computing, pp. 60-74,
2003.

[6] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “Tag: A
Tiny Aggregation Service for Ad-Hoc Sensor Networks,” Proc. Fifth
Symp. Operating Systems Design and Implementation (OSDI), 2002.

[7] J. Li, K.R. Sollins, and D.-Y. Lim, “Implementing Aggregation and
Broadcast over Distributed Hash Tables,” Computer Comm. Rev.,
vol. 35, no. 1, pp. 81-92, 2004.

[8] S. Nath, P.B. Gibbons, S. Seshan, and Z.R. Anderson, “Synopsis
Diffusion for Robust Aggregation in Sensor Networks,” Proc.
Second Int’l Conf. Embedded Networked Sensor Systems (SenSys),
pp. 250-262, 2004.

[9] C. Baquero, P.S. Almeida, and R. Menezes, “Fast Estimation of
Aggregates in Unstructured Networks,” Proc. Fifth Int’l Conf.
Autonomic and Autonomous Systems (ICAS), pp. 88-93, http://doi.
ieeecomputersociety.org/10.1109/ICAS.2009.31, 2009.

[10] D. Psaltoulis, D. Kostoulas, I. Gupta, K. Birman, and A. Demers,
“Practical Algorithms for Size Estimation in Large and Dynamic
Groups,” technical report, Univ. of Illinois, http://www.cs.
cornell.edu/Info/Projects/Spinglass/Pubs.html, 2004.

[11] E.J. Gumbel, Statistics of Extremes. Columbia Univ. Press, 1958.
[12] R.V. Hogg and A.F. Craig, Introduction to Mathematical Statistics,

fifth ed. Prentice-Hall, 1995.
[13] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: A

Tiny AGgregation Service for Ad-Hoc Sensor Networks,” ACM
SIGOPS Operating Systems Rev., vol. 36, no. SI, pp. 131-146, Dec.
2002.

[14] S. Madden, R. Szewczyk, M. Franklin, and D. Culler, “Supporting
Aggregate Queries over Ad-Hoc Wireless Sensor Networks,” Proc.
IEEE Fourth Workshop Mobile Computing Systems and Applications,
pp. 49-58, Mar. 2002.

[15] Y. Birk, I. Keidar, L. Liss, A. Schuster, and R. Wolff, “Veracity
Radius: Capturing the Locality of Distributed Computations,”
Proc. 25th Ann. ACM Symp. Principles of Distributed Computing
(PODC), July 2006.

[16] Y. Birk, I. Keidar, L. Liss, and A. Schuster, “Efficient Dynamic
Aggregation,” Proc. 20th Int’l Symp. DIStributed Computing (DISC),
pp. 90-104, Sept. 2006.

[17] K. Horowitz and D. Malkhi, “Estimating Network Size from Local
Information,” Information Processing Letters, vol. 88, no. 5, pp. 237-
243, 2003.

[18] T. Shafaat, A. Ghodsi, and S. Haridi, “A Practical Approach to
Network Size Estimation for Structured Overlays,” Proc. Third Int’l
Self-Organizing Systems, pp. 71-83, Dec. 2008.

[19] P. Jesus, C. Baquero, and P.S. Almeida, “Dependability in
Aggregation by Averaging,” Simpósio de Informatica (INForum),
Sept. 2009.

[20] E.L. Merrer, A.-M. Kermarrec, and L. Massoulie, “Peer to Peer Size
Estimation in Large and Dynamic Networks: A Comparative
Study,” Proc. IEEE 15th Int’l Symp. High Performance Distributed
Computing, Jan. 2006.

[21] A. Ganesh, A. Kermarrec, E.L. Merrer, and L. Massoulié, “Peer
Counting and Sampling in Overlay Networks Based on Random
Walks,” Distributed Computing, vol. 20, no. 4, pp. 267-278, 2007.

[22] L. Massoulié, E. Merrer, A.-M. Kermarrec, and A. Ganesh, “Peer
Counting and Sampling in Overlay Networks: Random Walk
Methods,” Proc. 25th Ann. ACM Symp. Principles of Distributed
Computing (PODC), 2006.

[23] S. Mane, S. Mopuru, K. Mehra, and J. Srivastava, “Network Size
Estimation in a Peer-to-Peer Network,” technical report, Dept. of
Computer Science, Univ. of Minnesota, p. 12, Sept. 2005.

[24] D. Kostoulas, D. Psaltoulis, I. Gupta, K. Birman, and A. Demers,
“Decentralized Schemes for Size Estimation in Large and
Dynamic Groups,” Proc. IEEE Fourth Int’l Symp. Network Comput-
ing and Applications, pp. 41-48, 2005.

[25] D. Kostoulas, D. Psaltoulis, I. Gupta, K.P. Birman, and A.J.
Demers, “Active and Passive Techniques for Group Size Estima-
tion in Large-Scale and Dynamic Distributed Systems,” J. Systems
and Software, vol. 80, no. 10, pp. 1639-1658, Jan. 2007.

[26] J. Considine, F. Li, G. Kollios, and J.W. Byers, “Approximate
Aggregation Techniques for Sensor Databases,” Proc. 20th Int’l
Conf. Data Eng. (ICDE), pp. 449-460, 2004.

[27] M. Bawa, H. Garcia-Molina, A. Gionis, and R. Motwani,
“Estimating Aggregates on a Peer-To-Peer Network,” Technical
Report TR-2003-24, Stanford Univ., http://dbpubs.stanford.edu/
pub/2003-24, 2003.

[28] A. Manjhi, S. Nath, and P. Gibbons, “Tributaries and Deltas:
Efficient and Robust Aggregation in Sensor Network Streams,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, pp. 287-298,
2005.

[29] P. Flajolet and G.N. Martin, “Probabilistic Counting Algorithms
for Data Base Applications,” J. Computer and System Sciences,
vol. 31, no. 2, pp. 182-209, 1985.

[30] M. Durand and P. Flajolet, “Loglog Counting of Large Cardinal-
ities (Extended Abstract),” Proc. 11th Ann. European Symp.
Algorithms, pp. 605-617, 2003.

[31] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier, “Hyperloglog:
The Analysis of a Near-Optimal Cardinality Estimation Algo-
rithm,” Int’l Conf. Analysis of Algorithms (AofA), pp. 127-146, June
2007.

[32] D. Mosk-Aoyama and D. Shah, “Computing Separable Functions
via Gossip,” Proc. 25th Ann. ACM Symp. Principles of Distributed
Computing, pp. 113-122, July 2006.

674 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 4, APRIL 2012

[33] E. Cohen, “Size-Estimation Framework with Applications to
Transitive Closure and Reachability,” J. Computer and System
Sciences, vol. 55, no. 3, pp. 441-453, 1997.

[34] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-Based Computation
of Aggregate Information,” Proc. IEEE 44th Ann. Symp. Foundations
of Computer Science, pp. 482-491, 2003.

[35] M. Jelasity and A. Montresor, “Epidemic-Style Proactive Aggrega-
tion in Large Overlay Networks,” Proc. 24th Int’l Conf. Distributed
Computing Systems, pp. 102-109, Jan. 2004.

[36] F. Wuhib, M. Dam, R. Stadler, and A. Clemm, “Robust Monitoring
of Network-Wide Aggregates through Gossiping,” Proc. IFIP/IEEE
10th Int’l Symp. Integrated Network Management, pp. 226-235, May
2007.

[37] P. Jesus, C. Baquero, and P.S. Almeida, “Fault-Tolerant Aggrega-
tion by Flow Updating,” Proc. Ninth IFIP Int’l Conf. Distributed
Applications and Interoperable Systems (DAIS), pp. 73-86, 2009.

[38] P. Jesus, C. Baquero, and P.S. Almeida, “Fault-Tolerant Aggrega-
tion for Dynamic Networks,” Proc. IEEE 29th Symp. Reliable
Distributed Systems, pp. 37-43, 2010.

Carlos Baquero received the MSc and PhD
degrees from the Universidade do Minho in 1994
and 2000, respectively. Currently, he is working
as an assistant professor at the Computer
Science Department in the Universidade do
Minho (Portugal). His research interests are
focused on distributed systems, in particular, in
causality tracking, peer-to-peer systems, and
distributed data aggregation. Recent research is
focused on highly dynamic distributed systems,

both in Internet P2P settings and in mobile and sensor networks.

Paulo Sérgio Almeida received the MSc
degree in electrical engineering and computing
from the Universidade do Porto in 1994 and the
PhD degree in computer science from Imperial
College London in 1998. Currently, he is working
as an assistant professor at the Computer
Science Department in the Universidade do
Minho (Portugal). His research interests are
focused on distributed systems, in particular,
distributed algorithms (namely aggregation) and

logical clocks for causality tracking (with applications to optimistic
replication).

Raquel Menezes received the MSc degree in
computer sciences from Minho University in
1996, and the PhD degree in mathematics/
statistics from Santiago de Compostela and
Lancaster Universities in 2005. Currently, she
is working as an assistant professor in the
Department of Mathematics and Applications of
the Universidade do Minho (Portugal). Her
current main interest include spatial statistics,
mainly geostatistics, and nonparametric estima-

tion, motivated by environmental and health applications.

Paulo Jesus received the BEng degree in
systems and informatics in 2001, and the MSc
degree in mobile systems in 2007, both from the
Universidade do Minho (Portugal). Currently, he
is working toward the PhD degree as a student
of the MAP-i doctoral program in computer
science by the Universities of Minho, Aveiro
and Porto (Portugal). He worked during 5 years
as a software developer, and taught informatics
during 1 year. His research interests include

distributed algorithms, fault tolerance, and mobile systems.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BAQUERO ET AL.: EXTREMA PROPAGATION: FAST DISTRIBUTED ESTIMATION OF SUMS AND NETWORK SIZES 675

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

